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Abstract

Probabilistic model checking is a technique employed for verifying the correctness of com-
puter systems that exhibit probabilistic behaviour. A related technique is controller syn-
thesis, which generates controllers that guarantee the correct behaviour of the system. Not
all controllers can be generated offline, as the relevant information may only be available
when the system is running, for example, the reliability of services may vary over time.

In this thesis, we propose a framework based on controller synthesis for stochastic
games at runtime. We model systems using stochastic two-player games parameterised
with data obtained from monitoring of the running system. One player represents the con-
trollable actions of the system, while the other player represents the hostile uncontrollable
environment. The goal is to synthesize, for a given property specification, a controller for
the first player that wins against all possible actions of the environment player. Initially,
controller synthesis is invoked for the parameterised model and the resulting controller is
applied to the running system. The process is repeated at runtime when changes in the
monitored parameters are detected, whereby a new controller is generated and applied.
To ensure the practicality of the framework, we focus on its three important aspects:
performance, robustness, and scalability.

We propose an incremental model construction technique to improve performance of
runtime synthesis. In many cases, changes in monitored parameters are small and models
built for consecutive parameter values are similar. We exploit this and incrementally build
a model for the updated parameters reusing the previous model, effectively saving time.

To address robustness, we develop a technique called permissive controller synthesis.
Permissive controllers generalise the classical controllers by allowing the system to choose
from a set of actions instead of just one. By using a permissive controller, a computer
system can quickly adapt to a situation where an action becomes temporarily unavailable
while still satisfying the property of interest.

We tackle the scalability of controller synthesis with a learning-based approach. We
develop a technique based on real-time dynamic programming which, by generating ran-
dom trajectories through a model, synthesises an approximately optimal controller. We
guide the generation using heuristics and can guarantee that, even in the cases where we
only explore a small part of the model, we still obtain a correct controller.

We develop a full implementation of these techniques and evaluate it on a large set
of case studies from the PRISM benchmark suite, demonstrating significant performance
gains in most cases. We also illustrate the working of the framework on a new case study
of an open-source stock monitoring application.
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Chapter 1

Introduction

Computer systems are prevalent in our daily lives. From smartphones in our pockets to
cloud systems delivering services to a range of industries, we have grown dependent on
the correct behaviour of computer systems. Formal verification is a branch of computer
science that aims to provide formal guarantees about the correctness of computer systems.
Model checking is one of the techniques offered by formal verification. In model checking,
we are given a formal model that exhibits all possible behaviours of the system, at a certain
level of abstraction, and a property that our system has to satisfy. The model checking
problem is to exhaustively check that the model always satisfies the property of interest.

Probabilistic systems are an important class of computer systems. These are systems
that use physical devices that may fail, communicate over lossy channels, or use protocols
that take advantage of randomisation. Formally verifying that such systems behave cor-
rectly and reliably requires quantitative approaches, such as probabilistic model checking.

Probabilistic model checking is used to verify systems with stochastic behaviour. Sys-
tems are modelled as, for example, Markov chains, Markov decision processes, or stochastic
games, and analysed algorithmically using numerical computation to establish their quan-
titative properties.

A closely related problem to probabilistic model checking is that of controller synthesis
for probabilistic systems. This entails constructing a model of some entity that can be
controlled (e.g., a robot, a cloud administrator or a machine) and its environment, formally
specifying the desired behaviour of the system, and then generating, through an analysis
of the model, a controller that will guarantee the required behaviour.

In many cases, the same techniques that underly probabilistic model checking can be
used for controller synthesis. For example, we can model the system as a stochastic two-
player game, specify a property and then apply probabilistic model checking. This yields
a strategy (also called a policy) for the first player in a stochastic game, which instructs

1



2 CHAPTER 1. INTRODUCTION

the controller as to which action should be taken in each state of the model in order to
guarantee that the property will be satisfied against all actions of the second player.

Recently [19, 52, 65, 66], probabilistic model checking has been applied to the ver-
ification of computer systems at runtime. Verification results are used to reconfigure
the running system such that the system is steered to ensure a given quantitative prop-
erty. In [20] the authors propose a framework comprising a computer system exhibiting
probabilistic behaviour, a monitoring module that observes the system behaviour, and a
reconfiguration component. A model of the system is parameterised using data from the
monitoring module and the results of probabilistic model checking are forwarded to the
reconfiguration module, which directs the system accordingly.

In this thesis, we focus on a variant of this problem, where we are interested in generat-
ing a controller at runtime that can be employed to steer the running system. In Chapter 4,
we describe our framework for controller synthesis at runtime. The main contribution of
this thesis addresses three different challenges of the controller synthesis at runtime. We
focus on performance, robustness and scalability of the controller synthesis process.

We improve the performance of the controller synthesis process by developing an incre-
mental model construction technique. Continuous verification of a running system often
boils down to analysing parametric models that share similar structure. We exploit this
property and propose a model construction technique that, given a model built for a cer-
tain set of parameters of the system, incrementally builds a new model for the new set of
parameters. During the incremental step we often only have to visit a small subset of the
original model, yielding considerable performance gains.

We address the robustness of the controller synthesis problem by proposing a type
of synthesis that we call permissive controller synthesis. While applying the generated
controller on the running system, it could be the case that some action specified by the
controller might become temporarily unavailable. The permissive controller synthesis al-
gorithm generates controllers that allow several actions at one time, so that, if one of
them becomes unavailable, the system may switch to a different one while still ensuring
the property is satisfied.

In order to enhance the scalability of the controller synthesis problem, we build on
learning-based methods used in fields like planning or reinforcement learning. We synthe-
sise a controller by generating random trajectories through the probabilistic model. These
trajectories allow us to compute an approximation of the value of the property, while po-
tentially only exploring a small part of the model. These techniques are known to work
for models with a certain structure and for non-verification purposes. We develop new
methods that give guarantees that the process converges to the correct values and are able
to support a wider range of probabilistic models.
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We aim to make the techniques presented in the thesis practical, and to this end
have developed a full implementation for each method. All implementations are built on
top of PRISM-games [31], an extension of the PRISM model checker [88]. PRISM is a
probabilistic model checker widely used for analysis and verification of probabilistic sys-
tems. We evaluated our techniques on a range of case studies coming from the PRISM
Benchmark Suite [89], as well as PRISM-based stochastic games coming from the publi-
cations [21, 30, 33, 100]. We decided to choose the PRISM Benchmark Suite as it is a
widely accepted set of case studies used for evaluation of probabilistic model checking and
controller synthesis methods. To evaluate our runtime framework we developed a new
case study. The case study considers an open-source stock monitoring application called
StockPriceViewer, for which we synthesise controllers at runtime that specify which stock
information provider the application should use.

Layout of the Thesis

A review of existing literature is presented in Chapter 2. We outline the relevant prior
work that has been done in the area, and discuss how the contributions in this thesis
differ from the literature. In Chapter 3, we introduce the basic definitions that are used
throughout this thesis. These, among others, comprise probabilistic models, property
specification formalisms, model checking and controller synthesis, as well as techniques
that are specific to the new methods that we developed in this thesis. Our framework
for controller synthesis at runtime can be found in Chapter 4. We address the specific
challenges of the framework in the following chapters. In Chapter 5, we present incremental
model construction techniques. In Chapter 6, we introduce permissive controller synthesis,
and, in Chapter 7, we describe learning-based controller synthesis. The case study that
employs all mentioned techniques within the framework described in Chapter 4 can be
found in Chapter 8. In Chapter 9, we summarise work completed in this thesis and
propose new possible directions for future work.

Other Publications

The methods presented in Chapter 5, Chapter 6 and Chapter 7 have been published or
submitted for publication as jointly-authored papers. The preliminary work on incremen-
tal model construction presented in Chapter 5 appeared as [61] (a longer Technical Report
is available in [62]). In this thesis, we present an extended version of this work. Exten-
sions over [61] include support for difference-bound matrices, a more efficient state storage
method, and a more robust implementation. A paper that describes the usefulness of in-
cremental methods and verification at runtime has been published as [95]. The author of
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this thesis collaborated with the co-authors on developing the incremental model construc-
tion algorithm as well as proving its correctness. The implementation and experimental
evaluation was solely done by the author. In [49, 50], the permissive controller synthesis
method has been introduced. The author collaborated with the co-authors on developing
the concept, and the corresponding problem formulation, while proofs of the theorems
were done by Klaus Dräger and Vojtěch Forejt. The author was solely responsible for
implementation and experimental evaluation. The approach to improve the scalability
by means of learning-based methods has been published in [17]. The methods presented
in [17] work both for the case where only partial information about the Markov decision
process (MDP) structure is known, as well as the case of full information. The full informa-
tion case has resulted from collaboration between the author and co-authors. The author
took part in both developing the algorithms as well as extending the proofs for stochastic
games. The original proofs were done for MDPs by the co-authors. The implementation
and experimental evaluation of the method has been carried out solely by the author.



Chapter 2

Review of Related Work

In this chapter, we summarise the literature related to the topics considered in this thesis.
The chapter is divided into several sections, where each section is devoted to a different
aspect of the thesis. We start, in Section 2.1, with a brief review of the model checking and
probabilistic model checking literature. In Section 2.2, we discuss available frameworks
for quantitative verification at runtime. A literature review of incremental methods has
been considered in Section 2.3. An overview of various notions of permissivity for games
can be found in Section 2.4. Literature on learning-based methods has been summarised
in Section 2.5. In Section 2.6, we discuss available tools for probabilistic model checking.

2.1 Probabilistic Model Checking

Since the early 1980s, model checking [39, 108, 7] has been an important technique em-
ployed for verifying the correctness of computer systems. Given a formal model of a
computer system and a temporal logic property that the system should satisfy, the model
checking problem asks if the system satisfies the given property. In recent years, a vari-
ety of model checkers [10, 37, 71, 73, 76, 80, 88] has been proposed for different types of
computer systems. A model checker is a piece of software that exhaustively checks if the
system satisfies the property by visiting each relevant state of the system model.

Two of the main temporal logics used for specifying properties of computer systems
are Linear Time Logic (LTL) [105] and Computation Tree Logic (CTL) [40]. The main
difference between them is how each logic perceives a run of the system. LTL formulae
consider a run of the system where each element of the run has one possible successor
(linear time). In comparison, in CTL, when considering a run, we take into account all
possible successors (branching time). A model checking algorithms for LTL have been
introduced in [113], and in [38] for CTL.

5



6 CHAPTER 2. REVIEW OF RELATED WORK

Many computer systems contain elements that exhibit probabilistic behaviour. Such
systems can be modelled by annotating transitions between states with probabilities. Ex-
amples of probabilistic models include discrete-time Markov Chains (DTMCs), Markov
decision processes (MDPs), and stochastic two-player games (stochastic games). For
probabilistic models we distinguish between two main types of properties: qualitative
and quantitative properties.

For qualitative properties, the aim is to verify if a temporal property holds with prob-
ability 1 or 0. This can done using graph algorithms as the transition probabilities do
not influence the satisfaction. For DTMCs this has been considered in [44, 70, 97] and
for MDPs in [45, 119]. MDPs represent a generalisation of DTMCs and include both
probabilistic and non-deterministic behaviour.

For quantitative properties, we are interested in computing the probability with which
a given property holds or whether it exceeds some bound. For DTMCs this has been
considered in [44, 45] and for MDPs in [44, 106, 119]. To formalise quantitative properties
of probabilistic systems, extensions of CTL have been proposed. Probabilistic Compu-
tation Tree Logic (PCTL) [70] is a temporal logic that adds a probabilistic operator to
CTL, allowing us to express a probability bound that the property should satisfy. Model
checking of PCTL properties can be done using techniques from [44, 45].

Modelling many types of computer systems requires a notion of cost or reward asso-
ciated with system states and actions. In the context of probabilistic systems, costs and
rewards have been used to model, for example, energy consumption [86], discrete time
passage [93], or the number of collisions that happen during wireless communication [92].
When using rewards, we are typically interested in computing the total reward, which is
defined as the sum of rewards achieved on a run of the system. Assuming we know how to
compute the reward achieved on all runs of the system, we can consider an expected total
reward. For DTMCs computing the expected total reward can be done by solving a set of
linear equations [107], and for MDPs by solving a linear program [55].

For MDPs, which exhibit non-deterministic and probabilistic choices, a problem re-
lated to model checking – controller synthesis – can be considered. The controller syn-
thesis problem is: given an MDP and a property, synthesise a controller that resolves
the non-deterministic choices such that the property is always satisfied. There are many
applications of controller synthesis, including control strategies for robots [96], power man-
agement strategies for hardware [60], or efficient PIN guessing attacks against hardware
security modules [114]. Controller synthesis for PCTL properties has been considered
in [6, 59] and can be done using model checking techniques for MDPs [44, 45].

A model that generalises MDPs by adding a second type of non-determinism is stochas-
tic games. Introduced by Shapley [111], stochastic games divide the state space between
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two players. In this thesis, we are interested in games where the actions of one player are
controllable, while the action of the other player are deemed uncontrollable. Uncontrol-
lable actions are used to model adversarial behaviour of the environment. The controller
synthesis problem for stochastic games is to synthesise a controller for the first player such
that the probabilistic reachability or expected total reward property is satisfied for any
resolution of the second player actions. The problem is known to be in NP ∩ co-NP [41, 55].

There are numerous applications of stochastic games, including analysis of smart energy
management [30], autonomous urban driving [34], or decision making in self-adaptive
systems [26].

2.2 Quantitative Verification at Runtime

Modern computer systems often work in a dynamic environment and have to adapt to
changes at runtime. To ensure the correct behaviour of adaptive systems, authors of [24]
advocated the use of formal methods at runtime. The idea is to build and verify a system
model at runtime. The model is parameterised with data from the running system and the
results of verification can be used to adapt the system to changes in the environment. This
concept is related to models at runtime [13] that suggests keeping a model of the system
during system execution. For probabilistic systems, a similar method called quantitative
verification at runtime [19] has been developed.

There are numerous cases when quantitative verification at runtime proved to be suc-
cessful. Early work includes [25, 52], where the authors considered scenarios such as
dynamic power management, cluster management, and web service orchestration. In [23],
a telehealth service-based system has been considered, and in [66] a dynamic adaptation
of webservice-based application. Cloud deployment and provisioning have been considered
in [102]. Lastly, in [65], quantitative verification has been used in the context of unmanned
underwater vehicles (UUV).

A prerequisite for a successful application of formal methods at runtime is having a
precise model of the system. The Keep Alive Models with Implementations (KAMI) [52]
framework uses quantitative verification for estimating the value of the system parameters
at runtime. In KAMI, a model of the system is given as a DTMC, with some of its
parameters unknown until the system is running. The authors observe the running system
and use Bayesian estimation to obtain the value of the parameters. The computed values
are used to parameterise the DTMC model, which is then verified for property violations.

In [20], the authors use quantitative verification at runtime in the context of a Monitor
Analyse Plan Execute (MAPE) [83] loop. The MAPE loop formalises the adaptation
process for computer systems. The authors provide a full implementation of each element
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of the loop. KAMI is used in the monitoring phase to obtain an accurate model of the
system. PRISM [88], a probabilistic model checker, is incorporated in the analysis and
planning phases. More specifically, PRISM is employed to verify that the running system
does not violate any properties. If results of the verification suggest that the system should
change its behaviour, the output of PRISM can be used in the planning phase. Execution
of the system adaptation is done using GPAC [18].

A slightly different approach has been presented in [57] by Filieri et al. Instead of using
a MAPE loop, the framework controls system adaptations using a control-theoretic ap-
proach. A DTMC model of the running system is translated into a discrete-time dynamic
system formalism [98]. This formalism is well known in control theory and methods for
obtaining a controller for such systems exist. The authors consider a case study, where
their approach is shown to improve the reliability of an image processing application.

2.3 Incremental Techniques in Probabilistic Model Check-

ing

Kwiatkowska et al. [94] consider a scenario where transition probabilities in a probabilistic
model change over time. This is a common scenario in a runtime setting. For example,
hardware elements can degrade over time, causing changes in failure probabilities that are
encoded in the system model. The authors present incremental methods that re-use the
results of verification performed for old values of transition probabilities when re-verifying
the model. The presented methods divide the state space of the model into strongly
connected components (SCCs) and run verification for each SCC separately. When a
change in transition probability happens, the subset of affected SCCs is computed and
verification is carried out for each affected SCC. For all SCCs that are not affected we can
work incrementally and re-use the old values, which leads to a significant speed-up.

In the context of robotic systems, incremental techniques have been studied in a series
of papers [117, 118, 122, 123]. In [122], the authors present an incremental algorithm for
synthesis of control strategies for probabilistic systems. Models are encoded as MDPs
and properties are expressed in a subset of LTL known as co-safe LTL [85]. The authors
consider the problem of a robot interacting with a dynamic number of independent agents.
The incremental methods synthesise a control strategy for a model consisting of only a
small number of agents. In the incremental step the number of agents is incremented and
a new strategy is computed based on the results for the smaller model. The process is
continued until the model includes all the agents or the available memory is exhausted.
In [117, 118], the authors consider a similar scenario but develop a new and more effi-
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cient solution method. While they still build the model of the robot and a set of agents
incrementally, each step is followed by a state space reduction procedure. This results in
a potential speed-up over the techniques presented in [122]. In [123], the authors gener-
alise the results obtained in [117, 118, 122]. Instead of considering only a subset of LTL,
methods supporting full LTL are shown. Moreover, the authors consider a more general
scenario, where agents are allowed to affect each others behaviour.

In [58], authors consider a method for incremental verification at runtime. Properties
to be verified are specified in PCTL, and probabilistic models contain parameters that
are unknown until runtime. The method is run off-line and precomputes the probabilistic
reachability value as a function of those parameters. Later, at runtime, when the value
of parameters is known, the computed function can be evaluated and the probabilistic
reachability value obtained. The evaluation time is typically very short, allowing the
method to significantly decrease the verification time. In [56], the authors extend their
approach to support verification of reward-based PCTL properties.

In [48], the authors present incremental methods for computing counterexamples for
probabilistic models defined in the PRISM modelling language. The presented meth-
ods are based on computing the minimal subset of commands of the PRISM model such
that the underlying probabilistic model defined by those commands violates the proba-
bilistic reachability property. The problem is translated into a SAT encoding where the
assignment to the encoding variables yields a possible counterexample. After obtaining
a counterexample, PRISM is run to check if the counterexample violates the property.
If the counterexample is proved spurious, a new encoding is constructed. This is done
incrementally based on the previous encoding and disallows the spurious counterexample.

Our work, presented in Chapter 5, differs significantly from the methods we just de-
scribed. In [94], the authors do not support structural changes to the model and assume
that changes in probability values are always between 0 and 1. In [56, 58], structural
changes are possible but are limited to a small number of states and need to be known at
design time. In comparison, we focus on structural changes that can affect a large num-
bers of states and are not known until runtime. The work presented in [56, 58] works on
models consisting of up to a thousand states, whereas our methods can work with models
that contain millions of states. In [117, 118, 122, 123], the authors assume a variable
number of agents that are part of the system model. In the PRISM modelling language,
such agents can be described using modules. In our work, we assume a fixed number
of modules and focus on changes to model parameters which are assumed to be fixed
in [117, 118, 122, 123]. Similarly to our work, the authors of [48] consider the PRISM
modelling language. However, they do not run their method in a runtime scenario, and
assume that all model parameters are known and do not change.
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2.4 Permissivity in Games

In [11], the authors consider synthesis of permissive strategies for parity games. A winning
strategy is considered to be more permissive if it allows more actions than some other
strategy. The authors motivate such a definition by suggesting that a permissive strategy
may be useful in case of temporary unavailability of the controller’s actions. It is shown
that permissive strategies exist in every parity game and require only finite memory.
Subsequently, a synthesis method for permissive strategies is presented. This is achieved
by providing a reduction from computing the most permissive strategy in a parity game
into finding the most permissive strategy in a safety game.

Permissive strategies for turn-based two-player games and reachability objectives have
been considered in [15]. Similarly to [11], the authors assume that a permissive strategy
will allow more behaviour than a classical strategy. The authors quantify the permissivity
by introducing a notion of penalties. A penalty is incurred every time an action in a
game is disallowed. Three methods of aggregating penalties are shown: summing the
penalties, computing the discounted sum, and computing the mean value. In the case of
sum of penalties, synthesizing the optimally permissive memoryless strategy can be done
in PTIME. For discounted sum, synthesising the optimally permissive strategy is in NP
∩ co-NP. In [16], the authors extend the results of [15] to the setting of parity games.

Our work on permissive controller synthesis from Chapter 6 significantly differs from
methods that we found in the literature. In contrast to [11, 15, 16] that focuses on non-
stochastic games and deterministic strategies, we work in a stochastic games setting and
develop methods for synthesizing randomised strategies. In [15], the authors show that
optimally permissive strategies exist for reachability objectives and expected penalties; in
contrast, in our setting they may not. One of the aims of our work was to develop an
implementation of our algorithms. None of the publications [11, 15, 16] provide a practical
implementation.

To synthesise permissive strategies for stochastic games in Chapter 6 we developed
a Mixed-Integer Linear Programming (MILP) encoding of our problem. In [121], while
solving a different problem of finding the minimal critical subsystem of an MDP, the
authors present an MILP encoding that is similar to ours. Minimal critical subsystem is
the smallest set of states of an MDP that violates the property. Such a set of states can
be returned to represent a counterexample refuting the property. The encoding in [121] is
constructed based on the explicit state representation of the MDP. The constraints encode
the probabilistic reachability property, while the objective function ensures that a minimal
critical subsystem is computed. The methods are evaluated on a set of PRISM case studies
and CPLEX [131] has been used as one of the MILP solvers.
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The MILP encoding presented in [121] considers MDPs, a less general model than the
stochastic games we work with. Additionally, in our encoding, we work with properties
defined as expected total reward, while in [121] the encoding supports only reachability
properties. Lastly, we study a different problem of permissive strategy synthesis, whereas
in [121] the authors study minimal critical subsystem generation.

2.5 Learning-based Techniques for Analysis of Proba-

bilistic Models

Learning-based methods have a long history in fields such as planning [99], reinforcement
learning [115], and optimal control [12]. Real-Time Dynamic Programming (RTDP) [9] is
one example of the methods studied in those fields that are relevant to our work in Chap-
ter 7. RTDP is a method for computing the expected reward for so called stochastic
shortest path MDPs [12]. The method is based on generating a series of random trajec-
tories through an MDP, where each trajectory contributes to computing the value of the
expected reward. During the run, RTDP produces a series of values that constitute a
lower bound of the value of the expected reward. Given enough runs, RTDP is proven to
converge to the correct value despite the fact that it may only visit a small subset of the
states. Guiding the trajectory generation is done using a heuristic which picks states that
have a high probability of being reached.

RTDP has been extended in numerous ways, with two extensions being the most promi-
nent. Labelled RTDP (LRTDP) [14] defines a method of labelling states that speeds up
the convergence of RTDP. A state is labelled as solved if the value of the expected reward
has converged in that state. If a random trajectory visits such a state, the computation
of RTDP is stopped for that trajectory, resulting in a speed-up. The authors of [101]
suggest another extension of RTDP called Bounded RTDP (BRTDP). The method keeps
both lower and upper values of the expected reward in a state. By keeping those values,
we always know the precise interval in which the value of the expected reward lies. In
BRTDP, the size of the interval is also used for guiding the trajectory generation. States
with a larger gap between the lower and upper bounds will be visited more often, resulting
in quicker convergence.

One of the main limitations of algorithms based on RTDP is the fact that they are
only guaranteed to converge on a subclass of MDPs called stochastic shortest path MDPs.
In [84], the authors studied a more general class of MDPs called Generalised Stochastic
Shortest Path (GSSP). The main difference between those two models is that GSSP allow
MDPs that contain cycles. None of the previously mentioned algorithms converges on an
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MDP with cycles, as randomly generated trajectories can get stuck in loops, forbidding the
termination of the algorithm. The authors of [84] propose a new algorithm called FRET.
The algorithm does a similar random exploration as RTDP but is able to eliminate the
cycles on-the-fly. FRET is compared to the value iteration, and outperforms it both in
terms of speed and memory consumption.

Heuristics that are used by RTDP-based algorithms, as well as those considered in Chap-
ter 7, play an important role in obtaining good practical results. For the problem of coun-
terexample generation for probabilistic models, heuristic-based state space exploration has
been considered in [1, 2, 4]. In [4], the authors used an extension of the k-shortest-path
algorithm to generate paths that constitute a counterexample. The authors generate an
MDP on-the-fly and use a heuristic to guide the search into parts of the MDP that are
more likely to contain a counterexample. The methods presented in [1, 2, 4], have been
implemented in [3].

The methods developed in Chapter 7 are based on the RTDP [9] and BRTDP [101]
algorithms. Similarly to BRTDP, we provide both upper and lower bounds on the value
of the property and we use heuristics defined for RTDP in the experimental section. The
main difference between our work and RTDP and BRTDP is that our method supports
arbitrary MDPs, whereas [9, 101] only work with stochastic shortest path MDPs. In
contrast to FRET [84], we support both upper and lower bounds and provide a range
of heuristics for guiding the trajectory generation. The work presented in [1, 2, 4] uses
heuristics similarly to this thesis, but focuses on counterexample generation.

2.6 Tools

Several model checkers have been proposed for verification of probabilistic models. The
two most popular include PRISM [88] and MRMC [80]. In this thesis, all presented
methods have been implemented as an extension of PRISM. We discuss PRISM later
in this section. The MRMC [80] model checker has been developed for verification of
DTMCs and continuous-time Markov chains (CTMCs). The input of MRMC is a file
explicitly specifying the transition probability function. Properties are defined in logics
PCTL and CSL logics extended with a reward operator. Other model checkers include
LiQuor [35], which is able to verify MDPs specified in the probabilistic extension of the
PROMELA language called PROBMELA [5]. The properties are defined as ω-regular
linear time properties. For parametric DTMCs, PARAM has been developed [68]. The
input language of PARAM is an extension of PRISM modelling language and the tool
allows verifying probabilistic reachability properties. PARAM has been incorporated in a
recent PRISM 4.2.1 release [32, 46].



2.6. TOOLS 13

PRISM [88] allows model checking of several types of probabilistic models, including
DTMCs, CTMCs, MDPs, and Probabilistic Timed Automata (PTAs). Properties can be
specified in PCTL, CSL, LTL, and PCTL*, where each logic can be extended with a reward
operator. PRISM has multiple internal implementations called engines. Available engines
include the “mtbdd” engine that uses symbolic (BDD-based) data structures, the “explicit”,
and the “sparse” engines that use explicit-state data structures, as well as the “hybrid”
engine that uses a mix of symbolic and explicit representation. Several well known model
checking techniques are available within PRISM, to name a few, quantitative abstraction
refinement [81], statistical model checking [74, 124], and multi-objective verification [60].
There exist numerous case studies where PRISM proved its usefulness. These include
formal analysis of the Bluetooth protocol [51], analysis of biological pathways [72], strategy
synthesis for an efficient PIN guessing attack [114], and many more [87, 90, 91, 93].

All methods that we present later in this thesis have been developed as part of PRISM-
games [31], an extension of PRISM that supports turn-based stochastic games. The games
analysed by PRISM-games are defined in an extension of the PRISM modelling language
that allows specification of players, as well as of which actions those players control. Prop-
erties are given using an extension of the logic ATL called rPATL [30]. The rPATL logic
supports specification of reward-based properties, where each property is preceded with
information about which player will try to satisfy the property. Internally, PRISM-games
uses PRISM’s “explicit” engine to implement model checking algorithms for stochastic
games. Case studies analysed by PRISM-games include smart energy management [30],
autonomous urban driving [34], and collective decision making in sensor networks [30].
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Chapter 3

Background Material

In this chapter, we introduce the basic background information that is needed throughout
the thesis. We start in Section 3.1 by defining the probabilistic models that we work with.
For completeness we present three models, where each model is a generalisation of the
previous one. In Section 3.2, we describe a formalism to reason about the properties of
those models. In Section 3.3, we introduce controller synthesis and show how it relates
to model checking. The background information about probabilistic model checking, i.e.
the process of checking that a given property holds for a probabilistic model, is presented
in Section 3.4. The PRISM modelling language for describing probabilistic models can be
found in Section 3.5. Starting in Section 3.6, we describe techniques and data structures
that do not originate from probabilistic model checking but are used by the methods
that we have developed. This includes Difference Bound Matrices, Mixed-Integer Linear
Programming, and learning-based MDP solution methods.

3.1 Probabilistic Models

We start by introducing the notation used throughout this chapter. We use N, Q>0, and
R>0 to denote the sets of all non-negative integers, rational numbers, and real numbers,
respectively. Dist(X) is the set of all rational probability distributions over a finite or
countable set X, i.e., the functions f : X → [0, 1] ∩ Q>0 such that

∑
x∈X f(x) = 1, and

supp(f) denotes the support of f . We call f a Dirac distribution if f(x) = 1 for some
x ∈ X.

3.1.1 Discrete-Time Markov Chains

Discrete-Time Markov Chains (DTMCs) are the simplest probabilistic model considered
in this thesis. Formally, a DTMC D is a tuple D = 〈S, s,∆,L〉, where:

15
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• S is a finite set of states

• s ∈ S is the initial state

• ∆ : S × S → [0, 1] is the transition probability function

• L : S → 2AP is the labelling function.

The transition probability function ∆, given states s, s′ ∈ S as arguments, returns the
probability of transitioning from state s to state s′. We require that such probabilities
sum up to 1, i.e. for any state s ∈ S we have that

∑
s′∈S ∆(s, s′) = 1. A state with only

one successor such that ∆(s, s) = 1 is called a terminal state. The set AP consists of
atomic propositions that can be used to label the states. We use the function L to define
the labelling. The function Sat : AP → 2S returns the set of states labelled with a given
atomic proposition.

A path through DTMC D, representing a possible execution of the system that D

models that starts in a state s ∈ S, is a (finite or infinite) sequence ω = s0s1s2 . . . where
s0=s, and ∆(si, si+1) > 0 for all i > 0. To reference the i-th element of the path we use
ω(i), for example ω(1) = s1. We denote by IPaths (FPaths) the set of all infinite (finite)
paths starting in s. We omit the subscript s when s is the initial state s, that is, we use
just IPath and FPath for IPaths and FPaths. For an infinite path ω, by Prefix (ω, n) we
denote the finite prefix of ω of length n, i.e. Prefix (ω, 2) = s0s1. We use last(ω) to denote
the last state of a finite path ω.

To reason about the probabilities of the paths in a DTMC, we work with a standard
definition of probability measure [82]. For each state s ∈ S, we define a probability measure
PrD,s on IPaths. We start by formalizing the probability of a finite path. Given a finite
path ω = s0s1 . . . sn, we define the probability of the path ∆(ω) = ∆(s0, s1)∆(s1, s2) · · · ·
∆(sn−1, sn).

A cylinder set Cyl(ω) is the set of all infinite paths with a finite prefix ω. The family of
sets of infinite paths Σs is the smallest σ-algebra defined on IPaths that contains cylinder
sets Cyl(ω) for all finite paths ω starting in s. Probability measure PrD,s on Σs is now
defined as the unique measure with PrD,s(Cyl(ω)) = ∆(ω).

A bottom strongly connected component (BSCC) of a DTMC D is a set of states S ′ ⊆ S

such that:

• if ∆(s, s′) > 0 for some s ∈ S ′, then s′ ∈ S ′; and

• for all s, s′ ∈ S ′ there is a path ω = s0s1 . . . sn such that s0 = s, sn = s′.
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Figure 3.1: Example of Discrete-Time Markov Chain (DTMC) D.

Example 1 The DTMC D from Figure 3.1 consists of five states S = {s, s1, s2, s3, s4},
with the initial state s. In the initial state, the transition probability function returns
∆(s, s1) = 0.2 and ∆(s, s2) = 0.8. States s3 and s4 are considered as terminal states as
well as BSCCs because they only have self-loops. We mark s4 with atomic proposition
succ and the labelling function returns L(s4) = {succ}. Two possible executions of the
system can be represented by the two finite paths ω1 = ss1s2s4 and ω2 = ss2s3, where the
probability of the paths is ∆(ω1) = 0.2 · 0.5 · 0.5 = 0.05 and ∆(ω2) = 0.8 · 0.5 = 0.4. An
infinite path ω3 = ss2s4s4s4 . . . visits the state marked with succ infinitely often. A finite
prefix of ω3 yields probability PrD,s(Cyl(ss2s4)) = 0.8 · 0.5 = 0.4.

3.1.2 Markov Decision Processes

Markov Decision Processes (MDPs) are probabilistic models that describe both probabilis-
tic and non-deterministic behaviour. MDPs can be considered a more general model than
DTMCs. Non-determinism is typically used to capture concurrency, adversarial behaviour
of the environment, or to represent actions that are under the system control.

An MDP M is a tuple M = 〈S, s, A, δ,L〉, where:

• S is a finite set of states

• s ∈ S is the initial state

• A is a finite set of actions

• δ : S×A→ Dist(S) is the (partial) transition probability function

• L : S → 2AP is the labelling function.
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We define the set S, the initial state s and the labelling function L in the same way
as for DTMCs. The transition probability function ∆ is now replaced by δ. Given a state
s ∈ S and action a ∈ A, δ returns a distribution over the set of successors of s. Each state
s of an MDP has a set of enabled actions, given by A(s) = {a ∈ A | δ(s, a) is defined}.
We assume that |A(s)| > 1 for every state s. A state s is terminal if all actions a ∈ A(s)

satisfy δ(s, a)(s) = 1.
For simplicity of presentation we assume that all actions in the model are unique. For

every action a ∈ A, there is at most one state s such that a ∈ A(s), i.e., A(s) ∩A(s′) = ∅
for s 6= s′. If there are states s, s′ such that a ∈ A(s) ∩ A(s′), we can always rename the
actions as (s, a1) ∈ A(s), and (s′, a2) ∈ A(s′), so that the MDP satisfies our assumption.

An infinite path through an MDP M is an infinite sequence ω = s0a0s1a1 · · · such that
ai ∈ A(si) and δ(si, ai)(si+1) > 0 for every i > 0. Similarly to DTMCs, a finite path is a
finite prefix of an infinite path ending in a state. We use the same notation as for DTMCs
to denote sets of all infinite (finite) paths.

Before we can define the probability measure on the paths in an MDP, we need to
resolve the non-determinism coming from multiple actions available in a state. A strategy
(also called controller, adversary, or policy) is a function σ : FPath → Dist(A) that, based
on the execution so far, resolves the choices between actions in each state.

A strategy σ is deterministic if σ(ω) is a Dirac distribution for all ω, and randomised
otherwise. A strategy that only depends on the last state of ω is called a memoryless
strategy, and history-dependent otherwise. For memoryless strategies, we simplify the
function σ to σ : S → Dist(A). We write ΣM for the set of all (memoryless) strategies in
M.

The strategy σ and initial state s induce a possibly infinite DTMC on which we can
define the probability measure over IPaths in the standard fashion [8]. We denote the
probability measure as PrσM,s. As above, we simply write PrσM for PrσM,s.

An end component (EC) of an MDP M is a pair (S ′, A′) where S ′ ⊆ S and A′ ⊆⋃
s∈S′ A(s) such that:

• if δ(s, a)(s′) > 0 for some s ∈ S ′ and a ∈ A′, then s′ ∈ S ′; and

• for all s, s′ ∈ S ′ there is a path ω = s0a0 . . . sn such that s0 = s, sn = s′ and for all
0 6 i < n we have ai ∈ A′.

A maximal end component (MEC) is an EC that is maximal with respect to the point-wise
subset ordering. We call an EC a non-trivial EC if it contains more than one state.

Example 2 Throughout the rest of the thesis, we consistently use examples drawn from
one theme. We assume a simple model, where a robot or multiple robots move between
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Figure 3.2: Example of a Markov-Decision Process (MDP) M.

locations. Movements are controlled using actions that are marked with geographical
directions (east, west, north, south). Each action may have a distribution on the possible
destination locations, representing uncertainty in the robot movements.

The MDP M from Figure 3.2 consists of five states S = {s, s1, s2, s3, s4}; s is the initial
state, and the labelling function L returns L(s4) = {succ}. In contrast to DTMCs, in
some states we now have a choice between multiple actions. In the state s1, the robot
may move either in the south1 or west1 direction; in other words, A(s1) = {south1 ,west1}.
The states s3 and s4 are the only terminal states in M.

Let us consider a memoryless deterministic strategy σ such that σ(s) = east1 , σ(s1) =

south1 , σ(s2) = west2 , σ(s3) = done1 and σ(s4) = done2 . One possible execution of
the system under σ yields an infinite path ω = seast1s1south1s2west2s4done2s4 . . . . The
probability of such a path would be PrσM,s(Cyl(Prefix (ω, 4))) = 1 · 1 · 0.5 = 0.5. The MDP
M contains one non-trivial EC formed by the pair ({s1, s2}, {south1 , north1}).

3.1.3 Stochastic Two-Player Games

The last probabilistic model that we consider in this thesis are turn-based Stochastic Two-
Player Games (STPGs) or simply stochastic games. Similarly to MDPs, which can be
considered a generalisation of DTMCs, stochastic games can be considered a generalisation
of MDPs. In contrast to MDPs, in stochastic games the state space is divided between
two players and each of the players controls actions in their states.

The stochastic game G is a tuple G = 〈S♦, S�, S, s, A, δ,L〉, where:

• S♦ is a finite set of controller states

• S� is a finite set of environment states
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• S = S♦ ∪ S� is the finite set of all states

• s ∈ S is the initial state

• A is a finite set of actions

• δ : S×A→ Dist(S) is the (partial) transition probability function

• L : S → 2AP is the labelling function.

S♦ is a finite set of states controlled by the first player; we will call this player the
controller player. S� is a finite set of states controlled by the second player; we call
the second player the environment player. The set S denotes the set of all states. The
definitions of the initial state, the transition probability function, the set of actions, the
labelling function, and terminal states are identical to the ones for MDPs. Similarly to
MDPs, we will also assume that actions in the stochastic game are unique. Please note
that, in the case where S� = ∅, the stochastic game G becomes an MDP. We use the same
definition and notation as for MDPs to denote the set of finite and infinite paths in a
stochastic game.

In the case of MDPs, we have only one strategy σ; for stochastic games we define a
strategy for each player. The strategy of the controller player is described using a function
σ : FPath → Dist(A), and we use π : FPath → Dist(A) for the strategy of the environment
player. Similarly to MDPs, σ or π can be deterministic or randomised, and memoryless
or history-dependent. We write Σ◦G for the set of all (memoryless) strategies of player ◦ in
G, where ◦ ∈ {�,♦}.

A pair of strategies (σ, π) and a state s induce a possibly infinite DTMC on which we
can define the probability measure over IPaths in the same way as for MDPs and DTMCs.
We denote the probability measure as Prσ,πG,s. As for previous models, we write Prσ,πG for
Prσ,πG,s.

We re-use the definition of an end component, maximal end component and non-trivial
end component as presented for MDPs. To determine if all states in an end component
belong to one player, we define the player() function. The function takes a set of states
as an input and returns the player that owns those states. Formally, player({s1, s2, s3})
returns ♦ (or �) if all the states belong to the ♦ (� respectively) player and ⊥ otherwise.

Example 3 We extend the single robot example from Example 2 to a two-robot scenario
modelled using stochastic games. The first robot tries to move to a location labelled with
the succ label, while the other robot may either allow it to pass or block the movement.

The stochastic game G from Figure 3.3 consists of five states with s as the initial
state. The controller player controls the states from the set S♦ = {s, s2, s4}, whereas the
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Figure 3.3: Example of a Stochastic Two-Player Game (STPG) G.

environment player controls S� = {s1, s3}. In the initial state, the controller player can
choose whether to go east or south, i.e. A(s) = {east1, south1}. The environment player
in the state s1 can either decide to block or allow the movement of the first robot, i.e.
A(s1) = {pass1, block 1}. The state s4 is the only terminal state.

An example of a pair of controller and environment memoryless deterministic strategies
is (σ, π) where: σ(s) = east1 , σ(s2) = west1 , σ(s4) = done1 , and π(s1) = block1 , π(s3) =

block2 . A possible infinite path under (σ, π) is ω = seast1s1block1s2west1s4done1s4 . . . .
The probability of the path ω would be Prσ,πG,s(Cyl(Prefix (ω, 4))) = 1 · 0.5 · 0.5 = 0.25.

3.2 Properties of Probabilistic Models

The purpose of this section is to formalise properties that we use to describe the required
behaviour of the controllers. In this thesis, we focus on two types of properties, probabilistic
reachability and expected total reward, that are defined over the models from Section 3.1.

3.2.1 Probabilistic Reachability

Reachability is the most basic type of property typically considered for probabilistic mod-
els. Given a DTMC D, a set of target states T ⊆ S, and the initial state s ∈ S, we denote
the probabilistic reachability property by φ = P./p [ F T ], with a bound p ∈ [0, 1] and an
operator ./∈ {6,>, <,>}, meaning that, in the DTMC D, the probability of reaching any
state from the set T , having started from the initial state s, satisfies ./ p.

To check if the property is satisfied, we need to compute the value of probabilistic reach-
ability. Formally, we denote this value by P=? [ F T ], where P=? [ F T ] = PrD,s({s0s1s2 · · · ∈
IPaths0 | si ∈ T for some i and s0 = s}).
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A step-bounded probabilistic reachability property is denoted by P./p [ F6k T ], where
k ∈ N, meaning that, in the DTMC D, the probability of reaching any state from the
set T within k steps from the initial state s satisfies ./ p. As previously, we define
P=? [ F6k T ] = PrD,s({s0s1s2 · · · ∈ IPaths0 | si ∈ T for i 6 k and s0 = s}).

For MDPs and stochastic games, the probabilistic reachability value will depend on
the strategies that are used to resolve the non-determinism. To check if property φ =

P./p [ F T ] is satisfied, we will need to compute either the maximal or the minimal value
of probabilistic reachability.

Formally, we define the maximal probabilistic reachability value as Pmax=? [ F T ] =

supσ∈ΣM
{PrσM,s({s0a0s1a1 · · · ∈ IPaths0 | si ∈ T for some i and s0 = s})}. For example, to

check if P6p [ F T ] is satisfied, it is enough to check if Pmax=? [ F T ] 6 p. The definition of
the minimal value of probabilistic reachability can be constructed similarly.

For a stochastic game G, we denote the maximal value of probabilistic reachability
Pmax=? [ F T ] = supσ∈Σ♦G

infπ∈Σ�G
{Prσ,πG,s({s0a0s1a1 · · · ∈ IPaths0 | si ∈ T for some i and

s0 = s})}. The definition of the minimal value of probabilistic reachability follows simi-
larly.

For both MDPs and stochastic games, we also consider step-bounded probabilistic
reachability properties denoted by P./p [ F6k T ]. Definitions of those properties can be
obtained in a straightforward manner from the definitions of the unbounded properties.

Sometimes, instead of the target set T , we use an atomic proposition that marks the
target states, for example, for an atomic proposition succ we write P [ F succ ], meaning
P [ F Sat(succ) ].

An example of a probabilistic reachability property can be “a web server successfully
delivers a response with probability at least 0.999” or “the probability of the robot reaching
a dead-end is lower than 0.001”.

3.2.2 Expected Total Reward

The second type of property that we consider in this thesis is the expected total reward.
Before we specify how it can be computed, we introduce the notion of rewards attached
to a state or an action in a probabilistic model. A reward structure is a function of the
form r : S → R>0 mapping states to non-negative reals. For MDPs and stochastic games,
the reward structure can be extended to actions, i.e. r : S × A → R>0. We use the term
“reward” but, these often represent “costs” (e.g. elapsed time or energy consumption).

The total reward for reward structure r along an infinite path ω = s0s1s2 . . . is
r(ω) =

∑∞
j=0 r(sj), which can be infinite. The expected total reward is defined as

ED,s(r) =
∫
ω∈IPaths

r(ω) dPrD,s. For technical reasons, we will always assume that the
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maximum possible reward ED,s(r) is finite for any s ∈ S (which can be checked with an
analysis of the underlying graph).

An expected reward property is written as φ = R r./b [ C ] (where C stands for cumulative),
meaning that, for DTMC D, the expected total reward for r satisfies ./ b in the initial state
and ./∈ {6,>, <,>}. To check if the property φ is satisfied we need to compute the value
of the expected total reward. We denote the value by R r=? [ C ] = ED,s(r). Subsequently,
we need to check if R r=? [ C ] ./ b.

For an MDP M, we first define the reward on the path ω = s0a0s1a1 . . . by r(ω) =∑∞
j=0[r(sj) + r(sj, aj)]. Then, for a strategy σ, we can define the expected total reward

in state s ∈ S as Eσ
M,s(r) =

∫
ω∈IPaths

r(ω) dPrσM,s. Similarly to probabilistic reachability,
we will be interested in computing either the maximal or the minimal value of the total
expected reward. We denote the maximal value by R rmax=? [ C ] = supσ∈ΣM

{Eσ
M,s(r)}; the

minimal value can be defined similarly.
For a stochastic game G and a pair of strategies (σ, π), we define the expected total

reward in state s ∈ S by Eσ,π
G,s (r) =

∫
ω∈IPaths

r(ω) dPrσ,πG,s. Subsequently, we define the
maximal value of expected total reward by R rmax=? [ C ] = supσ∈Σ♦G

infπ∈Σ�G
{Eσ,π

G,s (r)}. The
definition of the minimal value follows similarly.

Probabilistic reachability can be easily reduced to expected total rewards. We can
encode it by replacing any outgoing transitions from states in the target set T with a
single transition to a sink state labelled with a reward of 1.

An example of a property that can be expressed using expected total reward is “the
expected time for a web server to successfully deliver a response is within 200 ms” or “the
expected number of moves for a robot to reach the target state is below 5”.

3.3 Model Checking and Controller Synthesis

Model checking and controller synthesis for MDPs and stochastic games are closely related
problems. We will assume the property of the form φ = P./p [ F T ] (respectively, for
expected total reward φ = R r./b [ C ]).

The model checking problem asks whether for all strategies in the model the property
φ is satisfied. The controller synthesis problem asks whether there exists a strategy in the
model that satisfies φ.

The solution to the model checking problem will yield a strategy that serves as a solu-
tion to the controller synthesis problem. For example, in order to synthesise the controller
for property φ1 = P>b [ F T ], it is enough to compute the value of Pmin=? [ F T ] and
subsequently check if value satisfies > b. The strategy that is obtained when computing
Pmin=? [ F T ] is typically included in the output of the model checking algorithm and can
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be used as a controller. The case for expected total reward and properties other than >
follows trivially.

Example 4 Consider the MDP from Figure 3.2 and the property φ = P>0.5 [ F succ ].
There are two memoryless deterministic strategies that obtain non-zero probability of
reaching the state labelled with succ. The first one is σ1(s) = east1 , σ1(s1) = south1 ,
σ1(s2) = west2 , σ1(s3) = done1 , σ1(s4) = done2 , and achieves 0.5. The second strategy
is σ2(s) = south2 , σ2(s1) = south1 , σ2(s2) = west2 , σ2(s3) = done1 , σ2(s4) = done2 and
achieves 0.45. Model checking property φ against MDP M would return a negative answer
as only strategy σ1 satisfies the property φ. The answer to the controller synthesis problem
would be positive with the strategy σ1 being a solution.

Example 5 We use the stochastic game from Figure 3.3 and consider the property φ =

P>0.4 [ F succ ]. Consider the strategy σ1(s) = east1 , σ1(s2) = west1 , σ1(s4) = done1 . This
strategy reaches the target state with probability 1 if the environment picks pass1 in s1,
but if it picks block1 we only achieve 0.25, which does not satisfy property φ. A strategy
that satisfies φ against all environment player strategies is σ2(s) = south1 , σ2(s2) = west1 ,
σ2(s4) = done1 ; this strategy achieves probability 0.45. The strategy σ2 is a solution to
the controller synthesis problem; similarly to the MDPs example, the answer to the model
checking problem would be negative due to strategy σ1.

3.4 Model Checking of Properties for Probabilistic Mod-

els

This section presents algorithms for computing both the probabilistic reachability and the
expected total reward properties for probabilistic models from Section 3.1.

3.4.1 Model Checking of Properties for DTMCs

Probabilistic Reachability

Model checking probabilistic reachability properties for DTMCs can be reduced to solving
a set of linear equations [44]. The solution of this set of linear equations will then define
the reachability probability value for every state in the DTMC. Linear equations can be
solved in polynomial time using Gaussian elimination or using iterative methods such as
Gauss-Seidel or Jacobi.

Before we present the algorithm, we fix a DTMC D = 〈S, s,∆,L〉 and the set of target
states T ⊆ S, and use xs to denote the reachability probability in state s ∈ S. The
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probabilistic reachability algorithm can be divided into two steps. In the first step, we
compute three disjoint sets Syes , Sno and S?, where S = Syes ∪ Sno ∪ S?. The set Syes

contains all the states for which the probability value is equal to one; this includes all
the target states. The set Sno contains states that never reach the target set, and S?

all other states. Both Syes and Sno sets can be computed using simple graph traversal
algorithms that can be found in [59]. For the states in S, we obtain the following set of
linear equations:

xs =


1 if s ∈ Syes

0 if s ∈ Sno∑
s′∈S

∆(s, s′) · xs′ if s ∈ S?

whose solution yields the reachability probability value in every state of the DTMC.

Example 6 We consider the DTMC presented in Figure 3.1, with the property being
P=? [ F succ ]. The sets Syes = {s4}, Sno = {s3} and the probabilistic reachability value
for the states in the set S? can be obtained as a solution of the set of linear equations:

xs = 0.2 · xs1 + 0.8 · xs2
xs1 = 0.5 · xs2 + 0.5 · xs3
xs2 = 0.5 · xs3 + 0.5 · xs4
xs3 = 0

xs4 = 1

Solving the above yields xs = 0.45, xs1 = 0.25, xs2 = 0.5, and P=? [ F succ ] = 0.45.

Expected Total Reward

As in the case of probabilistic reachability, the expected total reward can also be computed
as a solution of a set of linear equations. We fix a DTMC D = 〈S, s,∆,L〉 and use xs
to denote the expected total reward in state s ∈ S. We divide the state space into two
disjoint sets, Sno and S?, such that S = Sno ∪ S?. The set Sno will now contain all the
states with expected reward equal to zero. Those states can be identified by looking for
BSCCs containing only states with zero reward assigned to them. After obtaining the
set Sno , we can construct the set of linear equations, whose solution yields the expected
reward value for S? states:

xs =


0 if s ∈ Sno

r(s) +
∑
s′∈S

∆(s, s′) · xs′ if s ∈ S?.
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Example 7 Consider the DTMC from Figure 3.1, with the reward structure r1 assigning
r1(s) = r1(s1) = r1(s2) = 1 and the property R r1=? [ C ]. The set Sno = {s3, s4}, and to
compute the value for the set S? we have the following set of linear equations:

xs = 1 + 0.2 · xs1 + 0.8 · xs2
xs1 = 1 + 0.5 · xs2 + 0.5 · xs3
xs2 = 1 + 0.5 · xs3 + 0.5 · xs4
xs3 = 0

xs4 = 0.

The solution to the above set of linear equations is xs = 2.1, xs1 = 1.5, xs2 = 1, and
R r1=? [ C ] = 2.1.

3.4.2 Model Checking of Properties for MDPs

As we have seen in Section 3.2, the value of a probabilistic reachability or expected reward
property depends on the chosen strategy. In this thesis, we are interested in properties
where the probabilistic reachability or expected total reward satisfies a given bound. For
those properties, it is enough to consider strategies that minimise or maximise the property
value.

In Section 3.1.2, several classes of strategies have been introduced. A natural question
therefore is which type of strategies are sufficient to compute the minimising/maximis-
ing strategy? For MDPs, a class of memoryless deterministic strategies is sufficient for
both minimising or maximising the value of probabilistic reachability and expected total
reward [107]. In [45, 47, 107], a linear programming (LP) encoding of the problem is
presented. Linear programs can be solved in polynomial time [78], yielding polynomial
time complexity for the problem of computing the optimal strategy in an MDP.

We describe two common solution methods for MDPs. The first one is the previously
mentioned linear programming (LP), while the second is value iteration. Value iteration,
starting from an under-approximation of the optimal values, iteratively computes a se-
quence of values getting closer to the actual value of the optimal strategy. The method
may require an exponential number of iterations to converge, but in many cases we are
able to terminate the computation after a small number of steps.

As a technicality, in the case of computing a maximising strategy, a precomputation
step is applied before using any solution method. In the precomputation step, we collapse
all MECs of an MDP. Collapsing a MEC merges all its states into a single state while
preserving all outgoing and incoming transitions. The method has been described in
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detail in [36]. MEC collapsing is not necessary for model checking purposes, but it is
relevant for the controller synthesis problem.

In the following sections we present methods for computing the maximal value of
the property; techniques for computing the minimal value are similar. We fix an MDP
M = 〈S, s, A, δ,L〉 and target set T ⊆ S, and denote the value of the optimal strategy in
state s by xs.

Maximal Probabilistic Reachability

Before we define the encoding, we divide the state space into three disjoint sets; Syes , Sno ,
and S?, where S = Syes ∪ Sno ∪ S?. The set Syes contains all the states for which there
exists a strategy that reaches the target set with probability one; this set also includes all
the target states. Please note that computing the set Syes is not necessary for correctness,
but can considerably improve the performance of the algorithm. The set Sno represents
all the states for which, for all strategies, we never reach the target state. Similarly
to DTMCs, states in Syes and Sno sets can be identified using simple graph traversal
algorithms presented in [59].

Linear Programming

The values for the remaining states in S? will be given by the solution of the following
linear program:

Minimise:
∑
s∈S

xs subject to:

xs >
∑
s′∈S

δ(s, a)(s′)·xs′ for all s ∈ S?, a ∈ A(s)

xs = 1 for all s ∈ Syes

xs = 0 for all s ∈ Sno .

Example 8 Consider the MDPM from Figure 3.2 and property Pmax=?[ F succ ]. The MDP
M contains one non-trivial MEC: ({s1, s2}, {south1 , north1}), which in the precomputation
step is collapsed into a state s1,2 such that: δ(s1,2,west1 ) = δ(s1,west1 ), δ(s1,2,west2 ) =

δ(s2,west2 ), δ(s, east1 )(s1) = 0, δ(s, east1 )(s1,2) = 1, δ(s, south2 )(s2) = 0, and the last
element being δ(s, south2 )(s1,2) = 0.9. The MDP M with the collapsed MEC can be seen
in Figure 3.4. For all examples in this section we will assume that all MECs have been
collapsed.
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Figure 3.4: The MDP M from Figure 3.2 with MECs collapsed.

We begin by computing the sets Syes and Sno . The set Syes = {s4} and Sno = {s3},
and for the states in S? we build the linear program:

Minimise: xs + xs1,2 + xs3 + xs4 subject to:

xs > xs1,2

xs > 0.9 · xs1,2 + 0.1 · xs3
xs1,2 > xs3

xs1,2 > 0.5 · xs3 + 0.5 · xs4
xs3 = 0

xs4 = 1.

The solution of the linear program yields values xs = 0.5 and xs1,2 = 0.5, and hence
Pmax=?[ F succ ] = 0.5.

Value Iteration

We denote by xks the probabilistic reachability value obtained in the k-th iteration of value
iteration. We start with an under-approximation of the optimal value and set x0

s to 1 if
s ∈ Syes and x0

s = 0, otherwise. The value in the k-th iteration, for every s ∈ S, is defined
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by:

xks :=


1 s ∈ Syes

0 s ∈ Sno

max
a∈A(s)

∑
s′∈S

δ(s, a)(s′) · xk−1
s′ s ∈ S?.

When k → ∞, values of xks converge towards the optimal value xs. The number of
required steps until convergence might be exponential, but in practice we terminate the
computation when a specified convergence criterion has been met. We use two convergence
criteria: the first checks if the absolute difference between the successive values of xk−1

s

and xks is smaller than specified threshold ε:

maxs∈S |xks − xk−1
s | < ε

and the second uses the relative difference:

maxs∈S |(xks − xk−1
s )/xks | < ε.

Example 9 We consider the same model and property as in the Example 8. Below, we
present the value of xs for each state for every iteration of value iteration.

k = 0 : x0
s = 0, x0

s1
= 0, x0

s2
= 0, x0

s3
= 0, x0

s4
= 1

k = 1 : x1
s = 0, x1

s1
= 0, x1

s2
= 0.5, x1

s3
= 0, x1

s4
= 1

k = 2 : x2
s = 0.45, x2

s1
= 0.5, x2

s2
= 0.5, x2

s3
= 0, x2

s4
= 1

k = 3 : x3
s = 0.5, x3

s1
= 0.5, x3

s2
= 0.5, x3

s3
= 0, x3

s4
= 1

k = 4 : x4
s = 0.5, x4

s1
= 0.5, x4

s2
= 0.5, x4

s3
= 0, x4

s4
= 1.

Values between the iteration for k = 3 and k = 4 do not change, causing the conver-
gence criterion (both absolute and relative) to be satisfied, subsequently terminating the
computation.

Expected Total Reward

As in the previous section, assume a fixed MDP M = 〈S, s, A, δ,L〉 and let xs denote the
value of the maximising strategy in state s. For the computation of the expected total
reward, we divide the state space into two disjoint subsets; Sno and S?, where Sno contains
states for which we never reach a state with non-zero reward. Similarly to probabilistic
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reachability, these states can be computed using graph algorithms [59].

Linear Programming

To obtain the expected total reward values for the states in S?, we build the linear program:

Minimise:
∑
s∈S

xs subject to:

xs > r(s) +
∑
s′∈S

δ(s, a)(s′)·xs′ + r(s, a) for all s ∈ S?, a ∈ A(s)

xs = 0 for all s ∈ Sno .

Example 10 Consider the MDP in Figure 3.4. We use the reward structure r2 that
assigns rewards to actions as follows: r2(s, east1 ) = r2(s, south2 ) = r2(s1,2,west1 ) =

r2(s1,2,west2 ) = 1. The property is R r2max=? [ C ].
The set Sno = {s3, s4}, and for the S? states we construct the linear program:

Minimise: xs + xs1,2 + xs3 + xs4 subject to:

xs > xs1,2 + 1

xs > 0.9 · xs1,2 + 0.1 · xs3 + 1

xs1,2 > xs3 + 1

xs1,2 > 0.5 · xs3 + 0.5 · xs4 + 1

xs3 = 0

xs4 = 0.

The solution of the linear program yields values xs = 2, xs1,2 = 1, thus R r2max=? [ C ] = 2.

Value Iteration

The value xs is defined as the limit of:

xks :=

 0 s ∈ Sno

r(s) + max
a∈A(s)

∑
s′∈S

δ(s, a)(s′) · xk−1
s′ + r(s, a) s ∈ S?

as k →∞. The convergence criterion is the same as in the probabilistic reachability case.

Example 11 We illustrate the value iteration algorithm on the same model, reward
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structure, and property as for Example 10. For every iteration of the algorithm and each
s ∈ S, we have:

k = 0 : x0
s = 0, x0

s1,2
= 0, x0

s3
= 0, x0

s4
= 0

k = 1 : x1
s = 1, x1

s1,2
= 1, x1

s3
= 0, x1

s4
= 0

k = 2 : x2
s = 2, x2

s1,2
= 1, x2

s3
= 0, x2

s4
= 0

k = 3 : x3
s = 2, x3

s1,2
= 1, x3

s3
= 0, x3

s4
= 0

and the algorithm converges in only three iterations.

3.4.3 Model Checking of Properties for Stochastic Games

For stochastic games, the value of the property depends not only on the strategy of the
controller player, but also on the strategy of the environment player. The type of stochastic
games that we consider in this thesis are called zero-sum games. This is a type of a game
where the controller player is trying to maximise (or minimise) the value of the property,
while the environment player tries to minimise (or maximise). We will be interested in
computing the optimal strategies, i.e. strategies that maximise (or minimise) the value of
the property.

From [41, 55] we get that memoryless deterministic strategies are sufficient for obtaining
the optimal strategies for both probabilistic reachability as well as expected total reward
properties in zero-sum stochastic games. The best known complexity bound is NP ∩
co-NP [41], but, in practice, methods such as value iteration can be used efficiently.

We present techniques for computing the strategy that maximises the value of the
property for the controller player; computing the minimal strategy follows similarly. We
fix a stochastic game G = 〈S♦, S�, S, s, A, δ,L〉 and target set T ⊆ S, and let xs denote
the value of the optimal strategy in state s.

Maximal Probabilistic Reachability

For stochastic games and value iteration, we do not apply precomputation to identify all
states that have probability zero or one to reach the target set. We work with Syes = T ,
where S = Syes ∪ S?, and initialise x0

s = 0 for all s ∈ (S \ Syes). The value of the
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probabilistic reachability property is defined as the limit of the series as k →∞:

xks :=


1 s ∈ Syes

max
a∈A(s)

∑
s′∈S

δ(s, a)(s′) · xk−1
s′ s ∈ S? and s ∈ S♦

min
a∈A(s)

∑
s′∈S

δ(s, a)(s′) · xk−1
s′ s ∈ S? and s ∈ S�.

We use the same convergence criterion as in the case of MDPs.

Example 12 Consider the model from Example 3, with the property Pmax=? [ F succ ].
Below, we list the value of xs for each state, for every iteration of value iteration.

k = 0 : x0
s = 0, x0

s1
= 0, x0

s2
= 0, x0

s3
= 0, x0

s4
= 1

k = 1 : x1
s = 0, x1

s1
= 0, x1

s2
= 0.5, x1

s3
= 0, x1

s4
= 1

k = 2 : x2
s = 0.45, x2

s1
= 0.25, x2

s2
= 0.5, x2

s3
= 0, x2

s4
= 1

k = 3 : x3
s = 0.45, x3

s1
= 0.25, x3

s2
= 0.5, x3

s3
= 0, x3

s4
= 1.

Values between the iteration for k = 2 and k = 3 do not change, causing the convergence
criterion (both absolute and relative) to be satisfied, and subsequently terminating the
computation.

Expected Total Reward

For computing the expected total reward, we do not need to consider target states; this
simplifies the definition of the value xks for each state:

xks :=


r(s) + max

a∈A(s)

∑
s′∈S

δ(s, a)(s′) · xk−1
s′ + r(s, a) s ∈ S♦

r(s) + min
a∈A(s)

∑
s′∈S

δ(s, a)(s′) · xk−1
s′ + r(s, a) s ∈ S�.

We initialise x0
s = 0 for all s ∈ S and use the same convergence criterion as before to

compute the limit xs.

Example 13 We use the model from Example 3 with the reward structure: r3(s, east1 ) =

r3(s, south1 ) = r3(s2,west1 ) = 1. The property is R r3max=? [ C ].
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k = 0 : x0
s = 0, x0

s1
= 0, x0

s2
= 0, x0

s3
= 0, x0

s4
= 0

k = 1 : x1
s = 1, x1

s1
= 0, x1

s2
= 1, x1

s3
= 0, x1

s4
= 0

k = 2 : x2
s = 1.9, x2

s1
= 0, x2

s2
= 1, x2

s3
= 0, x2

s4
= 0

k = 3 : x3
s = 1.9, x3

s1
= 0, x3

s2
= 1, x3

s3
= 0, x3

s4
= 0.

Observe that value iteration converges after the third step.

3.5 The PRISM Modelling Language

In this section, we describe the native modelling language of the probabilistic model checker
PRISM [88] used and extended in this thesis. We start by defining the syntax of the
language, then describe the semantics, and conclude by presenting a set of examples for
each of the model types we previously introduced.

A PRISM model description consists of a set of constants c1, . . . , ck, a set of modules,
a set of labels, and a set of players p1, . . . , p`, where each player is represented by a set of
actions it controls. Please note that each action in the model is controlled by exactly one
player. In this thesis we focus on stochastic two-player games, and therefore we assume
that ` = 2. Every module M comprises a set of actions AM , a set of guards GM , a set of
finite-domain variables x1, . . . , xn and a list of guarded commands of the form:

[a] g → λ1 : u1 + · · ·+ λm : um

where: a ∈ AM is an action; g ∈ GM is a guard, which is a Boolean expression over
variables and constants, e.g. (x1 6 c2) ∧ (x2=x3 + 1); λi for 1 6 i 6 m are probabilities,
given as expressions over the set of constants, and summing to 1 for any valuation of
the constants; and u1, . . . , um are variable updates. A variable update is a conjunction
of assignments of the form (xj

p=expr j), where xj is a variable and expr j is an expression
over variables and constants giving a new value for xj based on the current state, e.g.
(x1

p=x1+c1)∧(x2
p=x3) is a variable update that increments x1 by the value of the constant

c1 and assigns the value of x3 to x2. We re-use the definition of a guard and define a label
l as a tuple (gl, ap) where gl is a guard and ap ∈ AP is an atomic proposition.

Intuitively, a guarded command of the form given above indicates that, if the current
values of the module’s variables satisfy the guard g, then action a can be taken, after
which update ui is applied with probability λi.
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Usually, a PRISM model comprises multiple modules, which are composed in parallel.
In this section, for simplicity, we assume that a model always contains just a single module.
The full semantics for the PRISMmodelling language [104] describes how multiple modules
can be syntactically composed into a single one.

Assuming a single module, the semantics of a PRISM model M is given by a stochas-
tic game G = 〈S♦, S�, S, s, A, δ,L〉 defined as follows. Let x1, . . . , xn be the variables
of M and V1, . . . , Vn their possible domains. For the controller player states we put
S♦ = {(v1, . . . , vn) ∈ V1 × · · · × Vn | ∃ g[v1/x1, . . . , vn/xn] ∧ a ∈ p1}. Conversely, for the
environment player S� = {(v1, . . . , vn) ∈ V1×· · ·×Vn | ∃ g[v1/x1, . . . , vn/xn]∧a ∈ p2}. We
put s = (v1, . . . , vn), where vi ∈ Vi is the initial value of the variable xi, and A to be equal
to the set of all actions of all commands in M . The transition function δ is defined in
terms of M ’s commands. To simplify the presentation we will make the assumption that,
for each state (v1, . . . , vn) and action a, there is at most one a-labelled command of M
whose guard g is satisfied in (v1, . . . , vn), i.e. where g[v1/x1, . . . , vn/xn] evaluates to true.
Then, δ((v1, . . . , vn), a) is defined for a state (v1, . . . , vn) if and only if such a command
exists. When it does, let this (unique) command be:

[a] g → λ1 : u1 + · · ·+ λm : um

We define δ((v1, . . . , vn), a) to be equal to the distribution which, for each state (v′1, . . . , v
′
n),

assigns the probability equal to the sum of values λi, for 1 6 i 6 m, such that applying
update ui to variable values (v1, . . . , vn) gives (v′1, . . . , v

′
n). We set L((v1, . . . , vn)) = {ap} if

there is a label l = (gl, ap) such that gl[v1/x1, . . . , vn/xn] evaluates to true. The semantics
for DTMCs and MDPs follow similarly. Below, we give a simple example of a PRISM
model description for each of the models considered in the thesis.

3.5.1 Discrete-Time Markov Chains

Example 14 We consider the PRISM model in Figure 3.5 of the DTMC from Figure 3.1.
The PRISM model starts with a keyword that specifies the type of the model, in this case
dtmc. The model consists of a single module main that contains one variable s and five
commands. The declaration of the variable specifies its name, range and the initial value.
The variable s will vary between zero and four, with initial value being zero. The first
command in the module main is enabled in a state where s = 0. From that state, we
can either go to the state where s = 1 with probability 0.2 or to the state s = 2 with
probability 0.8. Labels mark the states with atomic propositions. In the last line of the
PRISM model, the label marks the state where s = 4 with atomic proposition succ.
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dtmc

module main

s : [0..4] init 0;

[] s = 0 → 0.2 : (s′=1) + 0.8 : (s′=2);
[] s = 1 → 0.5 : (s′=2) + 0.5 : (s′=3);
[] s = 2 → 0.5 : (s′=3) + 0.5 : (s′=4);
[] s = 3 → (s′=3);
[] s = 4 → (s′=4);

endmodule

label “succ” = (s = 4);

Figure 3.5: PRISM model description of the DTMC from Figure 3.1.

mdp

module main

s : [0..4] init 0;

[east_1 ] s = 0 → (s′=1);
[south_2 ] s = 0 → 0.1 : (s′=3) + 0.9 : (s′=2);
[south_1 ] s = 1 → (s′=2);
[west_1 ] s = 1 → (s′=3);
[north_1 ] s = 2 → (s′=1);
[west_2 ] s = 2 → 0.5 : (s′=3) + 0.5 : (s′=4);
[done_1 ] s = 3 → (s′=3);
[done_2 ] s = 4 → (s′=4);

endmodule

label “succ” = (s = 4);

Figure 3.6: PRISM model description of the MDP from Figure 3.2.

3.5.2 Markov Decision Processes

Example 15 We analyse the PRISM model in Figure 3.6 of the MDP from Figure 3.2. In
comparison to the DTMC example, we now have multiple commands defined for one state.
In the state where s = 0 we have two commands labelled with east1 and south2 actions.
The explanation of the rest of the model is the same as for the DTMC in Example 14.

3.5.3 Stochastic Games

Example 16 In our last example, we consider the PRISM model in Figure 3.7 of the
stochastic game from Figure 3.3. At the beginning of a PRISM model describing a stochas-
tic game, we need to define a mapping between actions (or whole modules) and players.
In our case, we define two players; controller and environment, where the first player
controls actions such as east1 or south1 , while the second player controls block1 or pass1 .
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smg

player controller

[east_1 ], [south_1 ], [west_1 ], [done_1 ]

endplayer

player environment

[block_1 ], [pass_1 ], [block_2 ], [pass_2 ]

endplayer

module main

s : [0..4] init 0;

[east_1 ] s = 0 → (s′=1);
[south_1 ] s = 0 → 0.1 : (s′=3) + 0.9 : (s′=2);
[pass_1 ] s = 1 → (s′=4);
[block_1 ] s = 1 → 0.5 : (s′=2) + 0.5 : (s′=3);
[west_1 ] s = 2 → 0.5 : (s′=3) + 0.5 : (s′=4);
[pass_2 ] s = 3 → (s′=4);
[block_2 ] s = 3 → (s′=3);
[done_1 ] s = 4 → (s′=4);

endmodule

label “succ” = (s = 4);

Figure 3.7: PRISM model description of the stochastic game from Figure 3.3.

The syntax of the PRISM model requires that each action is assigned to a player and it
is never the case that two players own the same action. The rest of the model follows the
description of DTMC and MDP models.

3.6 Difference Bound Matrices

One of the key factors behind the successful implementation of the methods presented
in Chapter 5 is an efficient data structure called Difference Bound Matrices (DBMs) for
representing conjunctions of linear constraints. This section is based on [116], which
employed DBMs for real-time verification.

A DBM is a data structure that symbolically stores a conjunction of linear constraints
of the form xi − xj ≺ k, where 1 6 i, j 6 n and n ∈ N is the number of variables present
in the constraints, the operator ≺∈ {6,>, <,>} and k ∈ R>0. There exist efficient
algorithms [116] for performing various operations on DBMs, including operations that
are relevant to this thesis: conjunction of two DBMs and computing a complement of a
DBM.

Formally, a DBM [116] is square matrix of size (n + 1) × (n + 1). Each column and
row of the matrix is assigned a variable. Row zero and column zero are assigned variables
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with value zero and are used to represent constraints of the form xi ≺ k. Every element
of the matrix is a tuple (k,C), where C ∈ {<,6}. There are four cases that need to be
considered when representing a linear constraint xi − xj ≺ k using a DBM D:

• constraint xi − xj C k, where C ∈ {<,6}, for which Di,j = (k,C)

• constraint xi − xj B k, where B ∈ {>,>}, for which Dj,i = (−k,<) if B ∈ {>},
otherwise Dj,i = (−k,6)

• constraint xi C k, for which Di,0 = (k,C)

• constraint xi B k, for which D0,i = (−k,<) if B ∈ {>}, otherwise D0,i = (−k,6)

All other non-diagonal elements of the DBM D are assigned the (∞, <) tuple. For the ele-
ments on the diagonal we use (0, <). An example of a DBM for conjunction of constraints
(x1 6 0 ∧ x2 > 1) can be seen as D1 in Figure 3.8.

0 x1 x2

0 (0, <) (∞, <) (−1, <)

x1 (0,6) (0, <) (∞, <)

x2 (∞, <) (∞, <) (0, <)

0 x1 x2

0 (0, <) (∞, <) (−1, <)

x1 (0,6) (0, <) (−1, <)

x2 (∞, <) (∞, <) (0, <)

D1 D2

Figure 3.8: DBM representation of a constraint (x1 6 0 ∧ x2 > 1).

The DBM D2 from the Figure 3.8 not only represents (x1 6 0∧ x2 > 1), but also adds
a constraint (x1− x2 < −1). Given that many DBMs can represent the same conjunction
of constraints, we define a partial order between DBMs and a normal form. For equal size
DBMs D1 and D2, we define:

D1 6 D2 iff ∀ 0 6 i, j 6 n . D1
i,j 6 D2

i,j.

We say that DBM D is in normal form iff for every DBM D′ that represents the same
conjunction of constraints it holds that D 6 D′. The algorithm for computing the normal
form of a DBM can be found in [116]. We now present how conjunction and complement
of linear constraints can be done using DBM operations.

The conjunction of two DBMs D1 and D2 of the same size can be performed by creating
a new DBM D3 of equal size, where each element:

D3
i,j = min(D1

i,j,D2
i,j), where 0 6 i, j 6 n.
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The resulting DBM D3 may need to be normalised. An example of a conjunction of two
DBMs can be seen in Figure 3.9. The DBMD1 on the left-hand side of Figure 3.9 represents
a conjunction of constraints (x1 6 0 ∧ x2 > 1), DBM D2 represents the linear constraint
(x1 6 −2), and DBM D3 = D1 ∩ D2 is now a conjunction of (x1 6 −2) ∧ (x2 > 1). For
reasons of clarity D3 has not been normalised.

0 x1 x2

0 (0, <) (∞, <) (−1, <)

x1 (0,6) (0, <) (∞, <)

x2 (∞, <) (∞, <) (0, <)

0 x1 x2

0 (0, <) (∞, <) (∞, <)

x1 (−2,6) (0, <) (∞, <)

x2 (∞, <) (∞, <) (0, <)

0 x1 x2

0 (0, <) (∞, <) (−1, <)

x1 (−2,6) (0, <) (∞, <)

x2 (∞, <) (∞, <) (0, <)

D1 D2

D3

Figure 3.9: Conjunction of DBMs D1 and D2 (top), and the result DBM D3 (bottom).

To compute the complement D of a DBM D, we assume that D is represented as a
conjunction of DBMs D1, ...,Dt where 1 6 t 6 (n× (n+1)). Each element of the sequence
D1, ...,Dt represents a single constraint that is expressed by DBM D. An example can be
found in Figure 3.10, where DBM D represents constraints (x1 6 0 ∧ x2 > 1) and can be
expressed as a conjunction of two DBMs D1 and D2. The DBM D1 represents the single
constraint (x1 6 0), and DBM D2 represents (x2 > 1).

Complement D can now be expressed as a disjunction of DBMs D1, ...,Dt; this disjunc-
tion can be simply implemented as a list of DBMs. We assume that (k1,C1), ..., (kt,Ct)

is the set of non-trivial bounds of D1, ...,Dt, where a non-trivial bound is a non-diagonal
element of a DBM that is different from (∞, <). For every 1 6 l 6 t, we have an element
in the DBM Dl such that Dli,j = (kl,Cl), where 0 6 i, j 6 n. For every l, we create
the complement (−kl,C′l) of (kl,Cl), where C′l is < if Cl is 6, and 6 otherwise. We set
Dlj,i = (k′l,C

′
l) and Dli,j = (0, <) when i = j and (∞, <) for every other cell. Now the list

of DBMs D1, ...,Dt represents a complement of DBM D. The complement of DBMs D1

and D2 can be found in the bottom row of Figure 3.10.
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0 x1 x2

0 (0, <) (∞, <) (−1, <)

x1 (0,6) (0, <) (∞, <)

x2 (∞, <) (∞, <) (0, <)

0 x1 x2

0 (0, <) (∞, <) (∞, <)

x1 (0,6) (0, <) (∞, <)

x2 (∞, <) (∞, <) (0, <)

0 x1 x2

0 (0, <) (∞, <) (−1, <)

x1 (∞, <) (0, <) (∞, <)

x2 (∞, <) (∞, <) (0, <)

0 x1 x2

0 (0, <) (0, <) (∞, <)

x1 (∞, <) (0, <) (∞, <)

x2 (∞, <) (∞, <) (0, <)

0 x1 x2

0 (0, <) (∞, <) (∞, <)

x1 (∞, <) (0, <) (∞, <)

x2 (1,6) (∞, <) (0, <)

D

D1 D2

D1 D2

Figure 3.10: DBM D and its complement D1 and D2.
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3.7 Mixed-Integer Linear Programming

Mixed-Integer Linear Programming (MILP) is an optimisation problem, where we look for
an assignment to a set of variables that satisfies a set of linear constraints and optimises
the value of an objective function. Unlike linear programming (LP), in the case of MILP
some of the variables can be required to be integers.

The MILP problem is known to be NP-hard [79], but there exist solvers [132, 131] that
can solve even large instances of the problem efficiently. We refer the reader to [103] for
an extensive review of combinatorial optimisation, including MILP. Below, we present an
example of an MILP encoding as well as a run of the CPLEX solver [131].

Example 17 We use a simple Knapsack-based [79] combinatorial problem for which we
provide an MILP encoding. Given a knapsack that can carry a fixed weight, we try to
fit a number of items, each item having a weight and a value. The value of items in the
knapsack should be maximised. In our case, we try to fit 4 items with the weights of
0.5, 1.0, 1.5, and 2.0 and the corresponding values 1, 2, 3, and 4. The knapsack can carry
items whose combined weight is at most 3. The MILP encoding can be found below.

Maximise: 1.0 · item1 + 2.0 · item2 + 3.0 · item3 + 4.0 · item4 subject to:

0.5 · item1 + 1.0 · item2 + 1.5 · item3 + 2.0 · item4 6 3.

The integer variables itemi ∈ {0, 1}, for i = 1 . . . 4, indicate if the given item is in the
knapsack.

The abbreviated output of the CPLEX solver can be found in Figure 3.11. We can
see that the solver generates several solutions while trying to obtain the optimal one. We
start with the solution that does not put any elements in the knapsack; this is indicated
by column Best Integer and value 0. Often, obtaining the optimal solution may take

Nodes Cuts/
Node Left Objective IInf Best Integer Best Bound ItCnt Gap

* 0+ 0 0.0000 10.0000 0 ---
* 0+ 0 6.0000 10.0000 0 66.67%

0 0 cutoff 6.0000 6.0000 0 0.00%

Solution pool: 2 solutions saved.

MIP - Integer optimal solution: Objective = 6.0000000000e+00

Figure 3.11: CPLEX output for the MILP encoding from Example 17.
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prohibitively long time. In those cases, we can stop the solver early and use an intermediate
solution, which is guaranteed to satisfy the constraints but might be sub-optimal. Our
example is a very simple problem, so we are able to find a solution within milliseconds.
There are two equivalent optimal solutions. The first one picks the first three items,
summing values to 6, while the second picks the second and last item, similarly summing
to 6.

3.8 Real-Time Dynamic Programming

Finding an optimal strategy for an MDP is a widely studied problem in the field of plan-
ning [99], reinforcement learning [115], and optimal control [12]. Coming from these fields
are two algorithms that are especially relevant in the context of this thesis, the Real-Time
Dynamic Programming (RTDP) [9] and the Bounded Real-Time Dynamic Programming
(BRTDP) [101].

We fix an MDP M, a reward structure r , a set of target states T and want to compute
the minimal expected total reward in M. In contrast to Section 3.2.2, in this section
we follow the definition of the expected total reward that includes target states. The
difference is that, in the latter definition, instead of considering all infinite paths we only
consider paths that reach the target state. We use such a definition to present RTDP and
BRTDP as it was originally introduced in the literature.

Both RTDP and BRTDP work on a sub-class of MDPs that satisfy three assump-
tions [12]:

1. for all target states s ∈ T , r(s) = 0 and ∀a∈A(s)r(s, a) = 0

2. M has at least one proper strategy

3. for all improper strategies there exists a state with infinite expected reward.

A proper strategy is a strategy that guarantees reaching the goal state with probability
one for every state of M.

An outline of the RTDP algorithm can be found in Algorithm 1. We use xs to denote
the value of the expected reward in a state. The algorithm runs a potentially large number
of random paths through the MDP, where each path starts in some predefined initial state
and finishes in the goal state. While following each of the paths, the algorithm updates
the current value of the expected reward for each visited state on the path. The choices
between actions are resolved using a greedy strategy by choosing an action that gives the
minimum expected reward. The successor of the action is picked randomly according to
the distribution associated with the action.
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Algorithm 1 Real-Time Dynamic Programming [9, 14]
1: Inputs: MDP M, state s ∈ S
2: xs ← 0, for all s ∈ S
3: repeat
4: RTDPTrial(s)
5: until true
6:
7: function RTDPTrial(s)
8: while s /∈ T do
9: a← arg mina∈A(s) r(s) +

∑
s′∈S δ(s, a)(s′)xs′ + r(s, a)

10: xs ← r(s) +
∑

s′∈S δ(s, a)(s′)xs′ + r(s, a)
11: s← sampled from δ(s, a)
12: end while
13: end function

The authors in [9] do not provide a termination criterion, but rather run the algorithm
for a fixed amount of time; similarly, Algorithm 1 does not include a termination crite-
rion. In [14] one possible termination criterion is presented. Bonet et al. [14] propose a
termination criterion that is similar to the one presented earlier for value iteration. The
computation of the RTDP algorithm is terminated when the difference between the cur-
rently stored expected reward and the value given by the greedily chosen action is smaller
or equal than some predefined ε. This is checked for the initial state and all states reach-
able from it. The key reason behind the performance gains offered by RTDP comes from
the fact that, while generating random paths through the MDP, we may not need to visit
all the states before the computation converges. In contrast, in each iteration of value
iteration we have to visit every state of the model.

The BRTDP algorithm [101] expands on the ideas presented in the RTDP algorithm.
The key differences include the way states are visited and updated, as well as the termi-
nation criterion. In the case of BRTDP, the algorithm keeps both an upper and lower
bound on the value of the expected reward. The algorithm is terminated when the dif-
ference between those bounds for the initial state is smaller than some ε. Apart from
the termination criterion, the value of the difference between the upper and lower bound
in a state can be used in the path generation mechanism. The algorithm favours paths
that explore states with a larger difference, subsequently providing a significant speed-up.
The BRTDP improves performance over the RTDP algorithm. A detailed analysis can be
found in [101]. Below, we present an example for the RTDP algorithm. For a detailed
presentation of the BRTDP algorithm and an example run we refer the reader to [101].

Example 18 The MDP from Figure 3.2 does not contain a proper strategy, and therefore
cannot be used as an example for the RTDP algorithm. We slightly modified the MDP
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Figure 3.12: Example of an MDP M satisfying the assumptions (1), (2), and (3).

from Figure 3.2 and in our example we use MDP M from Figure 3.12 with reward structure
r(s, east1 ) = r(s, south2 ) = r(s1, south1 ) = r(s2, north1 ) = r(s2,west1 ) = r(s3, south3 ) =

1 and s4 as the only target state. The modified MDP satisfies the assumptions needed
for Algorithm 1.

We consider three runs of the algorithm that generate three paths through the MDP
ω1, ω2 and ω3; all runs start in the initial state s. The first run is ω1 = seast1s1south1

s2north1s1south1s2west1s4. This run becomes trapped between s1 and s2 states, until the
action west1 is able to provide a lower value of the expected reward. The run is terminated
after visiting the target state s4. The runs ω2 = ω3 = ssouth2s3south3s4 never visit the
s1 state, as it no longer provides the minimal reward value. After the three runs the
value in xs contains the minimal expected reward of 2.0, but the algorithm itself does not
terminate. The exact values of xs variables after each run can be found below.

ω1 : xs = 0, xs1 = 2, xs2 = 1, xs3 = 0, xs4 = 0

ω2 : xs = 1.9, xs1 = 2, xs2 = 1, xs3 = 1, xs4 = 0

ω3 : xs = 2, xs1 = 2, xs2 = 1, xs3 = 1, xs4 = 0.
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Chapter 4

Verification and Controller Synthesis at
Runtime

The purpose of this chapter is to set the context for this thesis by introducing a run-
time framework. Every method presented in this thesis addresses a specific aspect of the
framework, and in Chapter 8 we describe a case study implementing it.

In this thesis, we are interested in runtime control of systems in order to respond to
dynamic changes in a system or its environment. The controller synthesis procedure is
based on the analysis of a parameterised probabilistic model of the system. The model
is updated over time using information from intermittent monitoring. Monitoring tracks
changes happening to the system and its environment, which are then quantified and
forwarded to the synthesis method. The generated controller is employed by the running
system to decide which system actions should be executed to ensure that the property of
interest is satisfied. The synthesis process is run continuously as new data is provided by
the monitoring process, and new controllers are generated and used by the system.

In Chapter 8, we instantiate the framework in the context of an open-source stock
monitoring application. StockPriceViewer is an application that provides stock price in-
formation for a portfolio of stocks. Stock price information can be retrieved using one of
many available providers. Each provider offers a different quality of service. We develop a
model of the application, where the control strategy is used to decide which stock informa-
tion provider should be used at a given point in time. The controller should minimise the
overall time needed for fetching the pricing information for a portfolio of stocks. Because
each provider offers different quality of service, we use monitoring to gain information on
the current performance of the providers. After parameterising the model with the data
from the monitoring, we generate a controller which is then used by the StockPriceViewer
at runtime. As time progresses, new controllers are generated and the process continues.

45



46 CHAPTER 4. VERIFICATION AND CONTROLLER SYNTHESIS AT RUNTIME

4.1 Components of the Framework

The framework consists of four components: a computer system, an environment, a mon-
itoring module, and a verification module. In Figure 4.1 we show how the elements of
the framework interact with each other and, in the following section, we describe each
component in detail.

4.1.1 Computer System

We are interested in computer systems that contain both controllable and uncontrollable
actions and exhibit probabilistic behaviour. Controllable actions represent system actions,
such as choosing a path that a remotely controlled robot should follow. Uncontrollable
actions represent choices that are outside system control. For example, while the robot
travels on a path chosen by the system, it might be a subject of an enemy attack. Of-
ten such systems contain stochastic components, where probabilities are used to capture
unreliability of the hardware components or uncertainty in the information received from
the external sensors.

Probabilistic systems containing both controllable and uncontrollable behaviour can be
modelled using stochastic two-player games, where one player represents the controllable
actions of the system and the other represents the uncontrollable actions of the environ-
ment. We are interested in generating a controller that wins against all possible behaviours
of the environment player and satisfies a property of interest. A range of properties of
probabilistic systems can be described using probabilistic reachability and expected total
reward, with examples of such properties being “the probability of a robot successfully
fulfilling its mission is above 0.999” or “the overall expected time to fetch a portfolio of
stocks is always below 500ms”.

We are not always able to build the model of the system offline. The reason is that
not all properties of the system can be specified in advance, or it is infeasible to consider
all possible values of such properties. The mentioned properties include response times
of Internet webservices that tend to change over time and need to be constantly updated
or, in case of a robot, a battery level, where it is impractical to try to analyse all possible
battery levels offline.

Therefore, we consider a family of models that are parameterised with values computed
at runtime. We refer to system characteristics that are unknown until runtime as the
system parameters.

For StockPriceViewer, we build a stochastic game model using the PRISM modelling
language. The system actions represent the choice between different stock information
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Figure 4.1: Verification and Controller Synthesis at Runtime.

providers, while the environment actions the adversarial behaviour of the environment.
The system parameters represent the response time and probability of failure of each of
the providers. The property of interest is to minimise the overall time that is needed for
fetching stock pricing information for a portfolio of stocks. The controller in our model
will decide which provider should be chosen and will be used by the application at runtime.

4.1.2 Environment

The environment component represents the outside world that the computer system in-
teracts with. We assume that the environment offers a set of system actions that can be
used to interact with it. Subsequently, we assume that the environment is not under our
control but its behaviour can be fully observed and its parameters can be measured.

For StockPriceViewer, the environment represents multiple stock information providers.
The computer system uses system actions to query the providers and retrieve information
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about the stock price. Each provider is implemented as a webservice. While we cannot
change how each of the providers work, we can measure the quality of service that each
offers.

4.1.3 The Monitoring Module

To obtain the value of the system parameters at runtime, we assume the existence of a
monitoring module. The monitoring module measures some of the parameters of the en-
vironment and, at regular time intervals, outputs the value of system parameters. We
assume that the environment provides an interface that allows for measuring the current
value of system parameters. Depending on the instantiation of the framework, the mon-
itoring module may perform some computation on the data, for example to mitigate the
influence of outliers. After the computation is done, the monitoring module will forward
the computed values to the verification module.

In the case of StockPriceViewer, the monitoring module takes the form of a simple
script. We query each of the stock information providers every second and obtain a
sequence of measurements. Each measurement reports if the query was successful and
includes a response time in milliseconds. To avoid being vulnerable to temporary spikes
in response time, we average the results over a 5 minute period and forward the computed
values to the verification module.

4.1.4 The Verification Module

The last component of the framework is the verification module, which alters the behaviour
of the system based on the output of the model checker. The model checker analyses the
system model, which is parameterised using data from the monitoring module, against a
property φ, and outputs a number of control parameters. Each control parameter takes the
form of a controller strategy, which defines which controllable actions the system should
choose at any decision point.

We use the PRISM model checker as an implementation of the verification module. The
input of PRISM is the stochastic game model of StockPriceViewer, with the response time
and failure probability of each stock information provider being model parameters. These
parameters are set according to the current values supplied by the monitoring module.
We use a total expected reward property to specify a query that minimises the overall
expected time needed to fetch the stock prices for a portfolio of stocks. We run PRISM
for the mentioned model and property. The output of PRISM is a strategy which identifies
the provider that should be chosen such that the property holds. The strategy is then
stored in a textual form and used by the application.
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4.2 Key Characteristics of the Verification Module

In this thesis we solely focus on the verification module and thus address three key re-
quirements that must be met to make the work practical:

1. Performance - as the controlled system is running at the same time as controller
synthesis, it is crucial for the synthesis method to provide results quickly so that they
are still relevant for the running system. Before the controller can be synthesised,
a probabilistic model of the system must be constructed from a high-level textual
representation, e.g., the input language of a model checker. In many cases, the model
construction process can account for a significant proportion of the overall synthesis
time.

In Chapter 5, we exploit the fact that the synthesis method is rerun continuously
for the same model with possibly different parameters, and provide an incremental
model construction method that significantly reduces the model construction time.

In Chapter 8, we run our method on the probabilistic model of the StockPriceViewer
application. The incremental model construction method is relevant here because,
over time, we tend to vary the number of stocks in our portfolio. Ideally, we would
want to avoid rebuilding the whole model when adding only a small number of stocks.

2. Robustness - due to transient failure of a system component, some of the controllable
actions may become temporary unavailable. This could render the system inoperable
in cases when the generated controller picks such an action.

In Chapter 6, we propose a new permissive controller synthesis method that gen-
erates controllers that can overcome situations when some system actions become
temporarily unavailable.

In Chapter 8, we show how permissive controller synthesis can be used when some of
the stock information providers become temporarily unavailable. It often happens
that the currently used provider stops providing the content for a couple of seconds,
in which case our method can be employed to pick a different provider that still
satisfies the property.

3. Scalability - systems that we focus on in this thesis tend to grow over time and may
be already large to begin with.

In Chapter 7, we propose a new scalable learning-based controller synthesis method.
The proposed method is based on machine learning techniques and allows us to
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synthesise controllers for significantly larger models, outperforming current state-of-
the-art methods.

In Chapter 8, we run our learning-based controller synthesis method on the model
of the StockPriceViewer. By applying our technique, we were able to decrease the
controller synthesis time by three orders of magnitude. This subsequently decreased
the amount of time that the application has to wait until it could start fetching stock
prices.

4.3 Summary

The aim of this chapter was to introduce a framework that is used throughout the thesis.
We defined the four elements of the framework and described how they communicate with
each other. We used the StockPriceViewer application as an example and explained how
the framework works in such a setting. In Chapter 8, we provide more information on the
framework implementation in the context of StockPriceViewer. To make the framework
useful in practice, we identified three key requirements. In the coming chapters, we will
present methods that address each of the presented requirements, thus fulfilling our aim
of practicality of this work.



Chapter 5

Incremental Model Construction

5.1 Introduction

In this chapter, we present techniques to address the performance of the controller synthesis
method working within the runtime framework described in Chapter 4. The controller
synthesis method is run repeatedly and, in many cases, the analysed models only differ
in the value of parameters. We assume that the models are described using PRISM’s
modelling language and that the changes in the models are caused by updating the values
of model parameters based on the input from the monitoring module. We further assume
that the model for one set of parameter values has been constructed, and we aim to build
the model for a different value of some parameter.

To exploit the fact that we already have a model built for one set of parameters, we
propose an incremental model construction technique. Our method avoids constructing
the updated model from scratch by analysing the high-level PRISM model description
and mapping the changes from the high-level model to the underlying probabilistic model.
The mapping defines which states are subject to change and, by re-visiting only those,
we are able to build the model for the new set of parameters while only visiting a small
subset of states.

The key to performance improvements of our method are two-fold. The first is an
effective way of mapping each command from the PRISM model to the set of states that
the given command satisfies. We use a symbolic data structure called difference bound
matrices (DBM) (see Section 3.6) that employs a matrix-based representation to succinctly
describe a set of states that enable it. The second source of performance improvements is
a method for storing and retrieving states based on their variable values. For this we use
red-black trees [43], which outperform PRISM’s native data structures.

The chapter begins with definitions, and specifically the notion of parameters and
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parameter change in PRISM models. Next, we describe the non-incremental model con-
struction as currently implemented in the PRISM model checker. After establishing the
necessary background for our method, we present incremental model construction. The
method is first presented without specifying the underlying data structures, which are
introduced later. To conclude the chapter, we evaluate the method on several PRISM
case studies, where we compare our approach with the non-incremental approach. Sub-
sequently, we show that our method applies not only to stochastic games but also to
other probabilistic models such as DTMCs and MDPs. To provide further statistics of
performance improvements of our method, we include profiling of the model construction
process, as well as experiments that consider several consecutive changes of the model
parameters.

5.2 Parameters in PRISM Models

We start by formalising the notion of a parameter change. We assume that the stochastic
game is given as a PRISM model description and the changes are made by altering param-
eters of the PRISM model. These are constants in the model description (see Section 3.5)
whose values are not determined until runtime. We use parameterised PRISM model de-
scriptions to capture the notion of change of a stochastic game G to G′ by stipulating that
the stochastic games G and G′ are obtained from the same PRISM model by choosing
different values of parameters.

There are two prominent kinds of changes that might be imposed. Firstly, non-
structural changes preserve the initial state and the existence of non-zero probability tran-
sitions, i.e. they only change δ, while preserving the support of each δ(s, a) for any s ∈ S
and a ∈ A. Any other changes are structural and involve the modification of the stochastic
game’s underlying graph.

For non-structural changes, model construction is straightforward and has been con-
sidered in parametric model checking [32, 68]: we build a parametric probabilistic model,
in which transition probabilities are stored as expressions over model parameters. To
construct a probabilistic model for a particular set of parameter values, we evaluate the
expression associated with each transition of the model using those values. For structural
changes, we propose a new incremental model construction algorithm, which we describe
in Section 5.4.
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5.3 Non-Incremental Model Construction

Before we describe the incremental model construction algorithm, we outline the standard
(non-incremental) model construction as implemented in the PRISM model checker. This
will simplify the presentation of the incremental algorithm.

PRISM supports two distinct styles of implementation, explicit-state and symbolic.
Explicit-state methods use data structures such as sparse matrices and arrays, and ma-
nipulate each state of a model separately. In comparison, symbolic methods use data
structures such as binary decision diagrams and simultaneously manipulate sets of states.
In this work, we focus on scenarios where small changes are made to individual states of
a model, for which symbolic approaches are known to be less efficient. Thus, we work
with explicit-state methods (although we later make performance comparison with both
symbolic and explicit PRISM implementations).

The explicit-state model construction algorithm can be found in Algorithm 2. The
input of the algorithm is the model M defined in the PRISM modelling language. The
variable R stores the states for which we run our exploration; initially R contains the
initial state. Between lines 4 and 18, we run a breadth-first search based exploration for
the states found in R. For each state we explore, in lines 8 and 10 we identify its possible
successors. This is done based on high-level description of the model. After adding the
explored state to either S♦ or S� in lines 12 and 14, we move to analyse states that are
reachable from the explored state. In line 16, we assign to Ŝ all successors of the currently
explored state. In line 17, those successors are checked if they have been previously visited.
If not, they are added to R and will be explored in the future iterations of the algorithm.
The search is terminated when all reachable states have been visited.

One of the main optimisations of the model construction process is converting the
created model G into a more optimised representation that keeps all the states sorted by
the value. This is done outside of Algorithm 2 and in practice can significantly decrease
the time needed for the subsequent analysis of the model.

Example 19 Figure 5.1 includes the PRISM modelM of a simple stochastic game G where
good_robot tries to move between locations, while bad_robot can impede this process. The
good_robot states are marked as diamonds, whereas we use boxes to indicate bad_robot
states. The model contains one parameter, constant s_max.

The PRISM model from Figure 5.1 produces a stochastic game with non-unique actions
for values s_max higher than 3. This is possible as multiple states satisfy the command
marked with the south action. Such scenarios are a common occurrence in PRISM case
studies, as it is not always practical to enforce action uniqueness at the PRISM model
level. Recall that, in this thesis, we assume that all actions are unique. Therefore, the
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Algorithm 2 ConstructModel

1: Inputs: PRISM model description M
2: Outputs: Stochastic game G
3: S♦ := ∅,S� := ∅; A = ∅; δ := ∅
4: Compute the initial state s in M
5: R := {s}
6: while R 6= ∅ do
7: s := dequeue(R)
8: Compute A(s) according to M and add it to A
9: Compute L(s) according to M
10: Set δ(s, a) for all a∈A according to M
11: if s belongs to ♦ player according to M then
12: S♦ := S♦ ∪ {s}
13: else
14: S� := S� ∪ {s}
15: end if
16: Ŝ := {s′ | ∃a ∈ A(s) : δ(s, a)(s′) > 0}
17: R := R ∪ (Ŝ \ S)
18: end while
19: S = S♦ ∪ S�
20: G = 〈S♦, S�, S, s, A, δ,L〉
21: return G

smg

const int s_max ;

player good_robot

[east ], [south], [done], [restart ]

endplayer

player bad_robot

[pass], [block ]

endplayer

module game

s : [0..s_max ];

[east ] s=0 → (s′=1);
[pass] s=1 → (s′=2);
[block ] s=1 → 0.8 : (s′=2) + 0.2 : (s′=1);
[south] s > 1 & s < s_max → 1 : (s′=min(s + 1, s_max));
[done] s=s_max → 1 : true;
[restart ] s=s_max → 1 : (s′=0);

endmodule

Figure 5.1: PRISM model M with s_max as the undefined constant.



5.3. NON-INCREMENTAL MODEL CONSTRUCTION 55

0 1 2

3

•
east1

•
pass1

•
block1

•south1

•
restart1

•

0.2 0.8

done1

0 1 2

3

4

•
east1

•
pass1

•
block1

•south1

•south2

•restart1

•

0.2 0.8

done1

Figure 5.2: Stochastic games G1(left) and G2(right) for PRISM model from Figure 5.1.

model construction algorithm adds a unique suffix to each action so that the built model
will only contain unique actions.

In Figure 5.2 we can see stochastic games G1 (left) and G2 (right) built for s_max = 3

and s_max = 4. Both models share the same states for s = 0, 1, 2 and 3, and intuitively
the model construction for s_max = 4 could be optimised by re-using the state space of
G1 and only re-visiting state 3.

In the last step before introducing the incremental model construction, we present
results from profiling the non-incremental model construction algorithm. We used Visu-
alVM [125] as the profiler running on a PC with a 1.7GHz i7 Core processor and 4GB
RAM.We run PRISM-games [31], an extension of PRISM adapted to run stochastic games.
As examples we use mer (for N = 1..100) and firewire (for deadline = 1000..1050). More
information about the examples can be found in Appendix A.

The results are summarised in Figure 5.3, where we report the percentage of the total
model construction time spent in each of the four categories of operations. The total model
construction time is the sum of model construction time for each value of the parameter.
The first category is the evaluation that refers to the process of evaluating the information
about the given state; examples are lines 8, 10 and 11 in Algorithm 2. By storage we in-
dicate operations pertaining to storing the states during the model construction process,
present in lines 12, 14 and 17. Conversion of the model into a more optimised representa-
tion has been indicated as transformation. Finally, any other operation has been classified
as other.

Most of the total model construction time is spent on evaluating states. This is a
costly operation as it requires access to a high-level representation of the model. The
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Figure 5.3: Profiling non-incremental model construction.

storage operations take between 23% to 27% of the model construction time, while the
transformation and other operations add up to another 21% − 24%. A successful imple-
mentation of incremental model construction will have to avoid as many evaluation and
storage operations as possible.

5.4 Incremental Model Construction

For a PRISM model description, exploration of each state requires evaluating the guard
for every command in the model to see if it is enabled in that state. However, when
the number of states is large, checking every guard for every state becomes costly. Our
approach to incremental model construction aims to reduce the work required by using a
previously constructed model as a basis: re-exploration is only carried out from a subset
of the states in the existing model, and only a subset of the guards of the PRISM model
are evaluated. By re-using the previously constructed model, we will also perform fewer
storage operations, further improving the performance.

More precisely, let us consider the scenario where we have a model description M ,
containing one or more parameters, and have already built a stochastic game G1 =

〈S1
♦, S

1
�, S

1, s1, A1, δ1,L1〉 by instantiating M with parameter values P1. We now want
to build a new stochastic game G2 = 〈S2

♦, S
2
�, S

2, s2, A2, δ2,L2〉 for parameter values P2,
using the existing model G1 as a starting point.

Pseudocode for the incremental model construction algorithm ConstructModelIncr can
be found in Algorithm 3. The inputs are G1,M, P1 and P2, and the algorithm returns the
new stochastic game G2. We use g[Pi] to denote the guard g instantiated with parameter
values Pi, and M [Pi] for the whole model description M instantiated with values Pi. The
function Satisfy(g) returns all (possibly unreachable) states that satisfy a guard g.
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Algorithm 3 ConstructModelIncr

1: Inputs: Stochastic game G1, PRISM model description M , parameters P1, P2

2: Outputs: Stochastic game G2

3: R+ := ∅
4: for all guards g ∈M containing parameters do
5: R+ := R+ ∪

(
Satisfy(g[P1]) \ Satisfy(g[P2])

)
6: R+ := R+ ∪

(
Satisfy(g[P2]) \ Satisfy(g[P1])

)
7: end for
8: R := R+ ∩ S1

9: s2 := the initial state in M [P2]
10: if s2 6= s1 then R := R ∪ {s2} end if
11: S2

♦ := S1
♦\R

12: S2
� := S1

�\R
13: S2 := S2

� ∪ S2
♦

14: A2 := ∅
15: for all s ∈ S2 do
16: δ2(s, ·) := δ1(s, ·)
17: A2 := A2 ∪ A1(s)
18: L2(s) := L1(s)
19: end for
20: while R 6= ∅ do
21: s := dequeue(R)
22: Compute A2(s) according to M [P2] and add it to A2

23: Compute L2(s) according to M [P2]
24: Set δ2(s, a) for all a∈A2 according to M [P2]
25: if s belongs to ♦ player according to M [P2] then
26: S2

♦ := S2
♦ ∪ {s}

27: else
28: S2

� := S2
� ∪ {s}

29: end if
30: S2 := S2 ∪ {s}
31: Ŝ := {s′ | ∃a : δ2(s, a)(s′) > 0}
32: R := R ∪ (Ŝ \ S2)
33: end while
34: G2 := 〈S2

♦, S
2
�, S

2, s2, A2, δ2,L2〉
35: G2 := RestrictToReachable(G2, s2)
36: return G2
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Lines 3–10 determine the set R ⊆ S1 of states from G1 that need to be re-explored
to build G2. This is done by analysing each guard g of a command in M that features a
parameter and identifying two classes of states: those that satisfied g for P1 but no longer
do for P2; and those that didn’t satisfy g for P1 but now do for P2. We first identify the
set R+ of all possible such states, and then restrict this to those that appear in G1 (see
Section 5.5 for further details). If the initial state of G2 differs from G1, we also add that to
R. The remainder of the algorithm constructs G2, starting from G1 as a basis (lines 11–19)
and then re-explores states in R (lines 20–33). For states in S1 but not in R, stochastic
game G2 is identical to G1. States in R are recursively re-explored and added to G2, except
for states already contained in G2 which are ignored. During this process, some transitions
originally contained in G1 may be removed, making some states of G2 unreachable. To
remove such states, we run the algorithm RestrictToReachable(G2, s2), which returns the
part of G2 that is reachable from the initial state s2.

The most costly part of the algorithm is the Satisfy function since it has to traverse
the state space to find states that satisfy a given guard. In the next section, we focus
on improving the performance by representing the state space using a more effective data
structure.

Algorithm 3 only considers cases when the change of the parameter is contained within
the guard part of a command, since this seems to be the most common case in practice.
The algorithm can be easily extended to cases when the change appears in the update
part or to the probability values that cause a structural change in the model. To support
such cases all states satisfying the guard associated with an affected element need to be
added to the set R.

Example 20We now illustrate the incremental model construction on the earlier example
from Section 5.3 (see Figures 5.1 and 5.2). We keep s_max as a parameter and consider
two parameter values, P1 = {s_max = 3} and P2 = {s_max = 4}.

The stochastic game G1 for parameter values P1 is shown in Figure 5.2 (left). We
construct G2, for parameter values P2, by following Algorithm 3. There are two distinct
guards in the model, g1 = (s > 1 ∧ s < s_max) and g2 = (s = s_max), that contain the
parameter s_max. The Satisfy(g1[P1]) function returns {2}, for Satisfy(g1[P2]) we have
{2, 3}, Satisfy(g2[P1]) = {3} and Satisfy(g2[P2]) returns ∅.

R+ is the set of states satisfying s > 3 ∧ s < 4 and R = {3}. So, 3 is the only
state from S1 whose transitions change. From line 20, we start to re-explore states from
R. Re-exploring state 3 yields the new state 4 (state 0 is also rediscovered but not re-
explored since it is already in S2). There are no unreachable states in the new model, and
so RestrictToReachable leaves it unchanged. The resulting stochastic game G2 is shown
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in Figure 5.2 (right), where dashed lines denote the state whose outgoing transitions were
modified, and dotted lines indicate newly added states.

Correctness

To conclude this section, we provide a formal proof of the correctness of Algorithm 3.

Theorem 1. The stochastic game constructed by Algorithm 3 is the stochastic game cor-
responding to M with parameter values P2.

The key idea behind the proof is to first prove that the set R contains all the states
from S1 that may have different transitions in G2 (compared to G1), i.e., for every s ∈ S1,
whenever δ1(s, a) 6= δ2(s, a) for some a ∈ A2, then s ∈ R. Because δ2 is re-computed
for such states, we get that for any s ∈ S1 ∩ S2 and a ∈ A2 the distribution δ2(s, a)

is identified correctly. Subsequently, we have to prove that all new states in S2, i.e.
s ∈ (S2 \ S1), are reachable on a path going through one of the states in R or on a path
that starts in a new initial state and consists only of states that belong to S2 \ S1. The
exploration, starting in line 20 (see Algorithm 3), ensures that such states will be added,
along with the corresponding transitions. Finally, we need to prove that S2 does not
contain any unreachable states. The last claim follows trivially from the definition of the
RestrictToReachable algorithm, and hence we only prove the first of the two above claims.

Lemma 1. For every s ∈ S1, whenever δ1(s, a) 6= δ2(s, a) for some a ∈ A2, then s ∈ R.

Proof. We give a proof by contradiction for the case when we add a transition; removing
a transition can be handled in a similar way. Let us assume there exists a state s ∈ S1

satisfying δ1(s, a) 6= δ2(s, a) for some a ∈ A2, but not contained in R. When a new
transition is added in a state s ∈ S1 ∩ S2 there must exist a guard gi[P2] satisfied in state
s and a syntactically equivalent guard gi[P1] that is not satisfied in state s. In such case
in line 6, we have s being added to R+, and hence it is subsequently added to R. ut

Lemma 2. All new states in S2, i.e. s ∈ (S2 \ S1), are reachable on a path going through
one of the states in R, or on a path that starts in a new initial state and consists only of
states that belong to S2 \ S1.

Proof. Paths that start in a new initial state (s2 6= s1) and consist only of states from
S2 \ S1 are handled by the exploration that happens between lines 20-33 and by the fact
that the new initial state is contained in R.

For new states reachable on paths going through R, we will prove the existence of
such paths by contradiction. Let us assume that a new state s ∈ (S2 \ S1) is reachable
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on a path that does not include any state from R. As this path cannot contain states in
S2 \ S1 only (as this case is covered by the first part of the proof), we move backwards
on this path and find state s ∈ S1 and its successor s′ ∈ (S2 \ S1) on a path. For such
a state s there exists an action a ∈ A2 such that δ2(s, a)(s′) > 0. As s′ /∈ S1 we have
that δ1(s, a)(s′) = 0, and from Lemma 1 we know that state s has to belong to R, which
contradicts our assumption. ut

5.5 Symbolic Representation

As mentioned in the previous section, the most costly part of the incremental model
construction procedure described above is the computation of the set of states R whose
transitions are to be re-generated. A simple implementation of the Satisfy function would
iterate through the list of states in S1, checking which ones satisfy each guard g for
parameter values P1 and P2. However, by imposing some restrictions on the syntax of the
PRISM modelling language, we can use a more efficient solution.

Typically, guards in a PRISM model are Boolean combinations of simple arithmetic
constraints over variables and constants. To simplify presentation, we can assume that the
guards are in disjunctive normal form (in fact, in practice, guards are often just a single
conjunction of constraints). Let us further assume that we only have constraints of the
form xi ∼ c or xi − xj ∼ c, where xi and xj are variables, ∼∈ {6,>, <,>} and c ∈ Q.
We will later describe how to generalise this further.

With this assumption in place, we can represent a guard from a PRISM model symbol-
ically, using difference-bounded matrices (DBMs), see Section 3.6 for more information.
We can now return to the implementation of Algorithm 3. Recall that we present the
computation of the set R as being done in two steps: first computing the set R+, and
then computing R := R+ ∩ S1. Assuming the restrictions on guards in a PRISM model
outlined above, we can generate R+ symbolically, using DBMs, and then intersect it with
S1.

For the first step, we construct a list of DBMs for each guard g, as required; this is
done using standard operations such as disjunction, conjunction and negation on DBMs
to build R+. The second step can be done efficiently by storing S1 as a set of red-black
trees [43]. More precisely, we keep a red-black tree containing states of S1, sorted by each
variable of the model. Since a DBM representing a guard can give us the lower and upper
bound on each variable, we use those values to obtain all states satisfying a given guard.
Such range queries can be efficiently implemented using red-black trees.

As an optimisation, to avoid searching red-black trees containing all states of the model,
we implement the following technique. If the guards are of the form x ∼ N ∧ g′ where x
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Figure 5.4: DBM representation of the guard g1 from Example 21.

is a variable, ∼ ∈ {6,>, <,>} is a comparison operator, N is the parameter subject to
change, and g′ is an expression described by a DBM, we keep a red-black tree containing
all states of the model satisfying g′, ordered by the value of x. When performing model
construction, we then identify trees linked to DBMs contained in R, and only search
through these trees. Although in the worst case this can mean searching several large
trees, in practice these trees tend to be small, and hence the method yields a significant
speedup over searching one tree containing all states.

Example 21 We now go back to the PRISM model M and stochastic game G1 from Ex-
amples 19 and 20. After introducing DBMs, the Satisfy function from Algorithm 3 does
not return states but a DBM describing which states satisfy the given guard. In Fig-
ure 5.4, we can see a matrix representation of the DBM describing states that satisfy
guard g1 = (s > 1 ∧ s < s_max) for P1 = {s_max = 3} and P2 = {s_max = 4}.
The operations from lines 5 and 6 of Algorithm 3 now operate on DBMs and the set R+

is also described as a DBM. The DBM storing R+ can be seen on the right-hand side
of Figure 5.4. DBMs provide upper and lower bound on the stored variable and for our
example we obtain s = 3.

The conjunction operation from line 8 of Algorithm 3 is implemented as a range query
on the red-black tree and in our case returns R = {3}. Now, from line 9, we follow the
non-DBM version of the incremental model construction algorithm. For an example of a
run of the non-DBM incremental model construction see Example 20.
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Restrictions of DBMs

We previously mentioned that DBMs are an efficient way to store constraints of the form
(xi−xj) 6 c. Without further insights, such restrictions on the structure of the constraints
significantly reduce the number of models defined in the PRISM modelling language that
we can handle. We propose a solution that handles additional types of constraints, in-
cluding (xi + xj) 6 c , (a · xi + b · xj) 6 c, where a, b ∈ Q>0, as well as functions, if the
input of these functions are variables or defined constants.

To extend the class of models that we can handle we introduce a renaming scheme. Let
us assume that one of the guards contains a constraint of the form (xi+xj) 6 C, where C
is one of the unresolved parameters. We replace xi + xj by an auxiliary variable xi,j and
in every update of the model that changes the value of xi or xj we add xi,j := xi +xj. We
execute this step before obtaining DBMs from the guards. As such, the obtained DBM
includes constraints of the variable xi,j, which will be used during the search process. The
other type of constraint can be supported using exactly the same scheme.

5.6 Experimental Results

We have implemented our incremental model construction algorithm in PRISM-games [31],
building on its “explicit” model checking engine and using its built-in DBM library. Our
experiments were performed on an Intel Core i7-2600 CPU 3.40GHz Quad-Core Processor
with 8GB memory running Fedora 15 x86_64 Linux.

We present run times for both of PRISM’s implementations of model construction,
using symbolic and explicit-state data structures. Symbolic implementation is available
in the MTBDD engine, explicit-state implementation in the explicit engine. The former is
often more efficient, especially for large models, but the latter is also relevant since for some
models it can outperform the MTBDD engine and it is the basis for our implementation.
At the time of writing this thesis, the explicit engine was the only available engine for
stochastic games.

We investigated the performance of Algorithm 3 on six PRISM models. Although
this thesis focuses on stochastic games, the incremental model construction technique
also applies to other types of probabilistic models supported by PRISM, namely Markov
decision processes (MDPs) and discrete-time Markov chains (DTMCs). Of the six models
we use, the first two are stochastic games: android_3 and mdsm; zeroconf, firewire, and
mer are MDPs and the last one is a DTMC (crowds). The crowds example is used to
show how our method performs in a case when one parameter affects several variables.
We include full details of these models, and of their parameters, online at [126], and
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in Appendix A.

Table 5.1 and 5.2 show the running times for our incremental model construction ap-
proach, compared to the standard (non-incremental) methods implemented in PRISM.
We present average times for constructing two models using successive values of a model
parameter (see column 2). For the incremental case, this entails one normal model con-
struction, followed by one incremental step. In our experiments, parameter values are
incremented by one but the algorithm works in the same fashion when values are decre-
mented or changed by a bigger value.

In Table 5.1, we see the comparison results for MDPs for both the explicit and MTBDD
engine of PRISM. The first observation that we make is that in some cases the explicit
engine can outperform the MTBDD engine. This can be seen for almost all parameter
values in zeroconf case study and for all values in firewire. Previously [104], it has been
shown that the MTBDD engine performs well for probabilistic models that contain a
certain degree of regularity. We believe this is not the case for zeroconf and firewire
models. Typically, regularity is present in models that originate from a model written in
PRISM modelling language that contains multiple modules that are similar. This is not
the case in the two examples that we just mentioned.

Performance results

We now move to compare results of the incremental method with non-incremental model
construction. For zeroconf and firewire the incremental method shows very good improve-
ments and the second step takes only a small fraction of time, bringing the average time
close to the half of the explicit engine time.

This is possible because in many cases the explicit engine that is the basis of our im-
plementation outperforms the MTBDD engine. Additionally, in the incremental step, the
algorithm has to create a smaller set of states than a non-incremental model construc-
tion algorithm. For example, in the case of zeroconf and K = 9 − 10, the incremental
model has to add 389, 532 states, whereas the non-incremental has to build a full state
space of 3, 001, 911 states. The difference is considerably larger in the case of firewire and
deadline = 6000 − 6001, where the incremental algorithm adds 601 states compared to
3, 374, 468 added by the non-incremental algorithm.

For zeroconf and K = 9− 10, we observe counter-intuitive behaviour where the incre-
mental method takes significantly less than half of the time of the non-incremental method.
This is surprising because, for K = 9, we build the model using non-incremental method
and only for K = 10 apply the incremental method. Subsequently, the best achievable re-
sult for the incremental method should be around half of the non-incremental method, but
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Model
[parameters]

Parameter
values States

Model construction time (s)
PRISM

(MTBDD)
PRISM
(explicit)

Incr.
(Alg. 3)

zeroconf
(N = 6, K)

3− 4 179,774− 307,768 6.1 2.7 2.3
4− 5 307,768− 496,291 9.9 4.3 3.7
5− 6 496,291− 798,471 16.2 7.2 6.1
6− 7 798,471− 1,248,568 25.4 11.8 9.5
7− 8 1,248,568− 1,870,338 38.9 18.8 14.6
8− 9 1,870,338− 2,612,379 55.5 55.6 20.9
9− 10 2,612,379− 3,001,911 69.8 95.6 27.6

firewire
(deadline)

3000− 3001 1,570,867− 1,571,468 32.6 5.3 3.9
3500− 3501 1,871,367− 1,871,968 43.1 6.4 4.4
4000− 4001 2,171,867− 2,172,468 55.5 7.8 5.2
4500− 4501 2,472,367− 2,472,968 71.7 8.7 6.0
5000− 5001 2,772,867− 2,773,468 86.2 9.9 6.8
5500− 5501 3,073,367− 3,073,968 109.5 10.7 7.3
6000− 6001 3,373,867− 3,374,468 122.1 15.4 8.4

mer
(N)

25− 26 149,239− 155,146 0.8 2.0 1.4
50− 51 296,914− 302,821 1.6 3.8 2.5
75− 76 444,589− 450,496 2.3 5.7 3.6

100− 101 592,264− 598,171 3.0 7.9 4.7
125− 126 739,939− 745,846 3.8 9.8 6.2
150− 151 887,614− 893,521 4.6 11.6 7.0

crowds
(TotalRuns)

50− 51 357,477− 378,847 1.2 1.9 1.6
60− 61 610,672− 641,112 1.8 3.7 2.6
70− 71 961,767− 1,002,877 2.8 5.5 4.2
80− 81 1,426,762− 1,480,142 3.7 8.5 6.3
90− 91 2,021,657− 2,088,907 4.8 13.4 9.0

100− 101 2,762,452− 2,845,172 6.2 24.5 15.7

Table 5.1: Experimental results for incremental model construction (Algorithm 3) for
MDPs and DTMCs.
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Figure 5.5: Multiple runs of incremental model construction.

not significantly below that number. We believe this behaviour is caused by poor garbage
collection of the non-incremental model construction algorithm. The non-incremental al-
gorithm keeps the first model in the memory, while the model for the second experiment
is being built. The incremental method keeps only one model in memory, and therefore
can avoid such situations.

Outperforming MTBDD engine

For both crowds and mer case study, the explicit engine is several times slower than the
MTBDD one. Therefore, the incremental algorithm will not be able to outperform the
MTBDD engine when considering just a single parameter change. Instead, in those cases
we perform a set of experiments for a large range of the parameter values, and show the
results as a graph in Figure 5.5.

The results demonstrate that the incremental method quickly improves over the non-
incremental model construction that uses the MTBDD engine. In the case of the crowds
case study we improved after only 2 iterations, and for mer we improved after 3. In
subsequent iterations, the time required by the incremental method grows more slowly
than the time required by the non-incremental algorithm. This is possible because, for
both crowds and mer, we observed only small increases of the state space size when
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Model
[parameters]

Parameter
values States

Model construction time (s)
PRISM
(explicit)

Incr.
(Alg. 3)

android_3
[r, s]

3, 500− 501 240,097−240,577 2.9 2.4
3, 1000− 1001 480,097−480,577 8.2 4.9
3, 1500− 1501 720,097−720,577 13.4 7.8
3, 2000− 2001 960,097−960,577 21.7 11.3
3, 2500− 2501 1,200,097−1,200,577 28.0 13.6

mdsm
[N,D]

3, 50− 51 574,968−586,488 7.6 6.1
3, 75− 76 862,968−874,488 10.7 7.1

3, 100− 101 1,150,968−1,162,488 16.1 9.4
3, 125− 126 1,438,968−1,450,488 20.9 12.8
3, 150− 151 1,726,968−1,738,488 24.8 18.8
4, 10− 11 613,728−675,936 10.8 7.7
4, 20− 21 1,235,808−1,298,016 21.5 13.0
4, 30− 31 1,857,888−1,920,096 34.6 22.9

Table 5.2: Experimental results for incremental model construction (Algorithm 3) for
stochastic games.

incrementing the parameter.

Table 5.2 presents our results for stochastic games. The incremental model construction
outperforms the non-incremental method in every case. Overall, when compared to results
obtained for MDPs and DTMC, our algorithm exhibits similar performance for stochastic
games. This is expected because the model construction process does not significantly
differ for the three types of probabilistic models. Similarly to MDPs and DTMC examples,
we attribute the performance of the algorithm to a small number of states that needs to
be re-visited and subsequently added.

Profiling incremental method

We conclude the experimental section with a profiling experiment that we previously
considered in Section 5.3, but now performed for the incremental model construction. We
refer the reader to Section 5.3 for more information about the setup of the experiment.
We present the results in Figure 5.6.

In contrast to the non-incremental algorithm, the incremental method spends signifi-
cantly less time on the evaluation and storage operations. At the end of Section 5.3, we
mentioned that reducing the time requirement of these operations will be a key factor
for obtaining performance improvements. The incremental algorithm spends the majority
of its time on other and transformation operations, which always need to be executed,
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Figure 5.6: Profiling incremental model construction.

regardless of the model construction method used. This justifies our intuition that our
implementation of the incremental model construction is efficient and reduces the number
of expensive state re-evaluations to the minimum.

The experimental results in this section are very encouraging and show that the incre-
mental model construction performs well in every case we considered. The method almost
always outperforms the explicit engine and, for cases where the non-incremental model
construction gives better results, we improve when considering several parameter changes.

5.7 Summary

In this chapter, we presented a novel incremental model construction technique. We first
showed how changes to PRISM model parameters can cause either structural or non-
structural changes to the probabilistic model. We then presented the non-incremental
model construction algorithm, which forms the basis of our incremental method.

By performing profiling of the non-incremental method, we learned that, in order to
achieve performance gains in our new algorithm, we had to reduce the number of state
evaluations and use a more efficient data structure for storing states.

A DBM proved to be an effective way for mapping between PRISM commands and
states satisfying guards of those commands. This data structure allowed us to significantly
reduce the number of state evaluations, which was the first source of the performance
improvements. To efficiently store states, we used red-black trees, which was the second
source of speed-up provided by our method.

Lastly, we discussed the implementation of our techniques and showed experimental
results performed using several PRISM case studies. Our method turned out to be very ef-
ficient when compared to non-incremental model construction and, even when considering
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a single change of parameters, we were able to demonstrate a significant speed-up.



Chapter 6

Permissive Controller Synthesis

6.1 Introduction

In this chapter, we tackle the problem of synthesising robust and flexible controllers,
which are resilient to unexpected changes in the system at runtime. For example, one or
more of the actions that the controller can choose at runtime might unexpectedly become
unavailable, or additional constraints may be imposed on the system that make some
actions preferable to others. We cast this problem as a means to improve the robustness
of the controllers used in the framework from Chapter 4.

To formalise the notion of robust and flexible controllers we, develop novel, permis-
sive controller synthesis techniques for systems modelled as stochastic two-player games.
Rather than generating strategies, which specify a single action to take at each time-step,
we synthesise multi-strategies, which specify multiple possible actions. As in classical con-
troller synthesis, generation of a multi-strategy is driven by a formally specified quantita-
tive property: we focus on probabilistic reachability and expected total reward properties.
The property must be guaranteed to hold, whichever of the specified actions are taken and
regardless of the behaviour of the environment.

Simultaneously, we aim to synthesise multi-strategies that are as permissive as possible,
which we quantify by assigning penalties to actions. These are incurred when a multi-
strategy blocks (does not make available) a given action. Actions can be assigned different
penalty values to indicate the relative importance of allowing them. Permissive controller
synthesis amounts to finding a multi-strategy whose total incurred penalty is minimal, or
below some given threshold.

Next, we propose practical methods for synthesising multi-strategies using mixed-
integer linear programming (MILP) (see Section 3.7). We give an exact encoding for
deterministic multi-strategies and an approximation scheme (with adaptable precision)

69
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for the randomised case. Finally, we implement our techniques and evaluate their effec-
tiveness on a range of case studies.

The chapter is structured as follows. We start by formalising the notions of multi-
strategies and penalties, and define the permissive controller synthesis problem. In the
following sections, we discuss the expressiveness of different types of multi-strategies and
prove that synthesising a multi-strategy is an NP-hard problem. After presenting the
theoretical properties of multi-strategies, we show a practical MILP encoding along with
several optimisations that allow for multi-strategies to be used in practice. The prac-
ticality of the results is described in the experimental section, where we analyse both
the performance of the method, as well as explain how multi-strategies can provide new
insights when analysing PRISM case studies.

6.2 Permissive Controller Synthesis

We now define the permissive controller synthesis problem, which generalises classical
controller synthesis by producing multi-strategies that offer the controller flexibility about
which actions to take in each state.

6.2.1 Multi-Strategies

Multi-strategies generalise the notion of strategies, as defined in Section 3.1.

Definition 1 (Multi-strategy). A (memoryless) multi-strategy for a game G is a function
θ :S♦→Dist(2A) with θ(s)(∅) = 0 for all s ∈ S♦.

As for strategies, a multi-strategy θ is deterministic if θ always returns a Dirac distri-
bution, and randomised otherwise. We write Θdet

G and Θrand
G for the sets of all deterministic

and randomised multi-strategies in G, respectively.
A deterministic multi-strategy θ chooses a set of allowed actions in each state s ∈ S♦,

i.e., those in the unique set B ⊆ A for which θ(s)(B) = 1. The remaining actions A(s) \B
are said to be blocked in s. In contrast to classical controller synthesis, where a strategy
σ can be seen as providing instructions about precisely which action to take in each state,
in permissive controller synthesis a multi-strategy provides multiple actions, any of which
can be taken. A randomised multi-strategy generalises this by selecting a set of allowed
actions in state s randomly, according to distribution θ(s).

We say that a controller strategy σ complies with multi-strategy θ if it picks actions
that are allowed by θ.
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Definition 2 (Compliance). Let θ be a multi-strategy and σ a strategy for a game G. We
say that σ is compliant (or that it complies) with θ, written σ / θ, if, for any state s
and non-empty subset B ⊆ A(s), there is a distribution ds,B ∈ Dist(B) such that, for all
a ∈ A(s), σ(s)(a) =

∑
B3a θ(s)(B) · ds,B(a).

Now, we can define the notion of a sound multi-strategy, i.e., one that is guaranteed
to satisfy a property φ when complied with.

Definition 3 (Sound multi-strategy). A multi-strategy θ for game G is sound for a prop-
erty φ if any strategy σ that complies with θ is sound for φ.

Example 22 Figure 6.1 shows a stochastic game G, with controller and environment
player states drawn as diamonds and squares, respectively. It models the control of a
robot moving between 4 locations (s, s2, s3, s5). When moving east (s→s2 or s3→s5),
it may be blocked by a second robot, depending on the position of the latter. If it is
blocked, there is a chance that it does not successfully move to the next location. We use
a reward structure moves , which assigns 1 to the controller actions north1 , east1 , east2 ,
south1 , south2 , and define property φ = Rmoves

65 [ C ], meaning that the expected number of
moves to reach s5 is at most 5.

The strategy that picks south1 in s and east2 in s3 results in an expected reward of
3.5 (i.e., 3.5 moves on average to reach s5). The strategy that picks east1 in s and south2

in s2 yields expected reward 5. Finally, the strategy that picks south1 in s and north1 in
s3 has an expected reward of 15.16, which does not satisfy the bound.

Thus, if we combine the first two strategies, we obtain a (deterministic) multi-strategy
θ that picks {south1 , east1} in s, {south2} in s2 and {east2} in s3 and is sound for φ since
the expected reward is always at most 5.

6.2.2 Penalties and Permissivity

The motivation for multi-strategies is to offer flexibility in the actions to be taken, while
still satisfying a particular property φ. Generally, we want a multi-strategy θ to be as
permissive as possible, i.e. to impose as few restrictions as possible on actions to be taken.
We formalise the notion of permissivity by assigning penalties to actions in the model,
which we then use to quantify the extent to which actions are blocked by θ. Penalties
provide expressivity in the way that we quantify permissivity: if it is more preferable that
certain actions are allowed than others, then these can be assigned higher penalty values.
To formalise the notion of penalties we define the penalty scheme.
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Figure 6.1: A stochastic game G for Example 22.

Definition 4 (Penalty scheme). A penalty scheme is a pair (ψ, t), comprising a penalty
function ψ : S♦ × A→ R>0 and a penalty type t ∈ {sta, dyn}.

The function ψ represents the impact of blocking each action in each controller state
of the game. The type t dictates how penalties for individual actions are combined to
quantify the permissiveness of a specific multi-strategy. For static penalties (t = sta), we
simply sum penalties across all states of the model. For dynamic penalties (t = dyn), we
take into account the likelihood that blocked actions would actually have been available,
by using the expected sum of penalty values. Before we define the notion of static and
dynamic penalties, we first introduce the local penalty.

Definition 5 (Local penalty). The local penalty for θ and ψ at the state s is:

pen loc(ψ, θ, s) =
∑

B⊆A(s)

∑
a/∈B

θ(s, B)ψ(s, a).

If θ is deterministic, pen loc(ψ, θ, s) is simply the sum of the penalties of actions that
are blocked by θ in s. If θ is randomised, pen loc(ψ, θ, s) gives the expected penalty value
in s, i.e. the sum of penalties weighted by the probability with which θ blocks them in s.

Definition 6 (Static penalty). The static penalty of multi-strategy θ and penalty function
ψ is given by:

pensta(ψ, θ) =
∑
s∈S♦

pen loc(ψ, θ, s).

For the dynamic case, we use the (worst-case) expected sum of local penalties. We
define a reward structure ψθrew given by the local penalties: ψθrew(s, a) = pen loc(ψ, θ, s) for
all a ∈ A(s).
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Definition 7 (Dynamic penalty). Dynamic penalty of multi-strategy θ and a penalty func-
tion ψ is given by:

pendyn(ψ, θ, s) = sup{Eσ,π
G,s (ψ

θ
rew) |σ ∈ Σ♦G, π ∈ Σ�G and σ complies with θ}.

We use pendyn(ψ, θ) = pendyn(ψ, θ, s) to reference the dynamic penalty in the initial
state.

6.2.3 Permissive Controller Synthesis

We can now formally define the central problem studied in this chapter.

Definition 8 (Permissive controller synthesis). Consider a game G, a class of multi-
strategies ? ∈ {det , rand}, a property φ, a penalty scheme (ψ, t) and a threshold c ∈ Q>0.
The permissive controller synthesis problem asks: does there exist a multi-strategy θ ∈ Θ?

G

that is sound for φ and satisfies pent(ψ, θ) 6 c?

Alternatively, in a more quantitative fashion, we can aim to synthesise (if it exists) an
optimally permissive sound multi-strategy.

Definition 9 (Optimally permissive). Let G, ?, φ and (ψ, t) be as in Definition 8. A sound
multi-strategy θ̂ ∈ Θ?

G is optimally permissive if its penalty pent(ψ, θ̂) equals inf{pent(ψ, θ) |
θ ∈ Θ?

G and θ is sound for φ}.

Example 23 We return to Example 22 and consider a static penalty scheme (ψ, sta)

assigning 1 to the actions north1 , east1 , east2 , south1 , south2 . The deterministic multi-
strategy θ from Example 22 is optimally permissive for φ = Rmoves

65 [ C ], with penalty 1
(just north1 in s3 is blocked). If we instead use φ′ = Rmoves

616 [ C ], the multi-strategy θ′ that
extends θ by also allowing north1 is now sound and optimally permissive, with penalty 0.
Alternatively, the randomised multi-strategy θ′′ that picks 0.7:{east2}+0.3:{north1 , east2}
in s3 is sound for φ with penalty just 0.7.

Next, we establish several fundamental results about the permissive controller synthesis
problem. Technical proofs can be found in Appendix B.

Optimality

Recall that two key parameters of the problem are the type of multi-strategy sought
(deterministic or randomised) and the type of penalty scheme used (static or dynamic). We
first note that randomised multi-strategies are strictly more powerful than deterministic
ones, i.e. they can be more permissive (yield a lower penalty) for the same property φ.
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Theorem 2. The answer to a permissive controller synthesis problem (for either a static
or dynamic penalty scheme) can be “no” for deterministic multi-strategies, but “yes” for
randomised ones.

Proof. Consider an MDP with states s, t1 and t2, and actions a1 and a2, where δ(s, ai)(ti) =

1 for i ∈ {1, 2}, and t1, t2 have self-loops only. Let r be a reward structure assigning 1

to (s, a1) and 0 to all other state-action pairs, and ψ be a penalty function assigning
1 to (s, a2) and 0 elsewhere. We then ask whether there is a multi-strategy satisfying
φ = R r>0.5 [ C ] and with penalty of at most 0.5.

Considering either static or dynamic penalties, the randomised multi-strategy θ that
chooses distribution 0.5:{a1}+ 0.5:{a2} in s is sound and yields penalty of 0.5. However,
there is no such deterministic multi-strategy.

ut

This is why we explicitly distinguish between classes of multi-strategies when defining
permissive controller synthesis. This situation contrasts with classical controller synthesis,
where deterministic strategies are optimal for the same classes of properties φ. Intuitively,
randomisation is more powerful in this case because of the trade-off between rewards and
penalties. Similar results exist in, for example, multi-objective controller synthesis for
MDPs [53].

Second, we observe that, for the case of static penalties, the optimal penalty value for
a given property (the infimum of achievable values) may not actually be achievable by any
randomised multi-strategy.

Theorem 3. For permissive controller synthesis using a static penalty scheme, an opti-
mally permissive randomised multi-strategy does not always exist.

Proof. Consider a stochastic game with states s and t, and actions a and b, where we
define δ(s, a)(s) = 1 and δ(s, b)(t) = 1, and t has just a self-loop. The reward structure r
assigns 1 to (s, b) and 0 to all other state-action pairs. The penalty function ψ assigns 1

to (s, a) and 0 elsewhere.
Now observe that any multi-strategy which blocks the action a with probability ε > 0

and does not block any other actions incurs penalty ε and is sound for R r>1 [ C ] since
any strategy which complies with the multi-strategy satisfies that the action b is taken
eventually. Thus, the infimum of achievable penalties is 0. However, the multi-strategy
that incurs penalty 0, i.e. does not block any actions, is not sound for R r>1 [ C ].

ut

If, on the other hand, we restrict our attention to deterministic strategies, then an
optimally permissive multi-strategy does always exist (since the set of deterministic, mem-
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oryless multi-strategies is finite). For randomised multi-strategies with dynamic penalties,
the question remains open.

Complexity

Next, we present complexity results for the different variants of the permissive controller
synthesis problem. The complete proofs can be found in Appendix B. We begin with lower
bounds.

Theorem 4. The permissive controller synthesis problem is NP-hard, for either static or
dynamic penalties, and deterministic or randomised multi-strategies.

We prove NP-hardness by reduction from the Knapsack problem, where weights of
items are represented by penalties, and their values are expressed in terms of rewards
to be achieved. The most delicate part is the proof for randomised strategies, where
we need to ensure that the multi-strategy cannot benefit from picking certain actions
(corresponding to items being put to the knapsack) with probability other than 0 or 1.
For upper bounds, we have the following.

Theorem 5. The permissive controller synthesis problem for deterministic (resp. ran-
domised) strategies is in NP (resp. PSPACE) for dynamic/ static penalties.

For deterministic multi-strategies, it is straightforward to show NP membership in
both the dynamic and static penalty case, since we can guess a multi-strategy satisfying
the required conditions and check its correctness in polynomial time. For randomised
multi-strategies, with some technical effort we can encode existence of the required multi-
strategy as a formula of the existential fragment of the theory of real arithmetic, and
solvable with polynomial space [27].

A question is whether the PSPACE upper bound for randomised multi-strategies can
be improved. We show that this is likely to be difficult, by giving a reduction from the
square-root-sum problem. We use a variant of the problem that asks, for positive rationals
x1,. . . ,xn and y, whether

∑n
i=1

√
xi 6 y. This problem is known to be in PSPACE, but

establishing a better complexity bound is a long-standing open problem in computational
geometry [63].

Theorem 6. There is a reduction from the square-root-sum problem to the permissive
controller synthesis problem with randomised multi-strategies, for both static and dynamic
penalties.
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6.3 MILP-Based Synthesis of Multi-Strategies

We now consider practical methods for synthesising multi-strategies that are sound for a
property φ and optimally permissive for some penalty scheme. Our methods use mixed-
integer linear programming (MILP) (see Section 3.7), which optimises an objective func-
tion subject to linear constraints that mix both real and integer variables. A variety of
efficient, off-the-shelf MILP solvers exists.

An important feature of the MILP solvers is that they work incrementally, produc-
ing a sequence of increasingly good solutions. Here, that means generating a series of
sound multi-strategies that are increasingly permissive. In practice, when resources are
constrained, it may be acceptable to stop early and accept a multi-strategy that is sound
but not necessarily optimally permissive.

It is possible to devise a similar encoding to the one that we present but for an SMT
solver. From our experience SMT solvers are less efficient than MILP solvers when chal-
lenged with a task of minimising an objective function. Therefore, our decision was to
purely focus on MILP-based solution.

We begin by discussing the synthesis of deterministic multi-strategies, first for static
penalties and then for dynamic penalties. Subsequently, we present an approach to synthe-
sising approximations to optimal randomised multi-strategies. In each case, we describe
encodings into MILP problems and prove their correctness. We conclude this section with
a brief discussion of ways to optimise the MILP encodings. Then, in Section 6.4, we
investigate the practical applicability of our techniques.

Here, and in the rest of this section, we assume that the property φ is of the form
R r>b [ C ]. For the upper bounds on expected rewards (φ = R r6b [ C ]) a similar encod-
ing follows. For the purposes of encoding into MILP, we rescale r and b such that
supσ,π E

σ,π
G,s (r) < 1 for all s, and rescale every (non-zero) penalty such that ψ(s, a) > 1 for

all s and a ∈ A(s).

6.3.1 Deterministic Multi-Strategies with Static Penalties

Figure 6.2 shows an encoding into MILP of the problem of finding an optimally permissive
deterministic multi-strategy for property φ = R r>b [ C ] and a static penalty scheme (ψ, sta).
The encoding uses 5 types of variables: ys,a ∈ {0, 1}, xs ∈ [0, 1], αs ∈ {0, 1}, βs,a,t ∈ {0, 1}
and γt ∈ [0, 1], where s, t ∈ S, and a ∈ A. The worst-case size of the MILP problem is
O(|A|·|S|2·κ), where κ stands for the longest encoding of a number used.

Variables ys,a encode a multi-strategy θ as follows: ys,a has value 1 iff θ allows action a
in s (constraint (6.2) enforces at least one allowed action per state). Variables xs represent
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Minimise: − xs +
∑

s∈S♦

∑
a∈A(s)

(1− ys,a)·ψ(s, a) subject to:

xs > b (6.1)

1 6
∑

a∈A(s)
ys,a for all s ∈ S♦ (6.2)

xs 6
∑

t∈S
δ(s, a)(t)·xt + r(s, a) + (1− ys,a) for all s ∈ S♦, a ∈ A(s) (6.3)

xs 6
∑

t∈S
δ(s, a)(t)·xt for all s ∈ S�, a ∈ A(s) (6.4)

xs 6 αs for all s ∈ S (6.5)

ys,a = (1− αs) +
∑

t∈supp(δ(s,a))
βs,a,t for all s ∈ S, a ∈ A(s) (6.6)

ys,a = 1 for all s ∈ S�, a ∈ A(s) (6.7)

γt < γs + (1− βs,a,t) + r(s, a) for all (s, a, t) ∈ supp(δ) (6.8)

Figure 6.2: MILP encoding for deterministic multi-strategies with static penalties.

Minimise: zs subject to (6.1),. . . ,(6.8) and:

`s =
∑

a∈A(s)
ψ(s, a)·(1− ys,a) for all s ∈ S♦ (6.9)

zs >
∑

t∈S
δ(s, a)(t)·zt + `s − c·(1− ys,a) for all s ∈ S♦, a ∈ A(s) (6.10)

zs >
∑

t∈S
δ(s, a)(t)·zt for all s ∈ S�, a ∈ A(s) (6.11)

Figure 6.3: MILP encoding for deterministic multi-strategies with dynamic penalties.

the worst-case expected total reward (for r) from state s, under any controller strategy
complying with θ and under any environment strategy. This is captured by constraints
(6.3)–(6.4) (which amounts to minimising the reward in an MDP). Constraint (6.1) imposes
the required bound of b on the reward from s.

The objective function minimises the static penalty (the sum of all local penalties)
minus the expected reward in the initial state. The latter acts as a tie-breaker between so-
lutions with equal penalties (but, thanks to rescaling, is always dominated by the penalties
and therefore does not affect optimality).

As an additional technicality, we need to ensure the values of xs are the least solution
of the defining inequalities, to deal with the possibility of zero reward loops. To achieve
this, we use an approach similar to the one taken in [121]. It is sufficient to ensure that
xs = 0 whenever the minimum expected reward from s under θ is 0, which is true if and
only if, starting from s, it is possible to avoid ever taking an action with positive reward.
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In our encoding, αs = 1 if xs is positive (constraint (6.5)). The binary variables
βs,a,t = 1 represent, for each such s and each action a allowed in s, a choice of successor
t = t(s, a) ∈ supp(δ(s, a)) (constraint (6.6)). The variables γs then represent a ranking
function: if r(s, a) = 0, then γs > γt(s,a) (constraint (6.8)). If a positive reward could
be avoided starting from s, there would in particular be an infinite sequence s0, a1, s1, . . .

with s0 = s and, for all i, either (i) xsi > xsi+1
, or (ii) xsi = xsi+1

, si+1 = t(si, ai) and
r(si, ai) = 0, and therefore γsi > γsi+1

. Since the set of states S is finite, this sequence
would have to enter a loop, leading to a contradiction.

Example 24 In Figure 6.4, we show the MILP encoding for deterministic multi-strategies
with static penalties for the model from Figure 6.1. For readability reasons, we will only
show constraints handling zero reward loops (i.e. constraints from lines 6.5 – 6.8) for states
that have zero reward loops, that is, state s5.

In our example, we scaled the rewards by dividing them by 100, such that the ex-
pected reward for any state is always smaller than one. We consider a new property,
φ = Rmoves

>0.05 [ C ], that guarantees that the robot takes at least 0.05 moves to reach s5. An
optimally permissive multi-strategy satisfying φ picks {east1, south1} in s, south2 in s2,
and north1 in s3.

An equivalent solution to the MILP problem would assign ys,east1 = 1, ys,south1 = 1,
ys2,south2 = 1, ys3,north1 = 1, ys3,east2 = 0, and ys5,done1 = 1. For the state s5, we have
αs5 = 0, γs5 = 0, and βs5,done1,s5 = 0, which forces the expected total reward in that state
to be equal to zero.

Correctness

Below, we present the correctness proof for the encoding from Figure 6.2.

Theorem 7. Let G be a game, φ = R r>b [ C ] a property and (ψ, sta) a static penalty scheme.
There is a sound multi-strategy for φ with penalty p if and only if any optimal assignment
to the MILP instance from Figure 6.2 satisfies p =

∑
s∈S♦

∑
a∈A(s)(1− ys,a)·ψ(s, a).

The correctness proof is divided into two parts. First, we show how a sound multi-
strategy yields an assignment to variables that satisfy the constraints from Figure 6.2. In
the other direction, given a satisfying assignment from the encoding, we show how to build
a corresponding multi-strategy.

The key observation that we make in the proof is that, by restricting a stochastic game
to choices that are allowed by the multi-strategy, we end up with solving an MDP. This
allows us to use some of the standard results [107] for MDPs and LP. A full proof can be
found in Appendix B.
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Minimise:− xs +

(1− ys,east1) + (1− ys,south1) + (1− ys2,south2) +

(1− ys3,north1) + (1− ys3,east2) subject to:

xs > 0.05

1 6 ys,east1 + ys,south1
1 6 ys2,south2
1 6 ys3,north1 + ys3,east2
1 6 ys5,done1

xs 6 xs1 + 0.01 + (1− ys,east1)
xs 6 xs3 + 0.01 + (1− ys,south1)
xs2 6 xs5 + 0.01 + (1− ys2,south2)
xs3 6 0.7 · xs + 0.3 · xs4 + 0.01 + (1− ys3,north1)
xs3 6 xs4 + 0.01 + (1− ys3,east2)

xs1 6 xs2
xs1 6 0.75 · xs + 0.25 · xs2
xs4 6 xs5
xs4 6 0.6 · xs3 + 0.4 · xs5

xs5 6 αs5
ys5,done1 = (1− αs5) + βs5,done1,s5

γs5 < γs5 + (1− βs5,done1,s5)

Figure 6.4: MILP encoding for the model from Figure 6.1.

6.3.2 Deterministic Multi-Strategies with Dynamic Penalties

Next, we show how to compute a sound and optimally permissive deterministic multi-
strategy for a dynamic penalty scheme (ψ, dyn). This case is more subtle since the optimal
penalty can be infinite. Hence, our solution proceeds in two steps as follows.

Initially, we determine if there is some sound multi-strategy. For this, we just need
to check for the existence of a sound strategy using standard algorithms for solution of
stochastic games [42, 55]. If there is no sound multi-strategy, we are done. Otherwise, we
use the MILP problem in Figure 6.3 to determine the penalty for an optimally permissive
sound multi-strategy. This MILP encoding extends the one in Figure 6.2 for static penal-
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ties, adding variables `s and zs, representing the local and the expected penalty in state
s, and three extra sets of constraints. First, (6.9) and (6.10) define the expected penalty
in controller states, which is the sum of penalties for all disabled actions and those in the
successor states, multiplied by their transition probabilities. The behaviour of the envi-
ronment states is then captured by constraint (6.11), where we only maximise the penalty,
without incurring any penalty locally.

The constant c in (6.10) is chosen to be no lower than any finite penalty achievable by
a deterministic multi-strategy, a possible value being:

∞∑
i=0

(1− p|S|)i · p|S| · i · |S| · penmax (6.12)

where p is the smallest non-zero probability assigned by δ, and penmax is the maximal
local penalty over all states. To see that (6.12) gives a safe bound on c, observe that, for
the penalty to be finite under a deterministic multi-strategy, for every state s there must
be a path of length at most |S| to a state from which no penalty will be incurred.

If the MILP problem has a solution, this is the optimal dynamic penalty over all
sound multi-strategies. If not, no deterministic sound multi-strategy has finite penalty
and the optimal penalty is ∞ (recall that we already established there is some sound
multi-strategy). In practice, we might choose a lower value of c than the one above,
resulting in a multi-strategy that is sound, but possibly not optimally permissive.

Correctness

Formally, correctness of the MILP encoding for the case of dynamic penalties is captured
by the following theorem.

Theorem 8. Let G be a game, φ = R r>b [ C ] a property and (ψ, dyn) a dynamic penalty
scheme. Assume there is a sound multi-strategy for φ. The MILP formulation from Fig-
ure 6.3 satisfies: (a) there is no solution if and only if the optimally permissive determin-
istic multi-strategy yields infinite penalty; and (b) there is a solution z̄s if and only if an
optimally permissive deterministic multi-strategy yields penalty z̄s.

The proof is an extension of the proof for Theorem 7 and can be found Appendix B.

6.3.3 Approximating Randomised Multi-Strategies

In Section 6.2.3, we showed that randomised multi-strategies can outperform deterministic
ones. The MILP encodings in Figures 6.2 and 6.3, though, cannot be adapted to the
randomised case, since this would need non-linear constraints.
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Instead, in this section, we propose an approximation which finds the optimal ran-
domised multi-strategy θ in which each probability θ(s, B) is a multiple of 1

M
for a given

granularity M . Any such multi-strategy can then be simulated by a deterministic one on
a transformed game, allowing synthesis to be carried out using the MILP-based methods
described in the previous section. Before giving the definition of the transformed game,
we show that we can simplify our problem by restricting to multi-strategies which in any
state select at most two actions with non-zero probability.

Theorem 9. For a (static or dynamic) penalty scheme (ψ, t) and any sound multi-strategy
θ we can construct another sound multi-strategy θ′ such that pent(ψ, θ) > pent(ψ, θ

′) and
|supp(θ′(s))| 6 2 for any s ∈ S♦.

In the proof we use a geometrical representation where the reward and penalty achieved
by each set of actions are represented by a point in the two-dimensional plane. We show
that for every multi-strategy a convex combination of two points yields a randomised
multi-strategy with optimal penalty. The points specify the sets of actions on which we
randomise, while the coefficients specify the probability for each set to be chosen. A more
detailed presentation of the proof can be found in Appendix B.

The result in Theorem 9 allows us to simplify the game construction that we use
to map between (discretised) randomised multi-strategies and deterministic ones. The
transformation is illustrated in Figure 6.5. The left-hand side shows a controller state
s ∈ S♦ in the original game (i.e., the game for which we are seeking randomised multi-
strategies). For each such state, we add the two layers of states illustrated on the right-
hand side of the figure: gadgets s′1, s′2 representing the two subsets B ⊆ A(s) with θ(s, B) >

0, and selectors si (for 1 6 i 6 m), which distribute probability among the two gadgets.
The si are reached from s via a transition using fixed probabilities p1, . . . , pm which need
to be chosen appropriately. For efficiency, we want to minimise the number of selectors m
for each state s.

We let m = b1 + log2Mc and pi = li
M
, where l1 . . . , lm ∈ N are defined recursively as

follows: l1 = dM
2
e and li = dM−(l1+···+li−1)

2
e for 2 6 i 6 m. This allows us to encode any

probability distribution ( l
M
, M−l
M

) between two subsets B1 and B2.
Our next goal is to show that, by varying the granularity M , we can get arbitrarily

close to the optimal penalty for a randomised multi-strategy and, for the case of static
penalties, define a suitable choice of M . This will be formalised in Theorem 11. First,
we need to establish the following intermediate result, stating that, in the static case, in
addition to Theorem 9, we can require the action subsets allowed by a multi-strategy to
be ordered with respect to the subset relation.
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s ...
a1

ak

s

s1

sm

s′1

s′2

p1

pm

b1

bn

b1

bn

...

a1

ak

...

a1

ak

Figure 6.5: A node in the original game (left), and the corresponding nodes in the trans-
formed game for approximating randomised multi-strategies (right).

Theorem 10. For a static penalty scheme (ψ, sta) and any sound multi-strategy θ, we can
construct another sound multi-strategy θ′ such that, for each s ∈ S♦, if supp(θ′(s))={B,C},
then either B ⊆ C or C ⊆ B.

Theorem 9 states that it is enough for a multi-strategy to allow only two sets of actions.
Each of those sets may achieve a different expected reward. In the proof for Theorem 10,
we show that by adding actions from the set that achieves the higher expected reward to
the set that achieves the lower expected reward we will not affect the reward nor we will
increase the overall penalty. This operation makes one set a subset of the other set. More
explanation of the proof details can be found in Appendix B.

For the sake of completeness, in Example 25 we show that Theorem 10 does not extend
to dynamic penalties. The key observation is that increasing the probability of allowing an
action can lead to an increased penalty if one of the successor states has a high expected
penalty.

Example 25 Let us consider stochastic game from Figure 6.6, for which we want to reach
the goal state s3 with probability of at least 0.5.

s s1

s2

s3

s4

b

c

d

e

done1

done3

done2

action penalty
b 0
c 1
d 0
e 1

Figure 6.6: Counterexample for Theorem 10 in case of dynamic penalties.
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This implies θ(s, {b})·θ(s1, {d})>0.5, and so θ(s, {b})>0, θ(s1, {d})>0. If θ satisfies the
condition of Theorem 10, then θ(s, {c}) = θ(s1, {e}) = 0, so an opponent can always use
b, forcing an expected penalty of θ(s, {b}) + θ(s1, {d}), for a minimal value of

√
2. How-

ever, the sound multi-strategy θ with θ(s, {b})=θ(s, {c})=0.5 and θ(s1, {d})=1 achieves a
dynamic penalty of just 1.

We can now return to the issue of how to vary the granularity M to get sufficiently
close to the optimal penalty, we formalise this as follows.

Theorem 11. Let θ be a sound multi-strategy. For any ε > 0, there is an M and a sound
multi-strategy θ′ of granularity M satisfying pent(ψ, θ

′) − pent(ψ, θ) 6 ε. Moreover, for
static penalties it suffices to take M = d

∑
s∈S,a∈A(s)

ψ(s,a)
ε
e.

The proof of Theorem 11 follows a simple intuition that by making small local changes
to the multi-strategy we will not significantly change its overall reward or penalty. The
cases for static and dynamic penalties are proved separately. The static case is trivial as
the differences in the penalty value can be easily summed over all states. The dynamic
case is slightly more complex but follows the same intuition. A full proof is available
in Appendix B.

Example 26 We present the approximation for the model from the Figure 6.1. We
choose an error of ε = 1

10
and from Theorem 11 compute M = 50. For every controller

state we have m = 6 selectors where p1 = 25
50
, p2 = 13

50
, p3 = 6

50
, p4 = 3

50
, p5 = 2

50
, p6 =

1
50
. The reachable state space of the model with gadgets now contains 22 states and we

omitted building gadgets for states with only one action. The randomised multi-strategy
θ′′ from Example 23 can now be approximated with θ′′′ which in s3 picks (25

50
+ 6

50
+

3
50

+ 1
50

):{east2}+(13
50

+ 2
50

):{north1 , east2} and incurs a penalty of 0.7. An example of an
approximation gadget for the state s can be seen in Figure 6.7.

6.3.4 Optimisations

We conclude this section on MILP-based multi-strategy synthesis by presenting some
optimisations that can be applied to our methods. The general idea is to add additional
constraints to the MILP problems that will reduce the search space to be explored by
a solver. We present two optimisations, targeting different aspects of our encodings: (i)
possible variable values; and (ii) penalty structures.

Bounds on variable values. In our encodings, for the variables xs, we only specified
very general lower and upper bounds that would constrain its value. Narrowing the set
of values that a variable may take can significantly reduce the search space and thus the
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Figure 6.7: An approximation gadget for state s from Figure 6.1 and Example 26.

solution time required by an MILP solver. One possibility that works well in practice is to
bound the values of the variables by the minimal and maximal expected reward achievable
from the given state, i.e., add the constraints:

inf
σ∈Σ♦G ,π∈Σ�G

{Eσ,π
G,s (r)} 6 xs 6 sup

σ∈Σ♦G ,π∈Σ�G

{Eσ,π
G,s (r)} for all s ∈ S

where both the infima and suprema above are constants obtained by applying standard
probabilistic model checking algorithms.

Actions with zero penalties. Our second optimisation exploits the case where an action
has zero penalty assigned to it. Intuitively, this action could always be disabled without
harming the overall penalty of the multi-strategy. At the same time, enabling an action
with zero penalty might be the only way to satisfy the property and therefore we cannot
disable all such actions. Our optimisation exploits the fact that it is enough to allow
at most one action that has zero penalty. For simplicity of the presentation, we assume
Zs = {a ∈ A(s) |ψ(s, a) = 0}; then formally we add the constraints:∑

a∈Zs

ys,a 6 1 for all s ∈ S♦.
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6.4 Experimental Results

We have implemented our techniques within PRISM-games [31], an extension of the
PRISM model checker for performing model checking and strategy synthesis on stochastic
games. Prior to this thesis, PRISM-games could thus already be used for (classical) con-
troller synthesis problems on stochastic games. We added to this the ability to synthesise
multi-strategies using the MILP-based methods described in Section 6.3. Our implemen-
tation currently uses CPLEX [131] or Gurobi [132] to solve MILP problems. We run our
experiments on a PC with a 2.8GHz Xeon processor and 32GB of RAM, running Fedora
14.

We investigated the applicability and performance of our approach on a variety of
case studies, some of which are existing benchmark examples and some of which were
developed for this thesis. These are described in Appendix A and the files used can be
found online [127].

Deterministic multi-strategy synthesis

We first discuss the generation of optimal deterministic multi-strategies, the results of
which are summarised in Table 6.1 and Table 6.2. Table 6.1 summarises the models and
properties considered. The table gives: the case study name, any parameters used, the
number of states (|S|) and of controller states (|S♦|), and property used (φ). The final
column gives, for comparison purposes, the time required for performing classical (single)
strategy synthesis on each model and property φ using value iteration. In Table 6.2 we
show the case study name and the parameter value, and report the penalty value of the
optimal multi-strategy and the time to generate it. We report the time needed for encoding
without any optimisations, with only one optimisation used, and with both optimisations
used. For the purpose of brevity of presentation, only the last result is reported for both
CPLEX and Gurobi. Below, we give further details for each case study, illustrating the
variety of ways that permissive controller synthesis can be used.

cloud: We adapt the PRISM model from [21] to synthesise deployment of services across
virtual machines (VMs) in a cloud infrastructure. Our property φ specifies that, with
high probability, services are deployed to a preferred subset of VMs, and we then assign
unit (dynamic) penalties to all actions corresponding to deployment on this subset. The
resulting multi-strategy has very low expected penalty (see Table 6.2), indicating that
the goal φ can be achieved whilst the controller experiences reduced flexibility only on
executions with low probability.

android: We apply permissive controller synthesis to a model created for runtime control of
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Name
[parameters]

Parameter
values States Controller

states Property Strat. synth.
time (s)

cloud
[vm]

5 8,841 2,177 P>0.9999[ F deployed ] 0.1
6 34,953 8,705 P>0.999[ F deployed ] 0.1

android_3
[r, s]

1, 48 2,305 997
R time
610000 [ C ]

0.2
2, 48 9,100 3,718 0.6
3, 48 23,137 9,025 0.9

mdsm
[N ]

3 62,245 9,173 P60.1[ F deviated ] 5.63 62,245 9,173 P60.01[ F deviated ]

investor
[vinit, vmax]

5,10 10,868 3,344 R
profit
>4.98 [ C ] 0.9

10, 15 21,593 6,644 R
profit
>8.99 [ C ] 2.2

team-form
[N ]

3 12,476 2,023
P>0.9999[ F done1 ]

0.2
4 96,666 13,793 0.8

cdmsn [N ] 3 1,240 604 P>0.9999[ F prefer 1] 0.1

Table 6.1: Details of the models and properties used for experiments with deterministic
multi-strategies, and execution times shown for classical (single) strategy synthesis.

Name
[parameters]

Parameter
values Penalty

Multi-strategy synthesis time (s)
CPLEX Gurobi

No-opts Bounds Zero Both Both
cloud
[vm]

5 0.001 2.5 3.4 13.0 10.4 1.5
6 0.01 62.5 ∗ 63.6 25.4 4.7

android_3
[r, s]

1, 48 0.0009 1.1 0.7 1.0 0.5 0.5
2, 48 0.0011 28.6 8.4 28.5 8.4 3.6
3, 48 0.0013 ∗ 13.4 ∗ 13.3 47.6

mdsm
[N ]

3 52 28.1 36.3 27.9 33.7 19.4
3 186 11.9 11.6 11.9 11.6 12.3

investor
[vinit, vmax]

5,10 1 68.6 131.4 68.9 131.4 12.0
10, 15 1 ∗ ∗ ∗ ∗ 208.9

team-form
[N ]

3 0.890 0.2 0.3 0.2 0.3 0.8
4 0.890 249.4 249.5 186.4 184.5 3.8

cdmsn [N ] 3 2 0.6 0.6 0.6 0.6 1.7
* No optimal solution to MILP problem within 5 minute time-out.

Table 6.2: Experimental results for synthesis of optimal deterministic multi-strategies.
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an Android application that provides real-time stock monitoring (see Chapter 8 for details).
We extend the application to use multiple stock information providers and synthesise a
multi-strategy which specifies an efficient runtime selection of providers (φ bounds the total
expected response time). We use static penalties, assigning higher values to actions that
select the two most efficient providers at each time point and synthesise a multi-strategy
that always ensures a choice of at least two sources (in case one becomes unavailable),
while preserving φ.

mdsm: Microgrid demand-side management (MDSM) is a randomised scheme for manag-
ing local energy usage. A stochastic game analysis [30] previously showed it is beneficial
for users to selfishly deviate from the protocol. We synthesise a multi-strategy for a (po-
tentially selfish) user, with the goal (φ) of bounding the probability of deviation (at either
0.1 or 0.01). The resulting multi-strategy could be used to modify the protocol, restrict-
ing the behaviour of this user to reduce selfish behaviour. To make the multi-strategy as
permissive as possible, restrictions are only introduced where necessary to ensure φ. We
also guide where restrictions are made by assigning (static) penalties at certain times of
the day.

investor: This example [100] synthesises strategies for a futures market investor, who
chooses when to reserve shares, operating in a (malicious) market which can periodically
ban him from investing. We generate a multi-strategy that achieves 90% of the maximum
expected profit (obtainable by a single strategy) and assign (static) unit penalties to all
actions, showing that, after an immediate share purchase, the investor can choose his
actions freely and still meet the 90% target.

team-form: This example [33] synthesises strategies for forming teams of agents in order
to complete a set of collaborative tasks. Our goal (φ) is to guarantee that a particular
task is completed with high probability (0.9999). We use (dynamic) unit penalties on all
actions of the first agent and synthesise a multi-strategy representing several possibilities
for this agent while still achieving the goal.

cdmsn: Lastly, we apply permissive controller synthesis to a model of a protocol for
collective decision making in sensor networks (CDMSN) [30]. We synthesise strategies for
nodes in the network such that consensus is achieved with high probability (0.9999). We
use (static) penalties inversely proportional to the energy associated with each action a
node can perform, to ensure that the multi-strategy favours more efficient solutions.

Performance and scalability

Unsurprisingly, permissive controller synthesis is more costly to execute than classical
controller synthesis – this is clearly seen by comparing the times in the rightmost column
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of Table 6.1 with the times in Table 6.2. The smallest slowdown has been observed for
mdsm case study, where we run classical controller synthesis for 5.6 seconds and for 12.3

seconds for the permissive controller synthesis. In the worse case, we observe a two orders
of magnitude slowdown for the investor case study.

Another difference is the scalability of our method. The computation time for classical
controller synthesis scales better than the corresponding time for permissive controller
synthesis. One example is the investor case study where we observe in Table 6.1 a three-
fold increase in computation time when increasing the model size. When computing a
permissive controller we observe almost a 20-fold increase in computation time.

The reasons for such differences can be attributed to the fact that computing a multi-
strategy is a more complex problem than computing a single strategy. For example, for
single strategies, by computing locally optimal value of the strategy, we can obtain a
strategy that is also globally optimal. This is not possible for multi-strategies, where we
might have to consider various trade-offs between states to obtain an optimally permissive
strategy.

The performance and scalability of our method is affected (as usual) by the state space
size. In particular, it is affected by the number of actions in controller states, and the
number of target states. Each action in the model results in an integer variable, which is
the most expensive part of the solution. On the other hand, each target state decreases
the number of integer variables because for target states we simply assign value xs = 0

without using any integer variables.
Apart from performance and scalability, there are other important differences between

computing the classical and the permissive controllers. The results in Table 6.1 do not
depend on the bound that is used in the property. This can be clearly seen for the
mdsm example, where for different properties we observe the same computation time. For
the P60.1[ F deviated ] and P60.01[ F deviated ] properties the classical controller synthesis
involves performing the same computation, namely, computing the minimising controller.
This is not the case for permissive controller synthesis, and for different properties we
solve different MILP problems, resulting in different computation time.

The performance optimisations presented in Section 6.3.4 often allowed us to obtain
an optimal multi-strategy more quickly. In many cases, it proved beneficial to apply both
optimisations at the same time. In the best case (android_3 , r=3, s=48), an order of
magnitude gain was observed. We reported a slowdown after applying optimisation in
the case of the investor example. We attribute this to the fact that adding bounds on
variable values can make finding the initial solution of the MILP problem harder, causing
a slowdown of the overall solution process.

While the bounds optimisation can be applied automatically, the zero optimisation
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depends on the domain knowledge of the person running the tool. Actions that are for
some reason less important for the multi-strategy can be assigned penalty equal to zero.
One example is the mdsm case study, where we set a zero penalty for actions that model
accessing the power grid outside the specified time interval.

Both solvers were run using a single-threaded configuration and Gurobi proved to be a
more efficient solver. Using multiple threads did not significantly improve the performance.
In some cases it added randomness to the computation time when the solver would take
longer time than usual. In the case of CPLEX, we observed worse numerical stability,
causing it to return a sub-optimal multi-strategy as optimal. In the case of Gurobi, we
did not see any such behaviour.

Randomised multi-strategy synthesis

We report the results for approximating optimal randomised multi-strategies by first sum-
marising the considered models and properties in Table 6.3. In Table 6.4, we report
the effects of adding approximation gadgets on the state space size of these case studies.
We use a different set of case studies than for the deterministic multi-strategies. This is
because for some models we were unable to generate randomised multi-strategies in rea-
sonable time. We picked three different granularities, M = 100,M = 200 and M = 300;
for higher values of M we did not observe improvements in the penalties of the generated
multi-strategies.

Finally, in Table 6.5 we show penalties obtained by randomised multi-strategies. We
compare the (static) penalty value of generated randomised strategies to the value obtained
by optimal deterministic multi-strategies for the same models. Again, we impose a time-
out of 5 minutes and use Gurobi as the MILP solver in every case, since it was shown
above to perform better than CPLEX.

In Table 6.4, we can see that our approximation method added a considerable number
of states to the model. The approximation is applied for every controller state and we
observe a 3-fold increase in the state space size. An additional increase in the state space
size occurs with increasing M . The size of the state space after the approximation is
the major contributor to the worse performance of our method when compared to the
encoding for deterministic strategies.

For the case studies we considered, we were able to generate a sound multi-strategy in
every instance. In only one case our solver finished the computation before the 5 minute
timeout. This was the case for the android_3 case study (r = 1, s = 1), and the model
consisted of only 49 states. In other cases our solver returned a possibly non-optimal
multi-strategy (denoted by a ∗ in Table 6.5). To obtain a sound but non-optimal multi-
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Name
[parameters]

Parameters
values States Controller

states Property

android_3
[r, s]

1,1 49 10 P>0.9999[ F done]
1,10 481 112 P>0.999[ F done]

cloud
[vm]

5 8,841 2,177 P>0.9999[ F deployed ]

investor
[vinit, vmax]

5,10 10,868 3,344 R
profit
>4.98 [ C ]

team-form
[N ]

3 12,476 2,023 P>0.9999[ F done1 ]

cdmsn
[N ]

3 1,240 604 P>0.9999[ F prefer 1]

Table 6.3: Details of models and properties for approximating optimal randomised multi-
strategies.

Name
[parameters]

Parameters
values States Controller

states
States

M=100 M=200 M=300

android_3
[r, s]

1,1 49 10 90 94 98
1,10 481 112 1,629 1,741 1,853

cloud [vm] 5 8,841 2,177 29,447 32,686 35,233

investor
[vinit, vmax]

5,10 10,868 3,344 33,440 35,948 38,456

team-form
[N ]

3 12,476 2,023 31,928 33,716 35,504

cdmsn [N ] 3 1,240 604 3,625 3,890 4,155

Table 6.4: State space growth for approximating optimal randomised multi-strategies.
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Name
[parameters]

Parameters
values

Pen.
(det.)

Penalty (randomised)
M=100 M=200 M=300

android_3
[r, s]

1,1 1.01 0.91 0.905 0.903
1,10 19.13 12.27∗ 9.12∗ 17.18∗

cloud
[vm]

5 1 0.91∗ 0.905∗ 0.91∗

investor
[vinit, vmax]

5,10 1 1∗ 1∗ 1∗

team-form
[N ]

3 264 263.96∗ 263.95∗ 263.95∗

cdmsn [N ] 3 2 0.38∗ 1.9∗ 0.5∗

∗ Sound but possibly non-optimal multi-strategy obtained after 5 minute MILP time-out.

Table 6.5: Experimental results for deterministic and approximated optimal randomised
multi-strategies.

strategy, we used a feature of MILP solvers that allows the computation to be interrupted
at any point in time. In many cases, we found that the solver was able to come up with
a sound multi-strategy quickly but spent a prohibitively long time trying to prove that it
is the optimal multi-strategy.

As would be expected, in most cases we observe smaller penalties with increasing values
of M . One example where this is not true is the cdmsn case study, for which we obtain
the smallest penalty for M = 100. We attribute this behaviour to the size of the MILP
problem, which grows with M . The largest relative difference between the penalty of
deterministic and randomised multi-strategy has been obtained for the cdmsn case study.
The optimal deterministic strategy has a penalty of 2, while the randomised strategy has
the penalty of at most 0.38. A natural question to ask is whether the lower penalty
compensates for the increased computation time. We believe this question is likely to the
depend on the domain where the multi-strategy will be used.

6.5 Summary

We have presented a framework for permissive controller synthesis for stochastic two-
player games, based on generation of multi-strategies that guarantee a specified objective
and are optimally permissive with respect to a penalty function. We proved that the
problem is NP-hard for every type of multi-strategy and penalty structure. We estab-
lished that randomised multi-strategies are more expressive than deterministic ones and
propose an approximation scheme where deterministic strategies can be used to emulate
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the randomised one.
Since the key aim of this thesis is to develop methods that are useful in practice, we

proposed an MILP encoding for every type of multi-strategy and penalty structure. To
make the MILP encoding work on non-trivial examples, we implemented optimisations
that in some cases significantly reduced the synthesis time. We showed that bounds on
variable values can reduce the search space of the problem and enable the MILP solver to
find the solution more quickly. As a result of our experiments with various PRISM case
studies, we realised that not all actions allowed by the model are relevant. This idea led
to a second optimisation, where actions with zero penalty assigned to them could be dealt
with more efficiently.

We developed a full implementation of the proposed approach as an extension of
PRISM-games and used two MILP solvers to better understand the performance char-
acteristics of the proposed methods. While MILP solvers can produce an optimal solution
of the analysed constraints, we noticed that in many cases the interim solution produced
by a solver can still yield a useful multi-strategy. In addition to analysing the perfor-
mance characteristics of our encoding, we studied how multi-strategies can be used in
practice. In Chapter 8, we present how multi-strategies can improve the robustness of an
open-source stock monitoring application.



Chapter 7

Learning-based Controller Synthesis

7.1 Introduction

The efficiency and scalability of controller synthesis are often limited by excessive time or
space requirements, caused by the need to store a full model in memory. This is especially
true for the framework from Chapter 4, where we continuously analyse models at runtime.
It is often the case that those models are already large to begin with, and tend to grow
over time. For example, a cloud infrastructure may serve more and more clients as time
passes, or a robot may discover new terrain during its explorations.

In this chapter, we explore new opportunities offered by learning-based methods, as
used in fields such as planning [99], reinforcement learning [115] or optimal control [12]. In
particular, we focus on algorithms that explore a stochastic game by generating trajectories
through it and, whilst doing so, produce increasingly precise approximations of desired
properties. The approximate values, along with other information, are used as heuristics
to guide the model exploration and to minimise the solution time, as well as the portion
of the model that needs to be explored.

We propose a general framework for applying such methods to the verification of
stochastic games. Our algorithm is based on real-time dynamic programming (RTDP) [9]
(see Section 3.8), which has been proposed for a subclass of MDPs. We extend it for
arbitrary MDPs and a subclass of stochastic games. In its basic form, RTDP generates
trajectories through the model and computes approximations of the property value in the
form of lower bounds. While this may suffice in some scenarios (e.g. planning), in the
context of verification we typically require more precise guarantees. Therefore, we also con-
sider bounded RTDP (BRTDP) [101], which supplements RTDP with an additional upper
bound. We extend BRTDP in a similar way as RTDP and add support for a larger class of
probabilistic models. We have implemented our framework within PRISM-games [31] and

93
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demonstrate considerable speed-ups over the fastest methods in PRISM-games. Because
PRISM-games is an extension of PRISM [88], for MDPs both tools use the same solution
methods. This means our algorithms are also able to outperform the fastest methods
available in PRISM.

This chapter is divided into several sections. We start by outlining the general frame-
work for models without end components. We then extend the framework to stochastic
games that contain end components whose all states belong to a particular player, and to
arbitrary MDPs. In the experimental section, we describe three different heuristics that
are used to guide the generation of trajectories through the model. Next, we compare
our methods against PRISM-games using a number of case studies, and perform further
experiments giving additional insight on the performance characteristics of the proposed
algorithms.

7.2 Learning-based Algorithms for Stochastic Games

In this chapter, we study a class of algorithms based on machine learning that stochasti-
cally approximate the value function of a stochastic game. We focus on probabilistic reach-
ability, leaving the total expected reward as future work. We fix G = 〈S♦, S�, S, s, A, δ,L〉
and denote by V : S×A→ [0, 1] the value function for state-action pairs of G, defined for
all (s, a) where s ∈ S and a ∈ A(s) by:

V (s, a) :=
∑

s′∈S
δ(s, a)(s′) · V (s′).

Intuitively, V (s, a) is the value of the probabilistic reachability property in s assuming that
the first action performed is a. In this chapter, we are interested in properties that require
computing a maximising strategy for the controller player. Techniques for minimising the
property value follow similarly. To make the definition of V (s, a) complete, we define V (s):

V (s) :=


max
a∈A(s)

∑
s′∈S

δ(s, a)(s′) · V (s, a) if s ∈ S♦

min
a∈A(s)

∑
s′∈S

δ(s, a)(s′) · V (s, a) if s ∈ S�.

A learning algorithm A takes as input a stochastic game G, set of target states T and
precision ε. The algorithm produces an approximation of the probabilistic reachability
value accompanied by a strategy achieving the value. This is done by running a possibly
large number of simulated executions of G, and iteratively updating upper and lower
approximations U : S × A → [0, 1] and L : S × A → [0, 1], respectively, of the true value
function V : S × A→ [0, 1].
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U and L are initialised to 1 and 0 so that L(s, a) 6 V (s, a) 6 U(s, a) for all s ∈ S

and a ∈ A. During the computation of A, simulated executions start in the initial state s
and move from state to state according to choices made by the algorithm. The values of
U(s, a) and L(s, a) are updated for the states s visited by the simulated execution.

The learning algorithm A terminates when maxa∈A(s) U(s, a) − maxa∈A(s) L(s, a) < ε

for s ∈ S♦ and mina∈A(s) U(s, a) − mina∈A(s) L(s, a) < ε for s ∈ S�. Since U(s, a) and
L(s, a) are updated with new values based on the simulations only for states that are
visited, the computation of the learning algorithm may be randomised.

Definition 10. Denote by A(ε) the instance of a learning algorithm A with precision ε.
We say that A converges if, for every ε > 0, the computation of A(ε) terminates with
L(s, a) 6 V (s, a) 6 U(s, a).

The function U defines a memoryless strategy σU which in every state s ∈ S♦ chooses
all actions amaximising the value U(s, a) over A(s). If there exist several actions achieving
the same maximal value, we pick one uniformly at random. As the strategy σU maximises
over all actions, it is the best strategy that we can choose and we use it as an output of
the algorithm.

7.3 Stochastic Games without End Components

We first present an algorithm for stochastic games without end components (ECs), which
considerably simplifies the adaptation of BRTDP for verification purposes. End compo-
nents are parts of the model in which generated trajectories can get stuck, preventing
termination of the algorithm. Later, in Section 7.4, we extend our methods to a subclass
of stochastic games and to arbitrary MDPs. Formally, we assume the following.

Assumption-EC-free. Stochastic game G has no ECs, except for two trivial ones
containing distinguished terminal states 1 and 0, respectively. We will assume that
all target states are replaced by the 1 state and all non-target terminal states are re-
placed by 0. This is to improve the presentation of the algorithm. Subsequently, we set
U(1) = L(1) = V (1) = 1 and U(0) = L(0) = V (0) = 0. Because all targets states have
been replaced by 1 states, we will also assume that L(s) = ∅ for every s ∈ S.

7.3.1 Unbounded Reachability with BRTDP

The algorithm is presented as Algorithm 4, and works as follows. Recall that functions
U and L store the current upper and lower bounds on the value function V , respectively.
Each iteration of the outer loop is divided into two phases: Explore and Update. In
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Algorithm 4 Learning algorithm (for stochastic game with no ECs)
1: Inputs: An EC-free stochastic game G
2: U(·, ·)← 1, L(·, ·)← 0
3: L(1, ·)← 1, U(0, ·)← 0
4: repeat
5: ω ← s /* Explore phase */
6: repeat
7: if s ∈ S♦ then
8: a← sampled uniformly from arg maxa∈A(last(ω)) U(last(ω), a)
9: else
10: a← sampled uniformly from arg mina∈A(last(ω)) L(last(ω), a)
11: end if
12: s← GetSucc(ω, a)
13: ω ← ω a s
14: until s ∈ {1,0}
15: repeat /* Update phase */
16: pop(ω)
17: a← pop(ω)
18: s← last(ω)
19: U(s, a) :=

∑
s′∈S δ(s, a)(s′)U(s′)

20: L(s, a) :=
∑

s′∈S δ(s, a)(s′)L(s′)
21: until ω = s
22: until U(s)− L(s) < ε

the Explore phase (lines 5 - 14), the algorithm samples a finite path ω in G from s to
a state in {1,0} by always randomly choosing one of the enabled actions that maximises
the U value, and sampling the successor state using the probabilistic transition function.
In the Update phase (lines 15 - 21), the algorithm updates U and L for the state-action
pairs along the path in a backward manner. Here, the function pop pops and returns the
last element of the given sequence.

New values of U(s, a) and L(s, a) are computed by taking the weighted average of the
corresponding U and L values, respectively, over all successors of s via action a. Formally,
denote U(s) = maxa∈A(s) U(s, a) and L(s) = maxa∈A(s) L(s, a) when s ∈ S♦, and in the
case of s ∈ S� we minimise over both U(s, a) and L(s, a) values.

Note that, in the Explore phase, an action maximising the value of U is chosen and
the successor is sampled based on the output of the GetSucc function. In the most basic
scenario, GetSucc returns a successor according to the probabilistic transition function of
G. However, we can consider various modifications. Successors may be chosen in different
ways, for instance, uniformly at random, in a round-robin fashion, or assigning various
probabilities (bounded from below by some fixed p > 0) to all possibilities in any biased
way. In order to guarantee convergence, some conditions have to be satisfied. Intuitively,
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we require that the state-action pairs used by ε-optimal strategies have to be chosen a
sufficient number of times. If this condition is satisfied then the convergence is preserved
and the practical running times may significantly improve. For details, see Section 7.5.
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0 1

•
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0.5 0.5

done1 done2

Figure 7.1: Stochastic game G for Example 27.

Theorem 12. The algorithm BRTDP converges almost surely under Assumption-EC-free.

The proof for Theorem 12 is divided into two parts. We first prove that for every
iteration of Algorithm 4 it holds that L(s, a) 6 V (s, a) 6 U(s, a) for any state and action.
We then prove that the gap between the the upper and lower bound in the initial state,
i.e. U(s)−L(s), eventually goes to zero. As a corollary of both of these claims, we obtain
that the algorithm terminates and converges to the correct value. The full proof can be
found in Appendix C.

Example 27 To show an example run of Algorithm 4, we first need a stochastic game
that satisfies Assumption-EC-free. In Figure 7.1, we show a game G that satisfies the
assumption. It models a robot that is under our control and moves between five locations,
with a goal to reach the 1 state. We start in the s state and we can either move in the east1

or south1 direction. When moving in the east1 direction our movement can be blocked
by the second robot, but with probability 0.5 we still reach the goal state. In the case of
moving in the south1 direction, we cannot be blocked by the second robot but with high
probability we go to the sink state 0. To express our property we use the probabilistic
reachability property φ = P> 0.5[F 1] and the strategy satisfying the property would pick
east1 in s.

Consider a run of Algorithm 4 given game G as input and ε = 10−8. Assume that,
the first path that we get from the Explore phase is ω = ssouth10. In the following
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Update phase, we compute: U(s, south1 ) = 0.2, L(s, south1 ) = 0, and the algorithm
cannot terminate because at line 22 we have U(s)−L(s) = 1 due to the unexplored east1

action. In the second iteration ω = seast1s1south2s3block10 and in the Update phase
we have U(s3, block1 ) = L(s3, block1 ) = 0.5, U(s1, south2 ) = 0.5, L(s1, south2 ) = 0 and
U(s, east1 ) = 0.5, L(s, east1 ) = 0. Again, we cannot terminate because U(s)−L(s) = 0.5.
In the next iteration ω = seast1s1south2s3pass20, and in the Update phase we compute
U(s3, pass2 ) = L(s3, pass2 ) = 1, U(s1, south2 ) = L(s1, south2 ) = 0.5 and U(s, east1 ) =

L(s, east1 ) = 0.5. Subsequently, in line 22 we get U(s) − L(s) = 0, which terminates the
algorithm.

The resulting strategy picks east1 in s and achieves the value of 0.5 which satisfies the
property φ. The algorithm was able to terminate without ever visiting state s2. This was
possible because, even in the best scenario, i.e. U(s2) = L(s2) = 1, the south1 action in s
would only achieve U(s, south1 ) = L(s, south1 ) = 0.2, whereas U(s, east1 ) = L(s, east1 ) =

0.5.

7.3.2 Step-bounded Reachability with BRTDP

Algorithm 4 can be trivially adapted to handle bounded reachability properties by prepro-
cessing the input stochastic game. Every state is equipped with a bounded counter with
values ranging from 0 to b where b is the step bound, the current value denoting the num-
ber of steps taken so far. All target states remain as target states for all counter values,
and every non-target state with counter value b becomes rejecting. Then, to determine
the b-step reachability in the original stochastic game one can compute the (unbounded)
reachability in the new stochastic game. Although this means that the number of states
is multiplied by b+ 1, in practice the size of the explored part of the model can be small.

7.4 Stochastic Games with one-player ECs

We first illustrate with an example that the algorithm BRTDP as presented in Section 7.3
may not converge when there are ECs in the stochastic game.

Example 28 Consider the game G from Figure 7.2 with an EC ({s, s1},{east1 ,west1}).
We re-use the property from the previous example, namely φ = P> 0.5[F 1] and a strategy
satisfying the property would pick east1 in s and south1 in s1.

We run Algorithm 4 with ε = 10−8 as in Example 27 and assume that the first two
explored paths are ω = seast1s1south1s2block10 and ω = seast1s1south1s2pass11. In the
Update phase we compute U(s1, south1 ) = L(s1, south1 ) = 0.5 and run the third iteration
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Figure 7.2: Stochastic game G with an EC.

of the algorithm. Because U(s1,west1 ) = 1 and U(s, east1 ) = 1, in line 8 the algorithm is
going to greedily choose those actions, causing an infinite loop in the Explore part.

In general, any state in an EC has an upper bound of 1 since, by definition, there are
actions that guarantee the next state is in the EC, i.e., is a state with upper bound 1.
This argument holds even for standard value iteration with values initialised to 1.

One way of dealing with this problem is to identify all MECs [28, 29] and “collapse”
them into single states. This can be safely done for MDPs and for stochastic games where
all ECs belong to a subclass that we call one-player ECs . Supporting arbitrary stochastic
games remains an open problem which we plan to address in future work.

Definition 11 (One-player EC). An end component (R,B) of a stochastic game G is a
one-player EC iff player(R) ∈ {♦,�}.

The stochastic game from Figure 7.2 contains a single one-player EC consisting of two
states and two actions: ({s, s1}, {east1 ,west1}). Please note that in the case of an MDP
all ECs are one-player ECs as the player() function returns ♦ for every state of the MDP.

7.4.1 Identification and Processing of one-player ECs

Typically, algorithms for identification and collapsing of ECs require that the full under-
lying graph of the model is known, which proves difficult for large models. Hence, we
propose a method that allows us to deal with ECs “on the fly”. We first describe the
collapsing of a set of states and then present how to identify and process ECs.
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Collapsing states

In the following, we say that a stochastic game G′ = 〈S♦′, S�′, S ′, s′, A′, δ′,L′〉 is obtained
from G = 〈S♦, S�, S, s, A, δ,L〉 by collapsing a tuple (R,B) into a single state s(R,B), where
R ⊆ S and B ⊆ A with B ⊆

⋃
s∈RA(s) if:

• S ′ = (S \R) ∪ {s(R,B)}

• s′ is either s(R,B) or s, depending on whether s ∈ R or not

• A′ = A \B

• δ′ is defined for all s ∈ S ′ and a ∈ A′ by:

– δ′(s, a)(s′) = δ(s, a)(s′) for s, s′ 6= s(R,B)

– δ′(s, a)(s(R,B)) =
∑

s′∈R δ(s, a)(s′) for s 6= s(R,B)

– δ′(s(R,B), a)(s′) = δ(s, a)(s′) for s′ 6= s(R,B) and s the state with a ∈ A(s)

– δ′(s(R,B), a)(s(R,B)) =
∑

s′∈R δ(s, a)(s′) where s is the state with a ∈ A(s)

• L′(s) = L(s) for s ∈ S ′ and L′(s(R,B)) = ∅.

We denote the above transformation, which creates G′ from G, as the Collapse function,
i.e., Collapse(R,B). As a special case, given a state s and a terminal state s′ ∈ {1,0},
we use MakeTerminal(s, s′) as a shorthand for Collapse({s, s′}, A(s)), where the new
state is renamed to s′. Intuitively, after MakeTerminal(s, s′), every transition previously
leading to state s will now lead to the terminal state s′.

For practical purposes, it is important to note that the collapsing does not need to be
implemented explicitly, but can be done by keeping a separate data structure which stores
information about the collapsed states.

Identification of one-player ECs

We identify ECs “on-the-fly” through simulations that get stuck in them. In Algorithm 4,
the variable ω contains the currently explored path. Let (N,G) be the set of states and
actions explored in ω. We use N♦ to refer to visited states that belong to the controller
player and N� for the environment player states. To obtain the EC from the set N of
explored states, we use Algorithm 5.

This computes an auxiliary stochastic game GN = 〈N ′♦, N ′�, N ′, s, A′, δ′,L′〉 that in-
cludes all visited states as well as their immediate successors. The game is defined as
follows:
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Algorithm 5 Identification of one-player ECs for BRTDP
1: function IdentifyOnePlayerECs(G, N)
2: compute GN

3: G ′ ← MECs of GN
4: G ← {(R,B) ∈ G ′ | R ⊆ N ∧ player(R) ∈ {♦,�}}
5: return G
6: end function

• N ′♦ = N♦ ∪ {t | ∃s ∈ N, a ∈ A(s) such that δ(s, a)(t) > 0 and t ∈ S♦}

• N ′� = N� ∪ {t | ∃s ∈ N, a ∈ A(s) such that δ(s, a)(t) > 0 and t ∈ S�}

• N ′ = N ′♦ ∪N ′�

• A′ =
⋃
s∈N A(s) ∪ {⊥}

• δ′(s, a) = δ(s, a) if s ∈ N , and δ′(s,⊥)(s) = 1 otherwise

• L′(s) = L(s) for s ∈ N ′.

The algorithm then computes all MECs of GN that are contained in N and identifies
those that are one-player ECs. The following lemma states that each of these is indeed
one-player EC in the original stochastic game.

Lemma 3. Let G,GN be the stochastic games from the construction above and N be the
set of explored states. Then every one-player MEC (R,B) in GN such that R ⊆ N is a
one-player EC in G.

Proof. Let G = 〈S♦, S�, S, s, A, δ,L〉 and GN = 〈N ′♦, N ′�, N ′, s, A′, δ′,L′〉 be the two stochas-
tic games, and let (R,B) be a MEC in GN such that R ⊆ N . As N ⊆ S, we have that
the states of R are present in the stochastic game G and from the definition of A′ we have
that B ⊆

⋃
s∈RA(s). The two required properties of an EC:

1. if δ(s, a)(s′) > 0 for some s ∈ R and a ∈ B, then s′ ∈ R

2. for all s, s′ ∈ R, there exists a path ω = sa0s1a1 . . . sn such that s = s, sn = s′, and
for all 0 6 i < n we have that ai ∈ B and δ(si, a)(si+1) > 0

follow easily from the fact that for all states s ∈ R and actions a ∈ B we have: A(s) =

A′(s); δ(s, a) = δ′(s, a); and (R,B) is an EC in GN . ut
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Processing of one-player ECs

After identifying all one-player ECs in the currently explored model, we can start process-
ing them. Processing of one-player ECs can be found in Algorithm 6 and is divided into
three steps. Firstly, in line 4 each one-player EC is collapsed into a single state. Next, the
processing phase assigns the old values of actions to the new states s(R,B) created during
the collapsing process; this happens in lines 6 and 7. Lastly, lines 9-21 of the processing
algorithm contain optimisations when collapsing ECs that have certain structure. The
correctness of the processing phase is established in Lemma 4.

Algorithm 6 Identification and processing of one-player ECs
1: function On-the-fly-EC(G, N)
2: G ← IdentifyOnePlayerECs(G, N)
3: for all (R,B) ∈ G do /* Processing phase */
4: Collapse(R,B)
5: for all s ∈ R and a ∈ A(s) \B do
6: U(s(R,B), a)← U(s, a)
7: L(s(R,B), a)← L(s, a)
8: end for
9: if player(R) = ♦ then
10: if R ∩ T 6= ∅ then
11: MakeTerminal(s(R,B),1)
12: else if no actions enabled in s(R,B) then
13: MakeTerminal(s(R,B),0)
14: end if
15: else if player(R) = � then
16: if R ∩ T 6= ∅ and no actions enabled in s(R,B) then
17: MakeTerminal(s(R,B),1)
18: else if R ∩ T = ∅ then
19: MakeTerminal(s(R,B),0)
20: end if
21: end if
22: end for
23: end function

Lemma 4. Assume (R,B) is a one-player EC in a stochastic game G, VG the value be-
fore Processing phase in Algorithm 6, and VG′ the value after (R,B) has been processed,
then:

1. for i ∈ {1,0}, if MakeTerminal(s(R,B), i) is called, then ∀s ∈ R : VG(s) = i

2. ∀s ∈ S \R : VG(s) = VG′(s)

3. ∀s ∈ R : VG(s) = VG′(s(R,B)).
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The proof for Lemma 4 can be found in Appendix C. For point (1), we prove each case
when MakeTerminal() function is called. Points (2) and (3) are proven using techniques
similar to [36].

7.4.2 BRTDP and one-player ECs

To obtain BRTDP that works with stochastic games containing one-player ECs, we mod-
ified Algorithm 4. The changes can be seen in Algorithm 7. In line 17, we insert a check
such that, if the length of the path ω explored (i.e., the number of states) exceeds ki
(see below), then we invoke the On-the-fly-EC function with a set of visited states N
as an argument. The On-the-fly-EC function possibly modifies the stochastic game by
processing (collapsing) some ECs as described in Algorithm 6. After the On-the-fly-EC

function terminates, we interrupt the current Explore phase, and jump to the beginning
of the Explore phase for the i+1-th iteration (i.e., generating a new path again, start-
ing from s in the modified stochastic game). To complete the algorithm description we
describe the choice of ki.

Choice of ki. Because computing one-player ECs can be expensive, we do not call On-

the-fly-EC every time a new state is explored, but only after every ki steps of the
repeat-until loop at lines 8–21 in iteration i. The specific value of ki can be decided
experimentally and changed as the computation progresses. In our experiments we use
ki = 105+bi/10c. This guarantees that On-the-fly-EC is executed early for models that
converge quickly, and, for models that take a longer time to converge, they have time for
the exploration and are not constantly running the On-the-fly-EC function.

Finally, we establish that the modified algorithm, which we refer to as on-the-fly
BRTDP, converges.

Theorem 13. On-the-fly BRTDP converges almost surely for stochastic games with one-
player ECs and for all MDPs.

The proof is in Appendix C. An important observation that we make in the proof
of Theorem 13 is that, while we start with a stochastic game containing one-player ECs
after finitely many calls to On-the-fly-EC we obtain a stochastic game with all end
components collapsed. For such a game, we can use similar ideas to those in the proof
for Theorem 12.

Example 29 Let us describe the execution of on-the-fly BRTDP on the stochastic game
G from Figure 7.3 (left). Choose ki > 6 for all i. The two iterations of the Explore

loop at lines 8 to 21 of Algorithm 7 generate paths ω and ω′ that contain some (possibly
zero) number of loops seast1s1west1 followed by s1south1s2block11 or s1south1s2pass10. In
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Algorithm 7 Learning algorithm (for stochastic game with one-player ECs)
1: Inputs: Stochastic game G with only one-player ECs
2: U(·, ·)← 1, L(·, ·)← 0
3: L(1, ·)← 1, U(0, ·)← 0
4: N ← ∅, i← 0
5: repeat
6: explore:
7: ω ← s /* Explore phase */
8: repeat
9: if s ∈ S♦ then
10: a← sampled uniformly from arg maxa∈A(last(ω)) U(last(ω), a)
11: else
12: a← sampled uniformly from arg mina∈A(last(ω)) L(last(ω), a)
13: end if
14: s← GetSucc(ω, a)
15: ω ← ω a s
16: N ← N ∪ s
17: if |ω| > ki then
18: On-the-fly-EC(G, N)
19: go to explore
20: end if
21: until s ∈ {1,0}
22: repeat /* Update phase */
23: pop(ω)
24: a← pop(ω)
25: s← last(ω)
26: U(s, a) :=

∑
s′∈S δ(s, a)(s′)U(s′)

27: L(s, a) :=
∑

s′∈S δ(s, a)(s′)L(s′)
28: until ω = s
29: i← i+ 1
30: until U(s)− L(s) < ε

the subsequent update phase, we set U(s2, block1 ) = L(s2, block1 ) = 0.5, U(s2, pass1 ) =

L(s2, pass1 ) = 1 and U(s2) = L(s2) = 0.5. In the third iteration of the Explore phase,
the path ω′′ = seast1s1west1seast1s1west1 . . . is generated, and the newly inserted check
for On-the-fly-EC will be triggered once ω′′ achieves the length ki.

The algorithm now aims to identify one-player ECs in the stochastic game based on
the part of the stochastic game explored so far. To do so, the stochastic game GN for
the set N = {s, s1, s2,0,1} is constructed. We then run one-player EC detection on GN ,
finding that ({s, s1}, {east1 ,west1}) is a one-player EC and so it gets collapsed according
to the Collapse procedure. This gives the stochastic game G′ from Figure 7.3 (right).

The execution then continues with G′. A new path is generated in the Explore phase
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Figure 7.3: Executing Collapse function on a stochastic game G.

of the Algorithm 7; suppose it is ω′′′ = sCsouth1s2pass1 t where t ∈ {1,0}. In the Update

phase we then update the value U(sC, south1 ) = L(sC, south1 ) = 0.5, which makes the
condition at the last line of Algorithm 7 satisfied, and the algorithm terminates, having
computed the correct value.

7.5 Experimental Results

We developed an implementation of our learning-based framework as an extension of
PRISM-games [31], building upon its simulation engine for generating trajectories.

We implement Algorithm 7, with the optimisation of taking N as the set of all states
explored so far. We consider three distinct variants of the learning algorithm by modify-
ing the GetSucc function in Algorithm 7, which is the heuristic responsible for picking
a successor state s′ after choosing some action a in each state s of a trajectory. The first
variant takes the unmodified GetSucc, selecting s′ at random according to the distribu-
tion δ(s, a). This behaviour follows that of the original RTDP algorithm [9]. The second
uses the heuristic proposed for BRTDP in [101], selecting the successor s′ ∈ supp(δ(s, a))

that maximises the difference U(s′) − L(s′) between bounds for those states (referred to
as M-D). For the third, we propose an alternative approach that systematically chooses
all successors s′ in a round-robin (referred to as R-R) fashion, and guarantees sure termi-
nation.

We evaluated our implementation on six existing benchmark models, running the ex-
periments on a machine with a 2.8GHz Xeon processor and 32GB of RAM, running Fe-
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dora 14, and using a 30 minute timeout for each verification. We first consider four
MDP models: three models from the PRISM benchmark suite [89], zeroconf, wlan, and
firewire_impl_dl, and a fourth one from [54], mer. The stochastic game examples include
android_3 (see Chapter 8) and mdsm [30]. The first three MDPs and the first stochas-
tic game example use (unbounded) probabilistic reachability properties; the fourth MDP
example and the last stochastic game example uses a step-bounded probabilistic reacha-
bility property. The latter is employed to show differences between heuristics that were
less visible in the unbounded case. Descriptions of the case studies used can be found
in Appendix A and the models can be found at [128].

We run BRTDP from Algorithm 7 and compare its performance to PRISM-games.
Please note that, for MDPs, PRISM-games and PRISM share the same solution methods
so our results also outperform PRISM. We terminate PRISM-games when the bounds L
and U differ by at most ε in the initial state. We use ε = 10−6 in all cases except zeroconf
and android_3, where ε = 10−8 is used since the actual values are very small. For PRISM-
games, in the case of MDPs, we use its fastest engine, which is the “sparse” engine, running
value iteration. In the case of stochastic games, we also run value iteration but use the
“explicit” engine as this was the only available engine at the time of writing this thesis.

Computation of our algorithm is terminated when the values for all states in successive
iterations differ by at most ε. Strictly speaking, this is not guaranteed to produce an ε-
optimal strategy (e.g. in the case of very slow numerical convergence), but on all these
examples it does.

The experimental results are summarised in Tables 7.1 to 7.4. For each model, we
give the name of the case study, the parameters used and the number of states in the full
model. The summary of the properties used can be found in Table 7.1. Due to randomised
behaviour of our algorithms the results have been averaged over 20 runs. We present a
comparison of the running times of our algorithm against PRISM-games. In the case of
PRISM-games, we report the total verification time, which includes model construction,
precomputation of zero/one states and value iteration.

Performance and scalability

In Table 7.2, we see that, our method outperforms PRISM-games on all six benchmarks.
On average, for the fastest heuristic, our learning-based algorithm works several orders
of magnitude faster than PRISM-games. In the best case, PRISM-games did not finish
within the 30 minute timeout for the android case study and we reported only 2.6 seconds
for the R-R heuristic. In the worst case, the RTDP heuristic took 247.8 seconds to finish
for the android case study. The other two heuristics for the same example terminated
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Name
[parameters]

Parameter
values States Property

zeroconf
[N = 20, K]

10 3,001,911
Pmin=?[ F configured ]14 4,427,159

18 5,477,150

wlan
[BOFF ]

4 345,000
Pmax=?[ F sent_correctly ]5 1,295,218

6 5,007,548

firewire_impl_dl
[delay = 36,
deadline]

220 10,490,495

Pmax=?[ F leader_elected ]
240 13,366,666
260 15,255,584
280 19,213,802

mer
[N, q]

3000, 0.0001 17,722,564

Pmax=?[ F
630 no_deadlock ]

3000, 0.9999 17,722,564
4500, 0.0001 26,583,064
4500, 0.9999 26,583,064

android_3
[r, s = 10]

15 364,033

Pmax=?[ F done ]
20 832,168
25 1,589,953
30 2,707,138

mdsm
[k,N ]

8, 6 2,384,369

Pmax=?[ F
6kfirst_job_arrived ]

8, 7 2,384,369
8, 8 2,384,369
10, 6 6,241,312
10, 7 6,241,312
10, 8 6,241,312

Table 7.1: Details of models and properties for running the BRTDP algorithm.
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Name
[parameters]

Parameter
values States Time (s)

PRISM RTDP M-D R-R

zeroconf
[N = 20, K]

10 3,001,911 129.9 4.8 0.7 1.0
14 4,427,159 218.2 8.9 1.2 1.3
18 5,477,150 303.8 47.9 3.5 2.6

wlan
[BOFF ]

4 345,000 7.4 0.6 0.5 0.6
5 1,295,218 22.3 0.6 0.5 0.5
6 5,007,548 82.9 0.6 0.5 0.5

firewire_impl_dl
[delay = 36,
deadline]

220 10,490,495 103.9 2.5 2.5 2.5
240 13,366,666 145.4 13.9 14.7 18.1
260 15,255,584 185.4 53.6 32.8 47.1
280 19,213,802 245.4 12.7 10.3 10.7

mer
[N, q]

3000, 0.0001 17,722,564 158.5 145.5 5.3 9.4
3000, 0.9999 17,722,564 157.7 26.1 6.5 16.3
4500, 0.0001 26,583,064 250.7 143.6 5.3 9.6
4500, 0.9999 26,583,064 246.6 25.7 6.4 16.1

android_3
[r, s = 10]

15 364,033 108.6 236.5 1.4 13.9
20 832,168 320.3 235.9 1.4 13.3
25 1,589,953 741.4 234.6 1.4 13.0
30 2,707,138 * 247.8 1.5 13.9

mdsm
[k,N ]

8, 6 2,384,369 68.8 3.5 0.7 0.8
8, 7 2,384,369 73.9 6.3 0.9 1.2
8, 8 2,384,369 69.9 10.1 1.3 1.7
10, 6 6,241,312 245.4 41.7 1.2 2.1
10, 7 6,241,312 251.5 84.9 1.9 3.3
10, 8 6,241,312 259.2 146.2 3.1 5.4

* Algorithm did not terminate within 30 minute time-out.

Table 7.2: Verification times using BRTDP (three different heuristics) and PRISM.
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within seconds.
The improvements in execution time on these benchmarks are possible due to multiple

factors. The algorithm explores only a portion of the state space and a large number of
suboptimal policies can be disregarded after only partial exploration. Moreover, in most
cases, target states in our benchmarks are located close to the initial states, meaning that
relatively short paths need to be explored in the Explore part of the algorithm. Later
in this section we will expand on each of the causes.

The RTDP heuristic is generally the slowest of the three, and tends to be sensitive to
the probabilities in the model. In the mer example, changing the parameter q can mean
that some states are no longer visited due to low probabilities on incoming transitions.
This results in a considerable slowdown. This is a potential problem for models containing
rare events, i.e., modelling failures that occur with very low probability. In most cases,
the M-D and R-R heuristics perform very similarly despite being quite different (one is
randomised, the other deterministic). Both perform consistently well on most examples.

An important feature of our method is the improved scalability of computation when
compared to PRISM-games. The difference can be clearly seen in Table 7.2. In every case,
we see that, with increasing model size, PRISM-games takes proportionally more time to
compute the optimal strategy. A similar increase in model size has a much weaker effect
on our algorithms. For example, for the wlan case study we report an almost 10-fold
increase in PRISM-games computation time when increasing the model size from 345, 000

to 5, 007, 548. For the same case study, our algorithms do not report almost any increase
in the computation time. We believe this is caused by a certain structure of the model that
our method can exploit. In the paragraph describing the size of the obtained strategies
we will expand on this finding.

The number of distinct states visited by the algorithm can be found in Table 7.3. In
every case the learning-based algorithm has to visit several orders of magnitude fewer states
than PRISM-games. We attribute this to the fact our algorithms can quickly discard parts
of the state space that are not crucial for convergence. This is only possible for models
where the subset of states relevant to the convergence is small.

A surprising result has been obtained for the RTDP heuristic, which on average visits
the smallest number of states. We observe that visiting fewer states than the other heuris-
tics does not guarantee quicker termination time. This is caused by RTDP visiting only
a subset of states that are reached with high probability. This subset is not necessarily
the same as the subset relevant for convergence. One possible optimisation to the RTDP
could be to modify its approach. After some initial time, the GetSucc function could
start picking the successors from the transitions with low probability.

In Table 7.4, we report the size of the optimal strategies that are obtained by running



110 CHAPTER 7. LEARNING-BASED CONTROLLER SYNTHESIS

Name
[parameters]

Parameter
values States Visited States

RTDP M-D R-R

zeroconf
[N = 20, K]

10 3,001,911 723 2,089 2,554
14 4,427,159 941 4,209 3,078
18 5,477,150 1,335 5,886 3,848

wlan
[BOFF ]

4 345,000 1,613 1,024 1,230
5 1,295,218 1,829 1,232 1,312
6 5,007,548 1,663 1,210 1,279

firewire_impl_dl
[delay = 36,
deadline]

220 10,490,495 21,125 23,487 21,098
240 13,366,666 18,199 14,773 15,011
260 15,255,584 19,314 15,317 14,906
280 19,213,802 29,485 23,715 24,594

mer
[N, q]

3000, 0.0001 17,722,564 2,152 3,080 3,641
3000, 0.9999 17,722,564 3,294 4,826 4,807
4500, 0.0001 26,583,064 2,146 3,084 3,642
4500, 0.9999 26,583,064 3,286 4,830 4,804

android_3
[r, s = 10]

15 364,033 1,991 13,093 38,003
20 832,168 1,991 13,389 38,350
25 1,589,953 1,998 13,010 38,915
30 2,707,138 1,997 13,403 39,669

mdsm
[k,N ]

8, 6 2,384,369 2,501 2,940 2,986
8, 7 2,384,369 3,931 4,749 4,809
8, 8 2,384,369 5,794 7,176 7,252
10, 6 6,241,312 6,982 7,527 7,702
10, 7 6,241,312 12,235 13,210 13,515
10, 8 6,241,312 19,667 21,242 21,666

Table 7.3: Number of visited states using BRTDP (three different heuristics).
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Name
[parameters]

Parameter
values States Strategy size

RTDP M-D R-R

zeroconf
[N = 20, K]

10 3,001,911 271 1,307 1,665
14 4,427,159 334 2,222 2,106
18 5,477,150 465 2,209 1,470

wlan
[BOFF ]

4 345,000 68 68 85
5 1,295,218 83 76 67
6 5,007,548 67 65 86

firewire_impl_dl
[delay = 36,
deadline]

220 10,490,495 340 443 341
240 13,366,666 346 341 341
260 15,255,584 341 342 341
280 19,213,802 354 354 353

mer
[N, q]

3000, 0.0001 17,722,564 43 43 42
3000, 0.9999 17,722,564 63 61 62
4500, 0.0001 26,583,064 42 43 42
4500, 0.9999 26,583,064 62 62 61

android_3
[r, s = 10]

15 364,033 243 267 241
20 832,168 250 259 235
25 1,589,953 247 261 237
30 2,707,138 239 267 241

mdsm
[k,N ]

8, 6 2,384,369 12 12 12
8, 7 2,384,369 13 13 13
8, 8 2,384,369 14 14 14
10, 6 6,241,312 12 12 12
10, 7 6,241,312 13 13 13
10, 8 6,241,312 14 14 14

Table 7.4: Number of reachable states under ε-optimal strategy using BRTDP (three
different heuristics).

the algorithm. The optimal strategies tend to be very small when compared to the size
of the model. In most cases they contain from tens to thousands of states. The smallest
strategies have been reported for the mdsm case study, while the largest for zeroconf.
For every case study the size of the strategy stays fairly consistent despite the parameter
change. A possible explanation is that the optimal strategy does not significantly change
with increasing model size. We believe this behaviour is responsible for the scalability
improvements we previously reported.

Limitations of our methods

While the results presented above are encouraging, they tend to depend on structural
properties of the model. In particular, for models that require generating long trajectories
we observed that our algorithms deteriorate quickly. In Figure 7.4, we show how the length
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Figure 7.4: Influence of the length of the explored paths on the computation time

of the explored paths in the Explore phase of the algorithm can have a significant impact
on the runtime of the algorithm. We run the experiment with three heuristics using the
mdsm example for N = 8. We vary the k parameter, which for a bounded property
directly translates to the length of the explored paths. On the x-axis we report the value
of the k parameter and on the y-axis the computation time.

We observe that increasing the length of the explored paths causes a steep increase in
the runtime of the algorithm. For the RTDP heuristics, we are unable to solve models
when exploring paths longer than 10 states. In the case of the M-D heuristic, we performed
better, but our algorithm will not be able to solve, within reasonable time, models that
explore paths longer than 20 states. One possible solution would be to run our path
simulation in parallel. While using multiple threads should decrease the computation
time, the steep increase that we observed may still prohibit obtaining gains on larger
models.

Experimental results presented in this section are encouraging, but may not extend to
all models. For example, for models that require generating long trajectories or include
optimal strategies of significant size we may experience a significant slowdown. Neverthe-
less, for models with favourable structure, we outperform PRISM-games by several orders
of magnitude. Given that our results for MDPs also outperform PRISM, a leading proba-
bilistic model checker, we believe our algorithms can be considered as a preferred solution
method when solving large probabilistic models with certain structure.
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7.6 Summary

We have presented a framework for controller synthesis for stochastic games using learning
algorithms. For reasons of clarity, we first presented our framework for models without end
components. We proved that our method converges to the correct values for probabilistic
reachability, while keeping the expected total reward as future work. We showed a simple
example where our method will only visit a subset of the states of the model, and yet
obtains the same results as standard methods for solving stochastic games such as value
iteration.

After looking into several PRISM case studies, it became apparent that only a small
subset of models do not contain end components. To support a wider range of models, we
extended our framework to handle stochastic games with one-player ECs and arbitrary
MDPs. We developed an on-the-fly EC detection method that is able to identify end
components based on the generated trajectories. As our work aims at practical results, we
proposed three different heuristics that can be used for models with different underlying
structure.

A crucial element of any evaluation of a method based on heuristics are experiments
on a range of case studies. We implemented our methods as an extension of PRISM-games
and compared against the fastest available engine. Our method was able to outperform
PRISM-games by several orders of a magnitude. This was possible due to the partial
exploration of the state space that our algorithm relies on. It should be noted that not all
models have a structure that is favourable to heuristics, and in some cases our methods
performed worse than PRISM-games.
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Chapter 8

Case Study and Implementation

8.1 Introduction

One of the key aims of this thesis is to develop methods that can be applied to real-world
examples. In this chapter, we demonstrate the controller synthesis framework from Chap-
ter 4, along with methods from Chapters 5, 6, and 7, to an open-source stock monitoring
application called StockPriceViewer. Controller synthesis at runtime is used in the con-
text of StockPriceViewer to allow the application to update stock information in a timely
manner while using multiple stock information providers.

We run each method developed in this thesis and demonstrate how they improve the
practical applicability of our framework. For incremental model construction from Chap-
ter 5, we consider a scenario where the number of monitored stocks increases over time
and show how incremental methods can shorten the time that StockPriceViewer has to
wait for a new controller. We use learning-based controller synthesis from Chapter 7 to
decrease the initial time that StockPriceViewer has to wait before it receives the first con-
troller strategy. A more detailed run of the framework has been considered for permissive
controller synthesis from Chapter 6. Permissive controllers are employed to improve the
robustness of StockPriceViewer and handle a scenario when one of the stock information
providers becomes temporarily unavailable.

We begin the chapter by describing the StockPriceViewer application in Section 8.2.
In Section 8.3, we explain how each element of the framework has been implemented and
describe the PRISM model of StockPriceViewer. The evaluation of the methods from
Chapters 5, 6, and 7 on StockPriceViewer has been done in Section 8.4. In Section 8.5,
we summarise the results obtained in this chapter.

115
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Figure 8.1: StockPriceViewer application.

8.2 StockPriceViewer Application

StockPriceViewer [130] is an open-source Android application that enables users to view
real-time stock prices. In Figure 8.1, we show two screenshots from the application. The
left-hand side shows the main screen that contains a stock portfolio of three companies;
to the right of each company name we can find the stock price. On the right-hand side,
we show a second screen that appears after clicking on the particular stock from the list
and includes detailed pricing information.

The pricing information is updated every five seconds using an Internet-based stock
information provider. Different providers are characterised by different response times and
different failure probabilities. From the user perspective, the most important property of
the application is to provide current stock prices without delays, so that he or she can
quickly respond to market variations. To rapidly update information about the stock
portfolio, the application needs to choose from a variety of providers, a challenging task
given that providers with short response times may suffer from high failure probability
and reliable providers may be slow.
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Figure 8.2: Verification and Controller Synthesis at Runtime.

8.3 Controller Synthesis for StockPriceViewer

The framework described in Chapter 4 is used to formalise the decision-making process
in the presence of failures. We are able to decide on the optimal provider, taking into
account both its response time as well as the failure probability. Figure 8.2 depicts an
instance of the framework in the context of the StockPriceViewer application.

In the coming sections, we present how each of the methods developed in this thesis
fits into the framework. A full run of the framework is done for permissive controller
synthesis developed in Chapter 6. Using permissive controller synthesis, we show how to
avoid a lack of portfolio updates in cases when the optimal provider becomes temporarily
unavailable.

Below, we describe how each element of the framework has been implemented in the
context of the StockPriceViewer application.
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8.3.1 Computer System

The StockPriceViewer application plays the role of the computer system in the frame-
work. Controllable actions in the computer system are represented in StockPriceViewer
by actions that can be used to retrieve information about stocks from different stock infor-
mation providers. Contacting a stock information provider is typically done by a simple
HTTP request with a stock name as a parameter. The result of the query is a string of
comma-separated values containing relevant stock information.

In StockPriceViewer, the choice of the provider has been hard-coded in the configura-
tion and cannot be changed. We modified the application by replacing the module that is
responsible for picking the provider. The choice of the optimal provider will be made on
the basis of the PRISM strategy supplied by the verification module. The added module
uses a simple HTTP request to query if the verification module computed a new PRISM
strategy.

8.3.2 Monitoring Module

For each provider we monitor both the response time and failure probability. The mon-
itoring is done by a simple PHP script. The script, using an HTTP request, retrieves
stock information from a given provider and reports response time and failure informa-
tion. Monitoring happens every second and the measured values are stored and averaged
over a five minute period. The verification module can obtain the measurement data using
an HTTP-based interface.

8.3.3 Verification Module

The verification module is implemented as a PHP script that runs PRISM-games every
five minutes. We use a five minute time period because we want to generate a new strategy
every time new data from the monitoring module becomes available.

The script runs PRISM-games, giving as the inputs the stochastic game model, pa-
rameters from the monitoring module and the property. The output of PRISM-games is a
textual representation of the controller strategy; we use the standard syntax provided by
PRISM. Below, we present a stochastic game model of the StockPriceViewer application.

Stochastic game model of StockPriceViewer

We carefully analysed the source-code of the StockPriceViewer and manually derived a
model of the application. We model a sequence of stock portfolio updates, where the
application has to decide which provider should be chosen and the environment may try
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to spoil the choice. The full PRISM models for two scenarios can be found in Figures D.1,
D.2, and D.3 in Appendix D. In Figure 8.3, we present a simplified version showing a
single update of one stock with two possible data providers. In comparison, the model
in Figure D.1 supports an arbitrary number of stocks and three different providers. The
box in Figure 8.3 contains abbreviated information about actions available in states s5,
s6, s7, s8 that is omitted from the figure.

In the model, the controller states (marked using ♦) represent choices that are under
the control of the framework. In those states the application is able to choose between
different stock information providers pr1 and pr2. Each of the providers is characterised
by a different probability of failure (p1

1 and p1
2) and response time (r1

1 and r1
2). We use

data from the monitoring module from Figure 8.2 for probability of failure and response
time values.

The environment states (marked using �) represent the environment. When the given
data provider fails, the environment can choose from two options. It can either block or
retry the request. Blocking the request represents a situation when the provider blocks any
further requests from our machine. For large portfolios, we can run hundreds of queries
per second, and therefore we can be perceived as an Internet robot and thus automatically
lose the ability to contact the provider. The retry action allows us to retry the request.
We specify an upper bound on the number of retries, after which the provider is deemed
as not working.

In Table 8.1, we show statistics about the model size and the number of transitions.
We present the results for both the model with three providers (android_3 ) and four
providers (android_4 ). We use max_retry to define the maximal number of retries,
while stock_to_query represents the number of stocks. The number of stocks influences
the state space size linearly. In contrast, an increase in the number of retries causes the
state space to blow-up, and models for a large value of the parameter might be challenging
to consider.

8.4 Experimental Results

In the next sections we describe how each of the methods described in this thesis was
employed within the framework.

8.4.1 Incremental Model Construction

One of the parameters of the model of the StockPriceViewer application is stock_to_query,
which represents the number of stocks in the portfolio. This is a parameter that depends
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Figure 8.3: Stochastic game model of StockPriceViewer application parameterised with t1
from Figure 8.2.
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Name Parameters States Transitionsmax_retry stock_to_query

android_3

1 10 481 861
60 2,881 5,211

2 10 1,918 3,804
60 11,368 22,854

3 10 4,897 10,137
60 28,897 60,687

android_4

1 10 641 1,328
60 3,841 8,128

2 10 2,458 5,584
60 14,608 33,934

3 10 6,177 14,556
60 36,577 88,156

Table 8.1: Size of the stochastic game model of the StockPriceViewer application.

on the user as he or she may add or remove monitored stocks during the application
lifetime. Therefore, it might be desirable to compute several strategies for a sequence of
stock_to_query values. By doing so, we can offer the application additional strategies in
case the user adds or removes stocks during the time that it takes to generate a strategy.
This process can be speeded-up employing the techniques developed in Chapter 5.

Results

The command used for running the tool from Chapter 5 can be found in Figure 8.4. We
start by setting the value for system parameters using the standard PRISM-games const
switch. To build models for a sequence of values of the stock_to_query parameter we use
the PRISM-games syntax for running experiments. This is done by adding “:” between
the parameter values, in our case stock_to_query=2500:2501. We use web_stock_0_fail ,
web_stock_1_fail , and web_stock_2_fail to specify the probability of failure of each
of the providers in the model. Those values are computed by the monitoring module.
The max_retry value comes from the configuration. The property that the generated
strategy has to satisfy is set using the prop switch, but it does not play a role in the model
construction process. For the purpose of our experiment, we use the nover switch that
informs PRISM-games to only perform model construction and skip strategy generation.
We do this for reasons of clarity to only focus on improvements in the model construction
process. To inform PRISM-games to use incremental model construction algorithms we
use the incr switch.

The result of running the command can be found in Figure 8.4. The aim of our
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Model
[parameters]

Parameter
values States

Model construction time (s)
PRISM
(explicit)

Incr.
(Alg. 3)

android_3
[r, s]

3, 500− 501 240,097−240,577 2.9 2.4
3, 1000− 1001 480,097−480,577 8.2 4.9
3, 1500− 1501 720,097−720,577 13.4 7.8
3, 2000− 2001 960,097−960,577 21.7 11.3
3, 2500− 2501 1,200,097−1,200,577 28.0 13.6

Table 8.2: Experimental results for incremental model construction for StockPriceViewer.

method was to seamlessly integrate within the PRISM-games model construction process,
so that the user will only notice its presence through the reduced running times. The
only information printed by our algorithms is the number of states that the algorithm re-
explored in the old model while incrementally building the new model. This information
is printed with Re-explored used as a prefix.

The results of running the incremental model construction algorithm on the model
of StockPriceViewer can be seen in Table 8.2. In the table we first give the case study
name, followed by parameter values used and the number of states for each value of the
parameters. We compare the incremental model construction against the PRISM-games
model construction algorithm.

Incremental model construction offers a significant improvement over the PRISM-
games model construction algorithm. The main reason for this improvement can be found
in the output generated by PRISM-games in Figure 8.4. We can see there that our method
had to re-explore only 144 states out of 1, 200, 097, and in the incremental step 480 states
had to be added. In total there were only 624 states on which we had to evaluate all
commands in the model. As we mentioned in Chapter 5, evaluating a command on a
state can be a time-consuming process. In comparison, PRISM-games model construc-
tion evaluated all commands for 1, 200, 577 states, causing a significant slowdown. While
incremental model construction improves the performance of the model construction pro-
cess, it still requires keeping the whole model in memory. In the next section, we apply
learning-based methods that will only keep a small subset of states in the memory, leading
to significant improvements in strategy computation time.

8.4.2 Learning-based Controller Synthesis

Before StockPriceViewer can start querying stock information providers, it needs to obtain
a strategy from the verification module. This can be challenging in cases when computing
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thesis-examples$: ./prism android_generated_3.smg android.props
-const ’max_retry=3,stock_to_query=2500:2501
web_stock_0_fail=0.001,
web_stock_1_fail=0.002,
web_stock_2_fail=0.003’
-prop 1 -nover
-incr

PRISM-games

---------------------------------------------------------------------

Building model...

Computing reachable states... 289393 532382 705973 1096788 1200097 states
Reachable states exploration and model construction done in 16.755 secs.
Sorting reachable states list...
Type: SMG
States: 1200097 (1 initial)
Transitions: 2167527
Choices: 1807527
Max/avg: 3/1.51

Time for model construction: 17.746 seconds.

---------------------------------------------------------------------

Building model...

Re-explored: 144 states

Computing reachable states...1200577 states
Reachable states exploration and model construction done in 0.009 secs.
Sorting reachable states list...
Type: SMG
States: 1200577 (1 initial)
Transitions: 2168394
Choices: 1808250
Max/avg: 3/1.51

Time for model construction: 9.438 seconds.

Figure 8.4: Running incremental model construction for StockPriceViewer.
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the strategy takes a substantial amount of time. We found that the model that we de-
veloped in this chapter is sensitive to the values of the max_retry parameter. For large
values of the parameter it may take several minutes before the verification module is able
to compute the strategy that is used by the application. In the meantime, the values of
system parameters used to parameterise the model may change, making the computed
strategy obsolete. Below, we show a run of our tool developed in Chapter 7, which proved
to only needs seconds to generate the optimal strategy for the model of StockPriceViewer.

Results

We first report the command that was used to run our tool and then present the results
in Table 8.3. The command can be seen in Figure 8.5. Firstly, we set the value of
all system parameters. As before, we use the const switch to set the values of system
parameters. The property that we consider is set using the prop switch and maximises
the probability of successfully updating a portfolio of stocks. As the precision parameter
we use ε = 10−8. The generated strategy will be stored in the strategy.strat file, which is
set using the exportadv switch.

To run our algorithms we use the -brtdp:heuristic=MD,verbose switch. The brtdp
switch informs PRISM-games that it should use our learning-based methods as the main
solution method. The heuristic switch specifies the heuristic that will be used when
exploring the state space; possible values are MD, RR, and RTDP. The verbose switch
informs PRISM-games to print as much information as possible about the run of the
algorithm.

When running our algorithms in verbose mode, we report several interesting statistics
about the solution process. Every time MECs are collapsed, we print a message describing
the time spent on collapsing. Every fixed number of steps, we print the number of states
visited by the algorithm as well as the current upper and lower bounds on the value of the
property in the initial state. After the optimal strategy has been computed, we print the
number of reachable states under that strategy and again report upper and lower bounds
on the value of the property.

A summary of running our methods on the StockPriceViewer model is presented in Ta-
ble 8.3. Please note that the results have been averaged over a 20 runs due to the ran-
domised nature of our algorithms. We first report the model name, the parameter value,
the number of states in the model and the property. We report the PRISM-games time
for computing the optimal strategy, as well as the fastest heuristic. In the last column we
report the number of states visited by the heuristic.

We can see that, for values of max_retry higher than 20, PRISM-games can take
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thesis-examples$: ./prism android_generated_3.smg android.props
-const web_stock_0_fail=0.001,
web_stock_1_fail=0.002,
web_stock_2_fail=0.003,
’max_retry=30, stock_to_query=10’
-prop 1 -epsilon 1e-8 -exportadv strategy.strat
’-brtdp:heuristic=MD,verbose’

PRISM-games

---------------------------------------------------------------------

Model checking: <<controller>> Pmax=? [ F stock_querued=stock_to_query ]
Model constants: max_retry=30,stock_to_query=10
Solution method: heuristics.search.HeuristicBRTDP
Using heuristic: M-D

Starting Prob0 (maxmin)...
Prob0 (maxmin) took 2 iterations and 0.0 seconds.

Starting MEC collapsing
MEC collapsing done 0.003 secs.
Visited states: 24
Lower bound: 0.0
Upper bound: 1.0

Visited states: 14051
Lower bound: 0.9999986977016975
Upper bound: 0.9999986977016975
Reachable under optimal strategy: 265

Learning-based model checking completed in 1.411 secs.

Result (result for coalition [controller]): 0.9999986977016975

Figure 8.5: Running learning-based controller synthesis for StockPriceViewer.

Name
[parameters]

Parameter
values States Property Time(s) Visited

StatesPRISM M-D

android_3
[r, s = 10]

15 364,033

Pmax=?[ F done ]

108.6 1.4 13,093
20 832,168 320.3 1.4 13,389
25 1,589,953 741.4 1.4 13,010
30 2,707,138 * 1.5 13,403
* Algorithm did not terminate within 30 minute time-out.

Table 8.3: Experimental results for learning-based controller synthesis for StockPrice-
Viewer.
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several minutes to compute the optimal strategy. In contrast, the results provided by
learning-based methods allow for the generation of the controller in just above a second.
The reasons are clearly visible in Figure 8.5. We visit only 14051 states, which is a small
subset of the 2, 707, 138 states in the full model. Similarly, we run the MEC collapsing
and precomputation algorithms on a model of just 24 states, which barely takes any time.
The same precomputation algorithm run on the full model would take several minutes
to complete. In the next section, we present a full run of the framework and show how
permissive controller synthesis can improve the functionality of StockPriceViewer.

8.4.3 Permissive Controller Synthesis

When running StockPriceViewer, we often experienced temporary unavailability of the
currently used stock information provider. This caused the application to stop updating
the stock prices, which would only resume when the provider became online again. A
simple solution to this problem would be to generate a new strategy for the model of
StockPriceViewer without the malfunctioning provider. While it would solve our problem,
it may take a prohibitively long time to compute such a strategy. By the time that a new
strategy has been computed, the unavailable provider may become online again and a
new strategy will have to be computed. Instead, to solve this problem we use techniques
developed in Chapter 6. We will compute a multi-strategy that defines a list of providers
that can be used. In case one of the providers becomes unavailable, the application can
switch to a different provider without any recomputation.

Results

In our experiment we can consider a full implementation of the framework. We run
StockPriceViewer on a Galaxy Nexus phone with Android 4.3. The monitoring module
and the verification module run on a machine with a 2.8GHz Xeon processor and 32GB
of RAM, running Fedora 14.

The monitoring module is a PHP script that, every second, contacts each of the avail-
able providers and stores the response time and information if the query failed. Values are
averaged over a five minute period and available using a web interface for the verification
module. The verification module is implemented as a PHP script, which calls PRISM-
games over a command line; in Figure 8.6 we present the command used to generate a
multi-strategy in our experiment.

The command starts with specifying system parameters in the PRISM model of the
application. Below, we will expand how we computed those values. We use a model that
allows four different providers and a property that minimises the expected time required
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thesis-examples$: ./prism android_generated_4.smg android.props
-const ’web_stock_0_fail=0,
web_stock_1_fail=0.00002,
web_stock_2_fail=0.00003,
web_stock_3_fail=0.00004,
web_stock_0_response_time=100,
web_stock_1_response_time=200,
web_stock_2_response_time=600,
web_stock_3_response_time=700,
max_retry=1, stock_to_query=60’

-prop 2
-run_solver
-lp_solver gurobi_cl
-lp_output_file encoding.lp -lp_result_file multi_strat.sol
-exportadv multi_strategy.strat

PRISM-games

---------------------------------------------------------------------

Model checking: <<controller>> R<=66000 [ Fc stock_querued=stock_to_query ]
Model constants: max_retry=1,stock_to_query=60

Building model...

Computing reachable states... 3841 states
Generating LP encoding generation took: 6.28 seconds
Running solver: TimeLimit=300s Threads=1 ResultFile=multi_strat.sol encoding.lp

Set parameter TimeLimit to value 300s
Set parameter Threads to value 1

Gurobi Optimizer version 5.5.0 build 11815
Copyright (c) 2013, Gurobi Optimization, Inc.

Read LP format model from file encoding.lp
Variable types: 2185 continuous, 4509 integer (4509 binary)
Found heuristic solution: objective -0.1522843

Root relaxation: objective -1.544036e-01, 3705 iterations, 0.07 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 -0.15440 0 1820 -0.15228 -0.15440 1.39% - 1s
0 0 cutoff 0 -0.15228 -0.15228 0.00% - 2s

Explored 0 nodes (17945 simplex iterations) in 2.16 seconds
Thread count was 1 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective -1.522843353995e-01, best bound -1.522843353995e-01, gap 0.0%

Wrote result file ’multi_strat.sol’

Figure 8.6: Running permissive controller synthesis for StockPriceViewer.
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for updating information about 60 stocks.

To differentiate between multi-strategies, we use a penalty structure. In the case of
StockPriceViewer our penalty structure assigns higher penalties for providers with short
response times, therefore preferring to block slow providers. The definition of the penalty
structure can be found in Figure D.4 in Appendix D.

We inform PRISM-games to run our algorithms by using the run_solver switch. The
lp_solver switch is used to define which solver is used, possible options include gurobi_cl
and cplex. The MILP encoding is saved in the file defined using lp_output_file and the
output of the solver is saved in the file defined by lp_result_file. Based on the content of
the multi_strat.sol, our tool will generate a PRISM representation of the multi-strategy,
which will be saved in the file specified by the exportadv switch.

The multi-strategy used in the experiment has been generated within seconds. This is
possible due to a relatively small model that we considered. For larger models, we may
not be able to generate an optimal multi-strategy within a reasonable time threshold. In
those cases, we could consider changing the TimeLimit parameter of the Gurobi solver.
This is the parameter that controls the time after which the solver returns the current
best solution. In our experiments the parameter has been hard-coded to 300 seconds and
after that time the solver will return possibly non-optimal but a sound multi-strategy that
can be used by StockPriceViewer.

In our experiment, we use four different stock information providers, each with a dif-
ferent probability of failure and response time. In order to control these values, we used a
purpose-made proxy server. The proxy server is able to maintain the response time and
probability of failure at specified levels and avoid fluctuation due to network configuration.
The proxy server is also implemented as a PHP script. Data about current stock prices
is gathered from Yahoo! Finance 1 website. We use 100, 200, 600, 700 milliseconds as
response times and 0, 0.00002, 0.00003, 0.00004 as the failure probabilities.

In the experiment, we show how StockPriceViewer reacts to the occasional unavail-
ability of the currently used provider when using a classical and a permissive controller.
We focus our experiment on a single run of the framework, without recomputing the con-
troller. The run takes five minutes. Every five seconds, StockPriceViewer tries to update
the value of the portfolio, and every 30 seconds the currently used provider fails for a
period of ten seconds. We use max_retry = 1 and stock_to_query = 60 as parameters
for the PRISM model.

When the currently used provider fails, the classical controller is unable to make an
informed decision as to which provider should be chosen instead. We model this by

1http://finance.yahoo.com
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picking the provider at random. The permissive controller will switch to the provider that
is defined by the multi-strategy.

In Figure 8.7, we report the results of our experiment. On the x -axis we report the time
since the beginning of the experiment. The y-axis represents the response time experienced
by StockPriceViewer while performing portfolio updates. The dotted line represents the
response times obtained using standard controller synthesis, while the solid line represents
results that are obtained using a multi-strategy. Please note that in the experiment the
stock portfolio consists of ten stocks, and therefore the reported times are proportionally
higher compared to the response time of the provider in use.

At the beginning of the experiment, StockPriceViewer reports the same response
times, as both controllers choose the same providers. After the first failure, the single-
strategy controller randomly picks the last provider, causing a significant increase in the
response time. On the other hand, the permissive multi-strategy controller picks the sec-
ond provider, causing only a slight increase in the response time. After the first provider
becomes available again, both controllers continue to pick the same providers. This leads
to similar response times.

During the second failure, the single-strategy controller randomly chooses the second
provider, but later in the experiments such a situation does not occur and the single-
strategy controller performs much worse. We report an increase of the response time for
the permissive controller midway through the experiment. This is attributed to network
problems, as an investigation of the phone log revealed that the provider with 200 mil-
liseconds response time was used. Overall, the permissive controller is able to successfully
handle occasional unavailability of one of the providers. It takes 111.13 seconds for the
single-strategy controller to perform 60 portfolio updates, compared to 88.03 seconds using
the permissive controller.

8.5 Summary

In this chapter, we evaluated the techniques developed in this thesis on StockPriceViewer,
an open-source stock monitoring application. We described how controllers can be used by
StockPriceViewer to decide how to choose between multiple stock information providers
and allow for updating stock information in a timely manner. Next, we showed how
each element of our controller synthesis framework from Chapter 4 has been implemented.
In Section 8.4, we evaluated all methods developed in this thesis using an implementation
of our framework.

For each method, we described a scenario in which StockPriceViewer can benefit from
applying the method and presented command line parameters needed to run it. For



130 CHAPTER 8. CASE STUDY AND IMPLEMENTATION

0	  

10
00
	  

20
00
	  

30
00
	  

40
00
	  

50
00
	  

60
00
	  

70
00
	  

80
00
	  

5	  
30
	  

55
	  

80
	  

10
5	  

13
0	  

15
5	  

18
0	  

20
5	  

23
0	  

25
5	  

28
0	  

Response	  Time	  [ms]	  

Ti
m
e[
s]
	  

sin
gl
e-‐
st
ra
te
gy
	  

m
ul
8-‐
st
ra
te
gy
	  

Figure 8.7: Improved robustness of the StockPriceViewer application.
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permissive controller synthesis, we considered a full run of our framework. Our method
has been used to improve StockPriceViewer ability to overcome temporary unavailability
of stock information providers.

While we showed that each of the methods we developed can be successfully applied
in the context of StockPriceViewer, it would be beneficial to also consider different case
studies. One of the possible directions include cloud systems, where controller synthesis
could be used to decide how many servers should be kept running or on which machines
a service should be deployed
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Chapter 9

Conclusions

9.1 Summary and Evaluation

The main aim of this thesis was to make runtime controller synthesis fast, robust and
scalable. To improve performance of controller synthesis, we developed an incremental
model construction method. Incremental model construction exploits the fact that apply-
ing controller synthesis at runtime often requires re-verifying models that share a similar
structure and can be built incrementally. We addressed the robustness objective by de-
veloping permissive controller synthesis that is useful in cases when some of the actions of
the running system become temporarily unavailable. The scalability objective has been
tackled by means of learning-based methods drawn from fields such as planning and rein-
forcement learning. By generating random trajectories through the model, our method is
able to approximate the value of the property while only visiting a possibly small number
of states.

Another aim of this thesis was to develop techniques that not only expand knowledge
about the theory of controller synthesis, but also perform well in practice. For each
of the methods, we developed a full implementation that has been evaluated using an
extensive set of PRISM case studies. Being able to run a large number of experiments
allowed us to better understand the limitations of our work, and in many cases drove the
research in a direction that promised better practical results. For example, optimisations
presented in Section 6.3.4 are a direct consequence of disappointing experimental results
that we obtained for the MILP encoding without any optimisations. Heuristics proposed
in Section 7.5 have similar origins, where the RTDP heuristic was implemented first but
did not perform well.

This thesis is only an initial attempt to formalise, solve and implement the problem
of controller synthesis at runtime. The amount of work needed to better understand

133
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the subject is vast, with particular emphasis on developing case studies and providing
additional implementation for the framework from Chapter 4. In Chapter 8, we presented
a case study that implements our framework and is used to evaluate each method developed
in this thesis. While the results are encouraging, it is important to consider more case
studies representing a wider range of possible scenarios. We expand on future directions
in Section 9.2.

Below, we summarise each of the three main contributions of this thesis. We first
explain the problem we were trying to address, then describe the solution, and summarise
the novelty of our method.

In Chapter 5, we demonstrated that incremental model construction can yield signifi-
cant performance gains in cases where we build a sequence of models that differ in values
of system parameters. By analysing the high-level model representation, we were able to
pinpoint all states that need to be re-visited. Starting from the previously built model
and the set of states that needs be re-visited, we were able to build the new model incre-
mentally. Typically, this required significantly fewer time-consuming operations, such as
state evaluation or state storage, when compared to building the model from scratch.

While there exist methods for incremental model checking for probabilistic models [61,
94, 95], to the best of our knowledge this is the first time when incremental model con-
struction has been proposed for PRISM’s modelling language.

In Chapter 6, we introduced permissive controller synthesis to improve the robustness
of the controllers used in the framework from Chapter 4. We defined a notion of a multi-
strategy as a generalisation of strategies used in traditional controller synthesis. We defined
penalties that allow for a comparison of multi-strategies to decide which one is more
permissive. Finally, we formulated the permissive controller synthesis problem and proved
that, even in the simplest case, it is an NP-hard problem. To be able to synthesise
permissive controllers in practice, we developed an MILP encoding. Subsequently, we
showed that, while the amount of computation needed for computing permissive controllers
is higher than for classical controllers, it is still possible to generate controllers for models
containing tens of thousands of states.

The novelty of permissive controller synthesis is both in the theory that we developed,
as well as in the implementation that involves MILP. Permissive controllers in the context
of non-stochastic games have already been pursued in [15, 11]. We believe that our work
is the first to define permissive controllers for stochastic games. In the past, MILP has
been used for probabilistic model checking [121]. To the best of our knowledge, it has not
yet been used in the context of stochastic games that are larger than a few states [120],
and so our MILP encoding has resulted in the first practical tool for generating robust
multi-strategies for runtime use.
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In Chapter 7, we developed a learning-based framework for (classical) controller syn-
thesis for stochastic games. The motivation was to improve the scalability by relying on
only partial exploration of the probabilistic model. We defined a framework based on
RTDP and BRTDP algorithms that is applicable to a subclass of stochastic games and
to arbitrary MDPs. Our method involves a heuristic-based exploration of the model state
space, where each generated trajectory improves the value of the property being verified.
Our implementation showed that partial exploration can be very effective for a number of
PRISM case studies. We improved the performance of controller synthesis by several or-
ders of magnitude compared to state-of-the-art PRISM implementation, while being able
to give precise error bounds on the value of the property.

The main strength and novelty of this work derives from the highly optimized im-
plementation and a choice of heuristics that work for models with different structural
characteristics. Recently, heuristic-based methods for model checking and controller syn-
thesis have been developed [67, 84]. To the best of our knowledge, we were the first to
apply those methods to stochastic games. Moreover, in the case of MDPs and probabilistic
model checking, we believe we provided the first efficient implementation of heuristic-based
controller synthesis supported by an extensive experimental evaluation.

9.2 Future Work

Our work in this thesis can be extended in numerous ways. We divide this section by each
chapter and suggest possible future research directions.

The framework from Chapter 4 can be extended in several ways. In this thesis, we
did not extensively study the influence of the controller on the running system. A more
control-theoretic approach is needed and issues such as stability should be considered.
Our framework does not consider a specific implementation of the monitoring module; in
our implementation we used a simple average to obtain the value of parameters. A more
robust approach to data fusion should be pursued, possibly inspired by KAMI [52] or work
presented in [22].

While we provided an implementation for each of our contributions, the framework as
a whole was only partially implemented. It would be vital to provide a tool-like imple-
mentation. In Chapter 8, we considered a case study which uses the presented framework.
The first step in extending this work would be to develop a case study where each of our
methods can be run simultaneously. This contrasts with the work we present in the thesis
where each method uses a different set of parameters. Subsequently, we should provide
new case studies in order to be able to fully understand the strengths and weakness of us-
ing controller synthesis at runtime. Possible directions include cloud systems, webservice
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composition, as well as considering randomly generated models.
We evaluated all our methods on one case study in Chapter 8. Each of our methods has

been run separately with different model parameters. It would be beneficial to consider a
case study where all three methods that we developed can be run simultaneously.

The incremental model construction from Chapter 4 addresses only a small part of the
controller synthesis process. Another important part is effective quantitative verification
methods. There exists some initial work on incremental quantitative verification [94], but
those methods do not work in the presence of structural changes. It would be interest-
ing to see if the techniques from Chapter 4 could be applied in this scenario. Another
possibility is developing incremental precomputation algorithms for probabilistic models.
Precomputation is used to compute the set of states that satisfy the property with proba-
bility 1 (equivalently with probability 0). Currently used precomputation algorithms [59]
do not work incrementally and require recomputation even after a small change in the
model structure.

At the level of the PRISM modelling language, one possibility is to consider a case
where we can add or remove modules. In many PRISM models, modules are used to
model a possibly variable number of system components. One example might be a model
for the Microgrid management algorithm [30], where participating households are modelled
using modules. In a runtime scenario the number of households is likely to change, which
at this point is not supported by our method.

For permissive controllers, one of the open problems includes deciding if an optimal
randomised multi-strategy for a dynamic penalty scheme exists. Another possibility is to
consider not only memoryless multi-strategies, but also history-dependent ones. It seems
likely that the penalty schemes that we proposed for memoryless strategies may not be
adequate in the history-depended case, leading to another possible avenue to investigate.

One of the main features of MILP solvers is the ability to provide intermediate results
of the computation. While possibly non-optimal, the result may be good enough to use in
practice. Our current implementation uses a simple timeout to stop the computation. It
would be worthwhile to use a more integrated approach, where each intermediate solution
could be examined and the computation could be stopped based on some criterion other
than a timeout.

The most important future direction for the work from Chapter 7 is adding support
for computing the expected total reward. One of the main technical problems behind it
is the fact that we cannot easily estimate the value of the upper bound of the expected
reward in a state. This problem has been considered in the planning community and
relaxation-based methods are one possible solution [99].

The on-the-fly EC method is a costly element of our framework. One could replace it
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by precomputing ECs before starting the synthesis method. Decomposing into end com-
ponents does not depend on the probability values on transitions in the model. Therefore,
the precomputation could possibly be done using a SAT solver. A similar approach has
been proposed by [77] but in the context of counter-example generation. Another possi-
bility is to extend our framework to support other heuristic-based algorithms. Possible
candidates include LAO* [69] and Bayesian RTDP [110].

9.3 Conclusion

In this thesis, we successfully developed and evaluated three techniques that address re-
quirements for controller synthesis at runtime using stochastic games. For each of the
techniques, we formulated the theory, developed the implementation, and performed the
experimental evaluation.

The practicality of the presented methods was one of our main motivations. Our
methods were proved to work well in practice and, when comparison was possible, we were
able to obtain results that significantly improve over existing state-of-the-art methods.

The work done in this thesis is only a starting point for future research on controller
synthesis at runtime. We proposed a number of possible directions in which to extend it.
One of the most important aspects is to consider more case studies, which will ensure the
relevance of our methods in practice.



138 CHAPTER 9. CONCLUSIONS



Appendix A

Benchmarks

The techniques developed in this thesis have been evaluated on a set of PRISM case studies.
In the coming sections, we provide a short description of each case study. All PRISM
models of the case studies are available online on the website that has been prepared for
this thesis [129]. We divided the case studies based on the type of probabilistic model that
they employ.

A.1 DTMC Case Studies

crowds([112])

Crowds is a protocol aimed at providing anonymous web browsing. This is achieved by
routing the web traffic through a set of randomly chosen routers. The PRISM model
is used to verify the anonymity properties of the protocol. This case study is employed
for incremental model construction and therefore we do not mention any specific PCTL
property.

A.2 MDP Case Studies

mer([54])

The mer case study focuses on a resource arbiter module of the Mars Exploration Rover
(mer). The resource arbiter is a piece of software that manages access to a resources
available on-board the rover. The PRISM model is used to capture a possibly faulty
communication channel between the arbiter and threads competing for the resources. The
property that we consider is Pmax=?[ F

630 no_deadlock ], which expresses the maximum
probability of a deadlock occurring within the first 30 steps of arbiter execution.
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zeroconf([90])

Zeroconf is a protocol that can be used to dynamically assign an IP address to a device.
The stochasticity in the protocol is introduced by using a random number generator to pick
the initial IP address. After picking the IP address, a set of procedures is run that ensure
that the address is not conflicting with other addresses in the network. The property that
we verify on the PRISM model of the protocol is Pmin=?[ F configured ]. This property
expresses the minimum probability of successfully configuring the IP address.

firewire([93])

This case study aims at analysing properties of the leader election protocol of the IEEE
1394 High Performance Serial Bus (also known as FireWire). The purpose of the protocol is
to dynamically elect a leader from the devices currently connected to the bus. The leader
will later act as the manager of the bus. The model is probabilistic timed automaton
interpreted as an MDP under digital clock semantics. The property that we analyse for
this case study is Pmax=?[ F leader_elected ], which expresses the maximal probability of
electing a leader.

wlan([92])

The PRISM model developed in this case study models the two-way handshake mechanism
of the IEEE 802.11 medium access control (WLAN protocol). The model includes two
stations communicating with each other. The communication can be disrupted if both
station transmit at the same time and create a collision. Similarly to the firewire case
study, the model is probabilistic timed automaton interpreted as an MDP under digital
clock semantics. We are interested in computing the maximum probability of the message
being sent correctly. This can be captured using the property Pmax=?[ F sent_correctly ].
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A.3 Stochastic Game Case Studies

mdsm([30])

Microgrid Demand-Side Management (mdsm) is a case study concerning distributed en-
ergy management for a set of households that aim to minimise the peak energy de-
mand. The algorithm is based on the work of Hildmann et al. [75]. In this thesis, we
focus on two properties for this case study. The first ensures that one of the house-
holds deviates from the algorithm with a low probability, P60.01[ F deviated ]. The second,
Pmax=?[ F

6kfirst_job_arrived ], expresses the maximal probability that the household gen-
erates its first job within the first k steps. A job represents an energy consuming task that
a household submits to the energy grid.

android

This case study is discussed in detail in Chapter 8.

cloud([21])

This case study is an extension of the work presented in [21]. We model a cloud system
consisting of servers, virtual machines and the cloud administrator. The aim of the cloud
administrator is to deploy a web application on one of the virtual machines. We intro-
duced a game-theoretic aspect to the case study by considering a hostile behaviour of the
environment that causes servers to fail due to hardware failures. One of the considered
properties is P>0.9999[ F deployed ], which ensures that the web application is deployed with
high probability.

investor([100])

The investor case study models an investor buying futures contracts. The aim of the
investor is to maximise his/her profit while the environment will try to decrease it. The
investor is able to decide whether to invest or not at specific points in time. The environ-
ment can bar the investor from investing for a fixed period of time. The property used is
R

profit
>4.98 [ C ], which ensures a return of at least 90% of the maximal return.

team-form([33, 64]

This case study presented in [33] performs an analysis of a team formation protocol of [64].
The protocol governs how a set of agents in a distributed environment should assemble into
teams such that they can perform a given set of tasks together. We consider a property
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that is used to compute a strategy that ensures that the first team completes their task
with high probability, namely, P>0.9999[ F done1 ].

cdmsn([30, 109])

Similarly to the previous case study, here we work with a set of agents in a distributed
environment. Saffre et al. [109] present a framework that facilitates a decision making
process, where a set of agents need to agree on a particular decision. For this case study,
we are interested in generating a strategy that ensures that agents agree on a decision
with high probability. Such a property can be described using P>0.9999[ F prefer 1].



Appendix B

Proofs for Chapter 6

B.1 Proof of Theorem 4

Proof. We start with the case of randomised multi-strategies and static penalties, which
is the most delicate part of the proof. Then we analyse the case of randomised multi-
strategies and dynamic penalties, and finally show that this case can easily be modified
for the remaining two combinations.

Randomised multi-strategies and static penalties. We give a reduction from the
Knapsack problem. Let n be the number of items, each of which can either be or not be
put in a knapsack, let vi and wi be the value and the weight of item i, respectively, and
let V and W be the bounds on the value and weight of the items to be picked. We assume
that vi 6 1 for every 1 6 i 6 n, and that all numbers vi and wi are given as fractions with
denominator q.

Let us construct the following MDP, where m is chosen such that n2−m 6 1
q
and

2−m ·W 6 1
q
.
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s

t1 t′1

>

⊥

tn t′n

>

⊥

1/n

1/n

a1

b1, w1

d1

v1

1− v1

c1, 2
3m · w1

an

bn, wn

dn

vn

1− vn

cn, 2
3m · wn

We define a reward structure r such that every path reaching > is assigned cumulative
reward 1. The penalties are as given by the underlined expressions.

We show that there is a multi-strategy θ sound for the property R r>V/n [ C ] such that
pensta(ψ, θ) 6 W + 2−m ·W if and only if the answer to the Knapsack problem is “yes”.

In the direction ⇐, let I ⊆ {1, . . . , n} be the set of items put in the knapsack. It
suffices to define the multi-strategy θ by:

• θ(t′i)({ci, di}) = 1− 2−4m, θ(t′i)({di}) = 2−4m, θ(ti)({ai}) = 1 for i ∈ I

• θ(t′i)({ci, di}) = 1, θ(t1)({ai, bi}) = 1 for i 6∈ I.

In the direction⇒, let us assume we have a multi-strategy θ satisfying the assumptions.
Let P (s → s′) denote the lower bound on the probability of reaching s′ from s under a
strategy which complies with the multi-strategy θ. Denote by I ⊆ {1, . . . , n} the indices
i such that P (ti → >) > 2−m.

Let βi = θ(ti)({ai}) and αi = θ(t′1)({di}). Observe that:

yi = βi ·
∞∑
j=0

((1− αi) · βi)j · αi · vi =
αiβivi

1− (1− αi)βi
=

αiβivi
1− βi + αiβi

because the optimal strategy σ will pick bi and ci whenever they are available. Note that
for i ∈ I, αi > 2−m(1− βi), since otherwise we have:

αiβivi
1− βi + αiβi

<
αiβi

1− βi + αiβi
<

2−m(1− βi)βi
1− βi + 2−m(1− βi)βi

<
2−mβi

1 + 2−mβi
6 2−m
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Hence, αi > 2−m(1− βi), and so:

pen loc(ψ, θ, ti) + pen loc(ψ, θ, t
′
i) = βiwi + αi2

3mwi > βiwi + 2−m(1− βi)23mwi > wi

We have: ∑
i∈I

wi 6
∑
i∈I

(
pen loc(ψ, θ, ti) + pen loc(ψ, θ, t

′
i)
)
6 W + 2−m ·W

and because
∑

i∈I wi and W are fractions with denominator q, by the choice of m, we can
infer that

∑
i∈I wi 6 W . Similarly:

∑
i∈I

1

n
vi >

∑
i∈I

1

n
P (ti → >) >

( 1

n

n∑
i=1

P (ti → >)
)
− 1

n
2−mn >

1

n
V − 2−m

and again, because
∑

i∈I vi and V are fractions with denominator q, by the choice of m
we can infer that

∑
i∈I vi > V . Hence, in the instance of the knapsack problem it suffices

to pick exactly items from I to satisfy the restrictions.

Randomised multi-strategies with dynamic penalties. The proof is analogous to
the proof above; we only need to modify the MDP and the computations. For an instance
of the Knapsack problem given as before, we construct the following MDP:

s

t1

>

⊥

tn

>

⊥

1/n

1/n

a1

v1

1− v1

b1, w1

an

vn

1− vn

bn, wn

We claim that there is a multi-strategy θ sound for the property R r>V/n [ C ] such that
pendyn(ψ, θ) 6 1

n
W if and only if the answer to the Knapsack problem is “yes”.

In the direction ⇐, for I ⊆ {1, . . . , n} the set of items in the knapsack we define θ by
θ(ti)({ai}) = 1 for i ∈ I and by allowing all actions in every other state.

In the direction⇒, let us assume we have a multi-strategy θ satisfying the assumptions.
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Let P (s → s′) denote the lower bound on the probability of reaching s′ from s under a
strategy which complies with the multi-strategy θ. Denote I ⊆ {1, . . . , n} the indices i
such that θ(ti)({ai}) > 0. Observe that P (ti → >) = vi if i ∈ I and P (ti → >) = 0

otherwise. Hence:

∑
i∈I

1

n
vi =

∑
i∈I

1

n
P (ti → >) =

1

n

n∑
i=1

P (ti → >) >
1

n
V

and for the penalty, denoting xi := θ(ti)({ai}), we get:

1

n
W > pendyn(ψ, θ) =

1

n

n∑
i=0

∞∑
j=0

(1− xi)jxiwi =
1

n

∑
i∈I

∞∑
j=0

(1− xi)jxiwi =
1

n

∑
i∈I

wi (B.1)

because the strategy that maximises the penalty will pick bi whenever it is available.
Hence, in the instance of the knapsack problem it suffices to pick exactly items from I to
satisfy the restrictions.

Deterministic multi-strategies and dynamic penalties. The proof is identical to
the proof for randomised multi-strategies and dynamic penalties above: observe that the
multi-strategy constructed there from an instance of Knapsack is in fact deterministic.

Deterministic multi-strategies and static penalties. The proof is obtained by a
small modification of the proof for randomised multi-strategies and dynamic penalties
above. Instead of requiring pendyn(ψ, θ) 6 1

n
W we require pensta(ψ, θ) 6 W , and Equa-

tion B.1 changes to:

W > pensta(ψ, θ) =
n∑
i=0

xiwi =
∑
i∈I

wi .

ut

B.2 Proof of Theorem 5

Proof. We consider the deterministic and randomised cases separately.

Deterministic multi-strategies. We start by showing NP membership for determin-
istic multi-strategies. If the answer to the problem is “yes”, then there is a witnessing
deterministic multi-strategy, which is of polynomial size. We can guess such a strategy
nondeterministically and then in polynomial time verify that the guess is correct. The
fact that the multi-strategy is sound and that it achieves the required dynamic penalty
can be verified using standard algorithms for computing expected total reward in MDPs.
Static penalties can be checked by summing up the local penalties.
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Randomised multi-strategies. Now we show that the permissive controller synthesis
problem is in PSPACE if we restrict to randomised multi-strategies and static penalties.
For dynamic penalties the proof is similar.

The proof proceeds by constructing a polynomial-size closed formula Ψ of the existen-
tial fragment of (R>0,+, ·,6) such that Ψ is true if and only if there is a multi-strategy
ensuring the required penalty and reward. Because determining the validity of a closed
formula of the existential fragment of (R>0,+, ·,6) is in PSPACE [27], we obtain the
desired result.

For the rest of this section, fix an instance of the permissive controller problem as in
Definition 8, with static penalties. We say that a multi-strategy is winning if it satisfies
the conditions on θ in Definition 8.

For numbers ~p = (ps)s∈S, where 0 6 ps 6 1 for every s ∈ S, let us consider a
game G~p which is obtained from G by applying the transformation from Section 6.3.3 for
approximating randomised multi-strategies (see also Figure 6.5), where we fix n = 2 and
substitute the numbers p1 and p2 in the gadget created for s with numbers ps and 1− ps.
We claim that there is a randomised winning multi-strategy in G if and only if there exists
a vector ~p such that there is a deterministic winning multi-strategy in G~p. The proof
proceeds by establishing a direct correspondence between randomised multi-strategies in
G and games G~p and deterministic multi-strategies in them.

Further, let Ψ[G~p] denote the conjunction of the constraints 6.1-6.8 from Figure 6.2 for
the game G~p, together with the constraints:∑

s∈S♦

(
ps ·
(
α(s, 1, 1) + α(s, 1, 2)

)
+ (1− ps) ·

(
α(s, 2, 1) + α(s, 2, 2)

))
6 c

ysi,bj ·
∑

a∈A(s′j)

(1− ys′j ,a)·ψ(s′j, a) = α(s, i, j) for all s ∈ S, i, j ∈ {1, 2}

0 6 ps 6 1 for all s ∈ S

We get that Ψ[G~p] is satisfiable if and only if there is a deterministic winning multi-strategy.

Note that the formulae Ψ[G~p] for different ~p differ only at positions where the numbers
of ~p are substituted. Hence, we can create a formula Ψ′ which is obtained from Ψ[G~p],
where each ps is treated as a variable. From the above we get that the formula Ψ′ is
satisfiable if and only if there is a randomised winning multi-strategy, and hence we finish
the proof by putting Ψ ≡ ∃~xΨ′ where ~x are all variables of Ψ′. ut
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s

t1

t′1

t̄1

⊥

tn

t′n

t̄n

⊥

1/n

1− x1

x1

c′1

a′1, 1

c̄1

ā1, 1

b1, 1/x1

1/n
1− xn

xn

c′1

a′n, 1

c̄n

ān, 1

bn, 1/xn

Figure B.1: The game for the proof of Theorem 6.

B.3 Proof of Theorem 6

Proof. Let x1,. . . ,xn and y be numbers giving the instance of the square-root-sum problem,
i.e. we aim to determine whether

∑n
i=1

√
xi 6 y. We construct the game from Figure B.1.

The penalties are as given by the underlined numbers, and the rewards 1/xi are awarded
under the actions bi.

Static penalties. We first give the proof for static penalties. We claim that there is a
multi-strategy θ sound for the property R r>1 [ C ] such that pensta(ψ, θ) 6 y if and only if∑n

i=1

√
xi 6 y.

In the direction ⇐, let us define a multi-strategy θ by θ(t′i)({c′i}) = θ(t̄i)({c̄i}) =
√
xi

and θ(t′i)({a′i, c′i}) = θ(t̄i)({āi, c̄i}) = 1 − √xi, and allowing all actions in all remaining
states. We then have pensta(ψ, θ) =

∑n
i=1 2 · √xi and the reward achieved is:

1

n

n∑
i=1

min{xi ·
1

xi
,
√
xi ·
√
xi

1

xi
} = 1.

In the direction⇒, let θ be an arbitrary multi-strategy sound for the property R r>1 [ C ]

satisfying pensta(ψ, θ) 6 2 · y . Let z′i = θ(t′i)({c′i}) and z̄i = θ(t̄i)({c̄i}). The reward
achieved is:

1

n

n∑
i=1

min{xi ·
1

xi
, z′i · z̄i

1

xi
} =

1

n

n∑
i=1

min{1, z′i · z̄i
1

xi
}

which is greater or equal to 1 if and only if z′i · z̄i > ai for every i. We show that z′i + z̄i >
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2 · √xi: If both z′i and z̄i are greater than
√
xi, we are done. The case z′i, z̄i 6

√
xi cannot

take place. As for the remaining case, w.l.o.g., suppose that z′i =
√
xi+p and z̄i =

√
xi−q

for some non-negative p and q. Then (
√
xi + p) · (√xi− q) = xi + (p− q)√xi− pq, and for

this to be at least xi we necessarily have p > q, and so z′i+ z̄i =
√
xi+p+

√
xi−q > 2 ·√xi.

Hence, we get that:

n∑
i=1

2 ·
√
xi 6

n∑
i=1

(
z′i + z̄i

)
= pensta(ψ, θ) 6 2 · y.

Dynamic penalties. We now proceed with dynamic penalties, where the analysis is
similar. Let us use the same game as before, but in addition assume that the penalty
assigned to actions c′i and c̄′i is equal to 1. We claim that there is a multi-strategy θ sound
for the property R r>1 [ C ] such that pendyn(ψ, θ) 6 2 · y/n if and only if

∑n
i=1

√
xi 6 y.

In the direction⇐, let us define a multi-strategy θ as before, and obtain pendyn(ψ, θ) =
1
n

∑n
i=1 2 · √yi.
In the direction⇒, let θ be an arbitrary multi-strategy sound for the property R r>1 [ C ]

satisfying pendyn(ψ, θ) 6 2 · y/n . Let z′i = θ(t′i)({c′i}), z̄i = θ(t̄i)({c̄i}), u′i = θ(t′i)({a′i}),
and ūi = θ(t̄i)({āi}).

As before we can show that z′i + z̄i > 2 · √xi, and so:

1

n

n∑
i=1

2 ·
√
xi 6

1

n

n∑
i=1

(
z′i + z̄i

)
6

1

n

n∑
i=1

(
(z′i + u′i) + (1− u′i) · (z̄i + ūi)

)
= pendyn(ψ, θ) 6 2 · y/n.

ut

B.4 Proof of Theorem 7

Before proving the correctness of the encoding (stated in Theorem 7), we prove the fol-
lowing auxiliary lemma that characterises the reward achieved under a multi-strategy in
terms of a solution of a set of inequalities.

Lemma 5. Let G = 〈S♦, S�, S, s, A, δ,L〉 be a stochastic game, φ = R r>b [ C ] a property,
(ψ, sta) a static penalty scheme and θ a deterministic multi-strategy. Consider the system
of inequalities xs 6 mina∈θ(s)

∑
s′∈S δ(s, a)(s′)xs′ + r(s, a) for s ∈ S. Then the following

holds:

• x̄s = infσ/θ,π E
σ,π
G,s (r) is a solution to the above inequalities.
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• Suppose a solution x̄s to the above inequalities satisfies that whenever x̄s > 0, for
every σ / θ and every π there is a path ω = s0a0 . . . snan starting in s and satisfying
Prσ,πG,s(ω) > 0 and r(sn, an) > 0. Then x̄s 6 infσ/θ,π E

σ,π
G,s (r) for all s.

Proof. The game G together with θ determines a Markov decision process Gθ = 〈∅, S♦ ∪
S�, s, A, δ

′,L〉, in which the choices disallowed by θ are removed, i.e. δ′(s, a) = δ(s, a) for
every s ∈ S� and every s ∈ S♦ with a ∈ θ(s), and δ′(s, a) is undefined otherwise. We have:

inf
σ/θ,π

Eσ,π
G,s (r) = inf

σ̄
Eσ̄

Gθ,s(r)

since, for any strategy pair σ / θ and π in G, there is a strategy σ̄ in Gθ which is defined,
for every finite path ω of Gθ ending in t, by σ̄(ω) = σ(ω) or σ̄(ω) = π(ω), depending on
whether t ∈ S♦ or t ∈ S�, and which satisfies Eσ,π

G,s (r) = Eσ
Gθ,s(r). Similarly, a strategy σ̄

for Gθ induces a compliant strategy σ and a strategy π defined for every finite path ω of
G ending in S♦ (resp. S�) by σ(ω) = σ̄(ω) (resp. π(ω) = σ̄(ω)).

The rest is then the following simple application of results from the theory of Markov
decision processes. The first item of the lemma follows from [107, Lemma 7.1.3]. For the
second part of the lemma, observe that if, infσ/θ,π E

σ,π
G,s (r) is infinite, then the claim holds

trivially. Otherwise, from the assumption on the existence of ω we have that, under any
compliant strategy, there is a path ω′ = s0a0s1 . . . sn of length at most |S| in Gθ such that
infσ/θ,π E

σ,π
G,sn

(r) = 0 (otherwise the reward would be infinite) and so x̄sn = 0. We can thus
apply [107, Proposition 7.3.4]. ut

Proof. We prove that every multi-strategy θ induces a satisfying assignment to the vari-
ables such that the static penalty under θ is

∑
s∈S♦

∑
a∈A(s)(1−ys,a)·ψ(s, a), and vice versa.

The theorem then follows from the rescaling of rewards and penalties that we performed.

We start by proving that, given a sound multi-strategy θ, we can construct a satisfying
assignment {ȳs,a, x̄s, ᾱs, β̄s,a,t, γ̄t}s,t∈S,a∈A to the constraints from Figure 6.2. For s ∈ S♦

and a ∈ A(s), we set ȳs,a = 1 if a ∈ θ(s), and otherwise we set ȳs,a = 0. This gives
satisfaction of contraint (6.2). For s ∈ S� and a ∈ A(s), we set ȳs,a = 1, ensuring
satisfaction of (6.7). We then put x̄s = infσ/θ,π E

σ,π
G,s (r). By the first part of Lemma 5 we

get that constraints (6.1), (6.3) (for a ∈ θ(s)) and (6.4) are satisfied. Constraint (6.3) for
a /∈ θ(s) is satisfied because in this case ȳs,a = 0, and so the right-hand side is always at
least 1.

We further set ᾱs = 1 if xs > 0 and ᾱs = 0 if xs = 0, thus satisfying constraint (6.5).
Let ds be the maximum distance to a positive reward, i.e., d is defined inductively by
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putting ds = 0 if we have r(s, a) > 0 for all a ∈ A(s), and otherwise:

ds = 1 + min
a∈θ(s),r(s,a)=0

max
δ(s,a)(t)>0

dt.

Put ds = ⊥ if ds was not defined by the above. For s such that ds 6= ⊥, we put γ̄s = ds/|S|,
and for every a we choose t such that dt < ds, and set β̄s,a,t = 1, leaving β̄s,a,t = 0 for all
other t. For s such that ds = ⊥ we define γ̄s = 0 and for all a and t put β̄s,a,t = 0. This
ensures the satisfaction of the remaining constraints.

In the opposite direction, assume that we are given a satisfying assignment. Firstly,
we create a game G′ from G by making any states s with x̄s = 0 terminal. Any sound
multi-strategy in G′ directly gives a sound multi-strategy in G.

We construct θ for G′ by putting θ(s) = {a ∈ A(s) | ȳs,a = 1} for all s ∈ S♦ with
x̄s > 0. First, by the choice of the objective function to minimise, the multi-strategy
yields the penalty

∑
s∈S♦

∑
a∈A(s)(1− ȳs,a)·ψ(s, a). Next, we will show that θ satisfies the

assumption of the second part of Lemma 5, from which we get that:

inf
σ/θ,π

Eσ,π
G′,s(r) > x̄s

which, together with constraint (6.1) being satisfied, gives us the desired result.
Consider any s such that infσ/θ,π E

σ,π
G′,s(r) > 0. Then we have x̄s > 0 (by the definition

of G′). Let us fix any σ / θ and any π. We show that there is a path ω satisfying the
assumption of the lemma. We build ω = s1 . . . snan inductively, to satisfy: (i) r(sn, an) > 0,
(ii) x̄si > x̄si−1

for all i, and (iii) for any sub-path siai . . . sj with x̄si = x̄sj we have that
γ̄sk < γ̄sk−1

for all i+ 1 6 k 6 j.
We set s0 = s. Assume we have defined a prefix s0a0 . . . si to satisfy conditions (ii) and

(iii). We put ai to be the action picked by σ (or π) in si. If r(si, ai) > 0, we are done.
Otherwise, we pick si+1 as follows:
• If there is s′ ∈ supp(δ(si, ai)) with x̄s′ > x̄s, then we put si+1 = s′. Such a choice

again satisfies (ii) and (iii) by definition.

• If we have x̄s′ = x̄s for all s′ ∈ supp(δ(si, ai)), then any choice will satisfy (ii). To
satisfy the other conditions, we pick si+1 so that β̄si,ai,si+1

= 1 is true. We argue that
such an si+1 can be chosen. We have x̄si > 0 and so ᾱs = 1 by constraint (6.5). We
also have ȳs,a = 1: for s ∈ S♦ this follows from the definition of θ, for s ∈ S� from
constraint (6.7). Hence, since constraint (6.6) is satisfied, there must be si+1 such
that β̄si,a,si+1

= 1. Then, we apply constraint (6.8) (for s = si, t = si+1 and a = ai)
and, since the last two summands on the right hand side are 0, we get γ̄si+1

< γ̄si ,
thus satisfying (iii).
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Note that the above construction must terminate after at most |S| steps since, due to
conditions (ii) and (iii), no state repeats on ω. Because the only way of terminating is
satisfaction of (i), we are done. ut

B.5 Proof of Theorem 8

Proof. We show that any sound multi-strategy with finite penalty z̄s gives rise to a sat-
isfying assignment with the objective value z̄s, and vice versa. Then, (b) follows directly,
and (a) follows by the assumption that there is some sound multi-strategy.

Let us prove that for any sound multi-strategy θ we can construct a satisfying assign-
ment to the constraints. For constraints (6.1) to (6.8), the construction works exactly the
same as in the proof of Theorem 7. For the newly added variables, i.e. zs and `s, we put
¯̀
s = pen loc(ψ, θ, s), ensuring satisfaction of constraint (6.9), and:

z̄s = sup
σ/θ,π

Eσ,π
G,s (ψ

θ
rew)

which, together with [107, Section 7.2.7], ensures that constraints (6.10) and (6.11) are
satisfied.

In the opposite direction, given a satisfying assignment we construct θ for G′ exactly
as in the proof of Theorem 7. As before, we can argue that constraints (6.1) to (6.8) are
satisfied under any sound multi-strategy. We now need to argue that the multi-strategy
satisfies pendyn(ψ, θ, s) > z̄s. It is easy to see that pen loc(ψ, θ, s) = ¯̀

s. Moreover, by [107,
Section 7.2.7] the penalty is the least solution to the inequalities:

z′s > max
a∈θ(s)

∑
s′∈S

δ(s, a)(s) · z′s′ + ¯̀
s for all s ∈ S♦ (B.2)

z′s > max
a∈A(s)

∑
s′∈S

δ(s, a)(s) · z′s′ for all s ∈ S�. (B.3)

We can replace (B.2) with:

z′s > max
a∈A(s)

∑
s′∈S

δ(s, a)(s) · z′s′ + ¯̀
s − c · (1− ȳs,a) (B.4)

since for a ∈ θ(s) we have c · (1 − ȳs,a) = 0 and otherwise c · (1 − ȳs,a) is greater than∑
s′∈S δ(s, a)(s) · z′s′ + ¯̀

s in the least solution to (B.2) and (B.3), by the definition of c.
Finally, it suffices to observe that the set of solutions to (B.3) and (B.4) is the same as
the set of solutions to (6.10) and (6.11). ut
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B.6 Proof of Theorem 9

Proof. In our proofs, we use Eσ,π
G,s (r↓s) for the expected total reward accumulated before

the first visit to s, defined by:

Eσ,π
G,s (r↓s) =

∫
ω=s0a0s1a1...∈IPaths

fst(s,ω)−1∑
i=0

r(si, ai) dPrσ,πG,s

where fst(s, ω) is min{i | si = s} if ω = s0a0s1a1 . . . contains si, and ∞ otherwise.
If the (dynamic) penalty under θ is infinite, then the solution is straightforward: we can

simply take θ′ which, in every state, allows a single action so that the reward is maximised.
Hence, we will assume that the penalty is finite.

Let θ be a multi-strategy allowing n > 2 different sets A1, . . . , An with non-zero prob-
abilities λ1, . . . , λn in s1 ∈ S♦. We construct a multi-strategy θ′ that in s1 allows only two
of the sets A1, . . . , An with non-zero probability, and in other states behaves like θ.

We first prove the case of dynamic penalties and then describe the differences for
static penalties. Supposing that infσ/θ,π E

σ,π
G,s1

(r) 6 infσ/θ′,π E
σ,π
G,s1

(r), we have that the
total reward is:

inf
σ/θ,π

Eσ,π
G,s (r) = inf

σ/θ,π

(
Eσ,π

G,s (r↓s1) + Prσ,πG,s(F s1) · Eσ,π
G,s1

(r)
)

= inf
σ/θ,π

(
Eσ,π

G,s (r↓s1) + Prσ,πG,s(F s1) · inf
σ′/θ,π′

Eσ′,π′

G,s1
(r)
)

6 inf
σ/θ,π

(
Eσ,π

G,s (r↓s1) + Prσ,πG,s(F s1) · inf
σ′/θ′,π′

Eσ′,π′

G,s1
(r)
)

= inf
σ/θ′,π

(
Eσ,π

G,s (r↓s1) + Prσ,πG,s(F s1) · inf
σ′/θ′,π′

Eσ′,π′

G,s1
(r)
)

= inf
σ/θ′,π

Eσ,π
G,s (r).

Hence, it suffices to define θ′ so that infσ/θ,π E
σ,π
G,s1

(r) 6 infσ/θ′,π E
σ,π
G,s1

(r). Similarly, for the
penalties, it is enough to ensure supσ/θ,π E

σ,π
G,s1

(ψθrew) > supσ/θ′,π E
σ,π
G,s1

(ψθ
′

rew).
Let Pi and Ri, where i ∈ {1, ..., n}, be the penalties and rewards from θ after allowing

Ai against an optimal opponent strategy, i.e.:

Pi =
∑
a/∈Ai

ψ(s, a) + sup
σ/θ,π

max
a∈Ai

∑
s′∈S

δ(s1, a)(s′) · Eσ,π
G,s′(ψ

θ
rew)

Ri = inf
σ/θ,π

min
a∈Ai

(r(s, a) +
∑
s′∈S

δ(s1, a)(s′) · Eσ,π
G,s′(r)).

We also define R = infσ/θ,π E
σ,π
G,s1

(r) and P = supσ/θ,π E
σ,π
G,s1

(ψθrew) and have R =
∑n

i=1 λiRi

and P =
∑n

i=1 λiPi.
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Let S0 ⊆ S be those states for which there are σ / θ and π ensuring a return to s1

without accumulating any reward. We say that Ai is progressing if for all a ∈ Ai we have
r(s1, a) > 0 or supp(δ(s1, a)) ∩ S0 = ∅. We note that Ai is progressing whenever ri > rλ

(since any a violating the condition above could have been used by the opponent to force
ri 6 rλ).

For each tuple µ = (µ1, . . . , µn) ∈ Rn, let Rµ = µ1R1+· · ·+µnRn and P µ = µ1P1+· · ·+
µnPn. Then the set T = {(Rµ, P µ) | 0 6 µi 6 1, µ1 + · · · + µn = 1} is a bounded convex
polygon, with vertices given by images (Rei , P ei) of unit vectors (i.e., Dirac distributions)
ei = (0, . . . , 0, 1, 0, . . . , 0), and containing (Rλ, P λ) = (R,P ). To each corner (Rj, Pj) we
associate the (non-empty) set Ij = {i | (Rei , P ei) = (Rj, Pj)} of indices.

We will find α ∈ (0, 1) and 1 6 u, v 6 n such that one of Au or Av is progressing, and
define the multi-strategy θ′ to pick Au and Av with probabilities α and 1−α, respectively.
We distinguish several cases, depending on the shape of T :

1. T has non-empty interior. Let (R1, P1), . . . , (Rm, Pm) be its corners in anticlockwise
order. Since all λi are positive, (R,P ) is in the interior of T . Now consider the point
(R,P ′) directly below (R,P ) on the boundary of T , i.e. P ′ = min{P ′′ | (R,P ′′) ∈
T}. If (R,P ′) is not a corner point, it is a convex combination of adjacent corners
(R,P ′) = α(Rj, Pj)+(1−α)(Rj+1, Pj+1), and we pick such α and u ∈ Ij and v ∈ Ij+1.
If (R,P ′) happens to be a corner (Rj, Pj) we can (since Pj < P ) instead choose
sufficiently small α > 0 so that R > αRj + (1− α)Rj+1 and P 6 αPj + (1− α)Pj+1

and again pick u ∈ Ij and v ∈ Ij+1. In either case, we have Av progressing since
Rj+1 > R.

2. T is a vertical line segment, i.e. it is the convex hull of two extreme points (R,P0)

and (R,P1) with P0 < P1. In case R = 0, we can simply always allow some Ai with
i ∈ I0, minimising the penalty and still achieving reward 0.

If R > 0, there must be at least one progressing Au. Since all λi are positive, (R,P )

lies inside the line segment, and in particular P > P0. We can therefore choose some
v and α ∈ (0, 1) such that P 6 α · Pu + (1− α) · Pv.

3. T is a non-vertical line segment, i.e. it is the convex hull of two extreme points
(R0, P0) and (R1, P1) with R0 < R1. Since all λi are positive, (R,P ) is not one of
the extreme points, i.e. (R,P ) = α(R0, P0) + (1 − α)(R1, P1) with 0 < α < 1. We
can therefore choose u ∈ I0, v ∈ I1. Again, since R1 > R, Av is progressing.

4. T consists of a single point (R,P ). This can be treated like the second case: either
R = 0, and we can allow any combination, or R > 0, and there is some progressing
Au, and we then pick arbitrary v and α.
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We now want to show that the reward of the updated multi-strategy is indeed no worse
than before. Pick an action a that realises the minimum and strategies σ and π that realise
the infimum in the definition of Ri (such strategies indeed exist). Define:

ci =
∑
s′

δ(s1, a)(s′) · Prσ,πG,s′(F s1) (B.5)

di = r(s, a) +
∑
s′

δ(s1, a)(s′) · Eσ,π
G,s′(r↓s1) (B.6)

We have Ri = ci ·R+ di for every 1 6 i 6 n. We also define primed versions c′, d′, R′ and
R′i exactly as their non-primed counterparts, but substituting θ with θ′ in the definition,
and subsequently have R′i = c′i ·R′ + d′i. Then:

R′ −R = (αR′u + (1− α)R′v)−
∑

i
λiRi

= (αR′u + (1− α)R′v)− (αRu + (1− α)Rv) + (αRu + (1− α)Rv)−
∑

i
λiRi

> (αR′u + (1− α)R′v)− (αRu + (1− α)Rv)

(by the choice of α, u, v)

= (α(c′uR
′ + d′u) + (1− α)(c′vR

′ + d′v))− (α(cuR + du) + (1− α)(cvR + dv))

> (α(c′uR
′ + d′u) + (1− α)(c′vR

′ + d′v))− (α(c′uR + d′u) + (1− α)(c′vR + d′v))

(ciR + di 6 c′iR + d′i due to the optimality of original opponent strategy)

= (αc′u + (1− α)c′v)(R
′ −R),

i.e. (1 − αc′u − (1 − α)c′v)(R
′ − R) > 0. By finiteness of rewards and the choice of θ(s1),

at least one of the return probabilities c′u, c′v is less than 1, and thus so is αc′u + (1− α)c′v,
therefore R′ > R.

We can show that the penalty under θ′ is at most as big as the penalty under θ in
exactly the same way (note that in addition using ψθ′rew instead of ψθrew for c′, d′, R′ and
R′i). For static penalties, the proof that the new multi-strategy is no worse than the old
one is straightforward from the choice of θ′(s1). ut

B.7 Proof of Theorem 10

Proof. Let θ be a multi-strategy and fix s1 such that θ takes two different actions B and
C with probability p ∈ (0, 1) and 1− p where B * C and C * B. If infσ/θ,π E

σ,π
G,s1

(r) = 0,
then we can in fact allow deterministically the single set A(s1) and we are done. Hence,
suppose that the reward accumulated from s1 is non-zero.
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Suppose, w.l.o.g., that:

min
a∈B

r(s1, a) +
∑
s′∈S

δ(s1, a)(s′) · inf
σ/θ,π

Eσ,π
G,s′(r) 6 min

a∈C
r(s1, a) +

∑
s′∈S

δ(s1, a)(s′) · inf
σ/θ,π

Eσ,π
G,s′(r).

(B.7)
It must be the case that, for some D ∈ {B,C}, we have:

min
a∈D

r(s1, a) + inf
σ/θ,π

∑
s′∈S

δ(s1, a)(s′) · Eσ,π
G,s′(r↓s1) > 0 (B.8)

(otherwise the minimal reward accumulated from s1 is 0, since there is a compliant strategy
that keeps returning to s1 without ever accumulating any reward), and if the inequality
in (B.7) is strict, then (B.8) holds for D = C. W.l.o.g. suppose that the above property
holds for C. We define θ′ by modifying θ and picking B ∪ C with probability p, C with
(1− p), and B with probability 0.

Under θ, the minimal reward achievable by some compliant strategy is given as the
least solution to the following equations [107, Theorem 7.3.3]:

xs =
∑

A∈supp(θ(s))

θ(s)(A) ·min
a∈A

∑
s′∈S

r(s, a) + δ(s, a)(s′) · xs′ for s ∈ S♦

xs = min
a∈A(s)

∑
s′∈S

δ(s, a)(s′) · xs′ for s ∈ S�

The minimal rewards x′s achievable under θ′ are defined analogously. In particular, for the
equation with s1 on the left-hand side we have:

xs1 = p ·min
a∈B

r(s1, a) +
∑
s′∈S

δ(s1, a)(s′) · xs′ + (1− p) ·min
a∈C

r(s1, a) +
∑
s′∈S

δ(s1, a)(s′) · xs′

x′s1 = p · min
a∈B∪C

r(s1, a) +
∑
s′∈S

δ(s1, a)(s′) · x′s′ + (1− p) ·min
a∈C

r(s1, a) +
∑
s′∈S

δ(s1, a)(s′) · x′s′ .

We show that in the least solution x̄ to x is also the least solution to x′.

First, note that x̄ is clearly a solution to any equation with s 6= s1 on the left-hand side,
since these equations remain unchanged in both sets of equations. As for the equation with
s1, we have mina∈B

∑
s′ r(s1, a)+δ(s1, a)(s′)·x̄s′ 6 mina∈C

∑
s′ r(s1, a)+δ(s1, a)(s′)·x̄s′ , and

so necessarily mina∈B
∑

s′ r(s1, a)+δ(s1, a)(s′)·x̄s′ = mina∈B∪C
∑

s′ r(s1, a)+δ(s1, a)(s′)·x̄s′ .

To see that x̄ is the least solution to x′, we show that (i) for all s, if infσ/θ′,π E
σ,π
G,s (r) = 0

then x̄s = 0; and (ii) there is a unique fixpoint satisfying x̄s = 0 for all s such that
infσ/θ′,π E

σ,π
G,s (r) = 0.

For (i), suppose x̄s > 0. Let σ′ be a strategy compliant with θ′, and π an arbitrary
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strategy. Suppose Prσ
′,π

G,s (F s1) = 0, then there is a strategy σ compliant with θ which
behaves exactly as σ′ when starting from s, and by our assumption on the properties of
x̄s we get that Eσ,π

G,s (r) > 0 and so Eσ′,π
G,s (r) > 0. Now suppose that Prσ

′,π
G,s (F s1) > 0. For

this case, we have argued already when defining θ′ that the reward under any strategy
compliant with θ′ is non-zero when starting in s1, and so Eσ′,π

G,s (r) > 0.

Point (ii) can be obtained by an application of [107, Proposition 7.3.4]. ut

B.8 Proof of Theorem 11

Proof. We deal with the cases of static and dynamic penalties separately. For static
penalties, let s ∈ S and θ(s)(As,0) = q0, θ(s)(As,1) = q1 for As,0 ⊆ As,1 ⊆ A(s). Modify θ
by rounding q0 up and q1 down to the nearest multiple of 1

M
. The result is again sound

(any strategy compliant after the modification is also compliant before the modification),
and the penalty changes by at most 1

M

∑
a∈A(s) ψ(s, a). Repeat for all s.

Now let us consider dynamic penalties. Intuitively, the claim follows since by making
small changes to the multi-strategy, while not (dis)allowing any new actions, we only cause
small changes to the reward and penalty.

Let θ be a multi-strategy and t a state. By Theorem 9, we can assume supp(θ(t)) =

{A1, A2}. W.l.o.g. suppose:

inf
σ/θ,π

min
a∈A1

r(s, a) +
∑
s′

δ(s, a)(s′) · Eσ,π
G,s′(r) > inf

σ/θ,π
min
a∈A2

r(s, a) +
∑
s′

δ(s, a)(s′) · Eσ,π
G,s′(r).

For 0 < x < θ(t)(A2), we define a multi-strategy θx by θx(t)(A1) = θ(t)(A1) + x and
θx(t)(A2) = θ(t)(A2)− x , and θx(s) = θ(s) for all s 6= t. We show that infσ/θx,π E

σ,π
G,s (r) >

infσ/θ,π E
σ,π
G,s (r). Consider the following functional Fx : (S → R>0) → (S → R>0), con-

structed for the multi-strategy θx:

Fx(f)(s) =
∑

A∈supp(θ(s))

θx(s) ·min
a∈A

∑
s′∈S

r(s, a) + δ(s, a)(s′) · f(s′) for s ∈ S♦

Fx(f)(s) = min
a∈A(s)

∑
s′∈S

r(s, a) + δ(s, a)(s′) · f(s′) for s ∈ S�

Let f be the function assigning infσ/θ,π E
σ,π
G,t (r) to s. Observe that f(s) = 0 whenever

infσ/θx,π E
σ,π
G,t (r); this follows since x < min{θ(t)(A1), θ(t)(A2)} and so both θ and θx

allow the same actions with non-zero probability. Also, Fx(f)(s) > f(s): for s 6= t in
fact Fx(f)(s) = f(s) because the corresponding functional F for θ coincides with Fx on
s; for s = t, we have Fx(f)(s) > f(s) since mina∈A1 r(s, a) +

∑
s′ δ(s, a)(s′) · f(s′) >
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mina∈A2 r(s, a) +
∑

s′ δ(s, a)(s′) · f(s′) by the properties of A1 and A2 and since x is non-
negative. Hence, we can apply [107, Proposition 7.3.4] and obtain that θx ensures at least
the same reward as θ. Thus, by increasing the probability of allowing A1 in t the soundness
of the multi-strategy is preserved.

Further, for any strategy σ′ compliant with θx and any π, the penalty when starting
in t, i.e. Eσ′,π

G,t (ψθxrew), is equal to:

pen loc(ψ, θx, t) +
∑
a∈A

ξ′(t)(a)
∑
t′∈S

δ(t, a)(t′) ·
(
Eσ′,π

G,t′ (ψ
θx
rew↓t) + Prσ

′,π
G,t′ (F t) · E

σ′,π
G,t (ψθxrew)

)
for ξ′ = σ′ ∪ π. There is a strategy σ compliant with θ which differs from σ′ only on t,
where

∑
a∈A |σ′(s, a)− σ(s, a)| 6 x. We have, for any π:

Eσ,π
G,t (ψ

θ
rew)

= pen loc(ψ, θ, t) +
∑
a∈A

ξ(t, a)
∑
s∈S

δ(t, a)(s) · (Eσ,π
G,s (ψ

θ
rew↓t) + Prσ,πG,s(F t) · E

σ,π
G,t (ψ

θ
rew))

> pen loc(ψ, θx, t)−x+
∑
a∈A

(ξ′(t, a)−x)
∑
s∈S

δ(t, a)(s)·(Eσ′,π
G,s (ψθxrew↓t)+Prσ

′,π
G,s (F t)·Eσ,π

G,t (ψ
θx
rew))

where ξ = σ ∪ π and the rest is as above.
Thus:

Eσ′,π
G,t (ψθxrew) =

pen loc(ψ, θx, t) +
∑

a∈A ξ
′(t)(a)

∑
t′∈S δ(t, a)(t′) · Eσ′,π

G,t′ (ψ
θx
rew↓t)

1−
∑

a∈A ξ
′(t)(a)

∑
t′∈S δ(t, a)(t′) · Prσ

′,π
G,t′ (F t)

Eσ,π
G,t (ψ

θ
rew) >

pen loc(ψ, θ, t)− x+
∑

a∈A(ξ′(t)(a)− x)
∑

t′∈S δ(t, a)(t′) · Eσ′,π
G,t′ (ψ

θ
rew↓t)

1−
∑

a∈A(ξ′(t)(a)− x)
∑

t′∈S δ(t, a)(t′) · Prσ
′,π

G,t′ (F t)

and so Eσ′,π
G,t (ψθxrew)−Eσ,π

G,t (ψ
θ
rew) goes to 0 as x goes to 0. Hence, pendyn(ψ, θx)−pendyn(ψ, θ)

goes to 0 as x goes to 0.
The above gives us that, for any error bound ε and a fixed state s, there is an x such

that we can modify the decision of θ in s by x, not violate the soundness property and
increase the penalty by at most ε/|S|. We thus need to pick M such that 1/M 6 x. To
finish the proof, we repeat this procedure for every state s. ut



Appendix C

Proofs for Chapter 7

C.1 Proof of Theorem 12

Assumption 1. Consider Algorithm 4 with Update defined in Algorithm 4, but now
with line 22 being “until false”, i.e. iterating the outer repeat loop ad infinitum. Denote
the functions U and L after i iterations by Ui and Li, respectively.

Now, we prove two Lemmas that are crucial for proving Theorem 12.

Lemma 6. For every i ∈ N, all s ∈ S and a ∈ A,

U1(s, a) > · · · > Ui(s, a) > V (s, a) > Li(s, a) > · · · > L1(s, a).

Proof. Simple induction. ut

Lemma 7. limi→∞(Ui(s)− Li(s)) = 0 almost surely.

Proof. Let ai(s) ∈ A(s) maximise Ui(s, a) if s ∈ S♦ and minimise Li(s, a) when s ∈ S�.
We define ∆i(s) := Ui(s, ai(s))− Li(s, ai(s)). Since ∆i(s) > maxa Ui(s, a)−maxa Li(s, a)

when s ∈ S♦ and ∆i(s) > mina Ui(s, a) −mina Li(s, a) if s ∈ S� (expression of line 22 in
the original Algorithm 4), it is sufficient to prove that limi→∞∆i(s) = 0 almost surely.

By Lemma 6, the limits limi→∞ Ui(s, a) and limi→∞ Li(s, a) are well defined and finite.
Thus limi→∞∆i(s) is also well defined and we denote it by ∆(s) for every s ∈ S.

Let ΣU,L be the set of pairs of all memoryless strategies in G which occur as (σUi , πLi)

for infinitely many i. Each pair (σUi , πLi) ∈ ΣU,L induces a chain with reachable state space
S(σ,π) and uses actions A(σ,π). Note that under (σ, π) ∈ ΣU,L, all states of S(σ,π) will be
almost surely visited infinitely often if infinitely many simulations are run. Similarly, all ac-
tions of A(σ,π) will be used almost surely infinitely many times. Let S∞ =

⋃
(σ,π)∈ΣU,L

S(σ,π)

and let A∞ =
⋃

(σ,π)∈ΣU,L
A(σ,π). During almost all computations of the learning algorithm,

159
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all states of S∞ are visited infinitely often, and all actions of A∞ are used infinitely often.
By definition of ∆, for every t ∈ S∞ and a ∈ A∞ it holds that ∆(t) =

∑
s∈S∞ δ(t, a)(s)·∆(s)

almost surely.

Let ∆ = maxs∈S∞ ∆(s) and D = {s ∈ S∞ | ∆(s) = ∆}. To obtain a contradic-
tion, consider a computation of the learning algorithm such that ∆ > 0 and ∆(t) =∑

s∈S∞ δ(t, a)(s) · ∆(s) for all t ∈ S and a ∈ A(t). Then 1,0 6∈ D and thus D cannot
contain any EC by assumption. By definition of EC we get:

∃t ∈ D : ∀a ∈ A(t) : supp(δ(t, a)) 6⊆ D

and thus for every a ∈ A(t) we have ta /∈ D with δ(t, a)(ta) > 0. Since ta /∈ D we have
∆(ta) < ∆. Now for every a ∈ A(t) ∩ A∞ we have:

∆(t) =
∑

s∈S∞,s 6=ta

δ(t, a)(s) ·∆(s) + δ(t, a)(ta) ·∆(ta)

<
∑

s∈S∞,s 6=ta

δ(t, a)(s) ·∆ + δ(t, a)(ta) ·∆

= ∆

a contradiction with t ∈ D.

ut

Proof. As a corollary of Proof C.1, Algorithm 4 terminates for any ε > 0. Further,
Ui > V > Li pointwise and invariantly for every i, by the first lemma, the returned result
is correct.

ut

C.2 Proof of Lemma 4

Proof. Point 1. The function MakeTerminal(s(R,B),0) is called in Algorithm 6 in two
cases:

• If there are no actions available in state s(R,B) and R ∩ T = ∅ and player(R) = ♦.
It follows that the support of all the actions that were enabled in states in R in
the stochastic game G remains in R, i.e, there is no action leaving the set R. As
R∩T = ∅, it follows that for all states in R the probability to reach the target state
is 0, and therefore ∀s ∈ R : VG(s) = 0.
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• If R ∩ T = ∅ and player(R) = �. From the definition of one-player EC it follows
that for every s ∈ R there exists an action a ∈ A(s) such that supp(a) ⊆ R.
As R ∩ T = ∅, if we pick that action we will never reach a state in T causing
the reachability probability to be 0. As player(R) = � and player � wants to
minimise such probability, it will always pick such actions, from which it follows
∀s ∈ R : VG(s) = 0.

The function MakeTerminal(s(R,B),1) is called in Algorithm 6 in two cases:

• If R ∩ T 6= ∅ and player(R) = ♦. A strategy in the stochastic game G that plays
in state s ∈ R all the actions A(s) ∩ B uniformly at random will visit all the states
in R almost surely. It follows that from every state s ∈ R the target set is reached
almost surely. As player(R) = ♦ and player ♦ wants to maximize such probability,
it will always pick such actions, from which it follows that ∀s ∈ R : VG(s) = 1.

• If R ∩ T 6= ∅ and there are no actions available in state s(R,B). It follows that the
support of all the actions that were enabled in states in R in the stochastic game
G remains in R, i.e, there is no action leaving the set R. As R ∩ T 6= ∅, it follows
that for all states in R the probability to reach the target state is 1, and therefore
∀s ∈ R : VG(s) = 1.

Points 2 and 3. These two points follow from Theorem 2 of [36]. ut

C.3 Proof of Theorem 13

Proof. Consider Algorithm 7 with line 30 being “until false”, i.e. iterating the outer
repeat loop ad infinitum. As the stochastic game G may change during computation of
the learning algorithm, we denote by Gi = 〈Si, ξi, s, Ai, δi,Li〉 the current stochastic game
after i iterations of the outer repeat-until cycle of Algorithm 7. Each Gi is obtained from
G by possibly several collapses of end-components; we denote new states that are added
to the game during collapsing by ξi. Recall that in the stochastic game G′ obtained by
collapsing (R,B), the state s(R,B) corresponds to the set of states R and, in particular,
VG(s(R,B), a) = VG′(s, a) for all actions a that are enabled both in s(R,B) and in s. Thus,
slightly abusing notation, we may consider states of each Gi to be sets of states of the
original stochastic game G. So, given a state ξ ∈ Si of Gi, we write s ∈ ξ to say that the
state s ∈ S of G belongs to (or corresponds to) the state ξ.

Note that VG(s, a) = VGi(ξ, a) for s ∈ ξ ∈ Si and all a ∈ Ai(ξ). Thus, in what follows
we use V (s, a) to denote VG(s, a). We also denote by Ui and Li the functions U and L
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after i iterations. Observe that Ui, Li : Si ×Ai → [0, 1]. We extend Ui and Li to states of
S by Ui(s, a) := Ui(ξ, a) and Li(s, a) := Li(ξ, a) for s ∈ ξ ∈ Si and all a ∈ Ai(ξ). We also
use Ai(s) to denote Ai(ξ) for s ∈ ξ ∈ Si.

Lemma 8. For all s ∈ S, every i ∈ N and all a ∈ Ai(s),

U1(s, a) > · · · > Ui(s, a) > V (s, a) > Li(s, a) > · · · > L1(s, a)

Proof. A simple induction applies if one-player ECs are not collapsed in the i-th iteration
of the outer cycle of Algorithm 7. Otherwise, if they are collapsed, then the claim follows
from the fact that collapsing preserves the values of U , L, and V (see lines 6 and 7 of
Algorithm 6). ut

Lemma 9. limi→∞ (Ui(s)− Li(s)) = 0 almost surely.

Proof. Let ai(s) ∈ A(s), and maximise Ui(s, a) if s ∈ S♦ and minimise Li(s, a) when
s ∈ S�. We define ∆i(s) := Ui(s, ai(s)) − Li(s, ai(s)). Since ∆i(s) > maxa Ui(s, a) −
maxa Li(s, a) when s ∈ S♦ and ∆i(s) > mina Ui(s, a)−mina Li(s, a) if s ∈ S� (expression
of line 20 in the original Algorithm 4), it is sufficient to prove that limi→∞∆i(s) = 0

almost surely.
As the function On-the-fly-EC can collapse one-player ECs only finitely many times,

every computation of the learning algorithm eventually stays with a fixed stochastic game
G′ = 〈S ′, ξ′, s′, A′, δ′L′〉, i.e., almost surely G′ = Gk = Gk+1 = · · · for some k. Note that
G′ is obtained by a series of collapses of end-components of G. We call the moment from
which the stochastic game does not change the fixing point.

Let us denote by S ′ the set of states of G′. Note that for every ξ ∈ S ′ and for all
s, s′ ∈ ξ we have ∆(s) = ∆(s′) since ∆i(s) = ∆i(s

′) for i greater than the fixing point. We
denote by ∆(ξ) the value ∆(s) for some (all) s ∈ ξ. For every ξ ∈ S ′ we denote by A′(ξ)
the set of actions enabled in the state ξ of G′. Also, the initial state, ξ̄, of G′ is the only
state of G′ that contains s.

Let ΣU,L be the set of pairs of all memoryless strategies in G′ which occur as (σUi , πLi)

for infinitely many i after the fixing point. Each pair (σ, π) ∈ ΣU,L induces a chain with
reachable state space S ′(σ,π) and uses actions A′(σ,π). Note that, under (σ, π) ∈ ΣU,L, all
states of S ′(σ,π) will be almost surely visited infinitely often if infinitely many simulations
are run. Similarly, all actions of A′(σ,π) will be used almost surely infinitely many times.
Let S ′∞ =

⋃
(σ,π)∈ΣU,L

S ′i and let A′∞ =
⋃

(σ,π)∈ΣU,L
A′(σ,π). During almost all computations

of the learning algorithm, all states of S ′∞ are visited infinitely often, and all actions of
A′∞ are used infinitely often.
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Let ∆ = maxξ∈S′∞ ∆(ξ) and D = {ξ ∈ S ′∞ | ∆(ξ) = ∆}. To obtain a contradiction,
assume that ∆ > 0, which implies that 1,0 6∈ D. We claim that D cannot contain a
subset D′ forming an end-component with any set of actions from A′∞. Indeed, assume
the opposite is true, and (D′, G) is such an end component in G′. At least one pair of the
strategies (σ, π) ∈ ΣU,L visits a state of D′ infinitely many times. As all state-action pairs
(ξ, a) ∈ D′ ×G(ξ) satisfy Ui(ξ, a) = 1 for all i and ki > |S|, almost surely a simulation of
(σ, π) of length ki visits the whole component (D′, G). This means that On-the-fly-EC

is called while currently explored path contains the component (D′, G), which in turn
means that (D′, G) gets collapsed, a contradiction with the assumption that the learning
procedure stays fixed on G′ after the fixing point.

By definition of one-player EC we get:

∃ξ ∈ D : ∀a ∈ A′(ξ) ∩ A′∞ : supp(δ(ξ, a)) 6⊆ D

because otherwise D will form a “closed” component with some actions of A′∞, and hence
would contain an one-player EC . Thus for every a ∈ A′(ξ) ∩ A′∞ we have ξa /∈ D with
δ(ξ, a)(ξa) > 0. Since ξa /∈ D we have ∆(ξa) < ∆. Now for every a ∈ A′(ξ)∩A′∞ we have:

∆(ξ) =
∑
ξ′∈S′∞

δ(ξ, a)(ξ′) ·∆(ξ′)

=
∑

ξ′∈S′∞,ξ′ 6=ξa

δ(ξ, a)(ξ′) ·∆(ξ) + δ(ξ, a)(ξa) ·∆(ξa)

<
∑

ξ′∈S′∞,ξ′ 6=ξa

δ(ξ, a)(ξ′) ·∆ + δ(ξ, a)(ξa) ·∆

= ∆

a contradiction with ξ ∈ D. ut

As a corollary, Algorithm 7 with Update defined in Algorithm 6 and extended with
calls to On-the-fly-EC almost surely terminates for any ε > 0. Further, Ui > V > Li

pointwise and invariantly for every i by the first claim, the returned result is correct. ut
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smg

player env
[web_stock_0_fail ], [web_stock_1_fail ], [web_stock_2_fail ]
[retry_stock ], [loop], [no_retry_stock ]

endplayer

player controller
[web_stock_0 ], [web_stock_1 ], [web_stock_2 ]

endplayer

const int max_retry=1;
const int stock_to_query=60;
const int web_stock_number=3;
const double web_stock_0_fail ;
const double web_stock_1_fail ;
const double web_stock_2_fail ;
const double web_stock_0_response_time;
const double web_stock_1_response_time;
const double web_stock_2_response_time;
const int stock_in_portfolio=10;
//———————————————————————–
module QueryStock

web_stock_0_retry : [0..max_retry + 1] init 0;
web_stock_1_retry : [0..max_retry + 1] init 0;
web_stock_2_retry : [0..max_retry + 1] init 0;

pc : [0..5] init 0;
last_stock_webservice : [0..web_stock_number + 1] init 0;
stock_querued : [0..stock_to_query + 1] init 0;
[web_stock_0 ] (pc=0)&(stock_querued<stock_to_query)&(web_stock_0_retry<max_retry) →

(pc′=1)&(last_stock_webservice′=0);
[web_stock_0_fail ] (pc=1)&(last_stock_webservice=0) →

(web_stock_0_fail) : (pc′=2) +
(1− web_stock_0_fail) : (pc′=0)&(stock_querued ′=min(stock_querued + 1, stock_to_query));

[retry_stock ] (pc=2)&(last_stock_webservice=0) →
(pc′=0)&(web_stock_0_retry ′=min(web_stock_0_retry + 1,max_retry));

[no_retry_stock ] (pc=2)&(last_stock_webservice=0) →
(pc′=0)&(web_stock_0_retry ′=max_retry);

[loop] (pc=2)&(last_stock_webservice=0)&(web_stock_0_retry=max_retry) →
(pc′=0);

[web_stock_1 ] (pc=0)&(stock_querued<stock_to_query)&(web_stock_1_retry<max_retry) →
(pc′=1)&(last_stock_webservice′=1);

[web_stock_1_fail ] (pc=1)&(last_stock_webservice=1) →
(web_stock_1_fail) : (pc′=2) +
(1− web_stock_1_fail) : (pc′=0)&(stock_querued ′=min(stock_querued + 1, stock_to_query));

[retry_stock ] (pc=2)&(last_stock_webservice=1) →
(pc′=0)&(web_stock_1_retry ′=min(web_stock_1_retry + 1,max_retry));

[no_retry_stock ] (pc=2)&(last_stock_webservice=1) →
(pc′=0)&(web_stock_1_retry ′=max_retry);

[loop] (pc=2)&(last_stock_webservice=1)&(web_stock_1_retry=max_retry) →
(pc′=0);

[web_stock_2 ] (pc=0)&(stock_querued<stock_to_query)&(web_stock_2_retry<max_retry) →
(pc′=1)&(last_stock_webservice′=2);

[web_stock_2_fail ] (pc=1)&(last_stock_webservice=2) →
(web_stock_2_fail) : (pc′=2) +
(1− web_stock_2_fail) : (pc′=0)&(stock_querued ′=min(stock_querued + 1, stock_to_query));

[retry_stock ] (pc=2)&(last_stock_webservice=2) →
(pc′=0)&(web_stock_2_retry ′=min(web_stock_2_retry + 1,max_retry));

[no_retry_stock ] (pc=2)&(last_stock_webservice=2) →
(pc′=0)&(web_stock_2_retry ′=max_retry);

[loop] (pc=2)&(last_stock_webservice=2)&(web_stock_2_retry=max_retry) →
(pc′=0);

[loop] (pc=0)&(stock_querued=stock_to_query) →
true;

[loop] (pc=0)&(web_stock_0_retry=max_retry)&(web_stock_1_retry=max_retry)&(web_stock_2_retry=max_retry) →
true;

endmodule

Figure D.1: PRISM model android_3 of StockPriceViewer application supporting three
different providers.
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smg

player env
[web_stock_0_fail ], [web_stock_1_fail ], [web_stock_2_fail ], [web_stock_3_fail ],
[retry_stock ], [loop], [no_retry_stock ]

endplayer

player controller
[web_stock_0 ], [web_stock_1 ], [web_stock_2 ], [web_stock_3 ]

endplayer

const int max_retry=1;
const int stock_to_query=60;
const int web_stock_number=4;
const double web_stock_0_fail ;
const double web_stock_1_fail ;
const double web_stock_2_fail ;
const double web_stock_3_fail ;
const double web_stock_0_response_time;
const double web_stock_1_response_time;
const double web_stock_2_response_time;
const double web_stock_3_response_time;
const int stock_in_portfolio=10;
//———————————————————————–
module QueryStock

web_stock_0_retry : [0..max_retry + 1] init 0;
web_stock_1_retry : [0..max_retry + 1] init 0;
web_stock_2_retry : [0..max_retry + 1] init 0;
web_stock_3_retry : [0..max_retry + 1] init 0;

pc : [0..5] init 0;
last_stock_webservice : [0..web_stock_number + 1] init 0;
stock_querued : [0..stock_to_query + 1] init 0;
[web_stock_0 ] (pc=0)&(stock_querued<stock_to_query)&(web_stock_0_retry<max_retry) →

(pc′=1)&(last_stock_webservice′=0);
[web_stock_0_fail ] (pc=1)&(last_stock_webservice=0) →

(web_stock_0_fail) : (pc′=2) +
(1− web_stock_0_fail) : (pc′=0)&(stock_querued ′=min(stock_querued + 1, stock_to_query));

[retry_stock ] (pc=2)&(last_stock_webservice=0) →
(pc′=0)&(web_stock_0_retry ′=min(web_stock_0_retry + 1,max_retry));

[no_retry_stock ] (pc=2)&(last_stock_webservice=0) →
(pc′=0)&(web_stock_0_retry ′=max_retry);

[loop] (pc=2)&(last_stock_webservice=0)&(web_stock_0_retry=max_retry) →
(pc′=0);

[web_stock_1 ] (pc=0)&(stock_querued<stock_to_query)&(web_stock_1_retry<max_retry) →
(pc′=1)&(last_stock_webservice′=1);

[web_stock_1_fail ] (pc=1)&(last_stock_webservice=1) →
(web_stock_1_fail) : (pc′=2) +
(1− web_stock_1_fail) : (pc′=0)&(stock_querued ′=min(stock_querued + 1, stock_to_query));

[retry_stock ] (pc=2)&(last_stock_webservice=1) →
(pc′=0)&(web_stock_1_retry ′=min(web_stock_1_retry + 1,max_retry));

[no_retry_stock ] (pc=2)&(last_stock_webservice=1) →
(pc′=0)&(web_stock_1_retry ′=max_retry);

[loop] (pc=2)&(last_stock_webservice=1)&(web_stock_1_retry=max_retry) →
(pc′=0);

[web_stock_2 ] (pc=0)&(stock_querued<stock_to_query)&(web_stock_2_retry<max_retry) →
(pc′=1)&(last_stock_webservice′=2);

[web_stock_2_fail ] (pc=1)&(last_stock_webservice=2) →
(web_stock_2_fail) : (pc′=2) +
(1− web_stock_2_fail) : (pc′=0)&(stock_querued ′=min(stock_querued + 1, stock_to_query));

[retry_stock ] (pc=2)&(last_stock_webservice=2) →
(pc′=0)&(web_stock_2_retry ′=min(web_stock_2_retry + 1,max_retry));

[no_retry_stock ] (pc=2)&(last_stock_webservice=2) →
(pc′=0)&(web_stock_2_retry ′=max_retry);

[loop] (pc=2)&(last_stock_webservice=2)&(web_stock_2_retry=max_retry) →
(pc′=0);

Figure D.2: PRISM model android_4 of StockPriceViewer application supporting four
different providers (continued in Figure D.3).
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[web_stock_3 ] (pc=0)&(stock_querued<stock_to_query)&(web_stock_3_retry<max_retry) →
(pc′=1)&(last_stock_webservice′=3);

[web_stock_3_fail ] (pc=1)&(last_stock_webservice=3) →
(web_stock_3_fail) : (pc′=2) +
(1− web_stock_3_fail) : (pc′=0)&(stock_querued ′=min(stock_querued + 1, stock_to_query));

[retry_stock ] (pc=2)&(last_stock_webservice=3) →
(pc′=0)&(web_stock_3_retry ′=min(web_stock_3_retry + 1,max_retry));

[no_retry_stock ] (pc=2)&(last_stock_webservice=3) →
(pc′=0)&(web_stock_3_retry ′=max_retry);

[loop] (pc=2)&(last_stock_webservice=3)&(web_stock_3_retry=max_retry) →
(pc′=0);

[loop] (pc=0)&(stock_querued=stock_to_query) →
true;

[loop] (pc=0)&(web_stock_0_retry=max_retry)&(web_stock_1_retry=max_retry)&
(web_stock_2_retry=max_retry)&(web_stock_3_retry=max_retry) →
true;

endmodule

Figure D.3: PRISM model android_4 of StockPriceViewer application supporting four
different providers.

rewards “response_time”

[web_stock_0 ] true : web_stock_0_response_time ∗ stock_in_portfolio;
[web_stock_1 ] true : web_stock_1_response_time ∗ stock_in_portfolio;
[web_stock_2 ] true : web_stock_2_response_time ∗ stock_in_portfolio;
[web_stock_3 ] true : web_stock_3_response_time ∗ stock_in_portfolio;

endrewards

penalties “penalties”

[web_stock_0 ] true : 1/(web_stock_0_response_time ∗ stock_in_portfolio);
[web_stock_1 ] true : 1/(web_stock_1_response_time ∗ stock_in_portfolio);
[web_stock_2 ] true : 1/(web_stock_2_response_time ∗ stock_in_portfolio);
[web_stock_3 ] true : 1/(web_stock_3_response_time ∗ stock_in_portfolio);

endpenalties

Property :

<<controller>> R666000 [ C ]

Figure D.4: Rewards, penalties and the property for the model of StockPriceViewer ap-
plication.
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