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ABSTRACT
This work deals with Markov processes that are defined over an
uncountable state space (possibly hybrid) and embedding non-
determinism in the shape of a control structure. The contribu-
tion looks at the problem of optimization, over the set of allowed
controls, of probabilistic specifications defined by automata –
in particular, the focus is on deterministic finite-state automata.
This problem can be reformulated as an optimization of a prob-
abilistic reachability property over a product process obtained
from the model for the specification and the model of the sys-
tem. Optimizing over automata-based specifications thus leads
to maximal or minimal probabilistic reachability properties. For
both setups, the contribution shows that these problems can
be sufficiently tackled with history-independent Markov poli-
cies. This outcome has relevant computational repercussions:
in particular, the work develops a discretization procedure lead-
ing into standard optimization problems over Markov decision
processes. Such procedure is associated with exact error bounds
and is experimentally tested on a case study.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: PROBABILITY AND STATIS-
TICS—Stochastic processes

General Terms
Theory, verification
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1. INTRODUCTION
Stochastic Hybrid Systems (SHS) are a general and widely

applicable mathematical framework involving the interaction of
discrete, continuous, and probabilistic dynamics. Because of
their generality, SHS have been applied over many areas, includ-
ing telecommunication networks, manufacturing systems, trans-
portation, and biological systems [8, 9].

SHS can be abstractly regarded as general Markov processes
defined over an uncountable (in particular, hybrid) state space
and embedded with non-determinism in the sense that they are
dependent on a control structure [7]. The allowed control poli-
cies are functions of the history: in other words, we allow the
control inputs to depend not only on the current state, but also
on past trajectory realization and on past choices of control in-
puts. Markov policies are important special instances of these
policies and depend solely on the current state.

SHS models are properly tagged by a labeling function that
maps points in the state space to elements of a finite labeling set,
which we refer to as an alphabet. SHS are structurally useful in
the verification of linear time specifications, for example speci-
fications expressed as deterministic finite-state automata (DFA)
with labels. The work in [4] has shown that the verification of
linear time specifications (in particular, DFA properties) can be
performed by solving a probabilistic reachability problem over
a new SHS, which is obtained by taking the cross product be-
tween the SHS and the DFA. Probabilistic reachability can then
be practically assessed by computing its dual, namely probabilis-
tic invariance [5].

This work generalizes the results in [4] to the case of control-
dependent SHS and of DFA specifications. Since the verification
of DFA specifications boils down to solving a probabilistic reach-
ability problem, we consider this setup both in its finite- and
infinite-horizon formulations. As the models under study are
control dependent, we look into the possible maximal and min-
imal probabilistic reachability formulations: these can be stud-
ied as limits of dynamic programming recursions or as solutions
of integral equations [7]. Since the cost functions expressing
the dynamic programming scheme for probabilistic reachabil-
ity take a multiplicative form [5], the analysis of their proper-
ties is in general difficult. This has lead several works in the
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literature [18, 10] to try formulating the reach-avoid problem
(a generalization of the reachability problem) in terms of addi-
tive costs, where the dynamic programming theory is mature [7,
13]. To the best of our knowledge, inspired by the work in [11]
the present work provides such a reduction explicitly for the
first time. This as a consequence leads to several important re-
sults: first of all, we show that Markov policies are sufficient for
the optimal probabilistic reachability; additionally, such a tech-
nique allows obtaining Bellman recursion and Bellman fixpoint
equations for the reachability probability in the most general
case, whereas the results in the literature were either focused
on Markov policies exclusively [5, 18] or required structural as-
sumptions on the model [10].

Sufficiency of Markov policies has important computational
implications, since optimal controls can be synthesized accord-
ing to the current value of trajectories, rather than based on the
entire past history. Further along this computational line, the
work introduces a discretization scheme that reduces the orig-
inal (uncountable) setup to a finite optimization problem over
Markov decision processes. Provided some continuity assump-
tions on the model are valid, the work shows that the discretiza-
tion scheme can be associated with exact bounds on the intro-
duced error. The obtained error bounds, inspired by [2], are
functions of tunable parameters in the model and thus can be
made, at the expense of more computations, arbitrarily small.

The article is structured as follows. Section 2 introduces the
model syntax and semantics, as well as the class of linear tem-
poral specifications of interest. Section 3 discusses the problem
statement (probabilistic reachability) and its alternative formu-
lation via additive cost functions, and derives the main theoret-
ical results in this work: it shows in particular the sufficiency of
Markov policies, and elaborates the minimal and maximal op-
timization problems over finite and infinite horizons. Section
4 puts forward a discretization scheme for the computation of
the quantities in Section 3, with an exact quantification of the
introduced errors. Finally, Section 5 presents the experimental
outcomes over a case study and Section 6 concludes the paper.
Due to space constraints, the proofs of the statements are omit-
ted from this manuscript.

2. PRELIMINARIES

2.1 Notations and model definition
In this section we give a brief recap on Borel spaces and re-

lated stochastic kernels. It is common in the literature on the
theory of controlled discrete-time Markov processes (cdt-MP)
to assume that both the state space and the control space are
endowed with a certain topological structure [7, 13]. A topo-
logical space X is called a Borel space if it is homeomorphic to a
Borel subset of a Polish space1. Examples of a Borel space are the
Euclidean spaces �n, its Borel subsets endowed with a subspace
topology [16], as well as hybrid spaces [5]. Any Borel space
X is assumed to be endowed with a Borel σ-algebra, which is
denoted by �(X ). We say that a map f : X → Y is measurable
whenever it is Borel measurable.

Given two Borel spaces X , Y the stochastic kernel on X given
Y is the map P : Y ×�(X )→ [0, 1] such that P(·|y) is a prob-
ability measure on X for any point y ∈ Y , and such that P(B|·)
is a measurable function on Y for any set B ∈ �(X ). Stochas-

1A Polish space is a topological space which is separable and
completely metrizable.

tic kernels provide a natural generalization of update laws for
deterministic systems, as we further show below.

We adopt the notation from [13] and consider a tuple D =
(X , U , {U(x)}x∈X ,T), where X is a Borel space, referred to as the
state space of the model, and U is a Borel space to be thought
of as the set of controls. Furthermore, {U(x)}x∈X is a family of
non-empty measurable subsets of U with the property that

� := {(x , u) : x ∈ X , u ∈ U(x)}
is measurable in X × U . Intuitively, U(x) is the set of controls
that are feasible at state x . Finally, T is a stochastic kernel on
X given �: note that � is a measurable subset of a Borel space
X ×U , hence it is itself a Borel space. In order to assure that the
set of control policies is not empty we require � to contain the
graph of a measurable function [13, Assumption 2.2.2]. In other
words, we assume that there exists a measurable map k : X → U
such that k(x) ∈ U(x) for any x ∈ X .

DEFINITION 1 (cdt-MP). We call any tuple

D= (X , U , {U(x)}x∈X ,T)

that satisfies the assumptions above a cdt-MP.

The following notation is used throughout the paper. We
denote the set of positive integers by � and the set of non-
negative integers by �0 := � ∪ {0}. Furthermore, we denote
m, n := {m, m+1, . . . , n−1, n} for m, n ∈ �0 such that m< n; �
stands for the set of reals.

For any set X we denote by X�0 the Cartesian product of a
countable number of copies of X , i.e. X�0 =

∏∞
k=0 X .

2.2 Model semantics
The semantics of a cdt-MP is characterized by its paths or

executions, which reflect both the history of previous states of
the system and of implemented control actions. Paths (often
thought as infinite paths) are used to measure the performance
of the system, which is done here via model checking methods.
Also, a path up to a time epoch n can be used to derive the
control action on the next step: these are finite paths that we
also call histories as in [13, Section 2.2]. Let us finally mention
that for technical reasons, when dealing with uncountable state
spaces, it is usual to take into consideration also non-admissible
paths, i.e. those containing non-feasible controls.

DEFINITION 2 (HISTORY). Given a cdt-MP D and a number
n ∈ N0, an n-history is a finite sequence

hn = (x0, u0, . . . , xn−1, un−1, xn), (1)

where xi ∈ X are state coordinates and ui ∈ U are control co-
ordinates of the history. An n-history hn is called admissible if
ui ∈ U(xi), i ∈ 0, n− 1. The space of all n-histories is denoted by
H̄n, and its subspace of admissible n-histories is denoted by Hn:

H̄n = (X × U)n× X , Hn =�n × X .

Further, we denote projections by hn[i] := xi and hn(i) := ui.

DEFINITION 3 (PATH). An infinite path of a cdt-MP D is

ω = (x0, u0, x1, u1, . . . ), (2)

where xi ∈ X and ui ∈ U for all i ∈ �0. As above, let us introduce
projections ω[i] := xi and ω(i) := ui .

The space of all infinite paths Ω = (X × U)�0 together with
its product σ-algebra � is called a canonical sample space for
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a cdt-MP D [13, Section 2.2]. An infinite path ω ∈ Ω is called
admissible if un ∈ U(xn) for any n ∈ �0. The space of all infinite
admissible paths is denoted by H∞ = �∞ and is a subspace of Ω.

Given a pathω or a history hn, we assume below that xi and ui
are their state and control coordinates respectively, unless oth-
erwise stated. In order to emphasize the control structure, for
the path ω as in (2) we also write

ω= x0
u0−→ x1

u1−→ x2
u2−→ · · · .

Clearly, for any infinite path ω ∈ Ω its n-prefix (ending in a
state) ωn is an n-history. However, for notational reasons we
aim on denoting finite histories through hn and paths throughω
exclusively, since they usually serve for different purposes. We
are now ready to introduce the notion of control policy.

DEFINITION 4 (POLICY). A policy is a sequence π = (πn)n∈�0
of universally measurable stochastic kernels πn [7, Chapter 8.1],
each defined on the control set U given Hn and such that

πn(U(xn)|hn) = 1 (3)

for all hn ∈ Hn, n ∈ �0. The set of all policies is denoted by Π.

Equation (2) shows that all policies are “admissible” by defi-
nition. More precisely, the class of non-admissible policies is of
0 probability: given a policy π ∈ Π and an admissible n-history
hn ∈ Hn, the distribution of the next control action un given by
π(·|hn) is supported on U(xn). Among the class of all possi-
ble policies, we are especially interested in those with a simple
structure in that they depend only on the current state, rather
than on the whole history.

DEFINITION 5 (MARKOV POLICY). A policy π ∈ Π is called a
Markov policy if for any n ∈ �0 it holds that πn(·|hn) = πn(·|xn),
i.e. πn depends on the history hn only through the current state
xn. The class of all Markov policies is denoted by ΠM ⊂ Π.

Although a Markov policy is not history-dependent, it is not
necessary stationary, i.e. it may depend on the time variable.
This fact highlights the difference between Markov policies and
memoryless schedulers as defined in [6, Section 10.6]. More
precisely, a policy π ∈ Π is a memoryless scheduler if and only if
it is Markov and stationary, i.e. πn = π0 for all n ∈ �0.

A central measurability result is that given a cdt-MP D and a
policy π ∈ Π, it is always possible to construct a suitable prob-
ability measure over the set of paths. Due to technical reasons,
such a measure is constructed on the space (Ω,� ) which also
contains non-admissible paths, but it is supported on the space
H∞ of admissible paths. More precisely, let a cdt-MP D, a pol-
icy π and a probability measure α on X be given – the latter is
referred to be the initial probability distribution of the cdt-MP.
By the theorem of Ionescu Tulcea [13], there exists a unique
probability measure Pπα on the canonical sample space (Ω,� )
supported on H∞, i.e. Pπα(H∞) = 1 and such that

Pπ
α
(x0 ∈ B) = α(B),

Pπ
α
(un ∈ C |hn) = πn(C |hn),

Pπ
α
(xn+1 ∈ B|hn, un) = T(B|xn, un)

for all B ∈ �(X ), C ∈ �(U) and hn ∈ Hn, n ∈ �0. In the
case when the initial distribution is supported on a single point,
i.e. α({x}) = 1, we write Pπx in place of Pπα . Note that the last
equation means that T is a transition kernel for the cdt-MP:
whenever the current state is known and the control action is
chosen, T gives a distribution for the next state.

2.3 Controlled Stochastic Hybrid Systems
Controlled discrete-time Stochastic Hybrid Systems (cdt-SHS)

are a particular subclass of cdt-MP with a more explicit struc-
ture that distinguishes between continuous and discrete states
of the system. The class of cdt-SHS provides rich modeling
power and is applicable to various areas [9, 5]. It has been
introduced in [2] and further studied in [5, 19]. Here we in-
troduce it directly through the discussed framework: a cdt-
SHS is a cdt-MP D = (X , U , {U(x)}x∈X ,T) whose state space
is X =
⋃

q∈Q{q} × Dq, where Q is a finite set of discrete modes
and the measurable sets Dq ∈ �(�n(q)) are the continuous com-
ponents of the state space.

The control space U is often taken to be some Borel space.
Furthermore, the transition kernel of cdt-SHS is often defined
through its hybrid components [5] as:

T({q′}×dc′|(q, c), u) =

�
Tq(q′|(q, c), u)Tx(dc′|(q, c), u), q′ = q,
Tq(q′|(q, c), u)Tr(dc′|(q, c, q′), u), q′ �= q,

for any c ∈ Dq and q ∈ Q and where Tq is a discrete probability
law, whereas Tr , Tx are continuous (reset and transition) ker-
nels. The semantical meaning of the conditional distributions
Tq,Tr and Tx is given in [5]. The hybrid structure of the kernel
further allows considering the control space U to be a product
of the controls affecting the continuous dynamics and of those
affecting the discrete dynamics as U = Uq×Uc , where Uq, Uc are
some Borel spaces [5].

Markov Decision Processes (MDP) are a subclass of cdt-SHS
characterized by finite state and control spaces. Formally, U is
finite and each continuous component Dq of a MDP is a single-
ton, which can be identified with the discrete component q itself.
The theory of MDP is mature and allows for explicit solutions of
many synthesis problems [6, Section 10.6].

2.4 Deterministic Finite State Automata
We are interested in linear temporal properties of trajectories

of a given cdt-MP. For this purpose, in this section we introduce
a model known as Deterministic Finite-state Automaton (DFA).

DEFINITION 6 (DFA). A DFA is a tuple � = (Q, q0,Σ, F, t),
where Q is a finite set of locations, q0 ∈Q is the initial location, Σ
is a finite set, F ⊆ Q is a set of accept locations, and t : Q×Σ→Q
is a transition function.

We call the set Σ an alphabet and its elements σ ∈ Σ letters.
We denote by S = ΣN0 (by S<∞) the collection of all infinite
(finite) words over Σ. A finite word w = (w[0], . . . , w[n]) ∈
S<∞ is accepted by a DFA � if there exists a finite run z =
(z[0], . . . , z[n + 1]) ∈ Qn+2 such that z[0] = q0, z[i + 1] =
t(z[i], w[i]) for all 0 ≤ i ≤ n and z[n + 1] ∈ F . Although
the verification of DFA is classically based on finite words, it
is here more convenient to work with infinite words and define
the corresponding accepting languages over infinite words. We
say that an infinite word w ∈S is accepted by a DFA� if there
exists a finite prefix of w accepted by� as a finite word. This is
equivalent to the following statement: an infinite word w ∈S is
accepted by� if and only if there exists an infinite run z ∈Q�0

such that z[0] = q0, z[i + 1] = t(z[i], w[i]) for all i ∈ �0 and
there exists j ∈ �0 such that z[ j] ∈ F . Note that w[i] (resp.
z[i]) denotes the i-th letter (resp. state of the automaton) on
w (resp. z). The accepted language of � , denoted L(� ), is
the set of all words accepted by � . We are further interested
in other kinds of accepting conditions over the DFA � : we say
that the word w is n-accepted by the DFA � if there exists a
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run z ∈ Q�0 such that z[0] = q0, z[i + 1] = t(z[i], w[i]) for all
i ∈ �0 and z[ j] ∈ F for some j ≤ n. We denote the set of all n-
accepted words by Ln(� ). It is clear that L∞(� ) = L(� ) and
furthermore that Ln(� )⊆ Ln+1(� ), where n ∈ �0 is arbitrary.

We use the DFA� to specify properties of the cdt-MP as fol-
lows. Let L : X → Σ be a measurable function which we call
the labeling function for a cdt-MP D. To each state x ∈ X it
assigns the letter L(x) ∈ Σ. In the same fashion, each path
ω = (x0, u0, x1, u1, x2, u2, . . . ) ∈ Ω induces the word w ∈ S
given by w = (L(x0),L(x1),L(x2), . . . ). We define the function
LΩ which maps paths onto words, i.e., LΩ(ω) = w, as above.
Using this function we can introduce the satisfaction relation
between paths of D and the DFA specification as follows:

ω |= � ⇔ LΩ(ω) ∈ L(� ). (4)

As a result, given a policy π ∈ Π we can define the probabil-
ity that a path of D satisfies � , i.e. Pπα(ω |= � ). It can be
shown that under the assumption made on the measurability of
L : X → Σ it holds that {ω ∈ Ω : ω |=�} ∈ � and hence such
probability is well-defined. For any n ∈ N0 we also define

ω |=n � ⇔ LΩ(ω) ∈ Ln(� ). (5)

By now it should be clear why we prefer dealing with infinite
words: the reason for this is that runs of the cdt-MP are always
infinite, i.e. the cdt-MP “never stops”. At the same time, the
input to the DFA� is a word LΩ(ω) which is infinite as well.

The work in [4] studied model-checking of automata speci-
fications against autonomous (i.e. uncontrolled) discrete-time
stochastic models over uncountable state spaces. It was shown
that the computation of the probability of satisfying a DFA can
be restated in terms of a probabilistic reachability problem over
the product between the original model and the DFA. In this
paper we extend this result to the case of cdt-MP. As a result,
we need to introduce the probabilistic reachability problem in
general terms, and discuss its solution.

3. PROBABILISTIC REACHABILITY

3.1 Problem formulation
In this section we consider a basic and important problem

where the probability of reaching a goal set is to be optimized.
Let us consider a cdt-MP D = (X , U , {U(x)},T) and some goal
set G ∈�(X ). For any n ∈ �0 we define

◊≤nG = {ω ∈ Ω : xk ∈ G for some 0 ≤ k ≤ n} (6)

and further ◊≤∞G =
⋃∞

n=0◊≤nG. We call the event in ◊≤nG an
n-bounded reachability if n < ∞, and and an unbounded reach-
ability if n = ∞. Since it holds that ◊≤nG =

⋃n
k=0{xk ∈ G} for

any n ∈ �̄0 = �0 ∪ {∞}, we obtain that G ∈ �(X ) implies that
◊≤nG ∈ � for all n ∈ �̄0. Due to this reason, the quantities
Pπα(◊≤nG) are well-defined for any initial distribution α and any
control policy π ∈ Π. We further refer to these quantities as
reachability probabilities.

We assume that the target set G ∈ �(X ) is given and fixed.
We are interested in the problem of reachability probability op-
timization, being either a maximization or a minimization over
all possible policies π ∈ Π. For this purpose we restrict our
attention to initial distributions supported at single points and
define the following value functions: Vπn (x) := Pπx (◊≤nG) for
all n ∈ �̄0. For the problem of maximal reachability, the corre-
sponding value functions are given by

V ∗n (x) := sup
π∈Π

Vπn (x) (7)

and for the problem of minimal reachability by

V∗,n(x) := inf
π∈ΠVπn (x). (8)

A policy π∗ ∈ Π is called optimal for the problem (7) if it satisfies
Vπ
∗

n (x) = V ∗n (x). Similarly, a policy π∗ ∈ Π is called optimal for
the problem (8) if Vπ

∗
n (x) = V∗,n(x)

The reachability problem introduced above relates to other
important problems in the analysis of probabilistic systems. First
of all, it is a dual to the probabilistic safety (or invariance) prob-
lem, which was studied for cdt-SHS in [5]. We can define such
problem as follows: for some S ∈�(X ) and any n ∈ �0,

�≤nS = {ω ∈ Ω : xk ∈ S for all 0≤ k ≤ n} (9)

and �≤∞S =
⋂∞

n=0�≤nS. The duality between the safety and
the reachability is given by the identity (�≤nS)c = ◊≤nSc , which
holds for any n ∈ �̄0. As a result, we obtain that the maximal
and minimal safety problems can be successfully reformulated
in terms of optimal reachability value functions, i.e. if S = Gc

sup
π∈Π

Pπx (�≤nS) = 1− V∗,n(x),

inf
π∈ΠP

π
x (�≤nS) = 1− V ∗n (x),

(10)

for any n ∈ �̄0. To find the maximal safety one has to look for
the minimal reachability over the complement of the goal set.

Another problem related to probabilistic reachability is known
as probabilistic reach-avoid [18]. Let us introduce this problem
for two given sets S, G ∈ �(X ) as follows. For n ∈ �0 we define

SU≤nG =

�
ω ∈ Ω :

xk ∈ G for some 0 ≤ k ≤ n and

x j ∈ S for all 0 ≤ j < k

�

and SU≤∞G =
⋃∞

n=0 SU≤nG. The measurability of the defined
events is clear. The set S is referred to as the safe set (or the set
of legal states) and as above the set G is referred to as the goal
set. We further introduce the corresponding reach-avoid value
function for x ∈ X , n ∈ �̄0, as

W ∗n (x) := sup
π∈Π

Pπx (SU
≤nG), W∗,n(x) := inf

π∈ΠP
π
x (SU

≤nG). (11)

It is well-known that the reach-avoid problem is more general
than the reachability one, since ◊≤nG = XU≤nG for any G ∈
�(X ) and any n ∈ �̄0. However, the converse statement also
holds true, as we are going to show now: the idea is to state
the reach-avoid problem over the cdt-MP D as a reachability
problem over a new cdt-MP D̆, where the avoid set A := (S∪G)c

is identified with an auxiliary single state with a loop.
More precisely, given a cdt-MP D and two sets S, G ∈ �(X )

we define D̆ = (X̆ , U , {Ŭx}x∈X̆ , T̆) where X̆ = S ∪ G ∪ {ψ} for
some auxiliary state ψ /∈ X . We further define Ŭ(x) = U(x) for
x ∈ S ∪ G and Ŭ(ψ) = ŭ where ŭ is an element of U . Finally,

T̆(B|x , u) =

⎧
⎨
⎩
T(B|x , u), if B ∈�(S ∪ G), x ∈ S ∪ G
T(A|x , u), if B = {ψ}, x ∈ S ∪ G
1, if B = {ψ}, x =ψ.

Let us now define the corresponding optimal reachability value
functions for the goal set G over the cdt-MP D̆, which we denote
by V̆ ∗n for the maximal reachability and V̆∗,n for the minimal one.
The following result relates the reach-avoid value functions over
D to the reachability ones over D̆.
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PROPOSITION 1. For any x ∈ A and any n ∈ �̄0 it holds that
W∗,n(x) =W ∗n (x) = 0. Furthermore, for any x ∈ S∪G and n ∈ �0

W ∗n (x) = V̆ ∗n (x), W∗,n(x) = V̆∗,n(x).

It follows from Proposition 1 that results obtained for the op-
timization over the reachability probabilities can be directly ap-
plied to the case of reach-avoid. Due to this reason, we focus on
the former problem and later show explicitly how to extend the
obtained results from the reachability to the reach-avoid.

3.2 Formulation with an additive cost
The work in [5] considered the optimization of reachability

probabilities over the class of cdt-MP where the cost functional
took a multiplicative form. Focusing exclusively on Markov poli-
cies allowed obtaining DP recursions for value functions. In this
work, however, we are interested in a wider class of policies, so
the results in [5] are not directly applicable. In particular, an
interesting question is the following: is it sufficient to consider
only Markov policies in the optimization procedure? In order
to answer this question, as well as to derive DP recursions, we
are going to reformulate the original optimization problem via
an additive cost functional, for which the theory of DP is rather
rich [7, 13]. This approach is inspired by the one in [11].

Given a goal set G ∈�(X ) we consider a new cdt-MP

D̂ := (X̂ , U , {Û(x , y)}(x ,y)∈X̂ , T̂)

with an augmented state space X̂ = X × Y , where Y = {0, 1}.
The states are of the form (x , y) with coordinates being x ∈ X ,
y ∈ Y . The control space U is the same and we further define
Û(x , y) := U(x). The dynamics of D̂ are given as follows:�

xn+1 ∼ T(·|xn, un)
yn+1 = 1Gc (xn) · yn,

hence the corresponding transition kernel T̂ is given by

T̂



B× {y ′}|x , y, u
�

:=

�
y · 1Gc (x)T(B|x , u), if y ′ = 1,

1− y · 1Gc (x)
�
T(B|x , u), if y ′ = 0.

We construct a space of policies Π̂ and for each π̂ ∈ Π̂ and ini-
tial distribution α̂ on X̂ , a probability space (Ω̂, �̂ , P̂π̂α̂) with the
expectation Êπ̂α̂ . We denote by Π̂M ⊂ Π̂ the corresponding class
of Markov policies for D̂.

The additive cost structure consists of a cost c : X̂ → {0, 1}
given by c(x , y) := y · 1G(x) and a functional

J π̂n (x , y) := Êπ̂(x ,y)

⎡
⎣ n∑

k=0

c(xk, yk)

⎤
⎦ .

In order to relate it to the original formulation defined over the
cdt-MP D, we first have to establish an explicit relationship be-
tween classes of strategies Π and Π̂. Clearly, we can treat Π as a
subset of Π̂ as any policyπ ∈ Π for the cdt-MP D serves also as a
policy for the cdt-MP D̂. We let ι : Π→ Π̂ be the inclusion map.
On the other hand, we define the projection map θ : Π̂→ Π by

θi(π)(dui|x0, u0, . . . , xi) := π̂i(dui|x0, y0 = 1, u0, . . . , xi , yi = 1)

The following result relates the two optimization problems.

THEOREM 1. For any n ∈ �̄0, π ∈ Π and π̂ ∈ Π̂, it holds that

J π̂n (x , 1) = V θ (π̂)n (x), Vπn (x) = J ι(π)n (x , 1). (12)

Theorem 1 has several important corollaries. First of all, it
can be used to prove that Markov policies are sufficient for the
original optimal reachability problem over a bounded time hori-
zon, i.e. in case when n < ∞. At the same time, the optimal
policy may depend on time and thus is not necessary stationary.
Note that for a MDP, a special case of cdt-MP, this fact has been
already known [6, Section 10.6]. More precisely:

COROLLARY 1. For any n ∈ �0 and π ∈ Π there exists π′ ∈ ΠM

such that Vπn = Vπ
′

n , and as a consequence V ∗n (x) := supπ′∈ΠM
Vπ
′

n (x)
and V∗,n(x) := infπ′∈ΠM

Vπ
′

n (x).

Moreover, it follows from Theorem 1 that one can do equiv-
alently optimization of the additive cost functionals J to solve
the original optimal reachability problem. Let us further define
J∗n(x , y) := supπ̂∈Π̂ J π̂n (x , y) and J∗,n(x , y) := infπ̂∈Π̂ J π̂n (x , y).

COROLLARY 2. For any n ∈ �̄0, x ∈ X , the following equalities
hold true: J∗n(x , 0) = J∗,n(x , 0) = 0 and

V ∗n (x) = J∗n(x , 1), V∗,n(x) = J∗,n(x , 1). (13)

Finally, we can exploit DP recursions for the additive cost
functionals J∗n and J∗,n to study DP recursion for the optimal
reachability value functions. Let us introduce the following op-
erators

I∗ f (x) := 1G(x) + 1Gc (x) sup
u∈U(x)

∫
X

f (y)T(dy|x , u),

I∗ f (x) := 1G(x) + 1Gc (x) inf
u∈U(x)

∫
X

f (y)T(dy|x , u),

which act on the space of bounded universally measurable func-
tions. These operators can be used to compute optimal value
functions recursively, as the following result states.

COROLLARY 3. For any n ∈ �0, the functions V ∗n , V∗,n are uni-
versally measurable. Moreover, V ∗0 = V∗,0 = 1G and for any n ∈ �0

V ∗n+1 = I∗V ∗n , V∗,n+1 = I∗V∗,n. (14)

3.3 Infinite time horizon
In the previous section we have successfully restated the orig-

inal reachability problem as a classical additive-cost problem,
which made it possible to derive several important results. In
particular, Corollary 3 allows one to compute finite-horizon op-
timal reachability functions recursively, which can be done us-
ing numerical methods based on approximate abstractions: we
present them later in Section 4. With focus on the infinite time
horizon, it is expected that the solution can be obtained as a
limit of solutions of finite-horizon optimization problems, which
is a fixpoint of an appropriate operator: either I∗ for the max-
imal value function, or I∗ for the minimal one. However, it is
known from the literature that this is not necessarily true [7]. In
particular, in our case the fixpoint characterization V ∗∞ = I∗V ∗∞
holds in general, whereas additional assumptions are needed to
show that V∗,∞ = I∗V∗,∞.

We start with the following result, which describes the prop-
erties of reachability probabilities with a fixed policy.

LEMMA 1. For any n ∈ �0, π ∈ Π and an initial distribution α,

Pπ
α
(◊≤nG)≤ Pπ

α
(◊≤n+1G)≤ Pπ

α
(◊<∞G). (15)

Moreover, it holds that

Pπ
α
(◊∞G) = lim

n
Pπ
α
(◊≤nG) = sup

n
Pπ
α
(◊≤nG). (16)
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The monotonicity result above is crucial for the proof of the
fixpoint characterization for the maximal reachability over an
infinite time horizon. When considering the limit of functions
V ∗n as n → ∞ the key step is to swap the order of limn→∞ and
the supremum over the control actions, which comes from I∗
– this can be done as the limit of an increasing sequence is a
supremum itself. This leads us to the following:

LEMMA 2. For any x ∈ X , (Vn(x))n∈�0
is a non-decreasing se-

quence of real numbers and there exists a point-wise limit

V 	(x) := lim
n

Vn(x) = sup
n

Vn(x), (17)

which is the least non-negative fixpoint of I, i.e. V 	 = IV 	 and if
there is another fixpoint f ∈ �(X ) such that f ≥ 0 then f ≥ V 	.

THEOREM 2. The maximal reachability value function V ∗∞ is the
least non-negative fixpoint of the operator I∗.

REMARK 1. To our knowledge, this is the first result on the fix-
point characterization of the maximal reachability value function
for cdt-MP. Although [10, Theorem (2.10)] provides a fixpoint
characterization for a (more general) reach-avoid problem, one of
the assumptions required there is that under any Markov policy,
for any initial condition the set of legal states is left by the path of
the cdt-MP with a probability 1 in some finite time. This clearly
leads to the fact that V ∗∞ ≡ 1. Thus, with focus on the reachabil-
ity problem [10, Theorem (2.10)] can be applied only for the case
when the solution is known to be constant.

Let us now consider the minimal reachability problem: in this
case the limn→∞ has to be swapped with the infimum that comes
from I∗, which cannot been done in general. We then tailor a
technique in [13, Section 4] to our case. In order to establish
the main result we need the following assumption:

ASSUMPTION 1. The kernel T is strongly continuous: T(A|·) is
a continuous function on � for any A∈�(X ) [13, Appendix C].

THEOREM 3. Under Assumption 1, the minimal reachability func-
tion V∗,∞ is the least non-negative fixpoint of I∗.

Let us discuss some properties of the optimal infinite-horizon
reachability value functions and of the fixpoint equations

f = I∗ f , (18)

f = I∗ f . (19)

First of all, note that V ∗(x) = V∗(x) = 1 for all x ∈ G, so in case
V ∗ ≡ 1 or V∗ ≡ 1 we say that the corresponding optimization
problem has a trivial solution. This case refers to the reachability
of the goal state G in some finite time with probability 1 starting
from any initial condition. However, by substitution we find
that the function f ≡ 1 solves both equations (18) and (19),
regardless of the shape of the transition kernel T. Due to this
reason, we are able to formulate the following result.

PROPOSITION 2. Equations (18) and (19) have unique solu-
tions if and only if the corresponding optimization problems have
trivial solutions.

Some examples when the solutions of the optimization prob-
lems are not trivial can be constructed using appropriate notions
of absorbing sets over the cdt-MP.

DEFINITION 7 (STRONGLY AND WEAKLY ABSORBING SETS). Given
the cdt-MP D = (X , U , {U(x)}x∈X ,T), the set A∈ �(X ) is called
strongly absorbing if T(A|x , u) = 1 for all u ∈ U(x) and x ∈ A.

The set B is called weakly absorbing if there exists a kernel μ
on U given B such that μ(U(x)|x) = 1 for all x ∈ B and such that∫

U(x)

T(B|x , u)μ(du|x) = 1, ∀x ∈ B.

Let us briefly comment on the definition above. First of all,
every strongly absorbing set A is a weakly absorbing set since
the required kernel μ as per Definition 7 in such case can be
chosen to be a deterministic one, obtained by the restriction of
the map k (defined in Section 2.1) to the set A, i.e.

μ(C |x) = 1C(k(x))

for any x ∈ A and C ∈ �(U). Furthermore, in the autonomous
case when the control set U is identified with a singleton, the no-
tion of weak and strong sets coincide with that of an absorbing
set [15]. Intuitively, a strongly absorbing set remains absorbing
under any action whereas for a weakly absorbing set there exists
a control which makes such set absorbing.

PROPOSITION 3. If A⊆ Gc is a strongly (weakly) absorbing set,
then V ∗(x) = 0 (V∗(x) = 0) for all x ∈ A.

The latter result in particular shows that the presence of ab-
sorbing subsets on the complement of the goal state violates the
uniqueness of the fixpoint equations, and leads to a non-trivial
solution of the problem. This fact is already known for the case
of autonomous systems [20, 21]. There, it has been shown that
under some structural assumptions on the model and on the goal
set, the presence of absorbing subsets is not only a sufficient con-
dition for the lack of uniqueness, but is also necessary. In par-
ticular, let us further mention that in the second part of [4, The-
orem 3], where the infinite-horizon (autonomous) reachability
value function is considered, the result holds only under the as-
sumption that the solution of the fixpoint equation is unique –
in which case as we have shown the solution is trivial and equal
to a constant function 1.

Finally, let us apply the derived results to the probabilistic
reach-avoid problem using Proposition 1. We keep G as the goal
set, and define S ∈ �(X ) to be the set of legal states. As above,
let W ∗n and W∗,n be the optimal reach-avoid value functions as in
(11) and define the following operators

R∗ f (x) := 1G(x)+ 1A(x) sup
u∈U(x)

∫
X

f (y)T(dy|x , u),

R∗ f (x) := 1G(x)+ 1A(x) inf
u∈U(x)

∫
X

f (y)T(dy|x , u),

where as above A= (S∪G)c is the set to be avoided. The next re-
sult follows immediately from those we have obtained for reach-
ability and from Proposition 1.

THEOREM 4. It holds that W∗,0 =W ∗0 = 1G and for any n ∈ �0

W ∗n+1 =R∗W ∗n , W∗,n =R∗W∗,n.

In particular, Markov policies are sufficient for optimization:

W ∗n (x) := sup
π∈ΠM

Pπx (SU
≤nG), W∗,n(x) := inf

π∈ΠM
Pπx (SU

≤nG).

Moreover, function W ∗∞ is the least non-negative fixpoint of the
operator R∗ and, under Assumption 1, function W∗,∞ is the least
non-negative fixpoint of the operator R∗.
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Theorem 4 generalizes several results in the literature. First,
it extends the work in [18] by considering all possible policies,
rather than focusing on Markov policies exclusively. Second,
it extends results obtained in [10] over the infinite-time hori-
zon by considering both optimization problems, rather than the
maximization one only. Furthermore, we are able to relax the
assumptions in [10, Theorem (2.10)] and show that the fixpoint
characterization for W ∗∞ holds in a more general case.

3.4 Automata model checking
In section 2.4 we have introduced the following problem:

given a cdt-MP D, a policy π ∈ Π, an initial distribution α and
a DFA � , find the probability Pπ

α
(ω |= � ). We are further in-

terested in maximizing and minimizing such a probability over
all possible policies π ∈ Π. For this purpose, we are going to
reduce this general problem over D to the reachability problem
studied above over another cdt-MP D⊗� , which we refer to as
a product of the cdt-MP D and the automaton� . This product
is defined as follows:

DEFINITION 8 (PRODUCT BETWEEN cdt-MP AND DFA). Given a
cdt-MP D= (X , U , {U(x)}x∈X ,T), a finite alphabet Σ, a labeling
function L : X → Σ, and a DFA � = (Q, q0,Σ, F, t), we define
the product between D and � to be another cdt-MP denoted as
D⊗� = (X̄ , U , {U(x)}x∈X̄ , T̄). Here X̄ = X ×Q and

T̄(A× {q′}|x , q, u) = 1t(q,L(x))(q
′) ·T(A|x , u).

We want to show that Pπx (ω |=� ) can be related to the reach-
ability probability over the cdt-MP D ⊗ � with a goal state
G := X × F , as it was shown to be the case when the state space
is finite [12, Proposition 1]. In order to reformulate the au-
tomaton verification as a reachability problem, we are going to
follow a procedure similar to the one in Section 3.2, where the
reachability problem has been reformulated by an additive cost.
We again construct a space of policies Π̄ for D ⊗ � , and for
each π̄ ∈ Π̄ and initial distribution ᾱ on X̄ , a probability space
(Ω̄, �̄ , P̄π̄

ᾱ
). As in Section 3.2 we need to relate policies in Π to

those in Π̄: again, we can use the fact that Π ⊂ Π̄ hence any
policy π ∈ Π over the original cdt-MP D is also a policy over
D⊗� . By ι : Π → Π̄ we can hence denote the corresponding
inclusion map. For the other direction, to any policy π̄ ∈ Π̄ we
can assign a policy θ (π̄) ∈ Π as follows

θi(π)(dui|x0, u0, . . . , xi) = π̂i(dui|x0, z0, u0, . . . , xi , zi),

where z0 = q0 is the initial state of � and zj+1 = t(zj,L(x j))
is defined recursively for j ∈ 0, i− 1. The following technical
lemma is necessary to state the main result.

LEMMA 3. For any n ∈ �̄0, x ∈ X and π ∈ Π it holds that

Pπx (ω |=n � ) = P̄ι(π)(x ,q0)
(◊≤n+1G),

where∞+ 1 :=∞, and for any π̄ ∈ Π̄ it holds that

P̄π̄(x ,q0)
(◊≤n+1G) = Pθ (π̄)x (ω |=n � ).

THEOREM 5. For any n ∈ �̄0 and x ∈ X it holds that

sup
π∈Π

Pπx (ω |=n � ) = V̄ ∗n+1(x),

inf
π∈ΠP

π
x (ω |=n � ) = V̄∗,n+1(x),

(20)

where∞+1 :=∞ and V̄ ∗n , V̄∗,n are the optimal reachability func-
tions that are defined over the cdt-MP D⊗� .

Notice that in the above theorem we need to consider only
Markov policies as was shown in the previous section. However,
such policies are Markov with respect to D⊗� and are not nec-
essarily Markov with respect to D. In terms of D this means that
the policy is dependent on the history through the state of the
automaton. The actual computation of the optimal reachability
value functions can be implemented by discretizing the set of
states as well as the set of controls, as elaborated in Section 4.

4. APPROXIMATE ABSTRACTIONS
Since in general there is no hope that the iterations in (14)

yield value functions in an explicit form, we introduce an ab-
straction procedure that leads to numerical methods for the com-
putation of such functions. Moreover, we provide an explicit up-
per bound on the error caused by the abstraction. We present
the results with focus on the maximal reachability problem, with
the understanding that a similar procedure applies to the mini-
mal reachability one too.

Let us consider some cdt-MP D= (X , U , {U(x)}x∈X ,T). Since
X and U are Borel spaces they are metrizable topological spaces.
Let ρX and ρU be some metrics on X and U respectively, which
are consistent with the given topologies of the underlying spaces.
We first introduce some technical considerations that are im-
portant for the abstraction over the control space. Let U =⋃M

j=1 Uj be a measurable partition of U , and let uj ∈ Uj for
1 ≤ j ≤ M be arbitrary representative points. Define Δ :=
max1≤ j≤M diamU (Uj) where the diameter of a subset of U for
any C ⊆ U is given by

diamU (C) = sup
u′ ,u′′∈C

ρU (u
′, u′′).

LEMMA 4. Let g , ĝ : U → � be two functions. Define two opti-
mization problems: g∗ := sup

u∈U
g(u) and ĝ∗ := max

1≤ j≤M
ĝ(uj). If g is

Lipschitz continuous, i.e. if there exists K > 0 such that

|g(u′)− g(u′′)| ≤ K ·ρU (u
′, u′′) (21)

for all u′, u′′ ∈ U, then it holds that |g∗ − ĝ∗| ≤ K ·Δ+ ‖g − ĝ‖U .

Let us further proceed with the abstraction procedure and
choose G ∈ �(X ) to be a target set. Clearly, the solution of any
reachability problem on G is trivial, so we only need to solve
these problems on Gc . For this purpose we define Gc =

⋃N
i=1 Gi

to be a measurable partition of the set Gc , and we choose repre-
sentative points xi ∈ Gi for 1 ≤ i ≤ N in an arbitrary way. We
further denote δi := diamX (Gi).

We abstract the original cdt-MP D as an MDP denoted by
D̃ = (X̃ , Ũ , {Ũ(x)}x∈X̃ , T̃). The finite state and control spaces
are X̃ := {i}Ni=1 ∪ {φ} and Ũ := { j}Mj=1, where φ /∈ X is a “sink”
state that corresponds to the target set G of the original cdt-MP.
To complete the definition of D̃ we have to specify the map Ũ
and the kernel T̃. We choose Ũ(i) = Ũ for any i ∈ X̃ and⎧
⎨
⎩
T̃(k|i, j) := T(Gk|xi , uj) for all 1≤ j ≤ M , 1 ≤ i, k ≤ N
T̃(φ|i, j) := T(G|xi , uj) for all 1≤ j ≤ M , 1 ≤ i ≤ N
T̃(φ|φ, j) = 1 for all 1≤ j ≤ M .

For D̃, let us define Ṽ ∗n to be the n-horizon maximal reachability
value function of the target state φ. Clearly, Ṽ ∗0 = 1{φ} and it
follows from Corollary 3 that

Ṽ ∗n+1(i) = 1{φ}(i)+ 1{φ}c (i) max
1≤ j≤M

∑
k∈X̃

Ṽ ∗n (k) T̃(k|i, j).
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Such value functions can be computed with numerically efficient
methods [14]. Clearly, we expect that such functions serve as
a good approximation for functions V ∗n defined for the original
cdt-MP D. However, so far they are defined over a different
state space, which makes it hard to compare them. Due to this
reason, we choose V̂ ∗n : X → � to be a piece-wise constant inter-
polation of Ṽ ∗n , defined in the following manner:

V̂ ∗n (x) = 1G(x) +
N∑

i=1

1Gi
(x)Ṽ ∗n (i).

Clearly, V̂ ∗n (x) = 1 for all x ∈ G. Moreover, for all other states x
the following result holds true.

LEMMA 5. For any 1≤ i ≤ N and any x ∈ Gi it holds that

V̂ ∗n+1(x) = max
1≤ j≤M

∫
X

V̂ ∗n (y)T(dy|xi , uj).

To ensure that the difference between V ∗n and V̂ ∗n can be made
as small as needed by tuning parameters of the partition Δ and
δi , we need the following assumption.

ASSUMPTION 2. The action space U(x) does not depend on x,
i.e. it holds that U(x) = U for all x ∈ X . In addition, T is an
integral kernel, i.e. there exists a σ-finite measure μ on X and a
jointly measurable function t : X × X × U → R such that

T(B|x , u) =

∫
B

t(y|x , u)μ(dy), (22)

for any B ∈�(X ), x ∈ X , u ∈ U. Moreover, there exist:

1. measurable functions λi : X → � for 1 ≤ i ≤ N, such that
for all x ′, x ′′ ∈ Gi and for all y ∈ X , u ∈ U:

|t(y|x ′, u)− t(y|x ′′, u)| ≤ λi(y),

where Λi :=
∫

X
λi(y)μ(dy)<∞;

2. measurable functions κi : X → � for 1 ≤ i ≤ N, such that
for all u′, u′′ ∈ U and for all y ∈ X , x ∈ Gi:

|t(y|x , u′)− t(y|x , u′′)| ≤ κi(y),

where Ki :=
∫

X
κi(y)μ(dy)<∞.

The following result provides upper-bounds on the difference
between the value functions of the original model and those
computed via the MDP abstraction.

THEOREM 6. Let V ∗n and V̂ ∗n be the functions defined above. In-
troduce r := supx∈Gc ,u∈U T(Gc |x , u) and let Assumption 2 hold
true. If r < 1, then for all n≥ 1 it holds that

‖V ∗n − Ṽ ∗n ‖ ≤
1− rn

1− r
· max

1≤i≤N



Λiδi + KiΔ
�

. (23)

If r = 1, then for all n ≥ 0 it holds that

‖V ∗n − Ṽ ∗n ‖ ≤ n · max
1≤i≤N



Λiδi + KiΔ
�

. (24)

Since the case of autonomous SHS can be regarded as a cdt-
SHS with a control space being a singleton, U = {u}, it is worth
commenting on the relation between Theorem 6 and approx-
imation techniques known from the literature on autonomous
SHS [3, 17]. First of all, in such a case Assumption 2 is a slight

generalization of assumptions on the uniform Lipschitz conti-
nuity of kernels in [3] and on the local Lipschitz continuity in
[17]. In particular, the application of Theorem 6 under Assump-
tion 2 to the autonomous case implies [17, Theorem 6] as a
special case, where the functions λi are assumed to be piece-
wise constant. In turn, [17, Theorem 6] is further known to be
a generalization of [3, Theorem 1].

Let us mention that the structure of the bounds allows ap-
plying the adaptive gridding procedure developed for the au-
tonomous SHS in [17] over the state space discretization, by
computing the local errors Λi and choosing the discretization
size δi accordingly. However, the error introduced by the par-
tition of the control space depends on the global discretization
parameter max1≤i≤N KiΔ, so the adaptive gridding of the con-
trol space may not improve results versus those obtained by the
uniform gridding of the control space.

5. CASE STUDY: ENERGY CONTROL
Inspired by [1], we consider a resource allocation problem

for an energy network comprised of two subnetworks i = 1, 2.
The energy provider for each subnetwork is given the choice of
generating energy at capacity either by a polluting device (say,
a coal plant), or alternatively via local renewables: accordingly,
the (normalized) decision variables are 0 ≤ ui

(·) ≤ 1, i = 1, 2,
denoting the production of polluting power (ui

p) and of renew-
able power (ui

r) within the ith subnetwork. There is a constraint
on the maximal power generation, both globally (over the total
generated polluting power) and locally (whatever is not gener-
ated via coal can be obtained from the renewables ui

r), so that

u1
p + u2

p ≤ 2T, ui
p + ui

r = T, i = 1, 2. (25)

Each of the two subnetworks sets forth a time-varying demand
Di(k), which is not exactly known due to the intrinsic variability
of power demand.

The state variables of the model are the time-varying energy
levels of each subnetwork, which we denote by Ei for i = 1, 2.
They are driven by the following dynamics:

Ei(k+ 1) = Ei(k)+ P(k)ui
p(k)+Ri(k)u

i
r(k)− Di(k), (26)

where P is the actual power generated by the coal plant (pollut-
ing device) and Ri is the generated power by local renewables.
Furthermore, P and Ri are independent random variables, iden-
tically distributed in time, and such that E[P] .= μP > E[Ri]

.=
μRi

, whereas Var[P] .= σ2
P < Var[Ri]

.= σ2
Ri

. The above relation
among parameters is suggested by assuming that the coal plant
is a stronger and more reliable (though less desirable) source of
power. Variables R1 and R2 can be correlated due to the spatial
adjacency of the two subnetworks and its effect on the produc-
tion based on renewables. This, along with the presence of P
and of the constraints in (25), couples the two dynamics. We se-
lect the demand variables Di to be independent and identically
distributed, and independent from P and Ri , i = 1, 2.

We consider two scenarios expressed via specifications, and
proceed optimizing over. Let us introduce two additional con-
straints on the energy levels for the subnetworks, namely:

E1 + E2 ≤ S, (27)

Ei ≥ Mi , i = 1, 2, (28)

where the threshold S denotes a (constant) limit due to storage,
while the second inequality refers to (constant) minimal energy
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requirements. We are looking at the following problem:

sup
π

Pπx
�
�≤N (27)∧ (28)

�
, (29)

which corresponds to the following safety specification: the en-
ergy levels have to be above the thresholds and the sum of them
must not exceed the storage capacity. Another problem which is
interesting to us is whether the energy levels can simultaneously
exceed some given value F without ever falling below the zero
level beforehand. This problem can be expressed as:

Ei ≥ Fi , i = 1, 2, (30)

Ei ≥ 0, i = 1, 2, (31)

and the related synthesis problem is

sup
π

Pπx
�

(31)U≤N (30)
�

, (32)

The specification in (29) denotes maximal probabilistic invari-
ance (equivalently, minimal reachability), whereas (32) is a max-
imal reach-avoid property, which can be reformulated as a max-
imal probabilistic reachability problem as discussed in Sec. 3.

In the implementation we have used the following model pa-
rameters: T = 1, P = 2 (constant polluting power production),
whereas Ri ∼ � (0.5, 2) and Di ∼ � (1, 2). None of the vari-
ables P, R and D depend on the step size k. We have selected
the parameters Mi for (29) to be smaller than Fi for (32): for
the first synthesis problem we have picked Mi = 5 and S = 30,
whereas for the second one we have picked Fi = 25. We have
chosen a discretization step δs = 1 for the state variables and
δc = 0.05 for the control variables. All the experiments have
been run on a 2.83GHz 4 Core(TM)2 Quad CPU with 3.7Gb
of memory. The total running time for the experiments has
amounted to 14.37 min.

Fig. 1(a) displays the maximal probabilistic invariance ob-
tained (at the initial time step) for the synthesis problem in (29).
It can be seen that the probability decreases close to the bound-
ary of the region defined by the conditions in (30) and (31).
This is as expected, since there is a higher probability close to
the boundary to falsify the invariance property. The optimal con-
trol action at the initial time step for the synthesis problem (29)
is plotted in Fig. 1(b). Note that this action suggests using some
polluting power generation (rather than relying on the more un-
certain renewable power) whenever the energy levels are too
low and close to the thresholds Mi . Conversely, whenever the
energy levels are high enough, the policy suggests relying on
renewables only.

Fig. 2(a) depicts the maximal probabilistic reach-avoid (at the
initial time step) for the synthesis problem in (32). As expected,
the obtained probability is higher for energy levels close to Fi .
The optimal control action for the synthesis problem (32) is
given in Fig. 2(b) (here plotted at the final step): since the goal
is essentially to maximize the energy levels, it can be seen that
the obtained policy selects the reliable coal plant for maximal
energy generation (except when already in the goal sets).

The computational results have been obtained by discretiz-
ing the state space and computing the discrete value functions,
and can be further improved by using an adaptive gridding pro-
cedure as in [17]. On the other hand, rather than computing
value functions, the obtained MDP abstractions for safety and
reach-avoid can be engaged in the verification of the properties
of interest using model-checking software [14].

6. CONCLUSIONS AND NEXT STEPS
The contributions of this work are twofold. On the theoretical

side, the article has zoomed in on issues related to reachability
and invariance optimization over both finite and infinite hori-
zons for non-autonomous stochastic hybrid systems, showing
the sufficiency of memoryless optimal policies and tackling the
problem of verification of specifications expressed as determin-
istic, finite-state automata. On the applicative side, a new com-
putational scheme with explicit error quantification has been in-
troduced and applied over a controller synthesis case study from
the area of power systems. Both the theoretical and the compu-
tational outcomes nicely tailor back to known special models
(autonomous, Markovian) from the literature.

The authors are interested in considering models with more
complicated control structures (both discrete and continuous),
and in looking at verification problems over ω-regular proper-
ties expressed as Büchi automata: the latter require non-trivial
measure-theoretical results dealing with infinite-horizon prob-
lems that go beyond the scope of this work.
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