
The Construction and Verification
of Asynchronous Components Built
from Chemical Reaction Networks

Max Whitby

Keble College, University of Oxford

Supervisor

Professor Marta Kwiatkowska

A thesis submitted for the degree of

Master of Science in Computer Science

Trinity term, 2015

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor

Marta Kwiatkowska, for the insight and guidance she has given through-

out this project. Without her vision this project would never have been

possible. I would also like to thank Professor Luca Cardelli for establish-

ing most of the theory on which this thesis is based and for our meetings.

I would like to thank Dr.Stefan Dantchev for his trust and confidence in

my ability, for providing me with valuable research experience and for

aiding in my path to Oxford. Finally I would like to thank my parents,

Lynne and Michael, for the overwhelming moral and financial support

throughout my masters degree.

Abstract

The formalism of Chemical Reaction Networks (CRNs) was traditionally

used to capture the behaviour of chemical reactions. Recent realisation

of CRNs in DNA strand displacement systems makes it possible to view

CRNs as a programming language for DNA computing devices. It can

thus be reasoned that the construction of logic gates, control flow ele-

ments and even algorithms, if realised within CRNs, can be eventually

implemented within a laboratory. The problem lies in the feasibility of

DNA computation without the use of a global synchronisation method.

This thesis proposes novel designs of asynchronous components imple-

mented in CRNs such that they could be realised in DNA without the

use of biological oscillators which, to this date, are unreliable for timings.

The correctness of the designs is established by systematic analysis of their

input-output behaviour using simulation and probabilistic model check-

ing for uniform reaction rates and low molecular count. The proposed

designs are an attractive target behaviour for a wide range of biological

applications.

Contents

1 Literature Review and Definitions 4

1.1 Chemical Reaction Networks . 4

1.1.1 Stochastic Chemical Reaction Networks 5

1.1.2 Definition of SCRN . 6

1.1.3 Restrictions on our Specific SCRN model 8

1.1.4 A Diagrammatic Notation for CRNs 9

1.2 The Physical Realisation of CRNs . 11

1.2.1 Non-DNA realisations . 12

1.2.2 DNA realisations . 12

1.3 Probabilistic Model Checking . 14

1.3.1 PRISM . 15

1.3.2 Definition of a CTMC . 16

1.3.3 From CRN to CTMC . 17

1.3.4 CSL . 17

1.4 Asynchronous Systems . 18

1.4.1 Asynchronous Architecture . 19

1.4.2 The C-Element . 19

1.4.3 Pipelining . 20

1.4.4 Classification of Asynchronous Circuits 22

2 Methodology 24

2.1 CRN Design . 24

2.1.1 The use of Microsoft’s GEC Tool 26

2.1.2 The PRISM Model . 26

2.2 The Verification Process . 27

2.2.1 Verification of an Isolated Component 27

2.2.2 Non-Binary and Changing Values 29

2.2.3 The Verification of a Larger System 30

i

3 Component Design and Verification 32

3.1 Rendez-Vous Elements . 33

3.1.1 Atomic Operations . 33

3.1.2 The Retention of Information 35

3.1.3 Latches . 38

3.1.4 Evaluation of Latch Designs 39

3.1.5 Muller-C Element . 41

3.1.6 Merging . 43

3.2 Arbiter Elements . 44

3.2.1 Forks . 44

3.2.2 Amplification and Muting . 46

3.2.3 Biased Arbiters . 47

3.3 Control Flow Elements . 48

3.3.1 Conditional Statements . 48

3.3.2 Loops . 49

3.4 Logic and Numbers . 50

3.4.1 NOT, AND and OR . 50

3.4.2 NOR, NAND and XOR . 51

3.4.3 Numbers . 52

4 Systems, Pipelining and Algorithms 56

4.1 Muller Pipeline . 56

4.1.1 Construction . 57

4.1.2 The Queue . 59

4.1.3 Ripple-Carry Adder . 60

4.1.4 Loops . 61

4.2 Protocols . 62

4.2.1 4-phase Dual Rail Protocol . 62

4.2.2 2-phase dual-rail Protocol . 63

5 Evaluation 66

5.1 Limitations . 66

5.1.1 State Space Explosion . 66

5.1.2 Automated Verification . 67

5.1.3 Multi-purpose circuit design 67

5.1.4 Implementation Issues . 67

5.2 Further Work . 68

ii

5.2.1 High-Level Programming Language 68

5.2.2 Proofs and Exhaustive Testing 69

5.2.3 Physical Implementation . 70

6 Conclusion 71

A Appendix - Example code 73

A.1 AND-Gate Example . 73

A.1.1 LBS CRN code for an AND gate 73

A.1.2 AND-gate SBML File . 74

A.1.3 AND-gate PRISM File . 79

A.1.4 AND-Gate Properties for Simulation 83

A.2 CRN Designs . 83

A.2.1 Latches . 83

A.2.2 C-element . 85

A.2.3 Adder . 86

A.2.4 Muller C Pipeline CRN . 89

A.2.5 Queue Structure . 91

A.2.6 Loop PRISM model . 94

A.2.7 Four-Phase Protocol CRN . 108

Bibliography 114

iii

Introduction

Chemical Reaction Networks were traditionally used to capture the behaviour of in-

organic and organic chemical reactions [42, 60]. Recently, a paradigm shift in the

scientific community has seen the use of CRNs extend to that of a high-level pro-

gramming language [28, 49, 50]. Chemical Reaction Networks are used as a target

behaviour for low-level biological systems [51, 54]. As a good example the work of

Chen et al. has shown the realisation of three types of chemical reaction using DNA

strand displacement [14].

With the link between DNA computation and the CRN formalism thus established,

it can be reasoned that the construction of logic gates, control flow elements and even

algorithms, if realised within CRNs, can be eventually implemented within a labora-

tory, using CRNs as a target behaviour. Given that DNA computation can interface

directly with biological systems, it has been postulated that such research has direct

application in medicine, waste removal and other fields [41].

A major problem in the construction of biological systems is the need for a synchro-

nisation methods to ensure that systems perform computation with strict timing.

Biological oscillators of any sort are difficult to achieve [24, 59]. Work on the con-

struction of asynchronous components, be it for control flow or for computational

logic, has been little researched with few examples of CRNs more complex than just

a couple of reactions [51].

This thesis provides novel CRN designs for the construction of asynchronous logic

and control flow elements such that this thesis concludes that any asynchronous sys-

tem can be realised using the components and mechanisms provided. All designs are

robust for low molecular count, which is important as it means that implementa-

tions without an isochronous fork can also be partially realised. All components are

produced with simple reactions and uniform reaction rates, making implementation

1

of these components even more attractive. Moreover, any design provided in this

thesis could potentially be realised within DNA. This is much more concrete than

Magnasco’s existing claim which provides insight into why the realisation of CRNs

are Turing Universal [37].

The verification and simulation of our designs are made achievable by the model

checker PRISM. PRISM is a model checking tool which allows for the construction

of both Discrete-Time Markov Chain (DTMC) and Continuous-Time Markov Chain

(CTMC) models [30], the equivalence of which to CRNs has been proven by [8].

PRISM is widely regarded as one of the best free and well documented model checking

tools by the community. The constructed CTMC models can be queried by PRISM’s

own query language based upon Continuous Stochastic Logic (CSL). Implemented

CRNs within this thesis are sketched out using Microsoft’s GEC tool before they are

passed to PRISM [44]. Once our models are constructed in PRISM as a CTMC, we

use CSL to query them to confirm that the CRNs exhibit desired behaviour.

The diagrammatic CRN notation used within this thesis is based upon the diagram-

matic language constructed by Luca Cardelli [10], which this thesis promotes as a

concise and convenient way to reason about chemical systems rather than a long list

of reactions or processes.

The methodology behind this thesis can be broken down as follows. First, we con-

struct the chemical reaction networks which describe the various asynchronous el-

ements. We then transform these CRNs into an equivalent CTMC model using

PRISM’s modelling language. We then use these models to simulate and verify

stochastically that with high probability the original CRN behaves in an equiva-

lent way to our theoretical logical or control element. This is repeated for all core

components listed in Furber’s book on asynchronous circuit design [55].

The main body of this thesis is explained through an extensive literature review on

the current state of the art in relation to this work. Following this, Chapter 2 covers

the methodology and an example to explain, in detail, how each stage is realised.

Chapter 3 covers the construction of basic asynchronous components which are used

in systems in Chapter 4. Chapter 4 covers the constructions and applications of the

Muller-C pipeline. The thesis concludes with an extensive evaluation of the work

2

done and the feasibility of its implementation.

The justification for this work is apparent in its application. In providing components

which are independent of a universal clock and operate through a series of local hand-

shakes we aid in the construction and realisation of simpler systems, be it in DNA or

in cell-cycle systems. Because of the lack of feasible oscillators, it could be argued that

this work provides the first feasible implementation of asynchronous computational

components as CRNs, and it is certainly the case that most components discussed

within this thesis are completely novel CRN constructions.

3

Chapter 1

Literature Review and Definitions

This chapter gives the necessary background to understand the methodology and

relevance of this thesis, explained in subsequent chapters. The chapter starts with

an introduction to Chemical Reaction Networks. This allows one to understand the

designs presented in Chapter 3: Component Design and Verification and Chapter

4: Systems, Pipelining and Algorithms. The theory behind Stochastic Chemical Re-

action Networks used within this project, along with a definition of diagrammatic

notation, is presented and discussed in detail. We go on to discuss the relevance of

this by discussing the implementations of CRNs in DNA-based computation. The

specific components targeted within this thesis are discussed within the section on

Asynchronous Systems. The chapter concludes by outlining a framework to convert

CRNs into an equivalent Continuous-Time Markov Chain, thus justifying our use of

PRISM as a model checker for this project.

1.1 Chemical Reaction Networks

Chemical Reaction Networks provide a framework which underpins most of the con-

struction and designs within this thesis. The theory of reaction kinetics can be de-

scribed very simply: a set of rules are imposed upon reactants which determine the

products they form at a rate determined by the present number of reactants [42, 60].

Therefore, reactions provide us with a basic, fundamental computational process: in-

put chemicals are transformed into output via reaction instruction.

Reaction kinetics is a cornerstone for much of our understanding in both biological

and chemical systems. Because of this, work has traditionally focused on analysis :

the study of trying to simulate and model the behaviour of natural reactions [21, 23].

For instance, Guptasarma shows that 80% of the genes in the E. coli chromosome are

4

expressed at fewer than a hundred copies per cell [26]. At best, we could say that a

genetic engineer’s job is to modify existing functionality to fit desired functionality,

however the computer science approach is that of synthesis. Synthesis is the design

of specific reactionary behaviour which enacts our target behaviour.

Several works have explored the computational power and limitations of CRNs. Mag-

nasco demonstrated that chemical reactions can compute anything that digital cir-

cuits can compute, albeit in a brief and informal manner [37]. Soloveichik et al.

demonstrated that chemical reactions are Turing Universal, meaning that they can

compute anything that a computer algorithm can compute [53], and Soloveichik him-

self has contributed much of the work in the formalism of CRNs [53, 17, 13]. What

is important to mention is that memory is simulated by polymer memory rather

than being included in the CRN, therefore CRNs, within this framework, are not

completely Turing complete. In Chapter 3 we expand on this problem by providing

reaction networks for memory components.

Such prior work considered the computational power of chemical reactions from a de-

ductive point of view. An important work that considers a ground up approach is [49].

They propose a constructive method for designing specific computational modules:

an inverter, an incrementer, a decrementer, a copier, a comparator, a multiplier, an

exponentiator, a raise-to-a-power operation, and a logarithm operation in base two.

Other work shows the practical construction of ‘for’ and ‘while’ loops [50]. Some

works even go as far as to show signal processing operations such as filtering [28].

The problem with these constructions is that they depend on specific rate categories

for reactions. They are also, for the most part, without rewritable memory which

could simplify a lot of their designs and constructions.

1.1.1 Stochastic Chemical Reaction Networks

A Chemical Reaction Network (CRN) is a discrete model of chemical kinetics. The

focus within this project will be a subset of this discrete model: Stochastic Chem-

ical Reaction Networks (SCRNs). Many results on the formalism of SCRNs have

been established [17, 53, 42]; however, we will cover a brief summary of the specific

model we use within this thesis. Stochastic Chemical Reaction Networks are closely

related to other computational models and indeed other works have shown complete

reductions from one to another. Such models include Fractran [16], Vector Addition

5

Systems (VASs) [29], Petri nets [22], and Register Machines [39], and for many of

these systems we can also consider stochastic or non-deterministic variants. Later

in the chapter we look at an important result showing a bijection between the CRN

framework and Continuous-Time Markov Chains.

In Cook et al. an interesting observation about CRNs is made [17]. Given the im-

portance of stochastic behavior in Chemical Reaction Networks, it is particularly

interesting that most questions of possibility, concerning the behaviour of CRN mod-

els are decidable [29], the corresponding questions of probability are undecidable

[62, 53]. This result derives from showing that Stochastic Chemical Reaction Net-

works can simulate Register Machines [36] efficiently [3] within a known error bound

that is independent of the unknown number of steps prior to halting [53]. This results

is a conclusion that: when answers must be guaranteed to be correct, computational

power is limited, but when an arbitrarily small error probability can be tolerated,

the computational power is dramatically increased. This observation is extremely

important for the feasibility of this thesis as we observe chemical reaction networks

as probabilistic models. In doing so we allow for small tolerance, making most veri-

fication questions we ask within this thesis decidable.

1.1.2 Definition of SCRN

Stoichiometry is defined as a non-negative number of copies of each species required

for the reaction to take place, or produced when the reaction does take place [2, 53].

An SCRN C is a finite set R of reactions acting on a finite number S of species.

A reaction is a triple written in the form < r ∈ R,→kα , p ∈ R >, where r and

p are the multisets of species reactants and products, respectively, and kα > 0 is

the reaction rate. Each reaction α is defined as a vector of non-negative integers

specifying the stoichiometry of the reactants, rα = (rα,1, . . . , rα,n), together with an-

other vector of non-negative integers specifying the stoichiometry of the products,

pα = (pα,1, . . . , pα,n) [2, 53].

As an example take the catalytic reaction:

A+B →kα 2C +B (1.1)

6

This means that a consumption of one molecule of species A and one molecule of

species B will produce two new molecules of species C and a molecule of species

B. kα is the reaction rate constant where kα > 0. The rate of every reaction α is

proportional to the concentrations of reactants so k can be viewed as a constant of

proportionality. If this is omitted we can assume the rate constant is uniform. We

say that B is catalytic as it needs to be present for the reaction to occur but is actu-

ally preserved under this reaction. There are two other categories of reaction to be

considered: basic e.g. A+B → C and auto-catalytic e.g. A+B → C + 2B [2, 53].

A reaction is of the form A
X→ B if there is some reaction X in the SCRN (C) that

can change A to B, similarly we will use A
...→ B to represent transitive closure [2, 53].

Pr[A
X→ B] indicates the probability that, given that the state is initially A, the next

reaction will transition to the state to B. Similarly Pr[A
...→ B] can be seen as the

transitive probability that there is a set of reactions which will transform the reactant

A into the species B.

The state of the network is defined as a vector of non-negative integers specifying

the quantities present of each species, S = (q1, ..., qm). A reaction is possible in state

S only if there are enough reactants present, that is, ∀i, qi ≥ rα,i. When reaction α

occurs in state S, the reactant molecules are used up and the products are produced.

The new state is S ′ = S × α = (q1rα,1 + pα,1, ..., qmrα,m + pα,m). For a given volume

V , for any state S = (q1, . . . , qm), the rate of reaction α in that state is [2, 53]:

ρσ(S) = kαV
m∏
i=1

(qi)
rα,i

V rα,i
where q

r def
=

q!

(q − r)!
(1.2)

Since the solution is assumed to be well-stirred, the time until a particular reaction

α occurs in state S is an exponentially distributed random variable with the rate

parameter ρα(S); the dynamics of a SCRN can be modelled as a continuous-time

Markov process, defined as follows:

We write Pr[S
C→ S ′] to indicate the probability that, given that the state is initially

S, the next reaction will transition to the state S ′. These probabilities are given by

[2, 53]:

Pr[S
C→ S ′] =

ρS→S′

ρtotS
where ρS→S′ =

∑
αs.t.S×α=S′

ρα(S) and ρtotS =
∑
S′

ρS→S′ (1.3)

7

The average time for a step S → S ′ to occur is 1
ρtotS

, and the average time for a sequence

of steps is simply the sum of the average times for each step. We write Pr[S
...→ S∗] to

mean, by transitivity, at some point in the future the system will be in state S∗ [2, 53].

As well as the formal definition we provide some interesting properties about SCRNs.

Well-mixed finite stochastic chemical reaction networks with a fixed number of species,

with low error probability, can perform Turing-universal computation [53]. With the

addition of two separate reaction rates, fast and slow, SCRNs become Turing uni-

versal and can compute any computable function without error [17]. SCRNs can

compute any computable function with probability of error less than q for any q > 0,

but for q = 0 universal computation is impossible [3, 29, 53].

SCRNs without reaction rates dependent on the concentration of species remain-

ing are not capable of universal computation with any fixed probability of success

[17]. The time and space requirements for Stochastic Chemical Reaction Networks

undertaking computation, compared to a Turing Machine, are a simple polynomial

slowdown in time, but an exponential increase in space [3, 53].

Realisations of SCRNs have been simulated by partitioning of molecules into mem-

brane compartments [6, 43]. This allows unbounded computation to be performed by

molecular systems containing only limited types of enzyme and basic signal-carrying

molecular components. Realisations have also been simulated via polymer [5, 46] and

via cellular automaton simulation in self-assembly [47]. These approaches rely on the

geometrical arrangement of a fixed set of parts to encode information.

1.1.3 Restrictions on our Specific SCRN model

There are several important limitations of the SCRN framework, mostly to do with

its simplicity. For instance, a problem is that an SCRN, being a simplification of real-

world principles, allows for reactions such as A→ 2A. This allows for the production

of an extra A from nowhere which is a violation of conservation laws.

We cannot immediately assume that our number of molecules will fit within the spe-

cific volume, therefore it is important to add a further constraint to our model. For

some fixed volume V , the number of molecules m at some arbitrary time t should be

less than or equal to the number of molecules m′ at time t′ where t′ < t. If, however,

8

we allow our volume to increase then it should scale proportionally to the number of

molecules. It is also important to note that in any SCRN, Pr[A
X→ B] is independent

of volume and we will ignore volume as we only care about comparable computation

times in this thesis rather than precise timings. This means that we overlook some

problems like an increase in volume having a detrimental effect on the well-mixed

assumption.

We will also restrict our model further to disallow higher-order reactions, e.g. 2A +

2C → 2A + 2B, as these are generally believed to be approximations of lower order

binary reactions with fast reaction rates. Our model assumes that most reactions are

reversible unless specifically stated otherwise.

An important restriction in this thesis is that we only consider a restricted class of

SCRNs where α is uniform. This means that our rate kα will be uniform throughout

our CRN. This is different to previous works which have relied on a change of rate to

achieve the creation of chemical components [49].

1.1.4 A Diagrammatic Notation for CRNs

We introduce a diagrammatic notation similar to that of Cardelli’s notation [10] to

describe biological systems. This will aid us in the design and construction of circuits

as it relieves the burden of long and tedious lists of CRNs. Given our previous reaction

triple < r,→, p > we define a reversible reaction triple as < m,�, n > where:

< m,�, n >= < r,→, p > ∪

< p,→, r >
(1.4)

If m is catalytic or a witness to some generic reaction R we define this diagrammati-

cally as:

By definition, m can affect a reversible reaction in one of two ways, either by being

catalytic to the reaction r0 → r1 ∈ R or the reverse r1 → r0 ∈ R. In the following

diagram we show two witnesses w0, w1 being catalytic to the reaction r0 � r1, where

w0 is catalytic to r0 → r1 and w1 is catalytic to r1 → r0:

9

Similarly, if m is a component of the reaction R we denote this as:

Therefore a generic reaction can be represented as follows:

where x0, ..., xn and y1, ..., yn are catalytic to the reaction r0 � r1. Lines attached

to the labels r0, r1 represent that this species is used elsewhere in some other reaction.

The composition of a new reaction R’ to a reaction R directly translates to: R ∪ R′.
Similarly, composition of reactions leads to a new state space: S×S ′. We define this

union diagrammatically as:

Because this diagrammatic language is only defined briefly here, we run through an

example. We denote the following CRN, which interestingly emulates the properties

of a NOT-gate:

xlo + ylo→kα xlo + yhi

xhi + yhi→kα xhi + ylo
(1.5)

10

This would be represented as the following diagram:

As an example of composition we note the following CRN as the composition of two

NOT-gates:

xlo + ylo→kα xlo + yhi

xhi + yhi→kα xhi + ylo

ylo + zlo→kα ylo + zhi

yhi + zhi→kα yhi + zlo

(1.6)

And so the diagrammatic equivalent would be:

where xlo, xhi would be considered the inputs and zhi and zlo the outputs.

The explanation as to why this emulates a NOT gate is discussed further in Chapter

3. Due to the well mixed assumption we can ignore any preconceptions one might

already have about signal carry time. As Chapter 3 progresses we drop the use of

specific reactions altogether in favour of standard circuit notation and so a NOT-gate

would simply be represented as follows:

1.2 The Physical Realisation of CRNs

A small number of works try to work with CRNs as a high-level programming lan-

guage which compiles down into physical systems. This section divides these up into

non-DNA realisations, primarily inorganic reaction systems and cell-cycle systems,

and DNA realisations which have traditionally been the most prominent focus for

11

implementation. DNA realisations will be the main target for our CRNs and imple-

mentation of them will be discussed rigorously in Chapter 5.

1.2.1 Non-DNA realisations

Cardelli’s paper on cell cycles [11] shows a replication of the approximate majority

algorithm, more specifically that the inactive and active forms of the mitosis pro-

moting Cyclin Dependent Kinases is driven by a system that is related to both the

structure and the dynamics of the approximate majority computation. He shows that

this process can be described by the following CRN:

x+ y → y + b

b+ y → y + y

y + z → x+ b

b+ z → x+ x

(1.7)

where x and y are competing species and b is some intermediary species. The ap-

proximate majority network promotes the dominant species as an output. We show

verification of this in regards to Asynchronous Circuits in Section 3.1.5.

1.2.2 DNA realisations

Practical work on the use of DNA as a computational method started with the use of

UV light projected onto a gel which contained DNA photo-reactants [15] . Other early

works include a cell-free transcription-translation system that mimicked the pattern

forming program observed in Drosophila and amorphous computation with in-vitro

transcription networks [25, 52]. The problem with these methods is that they are not

purely based on the use of DNA as the sole component of computation.

Microsoft’s DNA Strand Displacement tool (DSD) provides a programming language

to design and simulate devices designed solely in terms of DNA [34]. The design

and verification of components made from DNA with DSD has been constructed in

conjunction with the PRISM model checker [32]. Lakin et al. have designed a ripple-

carry adder using an extension of the DSD programming semantics [33]. The theory

that underpins DSD is based on strand displacement [34]. Strand displacement is a

process in which strands of DNA bind and separate to other DNA molecules.

12

There are a few works which use restricted classes of strand displacement DNA devices

to show implementations of CRNs in DNA. We examine four of them here. The first

uses a specific restricted class of double-stranded structures for use in DNA strand

displacement [9]. The second uses a primitive called strand-displacement cascades

[54]; a modification of the standard strand-displacement reactions. The third, our

main focus, generalises these two and provides insight into the compilation of CRNs

described as Ordinary Differental Equations (ODEs) [14] because of high molecular

count. The fourth takes into account spatial properties of DNA in order to perform

computation with low molecular count [18].

Cardelli explores the use of a restricted class of DNA strand displacement structures:

mainly those that are made of double strands with ‘nicks’ in the top strand [9]. This

paper constructs and verifies an implementation of fork and join gates. As with this

thesis, the limitation of this approach is that specific cases are verified for each com-

ponent leading towards a conclusion that suggests the use of automated analysis to

exhaustively prove correctness of components.

The second paper [54] explores the use of the entire compilation process from high

level ODE to an implementation in the real world. They provide the reader with a

method for compiling an arbitrary CRN into nucleic-acid-based chemistry. This is

achieved by the use of a molecular primitive: strand displacement cascades. Through

this they argue that any CRN can be implemented by reduction to reactions using

this primitive. However, it is important to note that they also suggest that their

techniques have not been tested on systems with larger CRNs. They conclude that,

because they have provided a method to compile CRNs into DNA molecules, CRNs

can be considered as an effective programming language and used prescriptively for

the synthesis of unique molecular systems. They extend on this work further to show

implementations of CRN oscillators [54].

Arguably the most important work to date on this subject [14] shows an equivalence

between all three of our base reaction classes: non-catalytic, catalytic and auto-

catalytic, and a DNA reaction mechanism [14]. They suggest a way to compile any

CRN or targeted behaviour into an equivalent DNA architecture. This DNA architec-

ture can be realised by a transformation into a mechanical strand displacement model.

We have included a figure (1.1) of this process for a non-catalytic reaction. This paper

13

shows the validity of the work completed in this thesis. Because any chemical reac-

tion can be compiled into an equivalent DNA reaction mechanism we can essentially

realise any high-level CRN suggested in Chapter 3 and 4. The paper also shows an

implementation for approximate majority which is used extensively within this thesis.

Figure 1.1: From:Programmable Chemical Controllers Made from DNA [14]. The
formalism of CRNs is used as a programming language that specifies the desired
behaviour mainly: A + B → C. This is turned into a DNA architecture. This
architecture is turned into a mechanistic model which is compared to the equivalent
ODE behaviour given by the CRN.

The fourth work [18], the most recent, suggests the failure of the other three is that

they work with high molecular count under the well-mixed assumption. This paper

proposes a method for programming spatial organisation of DNA at a small scale [18].

This is achieved by means of a DNA strand displacement reaction diffusion system.

They use this to demonstrate three practical components. An implementation of an

auto-catalytic reaction, mainly: A + B → 2B, a ‘predator-prey’ oscillator, and a

two-species consensus network. For each of these implementations they compile a

high level CRN implementation down to a specific DNA implementation which they

simulate using Microsoft’s DSD tool.

1.3 Probabilistic Model Checking

This thesis uses Probabilistic Model Checking extensively in verifying correctness of

CRN designs in Chapters 3 and 4. This section explains the theory behind realising

a CRN as a PRISM model and how we query this model. We also discuss the use of

PRISM as the specific model checker we use.

14

Model checking is an automated formal verification technique, based on the exhaus-

tive construction and analysis of a finite-state model of the system being verified [4].

A model is a labelled state-transition system, in which each state represents a possible

configuration of the system and each transition between states represents a possible

evolution from one configuration to another.

Probabilistic model checking is a generalisation of model checking for the verification

of systems that exhibit stochastic behaviour [31]. In this thesis, our SCRNs have

reactants or “species” with attached rates which determine the likelihood of their

reaction with other species. This behaviour can be described stochastically.

To model systems of reactions at a molecular level, the appropriate model are continuous-

time Markov chains (CTMCs) [19], in which transitions between states are assigned

rates and molecular concentrations.

1.3.1 PRISM

PRISM is a probabilistic model checking tool developed by a shared grant between

the Universities of Birmingham and Oxford and is maintained by David Parker. It

provides support for analysis upon continuous-time Markov chains (CTMCs) which

characterises the behaviour of our SCRN state space. Models are specified in a simple,

state-based language based on guarded commands [30]. PRISM provides a conversion

process between SBML and its own modelling language which opens a gateway to the

construction models from higher level biological languages including Microsoft’s GEC

language, which we use extensively within this thesis. Other high level conversions

from stochastic process algebras and stochastic π - calculus have also been developed

[30].

PRISM is used within this thesis to construct models using its in-built model check-

ing language [30]. As an example of this language please observe Appendix A.1.3: a

PRISM example describing a logical AND gate. Simulation data from PRISM is used

heavily throughout this thesis and, through equivalences referenced in this chapter,

the reader will be satisfied that PRISM can successfully run accurate simulations

upon a CTMC equivalent to an SCRN model.

15

We use PRISM because we are interested in components with low molecular count. It

is viable to create a discrete model from which we can query and simulate properties

because realisations of CRNs with low molecular count generate a small state space.

1.3.2 Definition of a CTMC

Traditionally, analysis has focused on mass action kinetics, where reactions are as-

sumed to involve sufficiently many molecules that the state of the system can be ac-

curately represented by continuous molecular concentrations with the dynamics given

by ordinary differential equations [14]. However, analyzing the kinetics of small-scale

CRNs involving a finite number of molecules requires stochastic dynamics that ex-

plicitly track the exact number of each molecular species [17].

Many ways to simulate kinetics of chemical systems have been established. The

most common and, at present, successful attempts involve simulating Boolean cir-

cuits [20, 48, 56, 57]. In this case, information is generally encoded in the high or low

concentrations of various signaling molecules. This thesis focuses on simulating the

kinetics of a CRN as a CTMC. We now define a CTMC formally.

Let R≥0 denote the set of non-negative reals and AP denote a fixed, finite set of

atomic propositions used to label states with properties of interest, a CTMC is a

tuple (S, R, L) where [31]:

• S is a finite set of states;

• R: (S × S) → R≥0 is a transition rate matrix

• L : S → 2AP is a labelling function which associates each state with a set of

atomic propositions.

Each pair of states is assigned rates which are used as parameters of the exponential

distribution [31]. A transition can only occur between states s and s′ if R(s, s′) > 0

and the probability of the transition being triggered within t time-units is 1−e−R(s,s′)·t

[31]. Typically, in a state s, there is more than one state s’ for which R(s, s′) > 0;

this is known as a race condition and the first transition to be triggered determines

the next state [31]. The time spent in state s before any such transition occurs is

exponentially distributed with the rate E(s) =
∑

s′∈S R(s, s′) , called the exit rate.

The probability of moving to state s′ is given by R(s, s′)/E(s) [31].

16

A CTMC can be augmented with rewards, attached to states and/or transitions of

the model. Formally, a reward structure for a CTMC is a pair (c, C) where: [31]

• c : S → R≥0 is a state reward function.

• C : (S × S)→ R≥0 is a transition reward function.

State rewards can represent either a quantity at a particular time instant (e.g. the

number of molecules representing the species “outHi” currently in the system) or the

rate at which some measure accumulates over time (e.g. changes in the number of

molecules). Transition rewards are accumulated each time a transition occurs and can

be used to compute the number of molecules of a species over a particular time period.

1.3.3 From CRN to CTMC

The stochastic behaviour of both processes and reactions can be modelled as CTMCs

[7, 27]. For much greater detail on this subject see the papers by Anderson et al.

[1] and Cardelli [8]. In both of these papers they provide an in depth mathematical

formalism. In Cardelli ’s paper he proves the equivalence of both by first converting

an SCRN into a Continuous Chemical System which is a specific semantic described

within the paper. From this he provides an algorithm to convert a Continous Chemical

System into a Labeled Transition Graph (LTG). He then uses an equivalence between

an LTG and CTMC to complete the conversion. In this thesis we build on this theory

by modelling our CRN as a PRISM model. The construction of which is explained

in greater detail in the next chapter.

1.3.4 CSL

Once we have constructed our PRISM model we need to query properties to determine

its correctness. The desired correctness properties of CTMCs are typically expressed

in temporal logics, such as CTL (Computation Tree Logic) or LTL (Linear-time Tem-

poral Logic) [4]. We extend this for reward-based properties. CSL is a branching-

time, CTL-like temporal logic where the state formulas are interpreted over states

of a CTMC. It adopts operators of PCTL, like a time-bounded until operator and a

probabilistic operator asserting that the probability for a certain event meets given

bounds [31].

17

CSL gives us greater power over CTMCs than LTL or CTL. For example, rather

than verifying that “the species outLo always eventually reaches a state where it

has 10 molecules”, using CSL allows us to ask “with what probability do we enter a

state where the species outLo has 10 molecules?” or “what is the probability that the

species changes within time t?”. Reward-based properties include “what is the ex-

pected time for a species to reach 10 molecules?”. For further details on probabilistic

model checking of CTMCs, see for example. For a description of the application of

these techniques to the study of biological systems, see [19].

We express some examples of CSL which we use within our project:

1. ∀[�!(outHi ∧ outLo)] - species representing high and low output signals are

never present together.

2. ∀[♦END] - All states eventually reach a termination state labelled END.

3. R{”rewardoutLo”} =?[I = t] - What is the value of the reward structure set up

for the species outLo at time t.

With our properties we perform an exhaustive analysis of our model. For each prop-

erty either concluding that it is satisfied or, if not, providing a counterexample illus-

trating why it is violated.

1.4 Asynchronous Systems

This thesis primarily focuses on the implementation and verification of asynchronous

components as CRNs. The reader may be unfamiliar with asynchronous computers

purely because of their lack of use in general purpose computers, however they are

used frequently in mobile devices [45]. The primary reason for using asynchronous

components rather than their synchronous counterparts is the lack of clock. While a

lot of work has gone into the construction of biological oscillators, these are unreliable

and unstable [24, 59]. In [40] they show the construction of an oscillator using DNA-

based computation but under very restricted circumstances. We instead wish to focus

on what can be achieved without the use of a clock, given that asynchronous machines

are also Turing complete [38]. This section provides a short introduction into common

elements used within asynchronous systems.

18

1.4.1 Asynchronous Architecture

Asynchronous digital circuits provide a systems engineer with a low-power, without-

clock alternative to their synchronous counterpart [55]. This comes with the downside

that circuit design can, in some cases, be more complex. Asynchronous components

rely on ‘local cooperation’ rather than a governing clock. This is usually in the form

of handshaking protocols. These protocols exchange completion signals in order to

establish when an action has finished.

In this thesis we work with a dual-rail implementation of asynchronous circuits. What

this means is that there is a separate rail or ‘signal’ for high and low (or 1 and 0).

This is because we cannot detect when there are no molecules in a species so an in-

dividual species can only represent one value. Circuit design follows the normal rules

in which components are connected by rails which transport data around the system.

In our case this transportation is of molecules. We will assume that the reader has

familiarity with logic gates.

1.4.2 The C-Element

Asynchronous circuits rely heavily on latches and rendez-vous elements. A rendez-

vous element is a component which ‘waits’ on two or more actions to complete before

a system continues. One form of rendez-vous element is the Muller C-element named

after David Muller [55, p.5]. Essentially, like a latch, it is a gate which retains a state.

A C-element has two inputs and one output. When both inputs are low the output

is low. Similarly, when both inputs are high the output is high. The variation from

a normal gate however, is, if the inputs are high, or low, and one of them changes, it

‘remembers’ the last high, or low, state. Essentially, it remembers the last pure 0 or

1 state [55, p.8].

C-elements allow a circuit to be speed independent by a series of local handshakes.

This means that we can wait for longer computational paths to complete before ad-

vancing without additional computation occurring, negating the use of a system clock.

This leads to the creation of what is called Muller pipelining, explained within the

next section. In Chapter 3 we introduce other CRN rendez-vous elements along with

a CRN for the Muller-C element. C-elements have been conceptualised in DNA [41].

19

Another key asynchronous component is an arbiter [58]. An arbiter chooses which

signal to allow, breaking any ties that competing signals may have. We show the

role of the arbiter in Chapter 3, the designs for which in CRNs are relatively simple.

An arbiter is sometimes refereed to as a Buridan Arbiter [58], after the 14th century

French philosopher who suggested that if an ass was placed between two equal piles

of hay it may starve to death as it will not know which one to pick. We discuss how

to avoid such issues.

1.4.3 Pipelining

Asynchronous systems have no universal clock. Instead, they rely on a system of

localised handshaking. In hardware this is in the form of handshaking between neigh-

bouring registers. Some of the biggest problems with the correct operation of asyn-

chronous circuits are: data doesn’t disappear, data needs to preserve ordering along

lines and data doesn’t randomly create itself [55, p.18]. We will assume these problems

have solutions for our domain and discuss the 2-phase and 4-phase transfer protocols.

Figure 1.2: A diagram showing hand shaking between two control components, al-
lowing data to be transferred from register 1 to register 2.

We consider the diagram in Figure 1.2. In this simple example, data, request and

acknowledge rails can be set to high or low. The four phase protocol is as follows:

firstly the sender sends data and sets request to high. The receiver then writes the

data to the register and sets acknowledge to high. Then the sender responds by set-

ting request to low and finally the receiver acknowledges this by setting acknowledge

to low. Because there are four points to note here, this protocol is known as the

4-phase transfer protocol. We then repeat this ad infinitum. Some text books also

refer to this protocol as the RTZ protocol (return to zero).

20

In a 2-phase handshaking protocol we use the same idea [55, p.18] however there is

now no difference between transitions on the request and acknowledge wires. i.e. the

transition from high to low is the same as the transition from low to high on each of

these wires. We can see how this now leads to two events: (1) the sender sets data

and request, (2) the receiver stores the data and sets acknowledge to high. Interest-

ingly, although the second protocol seems more streamlined it is generally disputed

as to which is more efficient due to the increased complexity of parts for the 2-phased

protocol [55, p.18].

In our example, data is sent from a left sender to a right receiver but we can reverse

the direction of data flow. This is called a push channel and the opposite is pull. Also

we are able to remove the data wire all together to have a pure handshaking protocol

circuit [55, p.18].

We do not need to restrict ourselves to three lines for one single bit. We can merge

the request and data lines in what is known as a dual rail protocol. In the 4-phase

dual rail protocol, we have 2 wires per bit of information which gives us 4 logical

possibilities as follows:

Data #1 Data #2 Meaning
0 0 No data
1 0 logical 0
0 1 logical 1
1 1 Not defined

In having an additional codeword for no data we essentially bypass the need for a

request line. This leads to an updated 4-phase protocol: the sender issues a valid

codeword, the receiver absorbs the codeword and sets acknowledge high, the sender

responds by issuing the empty codeword and the receiver acknowledges by setting

acknowledge to low. Note a valid codeword is when ALL data lines have sent some-

thing. This protocol has the advantage of being delay insensitive.

The 2-phase dual rail is similar but the information is again encoded as transitions

from 1 → 0 and 0 → 1. The main difference is that we acknowledge after one data

codeword. For both protocols we can extend our examples to n-rails simply by tak-

ing our wire pairs and placing them in parallel n times. For n rails we get 2n valid

21

codewords.

The implementation of these protocols can be implemented using the Muller C-

Element described in the previous section. The Muller pipeline propagates hand-

shakes. We can view this as a propagation in serial or along the x-axis. Each element

propagates a 1 only if its predecessor is 1 and its successor is 0, hence creating a ripple

or an oscillation. For a clearer explanation of this please see Figure 1.3.

Figure 1.3: Signals are propagated from left to right using a Muller Pipeline. The
pipeline effectively queues data, only allowing a transition to occur when a further
signal has been acknowledged. This image was taken from Furber’s book: Principles
of Asynchronous Circuit Design, page 17. [55].

Using this pipeline and other control pipelines can allow for construction of most sys-

tems that previously would rely on a system clock. The construction and verification

of the Muller Pipeline, Queues and Ripple-Carry adders as CRNs is discussed further

in Chapter 4.

1.4.4 Classification of Asynchronous Circuits

There are three classifications of asynchronous circuits in terms of delays: speed-

independent, delay-insensitive and quasi-delay-insensitive [55]. Speed independent

systems are circuits where there are no delays within and between components, vir-

tually impossible to consider within this thesis. A circuit that operates correctly but

with unknown delays is known as delay-insensitive [55]. We achieve this classifica-

tion of circuits by simulating forks as components rather than natural wire divisions,

22

demonstrated in our fork implementation in Section 3.2.1. We can achieve quasi-

delay-insensitive systems through the CRN well-mixed assumption. The well-mixed

assumption assumes that molecules have equal probability of interacting with other

molecules within a system providing that the other molecules have equal molecular

count. However the well mixed assumption does not hold for systems of low molecular

count and so is not used within this thesis. If this assumption did hold we could use

a natural CRN fork such as:

x→kα y

x→kα z
(1.8)

23

Chapter 2

Methodology

The overall aim of the project is to explore the feasibility of constructing asynchronous

machines from Stochastic Chemical Reaction Networks (SCRNs). In order for a com-

ponent to be considered feasible each CRN was converted to a PRISM model and then

queried using PRISMs query-language closely resembling CSL. This chapter explores

this process from the choice of CRN through to the verification of it as an isolated

component and its use in larger control flow structures.

This chapter, as well as giving the reasoning behind our decisions, works alongside an

example, in this case an AND-gate. For readers unfamiliar with such a logic gate an

AND-gate is a construct with two binary inputs x, y and a binary output z. When x

and y have the value 1, z has the value 1, else z has the value 0. Please refer to the

Appendix A.1 - AND-gate example to follow the code as well as the diagrammatic

language used.

2.1 CRN Design

The first stage of our process is to design a component. This stage is divided into

three parts. The first is to establish a simple mechanism that underpins such a com-

ponent.

Secondly, with this simple mechanism in mind we attempt to construct a simple CRN

that emulates this mechanism. This construction has to obey reactions rules defined

in the previous chapter, most importantly, that the CRN is built from the three ba-

sic reaction types, the construction has to conserve overall molecular count and the

construction is dual-rail. Lastly, we add extra reactions to account for other inputs

24

or to stabilise the process.

In the example of the AND-gate we first wish to construct a mechanism that will

output a high signal if both of our input signals are high. A mechanism that captures

such a process might look like the following:

For readers still unfamiliar with our diagrammatic language this equates to the fol-

lowing CRN:

yhi + λ1 →kα yhi + λ2

xhi + λ2 →kα xhi + zhi
(2.1)

Next we add extra inputs to complete the gate design for all logical inputs:

Note we use λ to represent species or states that are not important to us. They are

simply intermediary to the output species. Finally, we add further reactions which

will change the output of the gate if one of the inputs changes, essentially creating

an adaptive gate. The completed design for our AND-gate looks as follows:

25

2.1.1 The use of Microsoft’s GEC Tool

Once we construct our design we wish to perform some preliminary tests as the conver-

sion process to a PRISM model takes considerable time. For this we use the Microsoft

GEC tool. This tool allows us to simulate CRNs in a primitive, isolated fashion to

see if the stochastic behaviour of a CRN approximately behaves as desired. Appendix

A.1.1 shows the AND-gate example written in Microsoft’s GEC-LBS language.

The second function that GEC provides is a conversion to Systems Biology Markup

Language (SBML), which in turn has a conversion to PRISM’s Modelling Language.

While this conversion process often failed it, in theory it allowed us insight into how

the PRISM model should be structured. Appendix A.1.2 shows the SBML file for

the AND-gate example and similarly Appendix A.1.3 shows the PRISM modelling

language conversion.

2.1.2 The PRISM Model

As discussed in the literature review, we can construct a CTMC model from a CRN.

We specify this CTMC in PRISM’s modelling language. This specification is al-

most entirely automated, except for the occasional error, converted from the CRNs

designed in Microsoft’s GEC-LBS language. We use PRISM as we are specifically

testing components that interact with low molecular count.

In our model transition rates mimic those of CRN kinetics, as in rates are proportional

to the number of molecules present in that species. For example, if a species had a

low reaction rate it may interact quite slowly with other species in the model. Each

reactant or “species” has an initial molecular count and an initialised range of possible

26

values. The range of possible values ranges between whatever is defined as a high

and low signal. Please refer to Appendix A.1.3 for the example CRN AND-gate in

PRISM’s modelling language.

2.2 The Verification Process

The majority of time spent on this project was verifying whether components had

the expected behaviour. This section informs the reader on the steps undertaken to

simulate and verify these components. An important extension, which was infeasible

for a Master’s Thesis, would be to automate the entire verification process and prove

that these components behave as desired by some exhaustive means. This is discussed

further in Chapter 5: Evaluation.

We use simulation-based verification in which we attach rewards to our PRISM model.

These rewards track molecular count of a species over time. Each simulation plot that

appears in this thesis is actually several simulations of rewards of different species on

the same plot. For instance the plot in Figure 2.1 shows the output of the reward

structures at some time t tracking the species xhi, xlo, yhi.. etc. Because the rates are

stochastic these plots could be viewed as the expectation of a species at t. Included in

Appendix A.1.4 is a typical properties file so that these experiments can be replicated.

We also verify properties of our model such as “does the species xhi always exhibit

a high signal after time t”?. These were verified using the CSL query language

demonstrated in the previous chapter.

2.2.1 Verification of an Isolated Component

The first stage of the verification process is to examine our component as an iso-

lated model in PRISM. We iterate through all logical input values for a component

by adjusting the starting concentrations of each molecular species to exhibit various

logical ‘high’ or ‘low’ signals. Once we have produced models representing all of the

possible configurations of these input signals we run simulations of each model to

test that they indeed have the intended target behaviour on each input. We also ex-

amine the probabilities that they will have reached a certain state within some time t.

In the example of our AND-gate we would have four models for the inputs: 00, 01,

10, 11. We discuss how many molecules constitutes a low or high signal at the end

of this chapter but for now we assume a high signal, or species, is 10 molecules and

27

a low signal is 0. We then run simulations on all of these inputs. In Figure 2.1 we

see one of these simulations which shows the expected concentration of that species

at time t. We have 7 species: the 4 input signals xhi,xlo,yhi and ylo, the 2 output

signals zlo and zhi, and the internal species z1, z2 and z3. Initially yhi and xhi are

set to a value of high and eventually zhi changes to high so this simulation produces

the target behaviour we expected. The next case in Figure 2.2 shows the behaviour

of the system when the input is x:0,y:1 and im the corresponding model xlo and yhi

are set to high. We see that indeed the expected output is 0 or zlo. The case of y:0,

x:1 is symmetric. In Figure 2.3 we conclude by showing the output zlo is high when

both inputs are 0. We have now exhaustively simulated our gate design on all inputs.

Figure 2.1: A simulation performed on a model equivalent to an AND-gate with both
inputs set to high (xhi, yhi). Notice how the output signal zhi changes to high in
response to this.

Figure 2.2: Again we look at a simulation performed on our AND gate but with
different starting concentrations. xlo has now replaced xhi making the input x:0, y:1.
zlo is now high and zhi is now low which is the expected behaviour of an AND-gate
given these inputs.

28

Figure 2.3: We then show the same and gate with inputs x:0,y:0 to show that, ex-
haustively, our AND-gate has the correct behaviour on all inputs.

2.2.2 Non-Binary and Changing Values

Once the component has been simulated in isolation we examine how a component

might behave in a larger system, mainly through a change in input. This is done in

two ways. First we examine how a component behaves with ‘half-values’, or signals

that are neither purely high or low. In any CRN simulation if the input changes there

will be at least some point where the value of that input is half the value that it will

eventually become. For instance consider two inputs which at low are 0 molecules

and at high are 10 molecules. Initially we set one to low and the other to high, and

then reverse the input. This will mean at some point the configurations of the inputs

will be x:0,y:10 ; then x:3,y:7; then x:5, y:5 and so on. We take into account some of

these intermediary stages to see if the internal and output values of the gate behave

in the way we would expect. In Figure 2.4 we see one of these simulations for our

AND-gate where xhi, yhi are set to 7 and xlo, ylo are set to 3. As we can see the

signal zhi has started to reach its peak and so the gate appears to operate correctly

under these conditions. We would expect if the signals xhi and yhi were on the rise

then the output zhi would also follow.

The second, more rigorous test, which eventually replaced the above, is to introduce

new reactions to emulate a signal change. For instance, if we wished to change a

carrier signal from high to low we would introduce a reaction:

xhi→kα xlo (2.2)

where we convert all of the signal xhi into a signal xlo. We also varied the rate kα

considerably to allow the component to stabilise first before changing the input. This

variable input technique is superior because the component is allowed to stabilise;

29

Figure 2.4: In our AND-gate we test for semi-high and semi-low signals to mimic
external changes within our system. In this example we see both xhi and yhi at 7/10
high and xlo and ylo at 3/10 low. We observe that the output species zhi is tending
towards a ‘high’ signal.

however, constructing and verifying a model in this way takes considerably more

time. We show an example, using the above reaction, on our AND-gate, in Figure

2.5. Notice how the output responds to this change and zhi is converted to zlo.

Figure 2.5: In this more complicated test we change the value of xhi to xlo during
testing. This allows us to simulate a change in external input during testing.

2.2.3 The Verification of a Larger System

The verification of larger systems was completed in much the same way. First we

would consider a system as an isolated entity before adjusting and changing inputs

to measure a response. However, there were several major limiting factors.

As the number of reactions increases, the state space increases exponentially. Because

of this we had to consistently scale the number of molecules in the larger systems to

30

avoid this. All tests were run on a standard desktop computer and some of the more

complex queries took upwards of two days. A reasonable upper bound would be 100

molecules per system; after this testing becomes impractical with limited resources

both in time and in computing power.

Another major problem was the implementation itself. When dealing with compo-

nents in conjunction it was hard to keep track of the reactions governing each compo-

nent. We therefore wrote a python script that would rename the species according to

which component they belonged to, essentially creating a higher-level language on top

of the existing CRN language. This had the advantage that we could focus on how

the components connected and interacted rather than the components themselves.

We discuss further development of this within the evaluation.

Another problem was with reaction rates. We often had to slow down the rates

considerably in order to accurately analyse key moments in the development of a

system. This was a trial an error process and so could take a very long time. Our

reaction rates were usually proportional to the number of molecules within the system.

The precise rates were irrelevant as, they only needed to be uniform.

31

Chapter 3

Component Design and
Verification

Note: For each component as many as 20 different experiments were run in order

to analyse that a component behaves as expected. Therefore most experiments run

are simply omitted from the following two chapters. We provide insight into the most

interesting experiment run for each component as this will hopefully be enough to con-

vince the reader that the components exhibit their expected behaviour. The verification

process used was much the same as has been described in detail for the AND-gate in

the previous chapter.

This chapter offers a foundation for asynchronous circuit design which the reader

can use to create more complex systems built from CRNs. The components to be

discussed are:

• rendez-vous elements: latches, memory, c-elements and merges

• arbiter elements: forks, amps and arbiters

• conditional flow elements: FOR, IF and WHILE

• logical elements: logic gates and number representation.

The design of the above asynchronous components as CRNs is novel. In order for

the reader to understand the notation used within this chapter it is first advised that

the reader reads Section 1.1.5 first as it may be hard to understand the key concepts

behind the design of these components.

Unless stated otherwise we use low molecular counts to test our components. Usually

the maximum, representing an output signal of 1, is between 5 to 10 molecules. The

words species and signal are interchangeable in this chapter as the presence of one

32

molecule or species usually is a catalyst or ’signal’ to some other reaction. Because

of low molecular count we do not assume an isochronous-fork as our well-mixed as-

sumption no longer holds. An isochronous-fork is described in 1.4.4. We provide a

new design for a fork later in the chapter.

For each component an example experiment coupled with a simulation is given to

convince the reader that each component has been thoroughly tested.

3.1 Rendez-Vous Elements

Because of a lack of clock in asynchronous systems, information flow relies on a series

of ‘handshaking’ elements to make sure signals are synchronised. A rendez-vous ele-

ment allows flow to synchronise by a series of ’wait’ operations [58]. These elements

are usually in the form of three components: latches, Muller C-elements and Con-

trolled Merges [58]. Latches can control when data is cascaded or retained and play

a crucial role in the construction of memory units. C-elements are used to create a

ripple-carry affect which is used in the queueing of operations. Merges allow for a

’wait’ operation in order for computation to resume. These components are partic-

ularly important in CRNs with low molecular account as ’obvious’ forks and merges

break our well-mixed assumption as described in 1.4.4.

3.1.1 Atomic Operations

At its most fundamental, in order to perform any computation we must define the

foundational operations read and write. Figure 3.1 reveals the CRNs analogies to the

read, write and controlled-write operations.

(a) 1a (b) 1b

(c) 1c

Figure 3.1: The Write, Controlled Write and Read CRNs from Left to Right

A read operation requires 3 species: the species that is to be read, the wait-read

species and the read-success species. When the catalyst is present it can be read. We

33

increase the population of the wait-read species if we wish to read. If the catalyst

is present we can convert the wait-read species to the read-success species, thus per-

forming a successful read. A read operation is needed when information needs to be

extracted from a system.

A write operation is similar but needs to be thought about in a different way. We take

two species linked by some reversible reaction. If species write1 is present it catalyses

with our reversible reaction and converts val2 species into val1. If species write2 was

present it would reverse the reaction. Thus, if the signals write1 or write2 are present

they are recorded. A write operation is needed when we wish to record information

about our system.

A controlled write has an intermediary species which starts with a high molecular

count. In this way we avoid the problem that, in the case we wish to read the value

recorded before any value is written, one species of the values that are to be read, is

not initially present.

In Figure 3.2 we see a simulation of a process which first uses our write operation

and then our read operation. In our CRN we have the species: xhi, xlo, mhi, mlo,

creadmhi, creadmlo, readmhi and readmlo. xhi and xlo represent the signal carriers,

mhi and mlo are the values which xhi and xlo write to, creadmhi is the control for

the reading of the value mhi, which if present activates the readmhi wire. The value

xhi is written to m1. After this, we read this value. So in the initial configuration

we set xhi, mlo and readmone to 5 molecules and the rest to 0. As we observe the

expectation of the readhi species is at 5 molecules, therefore the initial xhi species

was recorded and read successfully.

This is fine when examining the case where high and low signals are strictly separated,

but the reader might be asking the question, as was asked in Chapter 2, of what

happens when both write signals are present at the same time. The outcome of this

is shown in Figure 3.3.

We have probabilistic convergence on a centre point. We therefore have to be sure

to safeguard and test against this in future simulations as there is a likelihood of

this occurring in systems without correct queue structures in place . We explore this

problem in much greater detail in the next chapter.

34

Figure 3.2: An experiment showing the recording of the species xhi to mhi and then
the reading of mhi expressed by the conversion of waitreadhi to readhi

Figure 3.3: A similar experiment where xhi and xlo try to both register their presence
to the reaction yhi � ylo which results in a convergence in values of yhi, and ylo

3.1.2 The Retention of Information

From this point on it becomes apparent as to why we use a diagrammatic language.

We are now considering complicated CRNs with between 6 to 38 species and so to

write-out every CRN would be confusing and impractical.

The ability to retain information is a crucial step in the construction of latches, c-

elements and controlled merges. After all, a latch or flip-flop is a circuit that has two

stable states and can be used to store one bit of information. It is a fundamental

component of any computation that requires memory. We wish to create a CRN that

can store a value despite changing variables. The most obvious way to implement

a storage of memory is to create a feedback loop, which is demonstrated in Figure

3.4a. The problem with an arbitrary feedback loop is that it violates one of our main

restrictions outlined in Chapter 1.

35

(a) 1a
(b) 1b

(c) 1c

Figure 3.4: Plots of prototype latches. Unfortunately, due to restrictions placed upon
our CRN model these cannot be realised.

Mainly, that the reaction

zhi→ zhi + yhi (3.1)

defies conservation laws. This is shown clearly in the simulation plot in Figure 3.5.

In this plot ylo replicates itself producing double its original amount. So instead we

have to find some way of storing information without violating conservation laws.

Figure 3.5: An experiment showing the violation of conservation laws from a memory
component. ylo and yhi replicate a potentially infinite number of themselves

If we consider the diagram in Figure 3.4b then we have another problem. Assuming

yhi and ylo are used as our carry signals then they may change, or be destroyed when

the component is connected in parallel, so in affect they are only temporarily useful.

In our simulation in Figure 3.6 we see the value of ylo trickles away to zero, in that

we use the reaction ylo→ {} to simulate ylo being used up in a reaction elsewhere.

36

So we need to find some way to be able to reuse our result.

Figure 3.6: An experiment showing that the species ylo, when used up elsewhere,
cannot replicate itself and therefore is useless if shared with another component. We
simulate this ’other’ component with the destructive reaction ylo → {}

We could create a slow moving feedback loop as seen in Figure 3.4c, which gradually

resets the latch when a signal is no longer present. However this violates our rate

assumption that rates remain uniform across a CRN. We show a simulation of this

exact latch in Figure 3.7; it works in isolation but is essentially useless when used in

conjunction with other control flow elements.

Figure 3.7: An experiment showing that the species yhi is slowly reset back to ylo.
This particular component violates conservation laws.

37

3.1.3 Latches

Instead, for the design of a latch, we should consider an element which does not break

any of the restrictions imposed on our CRN and instead focuses on the retention of

information through the use of catalytic reactions. We consider two ‘concepts’ and

build gates around them. In the simple latch design seen on the left of Figure 3.8

we have two inputs 1 and 0. These are stored in the reaction 1 � 0. These catalyse

the read line which is the same as was explained in the read operation earlier in the

chapter. The more complex gate design is Figure 3.8 (right) comprises two further

reactions. These reactions have the effect of speeding up the reaction if the latch flips

from one state to the other. This is done by two additional catalytic reactions relying

on the presence of one input signal already being present.

Figure 3.8: Two latch designs. The first being simpler but slower, the second faster
but requires two more reactions.

We tested this in a similar experiment to our original read and write operations.

First the value ‘1’ is committed to the latch and then read. The simulation for this

is provided in Figure 3.9. In this simulation the species writeOne is catalyst to the

reaction mZero � mOne. The species waitReadOne, waitReadZero are signals to test

if the species mOne, mZero are present. If they are, then these signals are converted

into readOne and readZero. The experiment shows that the value is successfully

committed and read. The more complex design produces similar, but faster results.

We can also build a slightly more advanced latch with a reset wire, based on our

controlled write mechanism. Note that between any given reaction we can have some

intermediary λ in a reaction m1 � λ � m2. This intermediary can be a reset or

dormant state. Our two latch designs are given in Figure 3.10 . When the reset

species is introduced it effectively pulls the species m1,m2 towards a central λ.

38

Figure 3.9: A simulation of the more complex gate design. In this simulation a value
is first committed to the latch before being read. Once read the value is preserved.

Figure 3.10: A reset latch. Notice how the reset acts as a catalyst which returns the
latch to a central ’intermediary’ state λ

The experiments designed to test these latches are more complicated. A new reaction

writeOne → rOne is added to simulate a signal change during the experiment. rOne

and rZero represent the reset catalysts. In Figure 3.11 we show a simulation which

is setup as previous; however, the value of writeOne changes from high to low and

the value of resetOne changes from low to high. Notice how the value of mOne

and readOne respond to this. When the stimulus of writeOne is removed the latch

resets, meaning that no value can now be read from it. We provide the CRN used in

Appendix A.2.1; entitled ‘resetLatchExperiment’.

3.1.4 Evaluation of Latch Designs

The simpler latch has the advantage over the complex latch that it requires two fewer

catalytic reactions to function than its counterpart. However, the more complex latch

is faster as it amplifies the effect of dragging to a state 0 or 1. Because speed is not

something that we focus on primarily, the simpler match may have more use when it

39

Figure 3.11: A more complex experiment for the complex reset latch. Notice how, as
the input is transformed into a reset signal, the latch no longer exhibits a high or low
signal and thus no value can be read.

comes to implementation of a CRN.

The tri-state reset latch has the major advantage over the bi-state latch that a 0 or

1 signal does not need to be present and therefore will not always be read. In any

real-life counterpart a system usually has a rail deciding whether the component is

active or inactive and so our intermediary λ fulfils this function. This has the down-

side that a tri-stable state species need to be present in order for a reset-latch to

become viable. Another major disadvantage of the reset latch is, when we want to

consider larger blocks of latches or even a memory unit it can be considerably more

expensive in terms of numbers of reactions. However, despite this disadvantage, we

use the reset latch for the remainder of this thesis.

The CRN implementation of these latches can work in parallel with carrier signals

such that we can have a battery of latches. For each unit we need 2 (or 3 in the

case of the reset latch) species; however, these can be the same for every unit. For

each unit we need two unique input signals and output signals (if every latch is to be

addressed uniquely) so in a battery of latches we would need 4n+ 2 or 4n+ 3 species

where n is the number of uniquely addressable latches. For pipelining no such issues

exist, as each latch does not need to be uniquely addressable.

40

3.1.5 Muller-C Element

As stated in Chapter 1, there exist implementations for the Approximate Majority al-

gorithm in real world biological systems and DNA strand displacement. We represent

Approximate Majority (AM) by the CRN shown in Figure 3.12. If a population has

more members than the competing population then it has a positive effect, essentially

dragging the already greater population to a maximum. The approximate majority

is much like our tri-stable reset latch except for the fact that we can retain a state

even when an input changes.

Figure 3.12: A CRN representation of the approximate majority algorithm.

This is much like a C-element. A Muller C-element is a gate with “memory” which

holds a state. Although this was discussed in Chapter 1, a reminder of the truth table

for this is shown below.

Rail #1 Rail #2 Result
0 0 0
1 0 t - 1
0 1 t - 1
1 1 1

When both inputs are 0 the output is set to 0, when both inputs are 1 the output is

set to 1. For other combinations the output remains unchanged. This has the effect

that, if an observer sees a change, this indicates that in order for this change to have

happened both inputs must have changed. As we discuss in the next chapter most

handshaking protocols rely on this cyclical transition.

We define the C-element as a CRN in Figure 3.13. The reason behind the additional

states xlo, xhi are that it essentially drags the non-binary output of the approximate

majority unit to a certain high or low signal.

41

Figure 3.13: A CRN representation of a Muller-C element.

In the first experiment shown in Figure 3.14 the C-element responds to an input of

two low signals. These signals are represented in the input species xlo and ylo. The

central concentration of the AM element is dragged towards zdn and in turn the

element outputs zlo as the dominant species.

Figure 3.14: An experiment on our Muller C-Element testing the capabilities of the
Approximate Majority Algorithm. The C-Element outputs a low signal with two low
inputs.

In the second experiment, seen in Figure 3.15, we introduce a new reaction xhi→ xlo

on an initial input of xhi, yhi. In this case our element should still output a high as

output despite the x input change. We see that again the output signal zhi remains

high.

In the third experiment, in Figure 3.16, we introduce a new reaction which changes

both inputs from high to low. The C-element responds to this change and outputs a

high signal.

From these three experiments we can see that the element exhibits the exact behaviour

that we desire. The element remains stable in a situation where inputs change and

the output is correct according to the logic table listed above.

42

Figure 3.15: Again we test the C-element. This time we introduce a new reaction xlo
→ xhi which should have no overall effect on the output. This is indeed the case as
our output remains zlo.

3.1.6 Merging

In most asynchronous circuits there is at least some form of branching and merging, be

it for some condition or for parallel computation. We define a merge as a component

where two or more signals need to be present in order for this component to output a

signal. In essence one species must wait for another in order for both signals to have

registered. The merge, as a CRN, is defined in Figure 3.17. Notice how the output

signal requires two reactions to occur. If the bottom signal, x1, is present this does

not guarantee that the computation can continue.

In order to test the merge component we develop an experiment, seen in Figure 3.18

which combines a fork action with a merge. The fork is explained in more detail in

the next section. We have two rates which govern two paths: pathOne and pathTwo.

We can see from Figure 3.19 that xfinish, the output signal, does not respond until

the two stimulus pathOne and pathTwo are both present. This is seen in the form of

the slight delay in uptake seen between t= 0.0 and 0.5.

The reader might be unimpressed with the lack of information this merge outputs.

We can use the latch designs, combined with logical elements discussed in a later

section, to decide how these signals should be interpreted. The merge is purely used

as a rendez-vous / control flow element in these circumstances.

43

Figure 3.16: The C-element responds positively when both input signals are changed.
The species zhi is converted into zlo.

Figure 3.17: A definition of our merge element. The central representation is just a
diagrammatic simplification. The chemical x is only present when two input species
x1 and x2 are present

3.2 Arbiter Elements

An arbiter element ‘breaks ties’. We discuss three such elements within this section:

the fork, the amp and biased arbiters. Arbiters are used in asynchronous systems so

that a system doesn’t halt and that it can eventually continue.

3.2.1 Forks

A fork is essentially the negation of a merge. The most obvious way to implement a

fork would be to simply divide a set of molecules into two through two reactions of

equal rate. mainly:

x→ x1

x→ x2
(3.2)

However, because our model behaves stochastically it would be impossible to guar-

antee with acceptable probability that x1 would decompose into two equal sums of

44

Figure 3.18: Our merge element was tested with an experiment which first forks and
then merges. Two rates govern the seperate paths to mimic differences in computa-
tion. If both paths eventually terminate this activates the species xfinish.

Figure 3.19: The output of the merge experiment. Notice how the output xfinish (in
yellow) does not react until both signals, pathOne and pathTwo, are present.

x2 and x3. We therefore implement a fork using catalytic reactions which is seen in

Figure 3.20. The fork itself acts as a catalyst to the two reactions, which in turn

increases the speed and therefore the probability that both species will be activated

at the same time.

We experimented with a fork in the last section which was actually an implementation

of the newly defined fork. In Figure 3.21 we can see an implementation of this same

fork, but in isolation. Unfortunately, the two signals x1 and x2 have exactly the same

expectation and therefore rise at the same time, obscuring the reader from seeing

the value for x2. However, this graph does signify that x1 and x2 have the same

expectation and therefore operate as we expected.

45

Figure 3.20: The fork splits a signal into two equal measures in approximately the
same time step. We use four catalytic reactions to achieve this.

Figure 3.21: A graph showing the expectation over time for the molecular count of
our fork. Fortunately, the signals x1, x2 have the same reaction time. Unfortunately
for the reader, because of this, the signal x2 is covered by the signal x1 in this graph.

3.2.2 Amplification and Muting

The function of the amp is to amplify the dominant signal in two competing species.

In our example in Figure 3.22, 0.7 is the larger number and forces the system into

the state ylo. In Figure 3.23 we see a simulation of for this.

Figure 3.22: The function of the amp is to amplify the dominant signal; in this case
xlo is the dominant signal.

It is important to realise that, in a catalytic reaction, the witness is not consumed and

therefore can have arbitrary molecular count. In Figure 3.23 we see that a simulation

46

Figure 3.23: xlo is the dominant species in this experiment and so ylo becomes the
only output signal that is present.

of the amp defined in Figure 3.22 shows that the smaller species, xhi and xlo, can

influence the larger molecular count of the reaction yhi � ylo. Similarly, in a process

called ‘muting’ larger amounts of molecules can give rise to smaller reactions. This

becomes useful when we discuss control flow elements later in the chapter as we can

limit the number of molecules we have to simulate and verify.

3.2.3 Biased Arbiters

The main problem with the amp listed above is in the case when the input signals

are equal 0.5, our CRN cannot deal with this and we get probabilistic convergence

similar to that displayed in Figure 3.3. However we need some method to ’break ties’

as this is the function of an arbiter. We do this by introducing a biased arbiter, the

CRN for which is seen in Figure 3.24 . In this arbiter yhi is always favoured over ylo

even when the inputs are even, hence breaking a tie. We simulate an example of this

in Figure 3.25. In this example xhi and xlo have the same concentrations. However,

despite this yhi has the dominant concentration revealing the arbiter’s bias towards

yhi. This example experiment is far from conclusive and we also tested for when one

signal was more dominant than the other and vice-versa.

47

Figure 3.24: The arbiter we use here is biased towards the output signal ’high’ in the
form of yhi.

Figure 3.25: Both xhi and xlo are tied in concentration. Despite this, yhi is revealed
to be the dominant species, showing the bias of the tie.

3.3 Control Flow Elements

As well as the introduction of rendez-vous and arbiter elements, we also discuss

theoretical implementations for loops and decisions. A loop is where a computation

or action is repeated over and over until some condition is met. We use a ‘black

box’ element in this section ‘LOOP LOGIC’ which we deliberately obscure. This is

because the loop mechanism can be constructed using pipelining ,which is discussed

in detail in the next chapter. Unfortunately for now we do not yet have the required

knowledge to understand the inner workings of LOOP LOGIC and so we treat it as

a box which outputs a signal when an iteration is completed. The components to be

discussed in this section are the IF, WHILE and FOR components.

3.3.1 Conditional Statements

A conditional statement is where, based on some condition a branch of computation

is realised. We define an if statement in Figure 3.26. The if computation can be seen

48

as a reading of some condition followed by a branch. As we can see it is comparable

to our read action. Our read action can be seen as the statement if: m1 read m1 else:

wait.

Figure 3.26: A conditional IF statement. If a condition is present we shift to a new
branch of computation. It is comparable to our original read statement.

3.3.2 Loops

The while condition is similar. We can set up a condition gate as before, which can

change over when a computation has been completed. The internals of the structure

are deliberately left vague as this can vary for different while loops. The basic concept

is that we iterate through a pipeline, described in detail in the next section, until some

condition is met. We show our basic structure in Figure 3.27.

Figure 3.27: A CRN representation of a while loop. It continues to perform compu-
tation inside the loop body until the condition is accepted.

We also show an experiment taken from the next chapter, see Figure 3.28 . In this

experiment a pipeline is used to convert the species testOne into testTwo. Eventually

the accept condition is met and overtakes reject in molecular count. We are then free

to continue on with whichever computation is being completed at the time.

The for statement is unfortunately very difficult to achieve. We need to define some

concept of a number, which, as we discuss in section 3.4.3, is not easily done. We

show an example of a for loop in Figure 3.29. In this example, at each iteration a

species pass is converted twice until the presence of pass2 can convert REJECT into

ACCEPT.

49

Figure 3.28: An experiment where a pipeline converts the species testOne into
testTwo. Eventually enough is converted for the condition to be met and the while
loop shifts to having been accepted.

Figure 3.29: A CRN representation of a FOR loop. For each iteration we need to
introduce a separate signal and a separate catalyst. This may not be viable if we are
trying to limit the number of overall species needed within our system.

3.4 Logic and Numbers

In this section we discuss the use of logic and numbers within CRNs. Logic is used to

make decisions and perform logical operations. Numbers are used to make arithmetic

calculations. Unfortunately, numbers are not easily achievable in CRNs because of

representation.

3.4.1 NOT, AND and OR

We first examine the most fundamental of logic gates. The logical NOT gate or ‘in-

verter’, as it is referred to in other papers, is used to convert a high signal into a low

signal and vice-versa. As we can see in Figure 3.30 (left) the signal xlo catalyses the

reaction ylo → yhi and xhi catalyses the reaction yhi → ylo. In affect we convert

50

a signal representing a logical 1 (xhi) into a logical 0 (ylo). This is a NOT gate as

¬0 ≡ 1 and ¬1 ≡ 0.

The middle diagram in Figure 3.30 should hopefully look familiar to readers, as this

was the logical AND gate explained in Chapter 2. When signals xhi and yhi are high

then we output the signal zhi. For any other combination of input signals we output

a low signal. This is equivalent to an AND gate which will only output a logical 1 if

both inputs are 1.

Figure 3.30: CRN representations of the logic gates: NOT, AND and OR from left
to right. The logic gates are persistent, meaning that on a change of input they will
reflect this change accordingly.

The final diagram in Figure 3.30 is a representation of an OR gate. In this diagram we

see that only on an input of xlo,ylo would we have z2
...→ zlo. We show an experiment

in Figure 3.31 which shows the signal zhi responding to an input of xlo, yhi meaning

that that the input signal of logical 0,1 is still accepted.

3.4.2 NOR, NAND and XOR

The interesting thing about NOR and NAND is that usually they can be constructed

with an AND or OR gate followed by a NOT gate. However, we can construct them

by simply flipping the labels for our chemicals. In Figure 3.32 we see a NAND gate

(left) and a NOR gate (right).

We show the reader an experiment on a NAND-gate where the inputs are both zero,

seen in Figure 3.33. The gate responds by outputting a signal zhi.

51

Figure 3.31: An experiment showing an OR gate on logical inputs 0,1. The signal zhi
responds by a population increase resulting in a high signal.

Figure 3.32: A CRN representation of the NAND and NOR gates. We achieve these
by switching the labels of our AND and OR gates.

Perhaps the hardest logic gate to construct is the XOR gate. This gate needs a

separate reaction for all four inputs, making it extremely inefficient to construct. A

representation of this gate can be seen in Figure 3.34. The system is forced into a

state zlo if the inputs are the same, and zhi if the inputs differ. We do not provide a

plot for this due to the extensive use of the XOR gate in the adder, presented in the

next section.

3.4.3 Numbers

Unfortunately numbers are very inefficient to implement. Any sort of efficient rep-

resentation would have to be encoded into the label of the CRN which can, by the

CRN framework, have no influence on the overall state of the system.

52

Figure 3.33: An experiment showing a NAND gate on the logical inputs 0,0. The
gate outputs a signal of 1, signified by the output of the signal zhi.

Figure 3.34: A CRN representation of a XOR gate. In this representation we need
separate reactions for each input meaning the gate is considerably more complex than
our other gates.

The best way to implement numbers is through a series of binary latches which can

store and read numbers. In this way we can use pipelining to transfer numbers in

parallel by a series of merges. This would unfortunately require an exponential num-

ber of latches in the size of the number we wish to store. Because of these conclusions

we only deal with very small numbers in this thesis. We implement a 3-bit adder in

the next chapter.

A circuit diagram for an adder is given in Figure 3.35. Because we have defined all of

the atomic components, we now switch to a circuit based notation. This is because

we only care about interactions between components from now on rather than the

53

components themselves. Each component is connected through a series of catalytic

reactions.

Figure 3.35: A circuit diagram for a full adder. Because we have defined all compo-
nents as CRNs we resort to circuit notation. The implementation is still dual rail.
This circuit takes three bits: A,B and a previous carry bit. It outputs the sum of A
+ B + Cin in S and Cout. Cout is high if there is an overflow.

The adder has 3 inputs. We show simulations on a CRN model which is given in

Appendix A.2.3 in Figure 3.36 and Figure 3.37 on two standard inputs. This model

is contains CRN components listed previous, connected through a series of catalytic

reactions. This is logically equivalent to the circuit diagram shown in Figure 3.35.

Figure 3.36: In this simulation we have inputs A = 1, B = 0, Cin = 1. Logically, we
would expect the adder to output a 0 carry 1 as we wish to add two ones together
(01 + 01 = 10). As we can see the signals slo and couthi are at high after 10 seconds.
These are the species which represent S = 0 and Cout = 1 and so this component
produces the right result given the input.

54

Figure 3.37: Similarly, in this simulation we start with the configuration A = 1, B =
1, Cin = 1. We would expect the output 1 carry 1 (01 + 01 + 01 = 11). Both species
couthi and shi are present which is the correct response to this input. Confirming
that our gates can be assembled in parralel to create more complex components.

55

Chapter 4

Systems, Pipelining and
Algorithms

As in Chapter 3, we keep results concise. We provide the most interesting experi-

ments performed on each structure. Most of the CRNs used within this chapter can

be found in the Appendix A.2. In section 1.4.3 of the literature review we cover the

relevant material to understand how these pipelines operate.

From the components we have just defined and verified we can build more complex

systems. This chapter explores pipelining through a series of localised ‘hand-shaking’

protocols. Two protocols are rigorously tested, the 4-phase dual-rail protocol and the

2-phase dual-rail protocol, both of which are described in detail within the literature

review. The use of pipelining in asynchronous systems is an alternative to a clock

found in most synchronous systems.

This chapter explores the construction of the Muller pipeline and some of its appli-

cations in the form of a queue and a ripple-carry adder. The pipeline allows data to

be transferred from one end of a line to another without loss or gain of information.

The pipeline is the main novel result, central to the theory that underpins the thesis.

4.1 Muller Pipeline

This section explores the construction and verification of the Muller pipeline. The

pipeline uses several components defined in the last chapter, mainly: the Muller-C

element, the Fork and the inverter or logical NOT gate.

56

4.1.1 Construction

The Muller pipeline, seen in Figure 4.1 is a mechanism that relays handshakes. We

first initialize all the components to their zero or neutral state. Following this we can

begin cascading a 1 to the right. To understand how this works consider the middle

element. It will propagate a 1 from its predecessor only if its successor is 0. In a

similar way it will propagate (input and store) a 0 only if the previous input is one.

It may be useful to think of this propagation sequence as a wave cycling from zero to

one and back to zero. This could be compared to an asynchronous clock. In this way

the C-element is used as a means to propagate waves, ensuring the integrity of data

at any stage in the pipeline.

We construct our model pipeline by placing three of our C-element CRNs in parallel.

At each intermediary stage between the C-elements we add a fork. One path of the

fork is negated and fed back into the previous C-element. One path is fed into the

new C-element. We include the full CRN for this model in Appendix A.2.4.

Figure 4.1: A circuit diagram for the Muller pipeline. We construct our CRN using
this circuit diagram and our CRNs for each component defined in the last chapter.
Note that the small black circles signify a fork.

We verify this pipeline using the same methodology as before. First we propagate a

value of one along the pipeline, looking at each component individually and then we

change the input values in a cyclical fashion. In Figure 4.2 we initialise the pipeline

by setting the request line to high. The output species of each C-element are called

ahi, alo, bhi, blo etc. Notice how each signal rises one after another, showing that

indeed a value of one is being propagated along the pipeline.

We also experimented with removing the ‘dragging’ reactions from the C-element

described in the previous chapter. The main problem with this, seen in Figure 4.3,

57

Figure 4.2: Initially we send a logical ‘1’ down the pipeline and register the delay
between each component.

was that it produced half-values along the pipeline which resulted in poor signal

transfer from one C-element to the next.

Figure 4.3: We show that when the ‘dragging’ effect is removed the species aup settles
at some intermediary value, neither high nor low.

Once the signal has propagated from the C-element the signal forks and one path is

inverted feeding back into previous C-elements. We show a simulation of this in Figure

4.4. One after another, the signal is inverted feeding back into the previous C-element.

Finally, we show a ’wave’ through the pipeline propagating a high signal and then a

low signal. The results of this are shown in Figure 4.5. Here the species ahi,bhi,chi

exhibit a high signal before responding and diminishing back to zero. A keen reader

may be wondering why the signal slightly diminishes along the pipeline, this is to do

with timing issues which are more pronounced in Figure 4.5 in the section on loops.

58

Figure 4.4: The NOT gates respond to the high signals propagated from the C-
elements with the inverted signals low seen in the species bNotDown and cNotDown.

Figure 4.5: We ‘pulse’ a value of 1 along our Muller pipeline. Our pipeline responds
with the sinusoidal pattern expected from cycling between 1 and 0.

4.1.2 The Queue

The queue is built as shown in Figure 4.6. We use our complex latch in order to

build the queue structure. As a 1 is propagated along the pipeline, it sends a signal

to the queue structure to read and store the value in the next latch along. Each latch

represents some computation that could be completed at each time interval.

We experiment by sending a message of ‘101’ propagated along the queue. We show

a simulation of our queue in Figure 4.7. The signals outOne and outZero are accu-

mulators which show indeed that two 1s and one 0 was sent along the queue during

the simulation. We include the signals bZero and aOne to prove that signals are still

propagating along the pipeline.

59

Figure 4.6: A schematic of our implemented queue.

Figure 4.7: We send a signal of ‘101’ along the queue which is accumulated in the
signals outOne and outZero at the end of the simulation.

4.1.3 Ripple-Carry Adder

We constructed a 3 bit ripple carry adder, which works in a similar fashion to our

queue. We show a circuit diagram for this in Figure 4.8. At each timestep we input

two bits and a carry which outputs a the sum and a carry as described in the previous

chapter. In this way we can add two three-bit numbers together.

Figure 4.8: Circuit diagram for our 3-bit adder.

In the simulation shown in Figure 4.9 we add the values 010 and 111 and expect the

60

value 111. After the first stage we see that the first adder outputs a high signal (0 +

1 = 1 + 0c). After the second stage we see that the carry is high (1 + 1 + 1 = 1 +

1c). After the third stage we can see that the sum signal is low as (0 + 1 + 1c = 0

+ 1c). The adder exhibits correct behaviour and each sum is not calculated until the

next stage in the pipeline.

Figure 4.9: We add the values 110 and 111 together which produces the correct
output. The outputs are demonstrated inbetween the signals of the pipeline show-
casing the ‘ripple’ effect.

4.1.4 Loops

As discussed in the last chapter loops are a common part of asynchronous systems.

Fortunately, the simulation of a loop is easily built upon our Muller pipeline. In

Figure 4.10 we see a diagram representing a loop where the output of the pipeline is

fed back into the beginning, creating a loop. We check if the condition is met before

looping back.

Figure 4.10: We can create loops by looping a muller pipeline back on itself creating
a perpetual signal.

61

We show a simulation of a ‘looping’ pipeline in Figure 4.11. We have signal decay

problems purely because of rate issues. With more time we could adjust the pipeline

to slow down such that each signal would be allowed to fully rise to a maximum or

minimum.

Figure 4.11: We show the pipeline oscillating by tracing the signals ahi, bhi and chi.
We experience signal decay purely because the rate of chage is too fast to allow each
signal to settle at its maximum or minimum.

4.2 Protocols

This section provides a discussion on two protocols, the 4-phase dual rail protocol and

the 2-phase dual rail protocol, both of which are discussed in the literature review.

4.2.1 4-phase Dual Rail Protocol

A 4-phase protocol generally has 3-rails: request,acknowledge and data . These can

be set to high or low. In this specific example of our 4-phase handshaking protocol we

take into account two people: Alice and Bob. The four phase protocol is as follows:

firstly Alice sends data and sets request to high. Bob then writes the data to the

register and sets acknowledge to high. Alice responds by setting request to low and

finally Bob acknowledges this by setting acknowledge to low.

The 4-phase dual rail protocol, like before, can be implemented via a Muller pipeline.

In Figure 4.12 we see a diagram describing its construction. In our construction we

developed a 3-latch fourphase dual rail protocol. In Figure 4.13 we see the output of

this first-latch. The signals, adfout and adtout represent the output of the C-element.

The aorout signal represents the signal after the OR-gate. We see adfout is low and

62

adtout is high representing a logical 1. The OR-gate responds by propagating a logi-

cal 1.

Figure 4.12: A circuit diagram describing the construction of a Muller pipeline.

Figure 4.13: The first OR-gate in the construction of the 4-phase dual rail pipeline.
The signal aifouthi is present suggesting the transmission of a codeword {0,1} or {1,0}
has occurred.

As seen in the Muller pipeline we send a ‘pulse’ signal down our four-phase dual rail

pipeline which can be seen in Figure 4.14. This ‘pulse’ represents the transfer of a

logical one followed by a ‘non-signal’ to the end of the pipeline.

4.2.2 2-phase dual-rail Protocol

The transition from high to low is the same as the transition from low to high on

each of these wires. We can see how this now leads to two events: (1) the sender sets

data and request (2) the receiver stores the data and sets acknowledge to high.

The 2-phase dual rail is similar but the information is again encoded as transitions

from 1 → 0 and 0 → 1. The main difference is that we acknowledge after one data

codeword. The circuit diagram for this has been replaced with a single-rail pipeline

63

Figure 4.14: A ‘pulse’ of a logical 1 through our pipeline construction. The signals
ahi, bhi, chi are all present suggesting that the protocol has successfully negotiated
the transfer of a 1 followed by a ‘no signal’ to the end of the pipeline.

to describe to the reader how the implementation of two-phase differs from its four-

phase counterpart, seen in Figure 4.15.

Figure 4.15: A two phase pipeline. Notice the inverted signal is looped back into the
same C-element as well as the previous one.

Again we show an oscillation using this pipeline seen in Figure 4.16. The pipeline

responds with a similar signal propagation of a logical 1 followed by a ‘no signal’

keyword.

64

Figure 4.16: A ‘pulse’ of a logical 1 through our 2-phase pipeline construction. Like
before the signals ahi, bhi, chi are all present suggesting that the protocol has suc-
cessfully negotiated the transfer of a 1 followed by a ‘no signal’ to the end of the
pipeline.

65

Chapter 5

Evaluation

Our thesis was largely successful in showing the construction of asynchronous com-

ponents from Chemical Reaction Networks (CRNs). However, the major limitations

of this work stem from the methodology. Testing was an extremely time-intensive

process, with several experiments taking several days to run. Worse, some exper-

iments were impossible because of memory limitations. This chapter discusses the

shortcomings and limitations of this project. The conclusions from this produce ideas

for future work which could lead to a faster and better results than those given in the

chapters previous. We conclude by discussing how the results from this thesis could

be used in physical implementations.

5.1 Limitations

5.1.1 State Space Explosion

Our models contained many species and reactions. These resulted in many equivalent

states and transitions. A major problem we faced was that a slight increase in the

molecular count for a species could result in exponentially more states and transitions.

For example, the adder was a relatively simple component and yet as we increase the

number of molecules the state space increases exponentially.

Larger systems, such as applications of the pipeline, were almost infeasible even with

low molecular count in each species. Running any simulation or verification of some

property could take a large amount of time. Designs were verified only for small

molecular counts and uniform rates.

66

5.1.2 Automated Verification

Adjusting rewards structures and testing for specific times and properties was a man-

ually intensive process. The obvious solution to this problem would have been to

implement some script that would automatically query and generate plots for us.

However, this was beyond the scope of this project.

A problem with automated verification is that we would need to know the expected

result before we received it. This is fine for logical values but, given that molecular

count is not binary it would be very hard to guess what bounds we would expect

molecular count to fall within.

5.1.3 Multi-purpose circuit design

We have defined components which can be used in general computing: latches, logic

gates etc. However when it comes to larger systems we have not generalised them in

such a way that someone could take the implementation and use it directly within

their system. A further stage to our work would be the construction of generic com-

putational components that were multi-purpose for different inputs and tasks. These

are referred to as programmable logic devices and are used in memory devices [61].

5.1.4 Implementation Issues

Constructing PRISM models from CRNs was eventually done manually as the con-

version process from Microsoft’s GEC was incomplete, obscure in variable names,

and tended to produce errors. Each configuration of input values created a different

model. This led to problems with models that took a long time to code, as the values

had to be reconfigured and adjusted before testing could resume.

Construction of larger CRN systems was complex. It is fair to compare CRNs, as a

language, to that of assembly code, in that coding anything beyond one component

took a considerable amount of time. CRNs were very hard to ‘debug’ as we could

only rely on graphical output in the form of species count.

67

5.2 Further Work

5.2.1 High-Level Programming Language

As discussed previously, a major problem with the implementation of our designs was

the fact that they were written in a language that would closely match assembly code

in terms of expressive power. This meant that large systems were taxing to construct

and even more taxing to debug. Combined with the fact that testing of larger systems

could take several days, the GEC-LBS language is not scalable for multi-component

systems. Mentioned briefly in Chapter 2 was the fact that we wrote a python script

that would help group and rename components in order to construct larger systems.

However, rather than just a python script, there is the possibility of implementing a

high-level programming language that would directly compile into CRNs. Therefore

we propose that a natural extension of this work would be to implement any of the

following:

• A high-level programming language which would compile into the GEC-LBS or

PRISM modelling language, alleviating the burden of component design.

• An interpreter for an existing 4th generation programming language, such as

Matlab, which would take instructions and convert them into chemical reactions

or PRISM models.

• A hybrid where a user could override existing component implementations with

their own designs, but still write in a high-level language.

A compiler for a high level language would take high level instructions and, using pre-

existing component design, would compile into the GEC-LBS language or a similar

CRN language. For an example take the following instruction:

if (x and y) do: z (5.1)

Using our existing AND implementation in the GEC-LBS language, given in Ap-

pendix A, we could substitute the inputs for this component with tokens for the

inputs x, y. We could then wrap this inside the implementation of an if-statement

making sure that z is the conditional result. In this way a user is abstracted from

the actual implementation and can focus on verification and simulation. PRISM’s

modelling language would also be a valid target for compilation, the reason we focus

on GEC-LBS language is because of parallels that can be drawn to assembly language.

68

In a similar way we do not have to produce our own high-level language. Given that

we have designed components that would resemble most assembly code instructions

we could argue that a high-level language like c or even matlab could be compiled

down into the CRNs given. Of course the major set back in this is the efficient

representation of numbers as CRNs. A high-level functional language may even be

a solution as was done for Microsoft’s DSD [34]. In this paper the authors exam-

ine how low level DSD instructions can be a compiler target for a functional language.

Perhaps the best solution would be a high-level language with some way of overriding

compile instructions. For instance, in the above the user may redefine the instructions

for the AND operator as:

redefine and{

inputA + inputB→ outputA

. . .

}

(5.2)

Then the user might execute the original high level statement (5.1). In this way

users could write, targeting larger systems, whilst still having flexibility over how the

compiler operates.

The use of some higher-level language is a logical extension from the results pro-

duced here just as C was the natural progression from assembly code instructions.

The problem we face here is that, because we have not formally proved that our

components exhibit their expected behaviour, people may be mistrusting of a higher

level language. We therefore need to discuss how we could go about formally proving

component behaviour.

5.2.2 Proofs and Exhaustive Testing

A major problem with our testing was that it was not exhaustive and therefore we

did not take into account all unexpected behaviour. Although we verified behaviour

for all inputs that we deemed feasible we cannot conclude statements such as “For

all inputs in the range [x..y] the component had behaviour which replicates that of

the theoretical component in the range [x..y]”. We could only conclude this if there

was either a concrete formalism for interactions of CRNs, and therefore some way

to prove equivalence between expected behaviour and actual behaviour produced by

69

our CRNs, or an exhaustive testing method that also showed equivalences between

behaviours. However exhaustive testing might not be practical as it would a long

time and many inputs would be pointless to test or covered by similar inputs.

The behaviour of components with high molecular count can be described using Or-

dinary Differential Equations (ODEs) [14]. If we could describe our target behaviour

as an ODE then we could show direct equivalence between a CRNs behaviour and

our target component. Unfortunately, because we are dealing with components with

low molecular count we cannot show such an equivalence.

Instead, it makes more sense to test through a series of exhaustive simulations, in

the hope that the behaviour exhibited is the one we expect. In order to produce

exhaustive simulations it would make sense to implement an automated tester. An

automated tester would be given a CRN and a range of inputs for which it would

output probabilistic behaviour. A major issue with this is that the user would still

have to verify behaviour by eye. A possible extension then is for the user to input

the expected behaviour in a given range and the automated checker verifies that the

CRNs do indeed exhibit this correct behaviour.

5.2.3 Physical Implementation

In order for the CRNs constructed within this thesis to be of use, there should ide-

ally exist some physical application which could use these CRN designs as target

behaviour. Fortunately in they discuss a method for constructing the base reaction

classes: normal, catalytic and auto-catalytic using DNA strand displacement such

that any CRN could potentially be encoded as a DNA program [14]. Further to our

work here, it would be useful to compile our CRNs into DSD language or some other

concrete formalism in order that we could implement our designs. DSD has been used

in real-world lab experiments [63].

70

Chapter 6

Conclusion

This thesis attempted to demonstrate the feasibility of asynchronous components and

systems built from Chemical Reaction Networks (CRNs) with low molecular count.

This combined theory of CRNs and biological diagrammatic notation, with imple-

mentations in PRISM’s modelling language. Given that the CRN framework has

been formally established [28, 49, 50], this thesis focused on applying this to build

complex asynchronous networks, which, to our knowledge, has not been done before

on this scale. The cornerstone of this thesis was the C-element built upon the circuit

of approximate majority. We introduced verified CRN designs for most components,

described as essential, in Furber’s book on Asynchronous Systems [55]. This culmi-

nated in the verification of the Muller-C pipeline and applications of this pipeline in

queues, adders, loops and protocols.

Models were constructed using the PRISM model checker, where Continous-Time

Markov Chains (CTMCs) modelled an equivalent CRN. We then verified and sim-

ulated the behaviour of the CRN using these models. In this way we were able to

establish whether or not a CRN exhibited input-output behaviour that closely resem-

bled that of the targeted logical or control flow behaviour.

This thesis successfully demonstrates asynchronous components built from CRNs.

This has acute relevance to the field of DNA computing as multiple works have

shown a compilation of chemical reactions into physical DNA implementations. With

this work, researchers could, in theory, take the CRNs given in this paper and com-

pile these into lab experiments, demonstrating incredible potential for DNA circuit

design. CRNs allow a level of abstraction which provides power to implement much

larger systems than could normally be implemented using languages such as DSD [49].

71

However, despite the relative success in implementation of these components, this

thesis has several shortcomings. While the feasibility of our CRNs was broadly ex-

plored, there was no exhaustive verification process. This issue could be solved with

the implementation of an automated verifier.

We encountered state space problems, mainly that an increase of a few molecules and

reactions to our model dramatically increased the number of states and transitions.

There are many relevant techniques to reduce the state space such as aggregation,

bisimulation and lumping [12]. Recently it has been shown that CRNs can be sim-

ulated through Linear Noise Approximations [35]. Using this process we could scale

the number of molecules to deal with the larger systems developed within this thesis.

In our evaluation we suggest that future work could include the implementation of a

programming language which could compile into CRNs. This would abstract the user

further from implementation, allowing the production of even larger systems. We also

suggest the implementation of an automated verifier, allowing for faster production

of components.

We hope to explore the implementation of these CRNs in DNA-based computation

in further work. Implementation of these designs in some medium, such as DNA, will

prove the success of this thesis.

72

Appendix A

Appendix - Example code

A.1 AND-Gate Example

A.1.1 LBS CRN code for an AND gate

directive sample 10.0 100

rate rt = 1.0;

//inputs

init xlo 1.0

| init xhi 0.0

| init ylo 1.0

| init yhi 0.0

//pulleys

| init ze 0.0

| init zw 1.0

| init zq 1.0

//outputs

| init zlo 0.0

| init zhi 0.0

//reactions

|xhi + ze ->{rt} xhi + zhi

|yhi + zw ->{rt} yhi + ze

|xlo + zq ->{rt} xlo + zlo

|ylo + zq ->{rt} ylo + zlo

//for persistance

|zhi + xlo ->{rt} ze + xlo

73

|zhi + ylo ->{rt} zw + ylo

|zlo + zhi ->{rt} zhi + zq

A.1.2 AND-gate SBML File

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level2/version4" level="2" version="4">

<model>

<listOfUnitDefinitions>

<unitDefinition id="time">

<listOfUnits>

<unit kind="second" scale="0" multiplier="1"/>

</listOfUnits>

</unitDefinition>

<unitDefinition id="substance">

<listOfUnits>

<unit kind="mole" scale="-9"/>

</listOfUnits>

</unitDefinition>

<unitDefinition id="volume">

<listOfUnits>

<unit kind="litre"/>

</listOfUnits>

</unitDefinition>

<unitDefinition id="dimless">

<listOfUnits>

<unit kind="dimensionless"/>

</listOfUnits>

</unitDefinition>

<unitDefinition id="concentration">

<listOfUnits>

<unit kind="mole" scale="-9"/>

<unit kind="litre" exponent="-1"/>

</listOfUnits>

</unitDefinition>

<unitDefinition id="k_unit_2">

<listOfUnits>

<unit kind="second" exponent="-1" scale="0" multiplier="1"/>

<unit kind="mole" exponent="-1" scale="-9"/>

<unit kind="litre" exponent="1"/>

</listOfUnits>

</unitDefinition>

</listOfUnitDefinitions>

<listOfCompartments>

<compartment id="c" size="1.66053886312701E-15"/>

</listOfCompartments>

74

<listOfSpecies>

<species id="s_id0" name="xlo" compartment="c" initialConcentration="1">

<species id="s_id1" name="xhi" compartment="c" initialConcentration="0">

<species id="s_id2" name="ylo" compartment="c" initialConcentration="1">

<species id="s_id3" name="yhi" compartment="c" initialConcentration="0">

<species id="s_id4" name="ze" compartment="c" initialConcentration="0">

<species id="s_id5" name="zw" compartment="c" initialConcentration="1">

<species id="s_id6" name="zq" compartment="c" initialConcentration="1">

<species id="s_id7" name="zlo" compartment="c" initialConcentration="0">

<species id="s_id8" name="zhi" compartment="c" initialConcentration="0">

</listOfSpecies>

<listOfReactions>

<reaction id="r_id9" reversible="false">

<listOfReactants>

<speciesReference species="s_id1" stoichiometry="1"/>

<speciesReference species="s_id4" stoichiometry="1"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="s_id1" stoichiometry="1"/>

<speciesReference species="s_id8" stoichiometry="1"/>

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci>c_size</ci>

<ci>k</ci>

<ci>s_id1</ci>

<ci>s_id4</ci>

</apply>

</math>

<listOfParameters>

<parameter id="c_size" value="1.66053886312701E-15" units="volume"/>

<parameter id="k" value="1" units="k_unit_2"/>

</listOfParameters>

</kineticLaw>

</reaction>

<reaction id="r_id10" reversible="false">

<listOfReactants>

<speciesReference species="s_id3" stoichiometry="1"/>

<speciesReference species="s_id5" stoichiometry="1"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="s_id3" stoichiometry="1"/>

<speciesReference species="s_id4" stoichiometry="1"/>

</listOfProducts>

<kineticLaw>

75

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci>c_size</ci>

<ci>k</ci>

<ci>s_id3</ci>

<ci>s_id5</ci>

</apply>

</math>

<listOfParameters>

<parameter id="c_size" value="1.66053886312701E-15" units="volume"/>

<parameter id="k" value="1" units="k_unit_2"/>

</listOfParameters>

</kineticLaw>

</reaction>

<reaction id="r_id11" reversible="false">

<listOfReactants>

<speciesReference species="s_id0" stoichiometry="1"/>

<speciesReference species="s_id6" stoichiometry="1"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="s_id0" stoichiometry="1"/>

<speciesReference species="s_id7" stoichiometry="1"/>

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci>c_size</ci>

<ci>k</ci>

<ci>s_id0</ci>

<ci>s_id6</ci>

</apply>

</math>

<listOfParameters>

<parameter id="c_size" value="1.66053886312701E-15" units="volume"/>

<parameter id="k" value="1" units="k_unit_2"/>

</listOfParameters>

</kineticLaw>

</reaction>

<reaction id="r_id12" reversible="false">

<listOfReactants>

<speciesReference species="s_id2" stoichiometry="1"/>

<speciesReference species="s_id6" stoichiometry="1"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="s_id2" stoichiometry="1"/>

76

<speciesReference species="s_id7" stoichiometry="1"/>

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci>c_size</ci>

<ci>k</ci>

<ci>s_id2</ci>

<ci>s_id6</ci>

</apply>

</math>

<listOfParameters>

<parameter id="c_size" value="1.66053886312701E-15" units="volume"/>

<parameter id="k" value="1" units="k_unit_2"/>

</listOfParameters>

</kineticLaw>

</reaction>

<reaction id="r_id13" reversible="false">

<listOfReactants>

<speciesReference species="s_id8" stoichiometry="1"/>

<speciesReference species="s_id0" stoichiometry="1"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="s_id4" stoichiometry="1"/>

<speciesReference species="s_id0" stoichiometry="1"/>

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci>c_size</ci>

<ci>k</ci>

<ci>s_id8</ci>

<ci>s_id0</ci>

</apply>

</math>

<listOfParameters>

<parameter id="c_size" value="1.66053886312701E-15" units="volume"/>

<parameter id="k" value="1" units="k_unit_2"/>

</listOfParameters>

</kineticLaw>

</reaction>

<reaction id="r_id14" reversible="false">

<listOfReactants>

<speciesReference species="s_id8" stoichiometry="1"/>

<speciesReference species="s_id2" stoichiometry="1"/>

77

</listOfReactants>

<listOfProducts>

<speciesReference species="s_id5" stoichiometry="1"/>

<speciesReference species="s_id2" stoichiometry="1"/>

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci>c_size</ci>

<ci>k</ci>

<ci>s_id8</ci>

<ci>s_id2</ci>

</apply>

</math>

<listOfParameters>

<parameter id="c_size" value="1.66053886312701E-15" units="volume"/>

<parameter id="k" value="1" units="k_unit_2"/>

</listOfParameters>

</kineticLaw>

</reaction>

<reaction id="r_id15" reversible="false">

<listOfReactants>

<speciesReference species="s_id7" stoichiometry="1"/>

<speciesReference species="s_id8" stoichiometry="1"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="s_id8" stoichiometry="1"/>

<speciesReference species="s_id6" stoichiometry="1"/>

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci>c_size</ci>

<ci>k</ci>

<ci>s_id7</ci>

<ci>s_id8</ci>

</apply>

</math>

<listOfParameters>

<parameter id="c_size" value="1.66053886312701E-15" units="volume"/>

<parameter id="k" value="1" units="k_unit_2"/>

</listOfParameters>

</kineticLaw>

</reaction>

</listOfReactions>

78

</model>

</sbml>

A.1.3 AND-gate PRISM File

ctmc

const int MAX_AMOUNT = 100;

// Parameters for reaction r_id9

const double k_r_id9 = 1.0;

// Parameters for reaction r_id10

const double k_r_id10 = 1.0;

// Parameters for reaction r_id11

const double k_r_id11 = 1.0;

// Parameters for reaction r_id12

const double k_r_id12 = 1.0;

// Parameters for reaction r_id13

const double k_r_id13 = 1.0;

// Parameters for reaction r_id14

const double k_r_id14 = 1.0;

// Parameters for reaction r_id15

const double k_r_id15 = 1.0;

// Species s_id0 (xlo)

const int s_id0_MIN = 0;

const int s_id0_MAX = MAX_AMOUNT;

module s_id0

s_id0 : [s_id0_MIN..s_id0_MAX] init 1; // Initial amount 1

// r_id11

[r_id11] s_id0 > 0 -> (s_id0’=s_id0-0);

// r_id13

[r_id13] s_id0 > 0 -> (s_id0’=s_id0-0);

endmodule

// Species s_id1 (xhi)

const int s_id1_MIN = 0;

const int s_id1_MAX = MAX_AMOUNT;

module s_id1

79

s_id1 : [s_id1_MIN..s_id1_MAX] init 0; // Initial amount 0

// r_id9

[r_id9] s_id1 > 0 -> (s_id1’=s_id1-0);

endmodule

// Species s_id2 (ylo)

const int s_id2_MIN = 0;

const int s_id2_MAX = MAX_AMOUNT;

module s_id2

s_id2 : [s_id2_MIN..s_id2_MAX] init 1; // Initial amount 1

// r_id12

[r_id12] s_id2 > 0 -> (s_id2’=s_id2-0);

// r_id14

[r_id14] s_id2 > 0 -> (s_id2’=s_id2-0);

endmodule

// Species s_id3 (yhi)

const int s_id3_MIN = 0;

const int s_id3_MAX = MAX_AMOUNT;

module s_id3

s_id3 : [s_id3_MIN..s_id3_MAX] init 0; // Initial amount 0

// r_id10

[r_id10] s_id3 > 0 -> (s_id3’=s_id3-0);

endmodule

// Species s_id4 (ze)

const int s_id4_MIN = 0;

const int s_id4_MAX = MAX_AMOUNT;

module s_id4

s_id4 : [s_id4_MIN..s_id4_MAX] init 0; // Initial amount 0

// r_id9

[r_id9] s_id4 > 0 -> (s_id4’=s_id4-1);

// r_id10

[r_id10] s_id4 <= s_id4_MAX-1 -> (s_id4’=s_id4+1);

// r_id13

[r_id13] s_id4 <= s_id4_MAX-1 -> (s_id4’=s_id4+1);

80

endmodule

// Species s_id5 (zw)

const int s_id5_MIN = 0;

const int s_id5_MAX = MAX_AMOUNT;

module s_id5

s_id5 : [s_id5_MIN..s_id5_MAX] init 1; // Initial amount 1

// r_id10

[r_id10] s_id5 > 0 -> (s_id5’=s_id5-1);

// r_id14

[r_id14] s_id5 <= s_id5_MAX-1 -> (s_id5’=s_id5+1);

endmodule

// Species s_id6 (zq)

const int s_id6_MIN = 0;

const int s_id6_MAX = MAX_AMOUNT;

module s_id6

s_id6 : [s_id6_MIN..s_id6_MAX] init 1; // Initial amount 1

// r_id11

[r_id11] s_id6 > 0 -> (s_id6’=s_id6-1);

// r_id12

[r_id12] s_id6 > 0 -> (s_id6’=s_id6-1);

// r_id15

[r_id15] s_id6 <= s_id6_MAX-1 -> (s_id6’=s_id6+1);

endmodule

// Species s_id7 (zlo)

const int s_id7_MIN = 0;

const int s_id7_MAX = MAX_AMOUNT;

module s_id7

s_id7 : [s_id7_MIN..s_id7_MAX] init 0; // Initial amount 0

// r_id11

[r_id11] s_id7 <= s_id7_MAX-1 -> (s_id7’=s_id7+1);

// r_id12

[r_id12] s_id7 <= s_id7_MAX-1 -> (s_id7’=s_id7+1);

// r_id15

[r_id15] s_id7 > 0 -> (s_id7’=s_id7-1);

81

endmodule

// Species s_id8 (zhi)

const int s_id8_MIN = 0;

const int s_id8_MAX = MAX_AMOUNT;

module s_id8

s_id8 : [s_id8_MIN..s_id8_MAX] init 0; // Initial amount 0

// r_id9

[r_id9] s_id8 <= s_id8_MAX-1 -> (s_id8’=s_id8+1);

// r_id13

[r_id13] s_id8 > 0 -> (s_id8’=s_id8-1);

// r_id14

[r_id14] s_id8 > 0 -> (s_id8’=s_id8-1);

// r_id15

[r_id15] s_id8 > 0 -> (s_id8’=s_id8-0);

endmodule

// Reaction rates

module reaction_rates

// r_id9

[r_id9] (k_r_id9*s_id1*s_id4) > 0 -> (k_r_id9*s_id1*s_id4) : true;

// r_id10

[r_id10] (k_r_id10*s_id3*s_id5) > 0 -> (k_r_id10*s_id3*s_id5) : true;

// r_id11

[r_id11] (k_r_id11*s_id0*s_id6) > 0 -> (k_r_id11*s_id0*s_id6) : true;

// r_id12

[r_id12] (k_r_id12*s_id2*s_id6) > 0 -> (k_r_id12*s_id2*s_id6) : true;

// r_id13

[r_id13] (k_r_id13*s_id8*s_id0) > 0 -> (k_r_id13*s_id8*s_id0) : true;

// r_id14

[r_id14] (k_r_id14*s_id8*s_id2) > 0 -> (k_r_id14*s_id8*s_id2) : true;

// r_id15

[r_id15] (k_r_id15*s_id7*s_id8) > 0 -> (k_r_id15*s_id7*s_id8) : true;

endmodule

// Reward structures (one per species)

// Species s_id0 (xlo)

rewards "s_id0" true : s_id0; endrewards

// Species s_id1 (xhi)

rewards "s_id1" true : s_id1; endrewards

// Species s_id2 (ylo)

82

rewards "s_id2" true : s_id2; endrewards

// Species s_id3 (yhi)

rewards "s_id3" true : s_id3; endrewards

// Species s_id4 (ze)

rewards "s_id4" true : s_id4; endrewards

// Species s_id5 (zw)

rewards "s_id5" true : s_id5; endrewards

// Species s_id6 (zq)

rewards "s_id6" true : s_id6; endrewards

// Species s_id7 (zlo)

rewards "s_id7" true : s_id7; endrewards

// Species s_id8 (zhi)

rewards "s_id8" true : s_id8; endrewards

// Reward structure for calculating expected times

rewards "time" true : 1; endrewards

A.1.4 AND-Gate Properties for Simulation

const double t;

R{"s_id0"}=? [I = t]

R{"s_id1"}=? [I = t]

R{"s_id2"}=? [I = t]

R{"s_id3"}=? [I = t]

R{"s_id4"}=? [I = t]

R{"s_id5"}=? [I = t]

R{"s_id6"}=? [I = t]

R{"s_id7"}=? [I = t]

R{"s_id8"}=? [I = t]

R{"s_id9"}=? [I = t]

R{"s_id10"}=? [I = t]

A.2 CRN Designs

A.2.1 Latches

directive sample 10.0 100

rate rt = 1.0;

//INPUTS

init writeOne 5.0

| init writeZero 0.0

83

| init mOne 0.0

| init mZero 5.0

| init waitReadOne 5.0

| init waitReadZero 0.0

//OUTPUTS

| init readOne 0.0

| init readZero 0.0

//REACTIONS

| writeOne + mZero ->{rt} writeOne + mOne

| writeZero + mOne ->{rt} writeZero + mZero

| waitReadOne + mOne ->{rt} readOne + mOne

| waitReadZero + mZero ->{rt} readZero + mZero

//| yhi + ylo ->{rt} yhi + yhi

//| ylo + yhi ->{rt} ylo + ylo

directive sample 10.0 10

rate rt = 1.0;

//INPUTS

init writeOne 5.0

| init writeZero 0.0

| init mOne 0.0

| init mZero 5.0

| init waitReadOne 5.0

| init waitReadZero 0.0

| init rOne 0.0

| init rZero 0.0

| init mlambda 5.0

//OUTPUTS

| init readOne 0.0

| init readZero 0.0

84

//REACTIONS

| writeOne + mlambda ->{rt} writeOne + mOne

| writeZero + mlambda ->{rt} writeZero + mZero

| rOne + mOne ->{rt} rOne + mlambda

| rZero + mZero ->{rt} rZero + mlambda

| waitReadOne + mOne ->{rt} readOne + mOne

| waitReadZero + mZero ->{rt} readZero + mZero

| readOne ->{rt}

| readZero ->{rt}

| writeOne ->{rt} rOne

A.2.2 C-element

directive sample 10.0 100

rate rt = 1.0;

init zup 1.0

| init znt 0.0

| init zdn 0.0

| init zhi 1.0

| init zlo 0.0

| init xhi 0.0

| init xlo 1.0

| init yhi 0.0

| init ylo 1.0

| zdn + zup ->{rt} znt + znt

| znt + zdn ->{rt} zdn + zdn

| znt + zup ->{rt} zup + zup

| zdn + xhi ->{rt} xhi + znt

| znt+ yhi ->{rt} yhi + zup

| zup + xlo ->{rt} xlo + znt

| znt+ ylo ->{rt} ylo + zdn

| zlo + zup ->{rt} zup + zhi

| zhi + zdn ->{rt} zdn + zlo

85

A.2.3 Adder

directive sample 10.0 100

rate rt = 1.0;

//inputs

init ahi 0.0

| init alo 0.0

| init bhi 1.0

| init blo 0.0

| init cinhi 0.0

| init cinlo 0.0

| init slo 0.0

| init shi 0.0

| init couthi 0.0

| init coutlo 0.0

//X0R1

| init xorOnelOne 1.0

| init xorOnelTwo 1.0

| init xorOnelThree 0.0

| init xorOnelFour 0.0

| init xorOneHi 0.0

| init xorOneLo 0.0

//XOR2

| init slone 0.0

| init xorTwolTwo 0.0

| init xorTwolThree 0.0

| init xorTwolFour 0.0

//AND1

| init andOnelq 0.0

| init andOnelw 0.0

| init andOnele 0.0

| init andOneHi 0.0

| init andOneLo 0.0

//AND2

| init andTwole 0.0

| init andTwolw 0.0

| init andTwolq 0.0

86

| init andTwoHi 0.0

| init andTwoLo 0.0

//OR1

| init orle 0.0

| init orlw 0.0

| init orlq 0.0

//XOR1

//reactions

| ahi + xorOnelFour ->{rt} ahi + xorOneHi

| bhi + xorOnelFour ->{rt} bhi + xorOneHi

| alo + xorOnelThree ->{rt} alo + xorOnelFour

| blo + xorOnelThree ->{rt} blo + xorOnelFour

| ahi + xorOnelTwo ->{rt} ahi + xorOnelOne

| blo + xorOnelTwo ->{rt} blo + xorOnelOne

| bhi + xorOnelOne ->{rt} bhi + xorOneLo

| alo + xorOnelOne ->{rt} alo + xorOneLo

//for persistance

| xorOneLo + xorOnelFour ->{rt} xorOneLo + xorOnelThree

| xorOneLo + xorOneHi ->{rt} xorOneLo + xorOnelFour

| xorOneHi + xorOnelOne->{rt} xorOneHi + xorOnelTwo

| xorOneHi + xorOneLo ->{rt} xorOneHi + xorOnelOne

//XOR2

| xorOneHi + xorTwolFour ->{rt} xorOneHi + shi

| cinhi + xorTwolFour ->{rt} cinhi + shi

| xorOneLo + xorTwolThree ->{rt} xorOneLo + xorTwolFour

| cinlo + xorTwolThree ->{rt} cinlo + xorTwolFour

| xorOneHi + xorTwolTwo ->{rt} xorOneHi + slone

| cinlo + xorTwolTwo ->{rt} cinlo + slone

| cinhi + slone ->{rt} cinhi + slo

| slo + slone ->{rt} xorOneLo + slo

87

//for persistance

| slo + xorTwolFour ->{rt} slo + xorTwolThree

| slo + shi ->{rt} slo + xorTwolFour

| shi + slone->{rt} shi + xorTwolTwo

| shi + slo ->{rt} shi + slone

//AND1

//reactions

|ahi + andOnele ->{rt} ahi + andOneHi

|bhi + andOnelw ->{rt} bhi + andOnele

|alo + andOnelq ->{rt} alo + andOneLo

|blo + andlq ->{rt} blo + andOneLo

//for persistance

| andOneHi + alo ->{rt} andOnele + alo

| andOneHi + blo ->{rt} andOnelw + blo

| andOneLo + andOneHi ->{rt} andOneHi + andOnelq

//AND2

//reactions

|cinhi + andTwole ->{rt} cinhi + andTwoHi

|xorOneHi + andTwolw ->{rt} xorOneHi + andTwole

|cinlo + andTwolq ->{rt} cinlo + andTwoLo

|xorOneLo + andTwolq ->{rt} xorOneLo + andTwoLo

//for persistance

|andTwoHi + cinlo ->{rt} andTwole + cinlo

|andTwoHi + xorOneLo ->{rt} andTwolw + xorOneLo

|andTwoLo + andTwoHi ->{rt} andTwoHi + andTwolq

//OR

| andOneHi + orle ->{rt} andOneHi + couthi

| andTwoHi + orle ->{rt} andTwoHi + couthi

88

| andOneLo + orlw ->{rt} andOneLo + orlq

| andTwoLo + orlq ->{rt} andTwoLo + coutlo

//for persistance

| coutlo + andOneHi ->{rt} orlw + andOneHi

| coutlo + andTwoHi ->{rt} orlq + andTwoHi

| coutlo + couthi ->{rt} coutlo + orle

A.2.4 Muller C Pipeline CRN

directive sample 20.0 100

rate rt = 1.0;

// C ELEMENTS

//AM SWITCH 1

init aup 0.0

| init ant 0.0

| init adn 2.0

//AM SWITCH 2

| init bup 0.0

| init bnt 0.0

| init bdn 2.0

//AM SWITCH 3

| init cup 0.0

| init cnt 0.0

| init cdn 2.0

//AMP 1

| init ahi 0.0

| init alo 5.0

//AMP 2

| init bhi 0.0

| init blo 5.0

//AMP 3

| init chi 0.0

| init clo 5.0

//INPUTS

89

| init acchi 5.0

| init acclo 0.0

| init reqhi 5.0

| init reqlo 0.0

//NOT

| init bNotUp 0.0

| init bNotNt 5.0

| init bNotDown 0.0

| init cNotUp 0.0

| init cNotNt 5.0

| init cNotDown 0.0

//AREA 1

| adn + aup ->{rt} ant + ant

| ant + adn ->{rt} adn + adn

| ant + aup ->{rt} aup + aup

| adn + bNotUp ->{rt} ant + bNotUp

| ant + reqhi ->{rt} aup + reqhi

| aup + bNotDown->{rt} ant + bNotDown

| ant + reqlo ->{rt} adn + reqlo

| alo + aup ->{rt} ahi + aup

| ahi + adn ->{rt} alo + adn

//AREA 2

| bdn + bup ->{rt} bnt + bnt

| bnt + bdn ->{rt} bdn + bdn

| bnt + bup ->{rt} bup + bup

| bdn + cNotUp ->{rt} bnt + cNotUp

| bnt + ahi ->{rt} bup + ahi

| bup + cNotDown ->{rt} bnt + cNotDown

| bnt + alo ->{rt} bdn + alo

| blo + bup ->{rt} bhi + bup

| bhi + bdn ->{rt} blo + bdn

| bhi + bNotNt ->{rt} bhi + bNotDown

| bhi + bNotUp ->{rt} bhi + bNotDown

90

| blo + bNotNt ->{rt} blo + bNotUp

| blo + bNotDown ->{rt} blo + bNotUp

//AREA 3

| cdn + cup ->{rt} cnt + cnt

| cnt + cdn ->{rt} cdn + cdn

| cnt + cup ->{rt} cup + cup

| cdn + acchi ->{rt} cnt + acchi

| cnt + bhi ->{rt} cup + bhi

| cup + acclo ->{rt} cnt + acclo

| cnt + blo ->{rt} cdn + blo

| clo + cup ->{rt} chi + cup

| chi + cdn ->{rt} clo + cdn

| chi + cNotNt ->{rt} chi + cNotDown

| chi + cNotUp ->{rt} chi + cNotDown

| clo + cNotNt ->{rt} clo + cNotUp

| clo + cNotDown ->{rt} clo + cNotUp

A.2.5 Queue Structure

directive sample 20.0 100

rate rt = 1.0;

// C ELEMENTS

//AM SWITCH 1

init aup 0.0

| init ant 0.0

| init adn 1.0

//AM SWITCH 2

| init bup 0.0

| init bnt 0.0

| init bdn 1.0

//AM SWITCH 3

| init cup 0.0

| init cnt 0.0

| init cdn 1.0

//AMP 1

| init ahi 0.0

| init alo 1.0

91

//AMP 2

| init bhi 0.0

| init blo 1.0

//AMP 3

| init chi 0.0

| init clo 1.0

//INPUTS

| init reqhi 1.0

| init reqlo 0.0

//NOT

| init aNotUp 1.0

| init aNotDown 0.0

| init bNotUp 1.0

| init bNotDown 0.0

| init cNotUp 1.0

| init cNotDown 0.0

//MEM 1

| init amOne 1.0

| init amZero 0.0

//MEM 2

| init bmOne 0.0

| init bmZero 1.0

//MEM 3

| init cmOne 0.0

| init cmZero 1.0

//MEM 4

| init outOne 0.0

| init outZero 1.0

//GATE 2

//AREA 1

| adn + aup ->{rt} ant + ant

92

| ant + adn ->{rt} adn + adn

| ant + aup ->{rt} aup + aup

| adn + bNotUp ->{rt} ant + bNotUp

| ant + reqhi ->{rt} aup + reqhi

| aup + bNotDown->{rt} ant + bNotDown

| ant + reqlo ->{rt} adn + reqlo

| alo + aup ->{rt} ahi + aup

| ahi + adn ->{rt} alo + adn

| alo + aNotDown ->{rt} alo + aNotUp

| ahi + aNotUp ->{rt} ahi + aNotDown

| ahi + amOne ->{rt} ahi + bmOne

| ahi + amZero ->{rt} ahi + bmZero

//AREA 2

| bdn + bup ->{rt} bnt + bnt

| bnt + bdn ->{rt} bdn + bdn

| bnt + bup ->{rt} bup + bup

| bdn + cNotUp ->{rt} bnt + cNotUp

| bnt + ahi ->{rt} bup + ahi

| bup + cNotDown ->{rt} bnt + cNotDown

| bnt + alo ->{rt} bdn + alo

| blo + bup ->{rt} bhi + bup

| bhi + bdn ->{rt} blo + bdn

| blo + bNotDown ->{rt} blo + bNotUp

| bhi + bNotUp ->{rt} bhi + bNotDown

| bhi + bmOne ->{rt} bhi + cmOne

| bhi + bmZero ->{rt} bhi + cmZero

//AREA 3

| cdn + cup ->{rt} cnt + cnt

| cnt + cdn ->{rt} cdn + cdn

| cnt + cup ->{rt} cup + cup

| cdn + cNotUp ->{rt} cnt + cNotUp

| cnt + bhi ->{rt} cup + bhi

93

| cup + cNotDown ->{rt} cnt + cNotDown

| cnt + blo ->{rt} cdn + blo

| clo + cup ->{rt} chi + cup

| chi + cdn ->{rt} clo + cdn

| clo + cNotDown ->{rt} clo + cNotUp

| chi + cNotUp ->{rt} chi + cNotDown

| chi + reqhi ->{rt} chi + reqlo

| clo + reqlo ->{rt} clo + reqhi

| chi + cmOne ->{rt} chi + outOne

| chi + cmZero ->{rt} chi + outZero

A.2.6 Loop PRISM model

ctmc

const int MAX_AMOUNT = 1;

// Parameters for reaction r_id23

const double k_r_id23 = 1.0;

// Parameters for reaction r_id24

const double k_r_id24 = 1.0;

// Parameters for reaction r_id25

const double k_r_id25 = 1.0;

// Parameters for reaction r_id26

const double k_r_id26 = 1.0;

// Parameters for reaction r_id27

const double k_r_id27 = 1.0;

// Parameters for reaction r_id28

const double k_r_id28 = 1.0;

// Parameters for reaction r_id29

const double k_r_id29 = 1.0;

// Parameters for reaction r_id30

const double k_r_id30 = 1.0;

// Parameters for reaction r_id31

const double k_r_id31 = 1.0;

94

// Parameters for reaction r_id32

const double k_r_id32 = 1.0;

// Parameters for reaction r_id33

const double k_r_id33 = 1.0;

// Parameters for reaction r_id34

const double k_r_id34 = 1.0;

// Parameters for reaction r_id35

const double k_r_id35 = 1.0;

// Parameters for reaction r_id36

const double k_r_id36 = 1.0;

// Parameters for reaction r_id37

const double k_r_id37 = 1.0;

// Parameters for reaction r_id38

const double k_r_id38 = 1.0;

// Parameters for reaction r_id39

const double k_r_id39 = 1.0;

// Parameters for reaction r_id40

const double k_r_id40 = 1.0;

// Parameters for reaction r_id41

const double k_r_id41 = 1.0;

// Parameters for reaction r_id42

const double k_r_id42 = 1.0;

// Parameters for reaction r_id43

const double k_r_id43 = 1.0;

// Parameters for reaction r_id44

const double k_r_id44 = 1.0;

// Parameters for reaction r_id45

const double k_r_id45 = 1.0;

// Parameters for reaction r_id46

const double k_r_id46 = 1.0;

// Parameters for reaction r_id47

const double k_r_id47 = 1.0;

95

// Parameters for reaction r_id48

const double k_r_id48 = 1.0;

// Parameters for reaction r_id49

const double k_r_id49 = 1.0;

// Parameters for reaction r_id50

const double k_r_id50 = 1.0;

// Parameters for reaction r_id51

const double k_r_id51 = 1.0;

// Parameters for reaction r_id52

const double k_r_id52 = 1.0;

// Parameters for reaction r_id53

const double k_r_id53 = 1.0;

// Parameters for reaction r_id54

const double k_r_id54 = 1.0;

// Parameters for reaction r_id55

const double k_r_id55 = 1.0;

// Parameters for reaction r_id56

const double k_r_id56 = 1.0;

// Parameters for reaction r_id57

const double k_r_id57 = 1.0;

// Species s_id0 (aup)

const int s_id0_MIN = 0;

const int s_id0_MAX = MAX_AMOUNT;

module s_id0

s_id0 : [s_id0_MIN..s_id0_MAX] init 0; // Initial amount 0

// r_id23

[r_id23] s_id0 > 0 -> (s_id0’=s_id0-1);

// r_id25

[r_id25] s_id0 <= s_id0_MAX-1 -> (s_id0’=s_id0+1);

// r_id27

[r_id27] s_id0 <= s_id0_MAX-1 -> (s_id0’=s_id0+1);

// r_id28

[r_id28] s_id0 > 0 -> (s_id0’=s_id0-1);

// r_id30

96

[r_id30] s_id0 > 0 -> (s_id0’=s_id0-0);

endmodule

// Species s_id1 (ant)

const int s_id1_MIN = 0;

const int s_id1_MAX = MAX_AMOUNT;

module s_id1

s_id1 : [s_id1_MIN..s_id1_MAX] init 0; // Initial amount 0

// r_id23

[r_id23] s_id1 <= s_id1_MAX-2 -> (s_id1’=s_id1+2);

// r_id24

[r_id24] s_id1 > 0 -> (s_id1’=s_id1-1);

// r_id25

[r_id25] s_id1 > 0 -> (s_id1’=s_id1-1);

// r_id26

[r_id26] s_id1 <= s_id1_MAX-1 -> (s_id1’=s_id1+1);

// r_id27

[r_id27] s_id1 > 0 -> (s_id1’=s_id1-1);

// r_id28

[r_id28] s_id1 <= s_id1_MAX-1 -> (s_id1’=s_id1+1);

// r_id29

[r_id29] s_id1 > 0 -> (s_id1’=s_id1-1);

endmodule

// Species s_id2 (adn)

const int s_id2_MIN = 0;

const int s_id2_MAX = MAX_AMOUNT;

module s_id2

s_id2 : [s_id2_MIN..s_id2_MAX] init 1; // Initial amount 1

// r_id23

[r_id23] s_id2 > 0 -> (s_id2’=s_id2-1);

// r_id24

[r_id24] s_id2 <= s_id2_MAX-1 -> (s_id2’=s_id2+1);

// r_id26

[r_id26] s_id2 > 0 -> (s_id2’=s_id2-1);

// r_id29

[r_id29] s_id2 <= s_id2_MAX-1 -> (s_id2’=s_id2+1);

// r_id31

[r_id31] s_id2 > 0 -> (s_id2’=s_id2-0);

endmodule

97

// Species s_id3 (bup)

const int s_id3_MIN = 0;

const int s_id3_MAX = MAX_AMOUNT;

module s_id3

s_id3 : [s_id3_MIN..s_id3_MAX] init 0; // Initial amount 0

// r_id34

[r_id34] s_id3 > 0 -> (s_id3’=s_id3-1);

// r_id36

[r_id36] s_id3 <= s_id3_MAX-1 -> (s_id3’=s_id3+1);

// r_id38

[r_id38] s_id3 <= s_id3_MAX-1 -> (s_id3’=s_id3+1);

// r_id39

[r_id39] s_id3 > 0 -> (s_id3’=s_id3-1);

// r_id41

[r_id41] s_id3 > 0 -> (s_id3’=s_id3-0);

endmodule

// Species s_id4 (bnt)

const int s_id4_MIN = 0;

const int s_id4_MAX = MAX_AMOUNT;

module s_id4

s_id4 : [s_id4_MIN..s_id4_MAX] init 0; // Initial amount 0

// r_id34

[r_id34] s_id4 <= s_id4_MAX-2 -> (s_id4’=s_id4+2);

// r_id35

[r_id35] s_id4 > 0 -> (s_id4’=s_id4-1);

// r_id36

[r_id36] s_id4 > 0 -> (s_id4’=s_id4-1);

// r_id37

[r_id37] s_id4 <= s_id4_MAX-1 -> (s_id4’=s_id4+1);

// r_id38

[r_id38] s_id4 > 0 -> (s_id4’=s_id4-1);

// r_id39

[r_id39] s_id4 <= s_id4_MAX-1 -> (s_id4’=s_id4+1);

// r_id40

[r_id40] s_id4 > 0 -> (s_id4’=s_id4-1);

endmodule

// Species s_id5 (bdn)

const int s_id5_MIN = 0;

98

const int s_id5_MAX = MAX_AMOUNT;

module s_id5

s_id5 : [s_id5_MIN..s_id5_MAX] init 1; // Initial amount 1

// r_id34

[r_id34] s_id5 > 0 -> (s_id5’=s_id5-1);

// r_id35

[r_id35] s_id5 <= s_id5_MAX-1 -> (s_id5’=s_id5+1);

// r_id37

[r_id37] s_id5 > 0 -> (s_id5’=s_id5-1);

// r_id40

[r_id40] s_id5 <= s_id5_MAX-1 -> (s_id5’=s_id5+1);

// r_id42

[r_id42] s_id5 > 0 -> (s_id5’=s_id5-0);

endmodule

// Species s_id6 (cup)

const int s_id6_MIN = 0;

const int s_id6_MAX = MAX_AMOUNT;

module s_id6

s_id6 : [s_id6_MIN..s_id6_MAX] init 0; // Initial amount 0

// r_id45

[r_id45] s_id6 > 0 -> (s_id6’=s_id6-1);

// r_id47

[r_id47] s_id6 <= s_id6_MAX-1 -> (s_id6’=s_id6+1);

// r_id49

[r_id49] s_id6 <= s_id6_MAX-1 -> (s_id6’=s_id6+1);

// r_id50

[r_id50] s_id6 > 0 -> (s_id6’=s_id6-1);

// r_id52

[r_id52] s_id6 > 0 -> (s_id6’=s_id6-0);

endmodule

// Species s_id7 (cnt)

const int s_id7_MIN = 0;

const int s_id7_MAX = MAX_AMOUNT;

module s_id7

s_id7 : [s_id7_MIN..s_id7_MAX] init 0; // Initial amount 0

// r_id45

[r_id45] s_id7 <= s_id7_MAX-2 -> (s_id7’=s_id7+2);

99

// r_id46

[r_id46] s_id7 > 0 -> (s_id7’=s_id7-1);

// r_id47

[r_id47] s_id7 > 0 -> (s_id7’=s_id7-1);

// r_id48

[r_id48] s_id7 <= s_id7_MAX-1 -> (s_id7’=s_id7+1);

// r_id49

[r_id49] s_id7 > 0 -> (s_id7’=s_id7-1);

// r_id50

[r_id50] s_id7 <= s_id7_MAX-1 -> (s_id7’=s_id7+1);

// r_id51

[r_id51] s_id7 > 0 -> (s_id7’=s_id7-1);

endmodule

// Species s_id8 (cdn)

const int s_id8_MIN = 0;

const int s_id8_MAX = MAX_AMOUNT;

module s_id8

s_id8 : [s_id8_MIN..s_id8_MAX] init 1; // Initial amount 1

// r_id45

[r_id45] s_id8 > 0 -> (s_id8’=s_id8-1);

// r_id46

[r_id46] s_id8 <= s_id8_MAX-1 -> (s_id8’=s_id8+1);

// r_id48

[r_id48] s_id8 > 0 -> (s_id8’=s_id8-1);

// r_id51

[r_id51] s_id8 <= s_id8_MAX-1 -> (s_id8’=s_id8+1);

// r_id53

[r_id53] s_id8 > 0 -> (s_id8’=s_id8-0);

endmodule

// Species s_id9 (ahi)

const int s_id9_MIN = 0;

const int s_id9_MAX = MAX_AMOUNT;

module s_id9

s_id9 : [s_id9_MIN..s_id9_MAX] init 0; // Initial amount 0

// r_id30

[r_id30] s_id9 <= s_id9_MAX-1 -> (s_id9’=s_id9+1);

// r_id31

[r_id31] s_id9 > 0 -> (s_id9’=s_id9-1);

// r_id33

100

[r_id33] s_id9 > 0 -> (s_id9’=s_id9-0);

// r_id38

[r_id38] s_id9 > 0 -> (s_id9’=s_id9-0);

endmodule

// Species s_id10 (alo)

const int s_id10_MIN = 0;

const int s_id10_MAX = MAX_AMOUNT;

module s_id10

s_id10 : [s_id10_MIN..s_id10_MAX] init 1; // Initial amount 1

// r_id30

[r_id30] s_id10 > 0 -> (s_id10’=s_id10-1);

// r_id31

[r_id31] s_id10 <= s_id10_MAX-1 -> (s_id10’=s_id10+1);

// r_id32

[r_id32] s_id10 > 0 -> (s_id10’=s_id10-0);

// r_id40

[r_id40] s_id10 > 0 -> (s_id10’=s_id10-0);

endmodule

// Species s_id11 (bhi)

const int s_id11_MIN = 0;

const int s_id11_MAX = MAX_AMOUNT;

module s_id11

s_id11 : [s_id11_MIN..s_id11_MAX] init 0; // Initial amount 0

// r_id41

[r_id41] s_id11 <= s_id11_MAX-1 -> (s_id11’=s_id11+1);

// r_id42

[r_id42] s_id11 > 0 -> (s_id11’=s_id11-1);

// r_id44

[r_id44] s_id11 > 0 -> (s_id11’=s_id11-0);

// r_id49

[r_id49] s_id11 > 0 -> (s_id11’=s_id11-0);

endmodule

// Species s_id12 (blo)

const int s_id12_MIN = 0;

const int s_id12_MAX = MAX_AMOUNT;

module s_id12

101

s_id12 : [s_id12_MIN..s_id12_MAX] init 1; // Initial amount 1

// r_id41

[r_id41] s_id12 > 0 -> (s_id12’=s_id12-1);

// r_id42

[r_id42] s_id12 <= s_id12_MAX-1 -> (s_id12’=s_id12+1);

// r_id43

[r_id43] s_id12 > 0 -> (s_id12’=s_id12-0);

// r_id51

[r_id51] s_id12 > 0 -> (s_id12’=s_id12-0);

endmodule

// Species s_id13 (chi)

const int s_id13_MIN = 0;

const int s_id13_MAX = MAX_AMOUNT;

module s_id13

s_id13 : [s_id13_MIN..s_id13_MAX] init 0; // Initial amount 0

// r_id52

[r_id52] s_id13 <= s_id13_MAX-1 -> (s_id13’=s_id13+1);

// r_id53

[r_id53] s_id13 > 0 -> (s_id13’=s_id13-1);

// r_id55

[r_id55] s_id13 > 0 -> (s_id13’=s_id13-0);

// r_id56

[r_id56] s_id13 > 0 -> (s_id13’=s_id13-0);

endmodule

// Species s_id14 (clo)

const int s_id14_MIN = 0;

const int s_id14_MAX = MAX_AMOUNT;

module s_id14

s_id14 : [s_id14_MIN..s_id14_MAX] init 1; // Initial amount 1

// r_id52

[r_id52] s_id14 > 0 -> (s_id14’=s_id14-1);

// r_id53

[r_id53] s_id14 <= s_id14_MAX-1 -> (s_id14’=s_id14+1);

// r_id54

[r_id54] s_id14 > 0 -> (s_id14’=s_id14-0);

// r_id57

[r_id57] s_id14 > 0 -> (s_id14’=s_id14-0);

102

endmodule

// Species s_id15 (reqhi)

const int s_id15_MIN = 0;

const int s_id15_MAX = MAX_AMOUNT;

module s_id15

s_id15 : [s_id15_MIN..s_id15_MAX] init 1; // Initial amount 1

// r_id27

[r_id27] s_id15 > 0 -> (s_id15’=s_id15-0);

// r_id56

[r_id56] s_id15 > 0 -> (s_id15’=s_id15-1);

// r_id57

[r_id57] s_id15 <= s_id15_MAX-1 -> (s_id15’=s_id15+1);

endmodule

// Species s_id16 (reqlo)

const int s_id16_MIN = 0;

const int s_id16_MAX = MAX_AMOUNT;

module s_id16

s_id16 : [s_id16_MIN..s_id16_MAX] init 0; // Initial amount 0

// r_id29

[r_id29] s_id16 > 0 -> (s_id16’=s_id16-0);

// r_id56

[r_id56] s_id16 <= s_id16_MAX-1 -> (s_id16’=s_id16+1);

// r_id57

[r_id57] s_id16 > 0 -> (s_id16’=s_id16-1);

endmodule

// Species s_id17 (aNotUp)

const int s_id17_MIN = 0;

const int s_id17_MAX = MAX_AMOUNT;

module s_id17

s_id17 : [s_id17_MIN..s_id17_MAX] init 1; // Initial amount 1

// r_id32

[r_id32] s_id17 <= s_id17_MAX-1 -> (s_id17’=s_id17+1);

// r_id33

[r_id33] s_id17 > 0 -> (s_id17’=s_id17-1);

endmodule

103

// Species s_id18 (aNotDown)

const int s_id18_MIN = 0;

const int s_id18_MAX = MAX_AMOUNT;

module s_id18

s_id18 : [s_id18_MIN..s_id18_MAX] init 0; // Initial amount 0

// r_id32

[r_id32] s_id18 > 0 -> (s_id18’=s_id18-1);

// r_id33

[r_id33] s_id18 <= s_id18_MAX-1 -> (s_id18’=s_id18+1);

endmodule

// Species s_id19 (bNotUp)

const int s_id19_MIN = 0;

const int s_id19_MAX = MAX_AMOUNT;

module s_id19

s_id19 : [s_id19_MIN..s_id19_MAX] init 1; // Initial amount 1

// r_id26

[r_id26] s_id19 > 0 -> (s_id19’=s_id19-0);

// r_id43

[r_id43] s_id19 <= s_id19_MAX-1 -> (s_id19’=s_id19+1);

// r_id44

[r_id44] s_id19 > 0 -> (s_id19’=s_id19-1);

endmodule

// Species s_id20 (bNotDown)

const int s_id20_MIN = 0;

const int s_id20_MAX = MAX_AMOUNT;

module s_id20

s_id20 : [s_id20_MIN..s_id20_MAX] init 0; // Initial amount 0

// r_id28

[r_id28] s_id20 > 0 -> (s_id20’=s_id20-0);

// r_id43

[r_id43] s_id20 > 0 -> (s_id20’=s_id20-1);

// r_id44

[r_id44] s_id20 <= s_id20_MAX-1 -> (s_id20’=s_id20+1);

endmodule

104

// Species s_id21 (cNotUp)

const int s_id21_MIN = 0;

const int s_id21_MAX = MAX_AMOUNT;

module s_id21

s_id21 : [s_id21_MIN..s_id21_MAX] init 1; // Initial amount 1

// r_id37

[r_id37] s_id21 > 0 -> (s_id21’=s_id21-0);

// r_id48

[r_id48] s_id21 > 0 -> (s_id21’=s_id21-0);

// r_id54

[r_id54] s_id21 <= s_id21_MAX-1 -> (s_id21’=s_id21+1);

// r_id55

[r_id55] s_id21 > 0 -> (s_id21’=s_id21-1);

endmodule

// Species s_id22 (cNotDown)

const int s_id22_MIN = 0;

const int s_id22_MAX = MAX_AMOUNT;

module s_id22

s_id22 : [s_id22_MIN..s_id22_MAX] init 0; // Initial amount 0

// r_id39

[r_id39] s_id22 > 0 -> (s_id22’=s_id22-0);

// r_id50

[r_id50] s_id22 > 0 -> (s_id22’=s_id22-0);

// r_id54

[r_id54] s_id22 > 0 -> (s_id22’=s_id22-1);

// r_id55

[r_id55] s_id22 <= s_id22_MAX-1 -> (s_id22’=s_id22+1);

endmodule

// Reaction rates

module reaction_rates

// r_id23

[r_id23] (k_r_id23*s_id2*s_id0) > 0 -> (k_r_id23*s_id2*s_id0) : true;

// r_id24

[r_id24] (k_r_id24*s_id1*s_id2) > 0 -> (k_r_id24*s_id1*s_id2) : true;

// r_id25

[r_id25] (k_r_id25*s_id1*s_id0) > 0 -> (k_r_id25*s_id1*s_id0) : true;

// r_id26

[r_id26] (k_r_id26*s_id2*s_id19) > 0 -> (k_r_id26*s_id2*s_id19) : true;

105

// r_id27

[r_id27] (k_r_id27*s_id1*s_id15) > 0 -> (k_r_id27*s_id1*s_id15) : true;

// r_id28

[r_id28] (k_r_id28*s_id0*s_id20) > 0 -> (k_r_id28*s_id0*s_id20) : true;

// r_id29

[r_id29] (k_r_id29*s_id1*s_id16) > 0 -> (k_r_id29*s_id1*s_id16) : true;

// r_id30

[r_id30] (k_r_id30*s_id10*s_id0) > 0 -> (k_r_id30*s_id10*s_id0) : true;

// r_id31

[r_id31] (k_r_id31*s_id9*s_id2) > 0 -> (k_r_id31*s_id9*s_id2) : true;

// r_id32

[r_id32] (k_r_id32*s_id10*s_id18) > 0 -> (k_r_id32*s_id10*s_id18) : true;

// r_id33

[r_id33] (k_r_id33*s_id9*s_id17) > 0 -> (k_r_id33*s_id9*s_id17) : true;

// r_id34

[r_id34] (k_r_id34*s_id5*s_id3) > 0 -> (k_r_id34*s_id5*s_id3) : true;

// r_id35

[r_id35] (k_r_id35*s_id4*s_id5) > 0 -> (k_r_id35*s_id4*s_id5) : true;

// r_id36

[r_id36] (k_r_id36*s_id4*s_id3) > 0 -> (k_r_id36*s_id4*s_id3) : true;

// r_id37

[r_id37] (k_r_id37*s_id5*s_id21) > 0 -> (k_r_id37*s_id5*s_id21) : true;

// r_id38

[r_id38] (k_r_id38*s_id4*s_id9) > 0 -> (k_r_id38*s_id4*s_id9) : true;

// r_id39

[r_id39] (k_r_id39*s_id3*s_id22) > 0 -> (k_r_id39*s_id3*s_id22) : true;

// r_id40

[r_id40] (k_r_id40*s_id4*s_id10) > 0 -> (k_r_id40*s_id4*s_id10) : true;

// r_id41

[r_id41] (k_r_id41*s_id12*s_id3) > 0 -> (k_r_id41*s_id12*s_id3) : true;

// r_id42

[r_id42] (k_r_id42*s_id11*s_id5) > 0 -> (k_r_id42*s_id11*s_id5) : true;

// r_id43

[r_id43] (k_r_id43*s_id12*s_id20) > 0 -> (k_r_id43*s_id12*s_id20) : true;

// r_id44

[r_id44] (k_r_id44*s_id11*s_id19) > 0 -> (k_r_id44*s_id11*s_id19) : true;

// r_id45

[r_id45] (k_r_id45*s_id8*s_id6) > 0 -> (k_r_id45*s_id8*s_id6) : true;

// r_id46

[r_id46] (k_r_id46*s_id7*s_id8) > 0 -> (k_r_id46*s_id7*s_id8) : true;

// r_id47

[r_id47] (k_r_id47*s_id7*s_id6) > 0 -> (k_r_id47*s_id7*s_id6) : true;

// r_id48

[r_id48] (k_r_id48*s_id8*s_id21) > 0 -> (k_r_id48*s_id8*s_id21) : true;

// r_id49

[r_id49] (k_r_id49*s_id7*s_id11) > 0 -> (k_r_id49*s_id7*s_id11) : true;

// r_id50

106

[r_id50] (k_r_id50*s_id6*s_id22) > 0 -> (k_r_id50*s_id6*s_id22) : true;

// r_id51

[r_id51] (k_r_id51*s_id7*s_id12) > 0 -> (k_r_id51*s_id7*s_id12) : true;

// r_id52

[r_id52] (k_r_id52*s_id14*s_id6) > 0 -> (k_r_id52*s_id14*s_id6) : true;

// r_id53

[r_id53] (k_r_id53*s_id13*s_id8) > 0 -> (k_r_id53*s_id13*s_id8) : true;

// r_id54

[r_id54] (k_r_id54*s_id14*s_id22) > 0 -> (k_r_id54*s_id14*s_id22) : true;

// r_id55

[r_id55] (k_r_id55*s_id13*s_id21) > 0 -> (k_r_id55*s_id13*s_id21) : true;

// r_id56

[r_id56] (k_r_id56*s_id13*s_id15) > 0 -> (k_r_id56*s_id13*s_id15) : true;

// r_id57

[r_id57] (k_r_id57*s_id14*s_id16) > 0 -> (k_r_id57*s_id14*s_id16) : true;

endmodule

// Reward structures (one per species)

// Species s_id0 (aup)

rewards "s_id0" true : s_id0; endrewards

// Species s_id1 (ant)

rewards "s_id1" true : s_id1; endrewards

// Species s_id2 (adn)

rewards "s_id2" true : s_id2; endrewards

// Species s_id3 (bup)

rewards "s_id3" true : s_id3; endrewards

// Species s_id4 (bnt)

rewards "s_id4" true : s_id4; endrewards

// Species s_id5 (bdn)

rewards "s_id5" true : s_id5; endrewards

// Species s_id6 (cup)

rewards "s_id6" true : s_id6; endrewards

// Species s_id7 (cnt)

rewards "s_id7" true : s_id7; endrewards

// Species s_id8 (cdn)

rewards "s_id8" true : s_id8; endrewards

// Species s_id9 (ahi)

rewards "s_id9" true : s_id9; endrewards

// Species s_id10 (alo)

rewards "s_id10" true : s_id10; endrewards

// Species s_id11 (bhi)

rewards "s_id11" true : s_id11; endrewards

// Species s_id12 (blo)

rewards "s_id12" true : s_id12; endrewards

// Species s_id13 (chi)

107

rewards "s_id13" true : s_id13; endrewards

// Species s_id14 (clo)

rewards "s_id14" true : s_id14; endrewards

// Species s_id15 (reqhi)

rewards "s_id15" true : s_id15; endrewards

// Species s_id16 (reqlo)

rewards "s_id16" true : s_id16; endrewards

// Species s_id17 (aNotUp)

rewards "s_id17" true : s_id17; endrewards

// Species s_id18 (aNotDown)

rewards "s_id18" true : s_id18; endrewards

// Species s_id19 (bNotUp)

rewards "s_id19" true : s_id19; endrewards

// Species s_id20 (bNotDown)

rewards "s_id20" true : s_id20; endrewards

// Species s_id21 (cNotUp)

rewards "s_id21" true : s_id21; endrewards

// Species s_id22 (cNotDown)

rewards "s_id22" true : s_id22; endrewards

// Reward structure for calculating expected times

rewards "time" true : 1; endrewards

A.2.7 Four-Phase Protocol CRN

directive sample 20.0 100

rate rt = 1.0;

// C ELEMENTS

//AM SWITCH 1

init adtup 0.0

| init adtnt 0.0

| init adtdn 1.0

| init adthi 0.0

| init adtlo 1.0

| init adfup 0.0

| init adfnt 0.0

| init adfdn 1.0

| init adfhi 0.0

| init adflo 1.0

//pulleys

| init ae 1.0

| init aw 1.0

108

| init aq 0.0

//outputs

| init alo 0.0

| init ahi 0.0

| init aNotUp 1.0

| init aNotDown 0.0

//AM SWITCH 2

init bdtup 0.0

| init bdtnt 0.0

| init bdtdn 1.0

| init bdthi 0.0

| init bdtlo 1.0

| init bdfup 0.0

| init bdfnt 0.0

| init bdfdn 1.0

| init bdfhi 0.0

| init bdflo 1.0

//pulleys

| init be 1.0

| init bw 1.0

| init bq 0.0

//outputs

| init blo 0.0

| init bhi 0.0

| init bNotUp 1.0

| init bNotDown 0.0

//AM SWITCH 3

init cdtup 0.0

| init cdtnt 0.0

| init cdtdn 1.0

| init cdthi 0.0

| init cdtlo 1.0

| init cdfup 0.0

| init cdfnt 0.0

| init cdfdn 1.0

| init cdfhi 0.0

| init cdflo 1.0

109

//pulleys

| init ce 1.0

| init cw 1.0

| init cq 0.0

//outputs

| init clo 0.0

| init chi 0.0

| init cNotUp 1.0

| init cNotDown 0.0

//INPUTS

| init reqthi 1.0

| init reqtlo 0.0

| init reqfhi 1.0

| init reqflo 0.0

//AREA 1

| adfdn + adfup ->{rt} adfnt + adfnt

| adfnt + adfdn ->{rt} adfdn + adfdn

| adfnt + adfup ->{rt} adfup + adfup

| adfdn + bNotUp ->{rt} adfnt + bNotUp

| adfnt + reqfhi ->{rt} adfup + reqfhi

| adfup + bNotDown->{rt} adfnt + bNotDown

| adfnt + reqflo ->{rt} adfdn + reqflo

| adflo + adfup ->{rt} adfhi + adfup

| adfhi + adfdn ->{rt} adflo + adfdn

| adtdn + adtup ->{rt} adtnt + adtnt

| adtnt + adtdn ->{rt} adtdn + adtdn

| adtnt + adtup ->{rt} adtup + adtup

| adtdn + bNotUp ->{rt} adtnt + bNotUp

| adtnt + reqthi ->{rt} adtup + reqthi

| adtup + bNotDown->{rt} adtnt + bNotDown

| adtnt + reqtlo ->{rt} adtdn + reqtlo

| adtlo + adtup ->{rt} adthi + adtup

| adthi + adtdn ->{rt} adtlo + adtdn

110

//reactions

| adthi + ae ->{rt} adthi + ahi

| adfhi + ae ->{rt} adfhi + ahi

| adtlo + aw ->{rt} adtlo + aq

| adflo + aq ->{rt} adflo + alo

//for persistance

|alo + adthi ->{rt} aw + adthi

|alo + adfhi ->{rt} aq + adfhi

|alo + ahi ->{rt} alo + ae

| aiflo + aNotDown ->{rt} aiflo + aNotUp

| aifhi + aNotUp ->{rt} aifhi + aNotDown

//AREA 2

| bdfdn + bdfup ->{rt} bdfnt + bdfnt

| bdfnt + bdfdn ->{rt} bdfdn + bdfdn

| bdfnt + bdfup ->{rt} bdfup + bdfup

| bdfdn + cNotUp ->{rt} bdfnt + cNotUp

| bdfnt + adfhi ->{rt} bdfup + adfhi

| bdfup + cNotDown->{rt} bdfnt + cNotDown

| bdfnt + adflo ->{rt} bdfdn + adflo

| bdflo + bdfup ->{rt} bdfhi + bdfup

| bdfhi + bdfdn ->{rt} bdflo + bdfdn

| bdtdn + bdtup ->{rt} bdtnt + bdtnt

| bdtnt + bdtdn ->{rt} bdtdn + bdtdn

| bdtnt + bdtup ->{rt} bdtup + bdtup

| bdtdn + cNotUp ->{rt} bdtnt + cNotUp

| bdtnt + adthi ->{rt} bdtup + adthi

| bdtup + cNotDown->{rt} bdtnt + cNotDown

| bdtnt + adtlo ->{rt} bdtdn + adtlo

| bdflo + bdfup ->{rt} bdfhi + bdfup

| bdfhi + bdfdn ->{rt} bdflo + bdfdn

//reactions

| bdthi + be ->{rt} bdthi + bhi

| bdfhi + be ->{rt} bdfhi + bhi

111

| bdtlo + bw ->{rt} bdtlo + bq

| bdflo + bq ->{rt} bdflo + blo

//for persistance

|blo + bdthi ->{rt} bw + bdthi

|blo + bdfhi ->{rt} bq + bdfhi

|blo + bhi ->{rt} blo + be

| biflo + bNotDown ->{rt} biflo + bNotUp

| bifhi + bNotUp ->{rt} bifhi + bNotDown

//AREA 3

| cdfdn + cdfup ->{rt} cdfnt + cdfnt

| cdfnt + cdfdn ->{rt} cdfdn + cdfdn

| cdfnt + cdfup ->{rt} cdfup + cdfup

| cdfdn + cNotUp ->{rt} cdfnt + cNotUp

| cdfnt + bdfhi ->{rt} cdfup + bdfhi

| cdfup + cNotDown->{rt} cdfnt + cNotDown

| cdfnt + bdflo ->{rt} cdfdn + bdflo

| cdflo + cdfup ->{rt} cdfhi + cdfup

| cdfhi + cdfdn ->{rt} cdflo + cdfdn

| cdtdn + cdtup ->{rt} cdtnt + cdtnt

| cdtnt + cdtdn ->{rt} cdtdn + cdtdn

| cdtnt + cdtup ->{rt} cdtup + cdtup

| cdtdn + cNotUp ->{rt} cdtnt + cNotUp

| cdtnt + bdthi ->{rt} cdtup + bdthi

| cdtup + bNotDown->{rt} cdtnt + cNotDown

| cdtnt + bdtlo ->{rt} cdtdn + bdtlo

| cdflo + cdfup ->{rt} cdfhi + cdfup

| cdfhi + cdfdn ->{rt} cdflo + cdfdn

//reactions

| cdthi + ce ->{rt} cdthi + chi

| cdfhi + ce ->{rt} cdfhi + chi

| cdtlo + cw ->{rt} cdtlo + cq

| cdflo + cq ->{rt} cdflo + clo

112

//for persistance

|clo + cdthi ->{rt} cw + cdthi

|clo + cdfhi ->{rt} cq + cdfhi

|clo + chi ->{rt} clo + ce

| ciflo + cNotDown ->{rt} ciflo + cNotUp

| cifhi + cNotUp ->{rt} cifhi + cNotDown

| chi + reqhi ->{rt} chi + reqlo

| clo + reqlo ->{rt} clo + reqhi

113

Bibliography

[1] David F Anderson and Thomas G Kurtz. Continuous time markov chain models for
chemical reaction networks. In Design and analysis of biomolecular circuits, pages
3–42. Springer, 2011.

[2] Alexander Andreychenko, Thilo Krger, and David Spieler. Analyzing Oscillatory Be-
havior with Formal Methods. In Anne Remke and Marille Stoelinga, editors, Stochastic
Model Checking. Rigorous Dependability Analysis Using Model Checking Techniques for
Stochastic Systems, volume 8453 of Lecture Notes in Computer Science, pages 1–25.
Springer Berlin Heidelberg, 2014.

[3] Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population
protocols with a leader. Distributed Computing, 21(3):183–199, 2008.

[4] Christel Baier, Joost-Pieter Katoen, et al. Principles of model checking, volume
26202649. MIT press Cambridge, 2008.

[5] Charles H Bennett. The thermodynamics of computation - a review. International
Journal of Theoretical Physics, 21(12):905–940, 1982.

[6] Gérard Berry and Gérard Boudol. The chemical abstract machine. In Proceedings of the
17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 81–94. ACM, 1989.

[7] Luca Cardelli. Invited talk: A process algebra master equation. In null, pages 219–226.
IEEE, 2007.

[8] Luca Cardelli. On process rate semantics. Theoretical Computer Science, 391(3):190–
215, 2008.

[9] Luca Cardelli. Two-domain dna strand displacement. Mathematical Structures in
Computer Science, 23(02):247–271, 2013.

[10] Luca Cardelli. Morphisms of reaction networks that couple structure to function. BMC
systems biology, 8(1):84, 2014.

[11] Luca Cardelli and Attila Csikász-Nagy. The cell cycle switch computes approximate
majority. Scientific reports, 2, 2012.

[12] Luca Cardelli, Mirco Tribastone, Max Tschaikowski, and Andrea Vandin. Forward and
backward bisimulations for chemical reaction networks.

[13] Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function computation
with chemical reaction networks. Natural computing, 13(4):517–534, 2014.

114

[14] Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli,
David Soloveichik, and Georg Seelig. Programmable chemical controllers made from
dna. Nature nanotechnology, 8(10):755–762, 2013.

[15] Steven M Chirieleison, Peter B Allen, Zack B Simpson, Andrew D Ellington, and
Xi Chen. Pattern transformation with dna circuits. Nature chemistry, 5(12):1000–
1005, 2013.

[16] John H Conway. Fractran: A simple universal programming language for arithmetic.
In Open Problems in Communication and Computation, pages 4–26. Springer, 1987.

[17] Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. Programma-
bility of chemical reaction networks. In Algorithmic Bioprocesses, pages 543–584.
Springer, 2009.

[18] Neil Dalchau, Georg Seelig, and Andrew Phillips. Computational design of reaction-
diffusion patterns using dna-based chemical reaction networks. In DNA Computing
and Molecular Programming, pages 84–99. Springer, 2014.

[19] Frits Dannenberg, Marta Kwiatkowska, Chris Thachuk, and Andrew J Turberfield. Dna
walker circuits: Computational potential, design, and verification. In DNA Computing
and Molecular Programming, pages 31–45. Springer, 2013.

[20] A Prasanna de Silva and Nathan D McClenaghan. Molecular-scale logic gates.
Chemistry-A European Journal, 10(3):574–586, 2004.

[21] Péter Érdi and János Tóth. Mathematical models of chemical reactions: theory and
applications of deterministic and stochastic models. Manchester University Press, 1989.

[22] Javier Esparza and Mogens Nielsen. Decidability issues for Petri nets. BRICS, Com-
puter Science Department, University of Aarhus, 1994.

[23] Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The
journal of physical chemistry, 81(25):2340–2361, 1977.

[24] Leon Glass and Michael C Mackey. A simple model for phase locking of biological
oscillators. Journal of Mathematical Biology, 7(4):339–352, 1979.

[25] Nicholas J Guido, Xiao Wang, David Adalsteinsson, David McMillen, Jeff Hasty,
Charles R Cantor, Timothy C Elston, and JJ Collins. A bottom-up approach to
gene regulation. Nature, 439(7078):856–860, 2006.

[26] Purnananda Guptasarma. Does replication-induced transcription regulate synthesis of
the myriad low copy number proteins of escherichia coli? Bioessays, 17(11):987–997,
1995.

[27] Holger Hermanns. Interactive Markov Chains: And the Quest for Quantified Quality.
Springer-Verlag, Berlin, Heidelberg, 2002.

[28] Hua Jiang, Marc D Riedel, and Keshab K Parhi. Digital signal processing with molec-
ular reactions. IEEE Design and Test of Computers, 29(3):21–31, 2012.

115

[29] Richard M Karp and Raymond E Miller. Parallel program schemata. Journal of
Computer and system Sciences, 3(2):147–195, 1969.

[30] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism: Probabilistic symbolic
model checker. In Computer performance evaluation: modelling techniques and tools,
pages 200–204. Springer, 2002.

[31] Marta Kwiatkowska, Gethin Norman, and David Parker. Stochastic model checking.
In Formal methods for performance evaluation, pages 220–270. Springer, 2007.

[32] Matthew R Lakin, David Parker, Luca Cardelli, Marta Kwiatkowska, and Andrew
Phillips. Design and analysis of dna strand displacement devices using probabilistic
model checking. Journal of the Royal Society Interface, page rsif20110800, 2012.

[33] Matthew R Lakin and Andrew Phillips. Modelling, simulating and verifying turing-
powerful strand displacement systems. In DNA Computing and Molecular Program-
ming, pages 130–144. Springer, 2011.

[34] Matthew R Lakin, Simon Youssef, Filippo Polo, Stephen Emmott, and Andrew
Phillips. Visual dsd: a design and analysis tool for dna strand displacement systems.
Bioinformatics, 27(22):3211–3213, 2011.

[35] Luca Laurenti, Luca Cardelli, and Marta Z. Kwiatkowska. Stochastic analysis of chem-
ical reaction networks using linear noise approximation. CoRR, abs/1506.07861, 2015.

[36] Anthony ML Liekens and Chrisantha T Fernando. Turing complete catalytic particle
computers. In Advances in Artificial Life, pages 1202–1211. Springer, 2007.

[37] Marcelo O Magnasco. Chemical kinetics is turing universal. Physical Review Letters,
78(6):1190, 1997.

[38] Rajit Manohar and Alain J Martin. Quasi-delay-insensitive circuits are turing-
complete. Technical report, DTIC Document, 1995.

[39] Marvin L Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc., 1967.

[40] Kevin Montagne, Raphael Plasson, Yasuyuki Sakai, Teruo Fujii, and Yannick Ron-
delez. Programming an in vitro dna oscillator using a molecular networking strategy.
Molecular systems biology, 7(1):466, 2011.

[41] Nam-Phuong D Nguyen, Hiroyuki Kuwahara, Chris J Myers, and James P Keener.
The design of a genetic muller c-element. In Asynchronous Circuits and Systems,
2007. ASYNC 2007. 13th IEEE International Symposium on, pages 95–104. IEEE,
2007.

[42] G Oster and A Perelson. Chemical reaction networks. Circuits and Systems, IEEE
Transactions on, 21(6):709–721, 1974.

[43] Gheorghe Păun and Grzegorz Rozenberg. A guide to membrane computing. Theoretical
Computer Science, 287(1):73–100, 2002.

[44] M Pedersen and A Phillips. Gec tool. See http://research. microsoft. com/gec, 2009.

116

[45] Marc Renaudin. Asynchronous circuits and systems: a promising design alternative.
Microelectronic engineering, 54(1):133–149, 2000.

[46] Paul WK Rothemund. A dna and restriction enzyme implementation of turing ma-
chines. DNA based computers, 27:75–119, 1996.

[47] Paul WK Rothemund, Nick Papadakis, and Erik Winfree. Algorithmic self-assembly
of dna sierpinski triangles. PLoS biology, 2(12):e424, 2004.

[48] Georg Seelig, David Soloveichik, David Yu Zhang, and Erik Winfree. Enzyme-free
nucleic acid logic circuits. science, 314(5805):1585–1588, 2006.

[49] Phillip Senum and Marc Riedel. Rate-independent constructs for chemical computa-
tion. PloS one, 6(6):e21414, 2011.

[50] Adam Shea, Brian Fett, Marc D Riedel, and Keshab K Parhi. Writing and compiling
code into biochemistry. In Pacific Symposium on Biocomputing, volume 15, pages
456–464. World Scientific, 2010.

[51] Seung Woo Shin. Compiling and verifying DNA-based chemical reaction network im-
plementations. PhD thesis, California Institute of Technology, 2011.

[52] Zack Booth Simpson, Timothy L Tsai, Nam Nguyen, Xi Chen, and Andrew D Elling-
ton. Modelling amorphous computations with transcription networks. Journal of The
Royal Society Interface, page rsif20090014, 2009.

[53] David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computation
with finite stochastic chemical reaction networks. natural computing, 7(4):615–633,
2008.

[54] David Soloveichik, Georg Seelig, and Erik Winfree. Dna as a universal substrate for
chemical kinetics. Proceedings of the National Academy of Sciences, 107(12):5393–5398,
2010.

[55] Jens Spars and Steve Furber. Principles Asynchronous Circuit Design. Springer, 2002.

[56] David Sprinzak and Michael B Elowitz. Reconstruction of genetic circuits. Nature,
438(7067):443–448, 2005.

[57] Milan N Stojanovic, Tiffany Elizabeth Mitchell, and Darko Stefanovic. Deoxyribozyme-
based logic gates. Journal of the American Chemical Society, 124(14):3555–3561, 2002.

[58] Ivan E Sutherland and Jo Ebergen. Computers without clocks-asynchronous chips
improve computer performance by letting each circuit run as fast as it can. Scientific
American, 287(2):62–69, 2002.

[59] Atsuko Takamatsu, Reiko Tanaka, Hiroyasu Yamada, Toshiyuki Nakagaki, Teruo Fujii,
and Isao Endo. Spatiotemporal symmetry in rings of coupled biological oscillators of
physarum plasmodial slime mold. Physical Review Letters, 87(7):078102, 2001.

[60] Oleg N Temkin, Andrew V Zeigarnik, and DG Bonchev. Chemical reaction networks:
a graph-theoretical approach. CRC Press, 1996.

117

[61] John E Turner and David L Rutledge. Programmable logic device, August 2 1988. US
Patent 4,761,768.

[62] Gianluigi Zavattaro and Luca Cardelli. Termination problems in chemical kinetics. In
CONCUR 2008-Concurrency Theory, pages 477–491. Springer, 2008.

[63] David Yu Zhang, Rizal F Hariadi, Harry MT Choi, and Erik Winfree. Integrating dna
strand-displacement circuitry with dna tile self-assembly. Nature communications, 4,
2013.

118

