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Abstract— Modern control systems use various sensors to
decrease the amount of uncertainty under which they operate.
While providing observation of the current state of the system,
sensors require resources such as energy, time and commu-
nication. We consider discrete models of such systems with
non-deterministic control transitions and multiple observation
modes that provide different information about the system’s
states. We consider two control problems. First, we aim to
construct a control and observation mode scheduling strategy
that guarantees satisfaction of a finite-time temporal property
given as a formula of syntactically co-safe fragment of LTL
(scLTL) and at the same time, minimizes the worst-case cost
associated with observation modes until the point of satisfaction.
Second, the bounded version of the problem is considered,
where the temporal property must be satisfied within given
finite time bound. We present correct and optimal solutions to
both problems and demonstrate their usability on a case study
motivated by robotic applications.

I. INTRODUCTION

Control systems used in transportation, medical and other
safety critical applications typically operate under uncer-
tainty. There is the internal uncertainty of the system’s
control inputs such as noisy actuators in mobile robots, and
the external uncertainty from the system’s interaction with
the environment such as other robots or people operating
in the same space. To lower the uncertainty, sensors are
deployed to provide information about the current state of
the system. Individual sensors and their combinations may
provide varying, partial observation and their deployment
requires resources such as energy, time or communication.
An example of a robotic system with multiple sensing
capabilities and limited resources is a planetary rover [13].

The field of sensor scheduling studies the problem of the
deployment of sensors in order to optimize estimation of
a signal connected to the system’s state. Results include
techniques, e.g., for linear systems [19], hybrid systems [9]
and for applications in robot motion planning [13]. On the
other hand, in the field of information gathering a fixed set
of sensors is assumed and the aim is to control the system,
rather than the use of sensors, with the same goal to optimize
estimation of the signal. Recently, a problem combining
optimization with temporal objectives has been considered
in this context for discrete systems [10].
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Partial observability has been extensively studied for
discrete systems in artificial intelligence and game theory.
The main focus is typically on partially observable Markov
decision processes (POMDPs) that model both partial ob-
servation and probabilistic uncertainties. The problem of
controlling a POMDP has been studied for various cost
functions [3], [11], [14] as well as temporal objectives
including reachability, safety, stability of response, expressed
as formulas of Linear Temporal Logic (LTL) or Computation
Tree Logic (CTL) [5]. However, these problems prove to be
undecidable or expensive to solve. More importantly, all the
above results consider only one fixed observation mode.

In this work, we focus on systems with multiple obser-
vation modes. We first present a discrete model for such
a system called a non-deterministic transition system (NTS)
with observation modes. The non-determinism can be used to
model the internal and external uncertainty of the system, and
observation modes capture the sensing capabilities. During
executions of the NTS, one decides which control action
and mode of partial observation to apply, and observation
modes are associated with costs. Then, we focus on the
following two problems. First, we aim to construct a control
and observation mode scheduling strategy for an NTS with
observation modes that (i) guarantees satisfaction of a finite-
time temporal property given as a formula of syntactically
co-safe fragment of LTL (scLTL) and (ii) minimizes the
worst-case cost accumulated until the point of satisfaction.
The second problem considers the bounded version of the
above problem, where the temporal property is required to
be satisfied in at most k ≥ 1 steps. Leveraging techniques
from automata-based model checking and graph theory, we
present correct and optimal solutions to both problems. We
refer the reader to the full version of this manuscript in [18]
for proofs and more detailed explanation of the framework.

To the best of our knowledge, discrete systems with
multiple observations were first considered only recently in
[7], [6], with the focus on control with respect to properties in
infinite time horizon. The most related work to ours is [2] that
considers a variation of POMDPs, where at each step the user
can either choose to use the partial or full information about
the current state by paying a fixed cost. The authors discuss
the problem of constructing a strategy to minimize the overall
cost, while reaching a designated goal state with probability
1. In comparison, we introduce a model that extends the one
in [2] in the sense that we allow multiple observation modes
and we design optimal strategies that guarantee complex
temporal objectives over finite or bounded time horizon while
minimizing the corresponding cost.



II. PRELIMINARIES

We use X∗ to denote the set of all finite sequences
over a set X . A finite sequence σ = x0 . . . xn ∈ X∗ has
length |σ| = n + 1, σ(i) = xi is the i-th element and
σi = σ(i) . . . σ(n) is the suffix starting with the i-th element,
for 0 ≤ i ≤ n. For an infinite sequence ρ = x0x1 . . . ∈ Xω ,
ρ(i) = xi for all i ≥ 0. A prefix of a finite or infinite
sequence ρ is any sequence ρ(0) . . . ρ(k) for 0 ≤ k ≤ |σ| or
k ≥ 0, respectively.

A. System with observation modes

Definition 1 (NTS): A non-deterministic transition system
(NTS) is a tuple N = (S,A, T, sinit, AP ,L), where S is a
non-empty finite set of states, A is a non-empty finite set of
actions, T : S×A→ 2S is a transition function, sinit ∈ S is
the initial state, AP is a set of atomic propositions, L : S →
2AP is a labeling function.

A run of a NTS is an infinite sequence s0s1 . . . ∈ Sω such
that for every i ≥ 0 there exists a ∈ A with si+1 ∈ T (si, a).
A finite run is a finite prefix of a run of the NTS.

Definition 2 (NTS with observation modes): A NTS with
observation modes is a tuple (N , O,M), where N =
(S,A, T, sinit, AP ,L) is a NTS, O is a non-empty finite
set of observations and M is a non-empty finite set of
observation modes. Every observation mode m ∈ M is
associated with an observation function γm : S → 2O and a
cost gm ∈ R+

0 .
A run of a NTS with observation modes is an infinite

sequence ρ = (s0,m0)(s1,m1) . . . ∈ (S × M)ω such
that s0s1 . . . is a run of the NTS. A finite run σ =
(s0,m0) . . . (sn,mn) ∈ (S×M)∗ of the NTS with observa-
tion modes is a finite prefix of a run. A pair (s,m) ∈ S×M
of a state and an observation mode is called a configuration.

Given a finite run σ = (s0,m0) . . . (sn,mn), we define
the cost of σ as follows

g(σ) =

n∑
i=0

gmi . (1)

The observational trace of a run ρ = (s0,m0)(s1,m1) . . .
is the sequence γ(ρ) = γm0(s0)γm1(s1) . . . ∈ (2O)ω

and the propositional trace of ρ is the sequence L(ρ) =
L(s0)L(s1) . . . ∈ (2AP )ω . The observational and proposi-
tional traces of finite runs are defined analogously.

Definition 3 (Strategy): Given a NTS with observation
modes, a (observation-based control and observation mode
scheduling) strategy is a function C : (2O)∗ → A×M that
defines the action and the observation mode to be applied in
the next step based only on the sequence of past observations.

We use σC and ρC to denote finite and infinite runs of
the NTS N induced by a strategy C, respectively. Note that
for every configuration (s,m), the strategy C induces a non-
empty set of runs ρC with ρC(0) = (s,m).

Example 1: Consider a NTS N = (S,A, T, sinit, AP , L),
where S = {s1, . . . , s7}, A = {a, b}, sinit = s1 and the tran-
sition function is as depicted in Fig. 1. We let AP = {?} and
the labeling function is indicated in Fig. 1, i.e., L(s6) = {?}
and L(si) = ∅ for every i 6= 6. Consider three observation
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Fig. 1: Example of an NTS with observation modes. For full description
see Ex. 1.

modes M = {m1,m2,m3} for N such that their respective
observation functions γ1, γ2, γ3 report neither the shape nor
the color, only the shape and both the shape and the color
of the state as shown in Fig. 1. The set of observations is
O = {white,blue,red,circ,rect,diam}. The costs
of the observation modes are g1 = 0, g2 = 1, g3 = 2.

B. Specification

Linear temporal logic (LTL) is a logic with modalities
referring to time [15]. Formulas of LTL are interpreted over
infinite words such as the propositional traces generated
by runs of a NTS. Co-safe fragment of LTL contains all
LTL formulas such that every satisfying infinite word has a
good finite prefix [12]. A good finite prefix is a finite word
such that every its extension to an infinite word satisfies the
formula. A class of co-safe LTL formulas that are easy to
characterize are syntactically co-safe LTL (scLTL) formulas
[12]. Intuitively, a scLTL formula ϕ is a LTL formula in
positive normal form containing only X (next), U (until) and
F (future) operators. For the detailed definition of syntax and
satisfaction relation w |= ϕ for words w ∈ (2AP )ω , see [12].
Formulas of scLTL can be represented with finite automata.

Definition 4 (DFA): A deterministic finite automaton
(DFA) is a tuple A = (Q, 2AP , δ, q0, F ), where Q is a non-
empty finite set of states, 2AP is the alphabet, δ : Q×2AP →
Q is a transition function, q0 ∈ Q is the initial state and
F ⊆ Q is a non-empty set of accepting states.

A run of a DFA is a finite sequence q0q1 . . . qn ∈ Q∗

such that for every i ≥ 0, there exists X ∈ 2AP such that
qi+1 = δ(qi, X). Every finite word w ∈ (2AP )∗ induces a
run of the DFA. A run is called accepting if its last state is
an accepting state. A word w is accepted by the DFA if it
induces an accepting run.

Given a scLTL formula ϕ, one can construct a minimal
(in the number of states) DFA that accepts all and only good
finite prefixes of ϕ using a translation algorithm from [12]
and automata theory techniques [16].

A run ρ of a NTS with observation modes satisfies a scLTL
formula ϕ if L(ρ) |= ϕ or, equivalently, if there exists a finite
prefix ρϕ of ρ such that L(ρϕ) is a good finite prefix for the
formula ϕ. We refer to prefixes ρϕ as the good finite prefixes
of the run ρ for the formula ϕ. We say that a strategy C
satisfies ϕ starting from a configuration (s,m) if ρC |= ϕ
for every run ρC such that ρC(0) = (s,m).

Example 2: Consider the set of atomic propositions
AP = {?}. An example of a scLTL formula over AP is
ϕ = F ?. A minimal DFA A for ϕ is shown in Fig. 2.
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Fig. 2: A minimal DFA for the scLTL formula from Ex. 2.

III. PROBLEM FORMULATION

The main motivation for the problem formulated in this
section is a robotic system that involves uncertainty originat-
ing from the motion of the robot, e.g., an autonomous car
with noisy actuators as well as uncertainty originating from
interaction with dynamic elements in the environment such
as pedestrians on streets. Typically, the system is equipped
with a set of sensors, where each sensor provides a partial
information about the uncertainties. In such a case, a NTS
can be used to model the motion capabilities of the robot in a
partitioned environment and its interaction with the dynamic
elements. The observation modes of the NTS then represent
possible subsets of sensors and the cost of an observation
mode corresponds to the amount of resources such as energy
or communication needed to deploy the chosen set of sensors
for a single step. During executions of the system, only the
observations associated with the current state of the NTS are
available. Hence, the current state of the system might not
be uniquely recognized.

We assume that the system is given a temporal objective
in the form of a scLTL formula ϕ over the set of atomic
propositions AP . Given a starting configuration (s,m) and
a strategy C that satisfies the formula ϕ, we define the
following cost function:

V (C, (s,m), ϕ) = max
ρC ,ρC(0)=(s,m)

min
ρϕρ′=ρC

g(ρϕ). (2)

Intuitively, the cost V (C, (s,m), ϕ) of a strategy C with
respect to the formula ϕ and the configuration (s,m) is the
worst-case cumulative cost of the (earliest) satisfaction of ϕ
using C starting from configuration (s,m).

The problems that we consider in this work can be
formulated as follows.

Problem 1 (Optimal scLTL control): Given a NTS with
observation modes (N , O,M), where N = (S,A, T, sinit,
AP , L), an initial observation mode minit ∈M , and a scLTL
formula ϕ over AP , find a strategy C such that (1) C satisfies
ϕ starting from the configuration (sinit,minit), and (2) the
cost V (C, (sinit,minit), ϕ) is minimized over all strategies
satisfying ϕ starting from (sinit,minit).

Problem 2 (Bounded optimal scLTL control): Given the
same assumptions as in Prob. 1 and a finite bound k ≥ 0,
find a strategy C such that (1) C satisfies ϕ starting from
the configuration (sinit,minit) in at most k steps, and (2) the
cost V (C, (sinit,minit), ϕ) is minimized over all strategies
satisfying ϕ starting from the configuration (sinit,minit) in
at most k steps.

In Sec. IV, we propose an algorithm to solve the gen-
eral Problem 1. The algorithm builds on techniques from
automata-based model checking and graph theory. The
bounded Problem 2 can be solved using an alternation of

the above algorithm as proposed in Sec. V. Both algorithms
are demonstrated in Sec. VI on an illustrative case study of
a mobile robot in an indoor environment.

Example 3: Consider the NTS with observation modes
introduced in Ex. 1 with initial observation mode m1 and
the scLTL formula from Ex. 2 that requires to reach the
state labeled with ? , i.e., state s6. Note that only in states
s2, s3, s4 there is more than one action allowed and hence
it suffices to discuss strategies based on their decision in
these states. No strategy C with C(∅) = (a,m1) can
guarantee satisfaction of the formula. The reason is that
the three states s2, s3, s4 cannot be told apart using mode
m1 and both actions a, b always in at least one case lead
to state s7 from which s6 cannot be reached. Consider
strategy C1 that recognizes the shape of the three states
s2, s3, s4, i.e., C1(∅) = (a,m2), C1(∅{rect}) = (a,m1),
C1(∅{diam}) = (b,m1). Strategy C1 guarantees a visit to
s6 in at most 3 steps and its cost V (C1, (sinit,m1), ϕ) =
1. Alternatively, consider strategy C2 that recognizes both
the shape and the color of the three states s2, s3, s4,
i.e., C1(∅) = (a,m3), C1(∅{rect,blue}) = (b,m1),
C1(∅{rect,red}) = (a,m1), C1(∅{diam,white}) =
(b,m1). Strategy C2 guarantees a visit to s6 in 2 steps and
its cost V (C2, (sinit,m1), ϕ) = 2. Strategy C1 is the solution
to the optimal scLTL control Problem 1 as its cost is lower
than the cost of C2. However, if we consider the bounded
optimal scLTL control Problem 2 with k = 2, then C2 is the
solution as C1 may need more than 2 steps to reach s6.

IV. OPTIMAL SCLTL CONTROL

In this section, we describe the algorithm to solve Prob-
lem 1 in detail. To approach the problem, we leverage
automata-based model checking techniques that analyze the
state space using graph algorithms. We first construct a
synchronous product of the NTS N and a DFA A for the
scLTL formula ϕ, where the runs of the NTS satisfying
the formula can be easily identified through accepting states
of the DFA. Next, to account for the non-determinism and
partial observation, we use a belief construction over the
product that determines the set of possible current states of
the product given any finite sequence of past observations.
Using graph algorithms, we construct a strategy for the belief
product that guarantees a visit of an accepting state and
minimizes a function derived from the costs of the associated
observation modes. Finally, we map the strategy from the
belief product to the original NTS and prove that the resulting
strategy is a solution to Problem 1.

A. Constructing the product

Definition 5 (Product): Let N = (S,A, T, sinit, AP ,L)
be a NTS and A = (Q, 2AP , δ, q0, F ) be a DFA.
The synchronous product is a tuple P = N × A =
(S × Q,A, TP , (sinit, q0), AP ,LP , FP), where
• S ×Q is the set of states,
• A is the alphabet,
• TP : S ×Q × A → 2S×Q is a transition function such

that (s′, q′) ∈ TP((s, q), a) if and only if s′ ∈ T (s, a)
and δ(q, L(s)) = q′,



• (sinit, q0) is the initial state,
• LP : S × Q → 2AP is the labeling function such that
LP((s, q)) = L(s),

• FP = {(s, q) | q ∈ F} is the set of accepting states.
We abuse the notation by using γα to denote the observa-

tion function of a sensor α ∈ Θ as well as its extension to
S ×Q, i.e., γα((s, q)) = γα(s) for all (s, q) ∈ S ×Q.

B. Constructing the belief product

The belief construction over the product follows the stan-
dard principles used for partially observable systems. Besides
keeping track of the states that the product can currently be
in, we also keep track of the deployed observation mode.

Definition 6 (Weighted belief product): Given a product
P and a set of observation modes M with the initial ob-
servation mode minit, we define the weighted belief product

B = (B,A, TB,binit, O, FB, w)

over P , where
• B ⊆ 2S×Q is the set of all belief states, where a belief

state b ∈ B is a set of product states such that there
exists an observation mode m ∈M such that all states
in b have the same observations in mode m,

• A = A ×M is the set of belief actions of the form
a = (a,m), where a ∈ A is an action of P and m ∈M
is an observation mode,

• TB : B ×A → 2B is the transition function such that
a belief state b′ ∈ TB(b, (a,m′)) if and only if b′ is
the set of all product states that can be reached in one
step from a state in b using action a and have the same
observations in mode m′,

• binit = {(sinit, q0)} is the initial state,
• FB = {b | b ⊆ FP} is the set of accepting belief states,
• w : B × A → R+

0 is the weight function such that
w(b, (a,m)) = gm.

Weighted belief product can be seen as a NTS with a
set of accepting states and weighted transitions. We adopt
definitions of finite and infinite runs of the belief product.

Corollary 1: From the definition of the weighted belief
product B it follows that every finite run of B corresponds
to exactly one finite sequence of observations in (2O)∗ and
at the same time, every finite sequence of observations in
(2O)∗ corresponds to at most one finite run of B.

Definition 7 (Strategy): Given a weighted belief product
B = (B,A, TB,binit, O, FB, w), a strategy for B is a
function C : B∗ → A.

We call a strategy C memoryless if it can be defined as a
function C : B→ A.

C. Constructing a strategy for the belief product

In this section, we propose an algorithm that constructs
a memoryless strategy for the weighted belief product that
guarantees a visit to an accepting state (if such a strategy
exists) and minimizes the worst-case cumulative weight.
Such a strategy then maps to a strategy for the original NTS
with observation modes that solves Problem 1. The algorithm
can be seen as a combination of the standard algorithm for
computing winning states in non-deterministic systems [1]

Algorithm 1 Constructing a strategy for the weighted belief product that
maps to a solution of Problem 1.

Input: B = (B,A, TB,binit, O, FB, w)
Output: memoryless strategy C for the belief product B
1: W0 := FB
2: ∀b ∈W0 : wtg(b) := 0
∀b ∈ (B\W0) : wtg(b) :=∞

3: i := 1
4: while binit 6∈ Wi and exist b ∈ B\Wi−1 and a ∈ A such that
∅ 6= TB(b,a) ⊆Wi−1 do

5: bmin := ⊥ amin := ⊥ ∆min :=∞
6: for every b ∈ B\Wi−1 and a ∈ A such that ∅ 6= TB(b,a) ⊆

Wi−1 do
7: ∆ := max

b′∈TB(b,a)
{w(b,a) + wtg(b′)}

8: if ∆ < ∆min then
9: bmin := b amin := a ∆min := ∆

10: end if
11: end for
12: Wi := Wi−1 ∪ {bmin}
13: C(bmin) := amin

14: wtg(bmin) := ∆min

15: i := i + 1
16: end while
17: if binit ∈Wi then
18: return C
19: else
20: return no suitable strategy exists
21: end if

and Dijkstra’s algorithm for computing shortest paths in a
weighted graph [8].

In the algorithm, we incrementally compute a value
wtg(b) (weight-to-go) for every belief state b that is the
minimum worst case weight of reaching an accepting state
starting from b. Initially, the value is 0 for accepting belief
states and∞ otherwise. We use Wi to denote the set of belief
states for which the value wtg(b) 6=∞ after i-th iteration. In
i-th iteration, we consider the belief state bmin ∈ B \Wi−1
and its action abmin

that leads to the set Wi−1 and minimizes
the worst-case sum of the weight of the action and the value
wtg of a successor state. The algorithm terminates when the
initial belief state binit is added to the set Wi or when there
exists no state b ∈ B \Wi with an action leading to Wi.
If the resulting set Wi contains the initial belief state, the
strategy consisting of the above actions for each belief state
in Wi is returned. The algorithm is summarized in Alg. 1.

Proposition 1 (Correctness): Alg. 1 results in a strategy
C for the weighted belief product such that every run under
C that starts in binit eventually visits an accepting belief
state, if such a strategy exists.

Proposition 2 (Optimality): Let C be the strategy result-
ing from Alg. 1. Then among all strategies that guarantee a
visit to an accepting belief state, C minimizes the value

VB(C,binit) = max
ρC ,ρC(0)=binit

min
ρaccρ′=ρC

w(ρacc, C) (3)

where ρacc is a finite run ending in an accepting state and

w(ρacc, C) =

|ρacc|−2∑
i=0

w
(
ρacc(i), C(ρacc(0) . . . ρacc(i))

)
.

Intuitively, the value VB(C,b) of a strategy C with respect
to a belief state b is the worst-case cumulative weight of the
(earliest) visit to an accepting state using C starting from b.



D. Constructing a strategy for the NTS

Let CB be the strategy for the weighted belief product B
resulting from Alg. 1. Consider the following strategy C for
the NTS N with observation modes. For a finite sequence
of observations σO ∈ (2O)∗, we define

C(σO) = CB(b), (4)

where b is the last state of the finite run σB of the belief
product that corresponds to σO as described in Cor. 1, if such
a run exists.

Theorem 1: Let CB be the strategy resulting from Alg. 1.
Then the strategy C for the NTS with observation modes
constructed according to Eq. 4 is a solution to Problem 1.

Complexity. Given an scLTL formula ϕ the number of
states of a corresponding minimal DFA A is in general
doubly exponential in the size of the formula. However,
compared to the size of the NTS, the size of the automa-
ton typically does not play a crucial role in the overall
complexity. The product P of the NTS N and A is then
of size O(|S| × |Q|). The belief product B involves a
subset construction over the product, hence its size is in
O(2|S|×|Q|). Typically only the reachable states of both the
product and the belief product are constructed in practice.
With a proper choice of a data structure storing the belief
product B, Alg. 1 runs in time O(|B| · log |B| + |A| · dn),
where dn is the degree of non-determinism of the NTS
N , i.e., the maximum number of possible successors given
a state and an action. Note that while the algorithms are
polynomial with respect to their input, i.e., the belief product,
they are exponential in the size of the product.

V. BOUNDED OPTIMAL SCLTL CONTROL

In order to solve Problem 2, we first construct the product
P of the NTS N with a DFA A for the scLTL formula ϕ and
the corresponding belief product B as proposed in Sec. IV-A
and IV-B, respectively. To compute a strategy for the belief
product from Sec. IV-C, we use an alternation of Alg. 1
presented below and summarized as Alg. 2. Intuitively, as
Alg. 1 builds on the principles of Dijkstra’s algorithm, Alg. 2
follows the idea behind Bellman-Ford algorithm for solving
the bounded shortest path problem in weighted graphs [8].
By mapping the resulting strategy CB for the belief product
to the original system as described in Sec. IV-D, we obtain
a correct and optimal solution to Problem 2.

A. Constructing a strategy for the belief product

Instead of computing the weight-to-go value wtg(b) for
a single well-chosen belief state b at a time as in Alg. 1,
in Alg. 2 we update the value in parallel for all states
in every iteration. We show that the set Wi which is the
set of all belief states for which wtg(b) 6= ∞ after i-th
iteration, consists of all belief states b that can reach an
accepting belief state in at most i steps and with the worst-
case cumulative weight wtg(b). The algorithm terminates
after k, but at most |B| − 1, iterations. If the resulting set
Wi contains the initial belief state, the strategy consisting of
the chosen actions for each belief state in Wi is returned.

Algorithm 2 Constructing a strategy for the weighted belief product and
the given bound that maps to a solution of Problem 2.

Input: B = (B,A, TB,binit, O, FB, w), bound k ≥ 1
Output: strategy C for the belief product B
1: W0 := FB
2: ∀b ∈W0 : wtg(b) := 0
∀b ∈ (B\W0) : wtg(b) :=∞

3: i := 1
4: while i ≤ k do
5: for every b ∈ B do
6: ab

min := ⊥ ∆b
min := wtg(b)

7: for every a ∈ A such that ∅ 6= TB(b,a) ⊆Wi−1 do
8: ∆ := max

b′∈TB(b,a)
{w(b,a) + wtg(b′)}

9: if ∆ < ∆b
min then

10: ab
min = a ∆b

min := ∆
11: end if
12: end for
13: end for
14: Wi := Wi−1

15: for every state b ∈ B do
16: C(b) := ab

min
17: wtg(b) := ∆b

min
18: if wtg(b) <∞ then
19: Wi := Wi ∪ {b}
20: end if
21: end for
22: i := i + 1
23: end while
24: if binit ∈Wi then
25: return C
26: else
27: return no suitable strategy exists for given bound
28: end if

Proposition 3 (Correctness): Alg. 2 results in a strategy
C for the weighted belief product such that every run under
C that starts in binit visits an accepting belief state in at
most k steps, if such a strategy exists.

Proposition 4 (Optimality): Let C be the strategy result-
ing from Alg. 2. Then among all strategies that guarantee
a visit to an accepting belief state in at most k steps, C
minimizes the value in Eq. 3.

Theorem 2: Let CB be the strategy resulting from Alg. 2.
Then the strategy C for the NTS with observation modes
constructed according to Eq. 4 is a solution to Problem 2.

Complexity. The size of a minimal DFA for ϕ, the product
and the belief product are discussed in Sec. IV-D. Similarly
as for Alg. 1, with a proper choice of a data structure storing
the belief product B, Alg. 2 runs in time O(k · |B| · |A| ·dn),
where dn is the degree of non-determinism of N , i.e., the
maximum number of possible successors given a state and
an action. Here, the value |B| · |A| · dn serves as the upper
bound on the number of all edges in the belief product.

VI. CASE STUDY

We implemented the algorithms from Sec. IV and V in
C++. In this section, we demonstrate their use on a case
study motivated by examples in [4], [17]. All executions were
performed on Mac OS X 10.10.3 with 2.6 GHz Intel Core
i5 processor and 8 GB 1600 MHz DDR3 memory.

Consider a mobile robot moving in an environment parti-
tioned into a grid of 5 × 5 equally sized regions. The grid
contains a starting, a target and possibly multiple dangerous
regions, where the robot is detected and captured. The robot
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Fig. 3: The environment of a mobile robot partitioned into a grid of
5 × 5 regions. The three grids correspond to three possible placements of
dangerous regions, shown in red. The starting and target regions are shown
in green and blue, respectively.
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Fig. 4: Two sensors that provide information about the presence of danger-
ous regions in robot’s immediate surroundings. We also show the names of
the corresponding observations learned by the robot. For the first sensor in
(a), the surrounding area is divided into quadrants and the sensor reports all
quadrants containing a dangerous region. For the second sensor in (b), the
exact set of dangerous regions is reported. For example, let (c) show the
immediate surroundings of the robot with it’s current position in the middle
and dangerous regions in red. The first sensor reports the set of observations
{NW, NE, SE,det} and the second sensor reports {N, SE, det}.

knows the locations of the starting and the target regions but
it does not know the exact locations of dangerous regions.
Nevertheless, the robot knows that the grid takes one of the
three forms depicted in Fig. 3. The robot moves deterministi-
cally in (up to) four compass directions. To learn the presence
of dangerous regions in it’s immediate surroundings, the
robot can deploy one of the two sensors described in Fig. 4.
In every step, the robot can decide which sensor to activate,
if any. The costs of deployment of the two sensors is 1 and
2, respectively. The cost can be interpreted as the amount of
resources needed for the use of each sensor or as the amount
of information received by the enemy. The goal of the robot
is to reach the target region from the starting region without
being detected, while minimizing the cost.

The NTS with observation modes that models the above
system has 76 states S = {sinit, sijk | 1 ≤ i ≤ 3, 1 ≤
j, k ≤ 5} and 5 actions A = {a,N,S,E,W}. States sijk
correspond to the regions in the three grids, where 1 ≤ i ≤ 3
is the grid identifier and 1 ≤ j, k ≤ 5 determine the row
and column coordinate, respectively. For example, s111 is
the top left corner of the first grid. The initial state sinit
has only one transition T (sinit, a) = {s111, s211, s311} that
corresponds to the enemy choosing one of the three grids
in Fig. 3. The transitions of all sijk are deterministic and
correspond to moving in compass directions N,S,E,W. The
set AP = {dang, target} and the labeling function is
such that L(sinit) = ∅ and L(sijk) indicates the target and
dangerous regions as in Fig. 3. The set of observations is
O = {N, S, W, E, NW, NE, SW, SE,det}. The NTS has 3 obser-
vation modes corresponding to not activating any sensor,
activating the first sensor and activating the second sensor.

The respective observation functions γ1, γ2, γ3 are defined in
Fig. 4 and g1 = 0, g2 = 1, g3 = 2.

The scLTL formula specifying the robot’s mission is
(¬dang)U target and the corresponding minimal DFA A
has 3 states. The product P of N and A has 208 states
and 667 (possibly non-deterministic) transitions, and was
constructed in less than 0.1 seconds. The weighted belief
product B has 375 states and 2634 transitions, and was
constructed in 1.5 seconds.

The strategy solving Problem 1 was computed in 7 sec-
onds, it reaches the target state in at most 15 steps with the
worst-case cost 1. Strategies solving Problem 2 for bounds
k < 15 were computed in less than 3 seconds each. For k ≤
8, there does not exist a suitable strategy. For 9 ≤ k ≤ 12
and k = 13, 14, the optimal strategies reach the target region
after at most 9 and 13 steps with the worst-case cost 1 and 2,
respectively. For full description of the strategies, see [18].
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