
Permissive Controller Synthesis
for Probabilistic Systems

Klaus Dräger3, Vojtěch Forejt1, Marta Kwiatkowska1,
David Parker2, and Mateusz Ujma1

1 Department of Computer Science, University of Oxford, UK
2 School of Computer Science, University of Birmingham, UK

3 EECS, Queen Mary, University of London, UK

Abstract. We propose novel controller synthesis techniques for proba-
bilistic systems modelled using stochastic two-player games: one player
acts as a controller, the second represents its environment, and probabil-
ity is used to capture uncertainty arising due to, for example, unreliable
sensors or faulty system components. Our aim is to generate robust con-
trollers that are resilient to unexpected system changes at runtime, and
flexible enough to be adapted if additional constraints need to be im-
posed. We develop a permissive controller synthesis framework, which
generates multi-strategies for the controller, offering a choice of control
actions to take at each time step. We formalise the notion of permis-
siveness using penalties, which are incurred each time a possible con-
trol action is blocked by a multi-strategy. Permissive controller synthesis
aims to generate a multi-strategy that minimises these penalties, whilst
guaranteeing the satisfaction of a specified system property. We estab-
lish several key results about the optimality of multi-strategies and the
complexity of synthesising them. Then, we develop methods to perform
permissive controller synthesis using mixed integer linear programming
and illustrate their effectiveness on a selection of case studies.

1 Introduction

Probabilistic model checking is used to automatically verify systems with stochas-
tic behaviour. Systems are modelled as, for example, Markov chains, Markov
decision processes, or stochastic games, and analysed algorithmically to verify
quantitative properties specified in temporal logic. Applications include checking
the safe operation of fault-prone systems (“the brakes fail to deploy with prob-
ability at most 10−6”) and establishing guarantees on the performance of, for
example, randomised communication protocols (“the expected time to establish
connectivity between two devices never exceeds 1.5 seconds”).

A closely related problem is that of controller synthesis. This entails con-
structing a model of some entity that can be controlled (e.g., a robot, a vehicle or
a machine) and its environment, formally specifying the desired behaviour of the
system, and then generating, through an analysis of the model, a controller that
will guarantee the required behaviour. In many applications of controller syn-
thesis, a model of the system is inherently probabilistic. For example, a robot’s

sensors and actuators may be unreliable, resulting in uncertainty when detecting
and responding to its current state; or messages sent wirelessly to a vehicle may
fail to be delivered with some probability.

In such cases, the same techniques that underly probabilistic model checking
can be used for controller synthesis. For, example, we can model the system
as a Markov decision process (MDP), specify a property φ in a probabilistic
temporal logic such as PCTL and LTL, and then apply probabilistic model
checking. This yields an optimal strategy (policy) for the MDP, which instructs
the controller as to which action should be taken in each state of the model in
order to guarantee that φ will be satisfied. This approach has been successfully
applied in a variety of application domains, to synthesise, for example: control
strategies for robots [21], power management strategies for hardware [16], and
efficient PIN guessing attacks against hardware security modules [27].

Another important dimension of the controller synthesis problem is the pres-
ence of uncontrollable or adversarial aspects of the environment. We can take
account of this by phrasing the system model as a game between two players,
one representing the controller and the other the environment. Examples of this
approach include controller synthesis for surveillance cameras [23], autonomous
vehicles [11] or real-time systems [1]. In our setting, we use (turn-based) stochas-
tic two-player games, which can be seen as a generalisation of MDPs where de-
cisions are made by two distinct players. Probabilistic model checking of such a
game yields a strategy for the controller player which guarantees satisfaction of
a property φ, regardless of the actions of the environment player.

In this paper, we tackle the problem of synthesising robust and flexible con-
trollers, which are resilient to unexpected changes in the system at runtime. For
example, one or more of the actions that the controller can choose at runtime
might unexpectedly become unavailable, or additional constraints may be im-
posed on the system that make some actions preferable to others. One motivation
for our work is its applicability to model-driven runtime control of adaptive sys-
tems [5], which uses probabilistic model checking in an online fashion to adapt or
reconfigure a system at runtime in order to guarantee the satisfaction of certain
formally specified performance or reliability requirements.

We develop novel, permissive controller synthesis techniques for systems
modelled as stochastic two-player games. Rather than generating strategies,
which specify a single action to take at each time-step, we synthesise multi-
strategies, which specify multiple possible actions. As in classical controller syn-
thesis, generation of a multi-strategy is driven by a formally specified quantita-
tive property: we focus on probabilistic reachability and expected total reward
properties. The property must be guaranteed to hold, whichever of the specified
actions are taken and regardless of the behaviour of the environment. Simulta-
neously, we aim to synthesise multi-strategies that are as permissive as possible,
which we quantify by assigning penalties to actions. These are incurred when a
multi-strategy blocks (does not make available) a given action. Actions can be
assigned different penalty values to indicate the relative importance of allowing
them. Permissive controller synthesis amounts to finding a multi-strategy whose
total incurred penalty is minimal, or below some given threshold.

2

We formalise the permissive controller synthesis problem and then establish
several key theoretical results. In particular, we show that randomised multi-
strategies are strictly more powerful than deterministic ones, and we prove that
the permissive controller synthesis problem is NP-hard for either class. We also
establish upper bounds, showing that the problem is in NP and PSPACE for the
deterministic and randomised cases, respectively.

Next, we propose practical methods for synthesising multi-strategies using
mixed integer linear programming (MILP) [25]. We give an exact encoding for
deterministic multi-strategies and an approximation scheme (with adaptable pre-
cision) for the randomised case. For the latter, we prove several additional results
that allow us to reduce the search space of multi-strategies. The MILP solution
process works incrementally, yielding increasingly permissive multi-strategies,
and can thus be terminated early if required. This is well suited to scenarios
where time is limited, such as online analysis for runtime control, as discussed
above, or “anytime verification” [26]. Finally, we implement our techniques and
evaluate their effectiveness on a range of case studies.

An extended version of this paper, with proofs, is available as [13].

Related work. Permissive strategies in non-stochastic games were first studied
in [2] for parity objectives, but permissivity was defined solely by comparing
enabled actions. Bouyer et al. [3] showed that optimally permissive memoryless
strategies exist for reachability objectives and expected penalties, contrasting
with our (stochastic) setting, where they may not. The work in [3] also studies
penalties given as mean-payoff and discounted reward functions, and [4] extends
the results to the setting of parity games. None of [2,3,4] consider stochastic
games or even randomised strategies, and they provide purely theoretical results.

As in our work, Kumar and Garg [20] consider control of stochastic systems
by dynamically disabling events; however, rather than stochastic games, their
models are essentially Markov chains, which the possibility of selectively dis-
abling branches turns into MDPs. Finally, although tackling a rather different
problem (counterexample generation), [28] is related in that it also uses MILP
to solve probabilistic verification problems.

2 Preliminaries

We denote by Dist(X) the set of discrete probability distributions over a set X.
A Dirac distribution is one that assigns probability 1 to some s ∈ X. The support

of a distribution d ∈ Dist(X) is defined as supp(d)
def
= {x ∈ X | d(x) > 0}.

Stochastic games. In this paper, we use turn-based stochastic two-player games,
which we often refer to simply as stochastic games. A stochastic game takes the

form G = 〈S♦, S�, s, A, δ〉, where S
def
= S♦ ∪ S� is a finite set of states, each as-

sociated with player ♦ or �, s ∈ S is an initial state, A is a finite set of actions,
and δ : S×A→ Dist(S) is a (partial) probabilistic transition function. An MDP
is a stochastic game with S� = ∅. Each state s of a stochastic game G has a

set of enabled actions, given by A(s)
def
= {a ∈ A | δ(s, a) is defined}. The unique

player ◦ such that s ∈ S◦ picks the action a ∈ A(s) to be taken in state s. Then,

3

the next state is determined randomly according to the distribution δ(s, a), i.e.,
a transition to state s′ occurs with probability δ(s, a)(s′). A path is a (finite or
infinite) sequence ω = s0a0s1a1 . . . of such transitions through G. We denote by
IPaths (FPaths) the set of all infinite (finite) paths starting in s. We omit the
subscript s when s is the initial state s.

A strategy σ : FPath → Dist(A) for player ◦ ∈ {♦,�} of G is a resolution of
the choices of actions in each state from S◦, based on the execution so far. In
standard fashion [19], a pair of strategies σ and π for ♦ and � induces, for any
state s, a probability measure Prσ,πG,s over IPaths. A strategy σ is deterministic
if σ(ω) is a Dirac distribution for all ω, and randomised if not. In this work,
we focus purely on memoryless strategies, where σ(ω) depends only on the last
state of ω, treating the strategy as a function σ : S◦ → Dist(A). The case of
history-dependent strategies is an interesting topic for future research. We write
Σ◦G for the set of all (memoryless) player ◦ strategies in G.

Properties and rewards. In order to synthesise controllers, we need a formal
description of their required properties. In this paper, we use two common classes
of properties: probabilistic reachability and expected total reward, which we will
express in an extended version of the temporal logic PCTL [18].

For probabilistic reachability, we write properties of the form φ = P./p[F g],
where ./ ∈{6,>}, p ∈ [0, 1] and g ⊆ S is a set of target states, meaning that the
probability of reaching a state in g satisfies the bound ./ p. Formally, for a specific
pair of strategies σ ∈ Σ♦G , π ∈ Σ�G for G, the probability of reaching g under σ

and π is Prσ,πG,s(F g)
def
= Prσ,πG,s({s0a0s1a1 · · · ∈ IPaths | si ∈ g for some i}). We

say that φ is satisfied under σ and π, denoted G, σ, π |= φ, if Prσ,πG,s(F g) ./ p.

For rewards, we augment stochastic games with reward structures, which are
functions of the form r : S×A→ R>0 mapping state-action pairs to non-negative
reals. In practice, we often use these to represent “costs” (e.g. elapsed time or
energy consumption), despite the terminology “rewards”.

The total reward for reward structure r along an infinite path ω = s0a0s1a1 . . .
is r(ω)

def
=

∑∞
j=0 r(sj , aj). For strategies σ ∈ Σ♦G and π ∈ Σ�G , the expected total

reward is defined as Eσ,πG,s (r)
def
=

∫
ω∈IPaths

r(ω) dPrσ,πG,s . For technical reasons, we
will always assume that the maximum possible reward supσ,π E

σ,π
G,s (r) is finite

(which can be checked with an analysis of the game’s underlying graph). An ex-
pected reward property is written φ = Rr./b[C] (where C stands for cumulative),
meaning that the expected total reward for r satisfies ./ b. We say that φ is
satisfied under strategies σ and π, denoted G, σ, π |= φ, if Eσ,πG,s (r) ./ b.

In fact, probabilistic reachability can be easily reduced to expected total
rewards. Thus, in the techniques presented in this paper, we focus purely on
expected total reward.

Controller synthesis. To perform controller synthesis, we model the system
as a stochastic game G = 〈S♦, S�, s, A, δ〉, where player ♦ represents the con-
troller and player � represents the environment. A specification of the required
behaviour of the system is a property φ, either a probabilistic reachability prop-
erty P./p[F t] or an expected total reward property Rr./b[C].

4

Definition 1 (Sound strategy). A strategy σ ∈ Σ♦G for player ♦ in stochastic
game G is sound for a property φ if G, σ, π |= φ for any strategy π ∈ Σ�G .

The classical controller synthesis problem asks whether there is a sound strategy.
We can determine whether this is the case by computing the optimal strategy
for player ♦ in game G [12,15]. This problem is known to be in NP ∩ co-NP, but,
in practice, methods such as value or policy iteration can be used efficiently.

s0 s1 s2

s3

s4 s5

east

south

north

0.7

0.3

block0.75
0.25

pass

south

east
block

0.6
0.4

pass

done

Fig. 1. A stochastic game G for Ex. 1.

Example 1. Fig. 1 shows a stochas-
tic game G, with controller and en-
vironment player states drawn as di-
amonds and squares, respectively. It
models the control of a robot mov-
ing between 4 locations (s0, s2, s3, s5).
When moving east (s0→s2 or s3→s5),
it may be impeded by a second robot,
depending on the position of the latter. If it is blocked, there is a chance that
it does not successfully move to the next location. We use a reward structure
moves, which assigns 1 to the controller actions north, east , south, and define
property φ = Rmoves

65 [C], meaning that the expected number of moves to reach
s5 is at most 5. A sound strategy (found by minimising moves) chooses south in
s0 and east in s3, yielding an expected number of moves of 3.5.

3 Permissive Controller Synthesis

We now define a framework for permissive controller synthesis, which gener-
alises classical controller synthesis by producing multi-strategies that offer the
controller flexibility about which actions to take in each state.

3.1 Multi-Strategies

Multi-strategies generalise the notion of strategies, as defined in Section 2.

Definition 2 (Multi-strategy). A (memoryless) multi-strategy for a game
G=〈S♦, S�, s, A, δ〉 is a function θ:S♦→Dist(2A) with θ(s)(∅) = 0 for all s ∈ S♦.

As for strategies, a multi-strategy θ is deterministic if θ always returns a Dirac
distribution, and randomised otherwise. We write Θdet

G and Θrand
G for the sets of

all deterministic and randomised multi-strategies in G, respectively.
A deterministic multi-strategy θ chooses a set of allowed actions in each

state s ∈ S♦, i.e., those in the unique set B ⊆ A for which θ(s)(B) = 1. The
remaining actions A(s) \B are said to be blocked in s. In contrast to classical
controller synthesis, where a strategy σ can be seen as providing instructions
about precisely which action to take in each state, in permissive controller syn-
thesis a multi-strategy provides multiple actions, any of which can be taken. A
randomised multi-strategy generalises this by selecting a set of allowed actions
in state s randomly, according to distribution θ(s).

5

We say that a controller strategy σ complies with multi-strategy θ if it picks
actions that are allowed by θ. Formally (taking into account the possibility of
randomisation), σ complies with θ if, for any state s and non-empty subset
B ⊆ A(s), there is a distribution ds,B ∈ Dist(B) such that, for all a ∈ A(s),
σ(s)(a) =

∑
B3a θ(s)(B)ds,B(a).

Now, we can define the notion of a sound multi-strategy, i.e., one that is
guaranteed to satisfy a property φ when complied with.

Definition 3 (Sound multi-strategy). A multi-strategy θ for game G is sound
for a property φ if any strategy σ that complies with θ is sound for φ.

Example 2. We return to the stochastic game from Ex. 1 (see Fig. 1) and re-use
the property φ = Rmoves

65 [C]. The strategy that picks south in s0 and east in s3
results in an expected reward of 3.5 (i.e., 3.5 moves on average to reach s5). The
strategy that picks east in s0 and south in s2 yields expected reward 5. Thus a
(deterministic) multi-strategy θ that picks {south, east} in s0, {south} in s2 and
{east} in s3 is sound for φ since the expected reward is always at most 5.

3.2 Penalties and Permissivity

The motivation for multi-strategies is to offer flexibility in the actions to be
taken, while still satisfying a particular property φ. Generally, we want a multi-
strategy θ to be as permissive as possible, i.e. to impose as few restrictions
as possible on actions to be taken. We formalise the notion of permissivity by
assigning penalties to actions in the model, which we then use to quantify the
extent to which actions are blocked by θ. Penalties provide expressivity in the
way that we quantify permissivity: if it is more preferable that certain actions
are allowed than others, then these can be assigned higher penalty values.

A penalty scheme is a pair (ψ, t), comprising a penalty function ψ : S♦×A→
R>0 and a penalty type t ∈ {sta, dyn}. The function ψ represents the impact of
blocking each action in each controller state of the game. The type t dictates how
penalties for individual actions are combined to quantify the permissiveness of
a specific multi-strategy. For static penalties (t = sta), we simply sum penalties
across all states of the model. For dynamic penalties (t = dyn), we take into
account the likelihood that blocked actions would actually have been available,
by using the expected sum of penalty values.

More precisely, for a penalty scheme (ψ, t) and a multi-strategy θ, we define
the resulting penalty for θ, denoted pent(ψ, θ) as follows. First, we define the
local penalty for θ at state s as pen loc(ψ, θ, s) =

∑
B⊆A(s)

∑
a/∈Bθ(s,B)ψ(s, a).

If θ is deterministic, pen loc(ψ, θ, s) is simply the sum of the penalties of actions
that are blocked by θ in s. If θ is randomised, pen loc(ψ, θ, s) gives the expected
penalty value in s, i.e. the sum of penalties weighted by the probability with
which θ blocks them in s.

Now, for the static case, we sum the local penalties over all states, i.e. we put
pensta(ψ, θ) =

∑
s∈S♦

pen loc(ψ, θ, s). For the dynamic case, we use the (worst-

case) expected sum of local penalties. We define an auxiliary reward structure

6

ψ′ given by the local penalties: ψ′(s, a) = pen loc(ψ, θ, s) for all a ∈ A(s). Then:

pendyn(ψ, θ) = sup{Eσ,πG,s (ψ′) |σ ∈ Σ♦G , π ∈ Σ
�
G and σ complies with θ}.

3.3 Permissive Controller Synthesis

We can now formally define the central problem studied in this paper.

Definition 4 (Permissive controller synthesis). Consider a game G, a class
of multi-strategies ? ∈ {det , rand}, a property φ, a penalty scheme (ψ, t) and a
threshold c ∈ Q>0. The permissive controller synthesis problem asks: does there
exist a multi-strategy θ ∈ Θ?G that is sound for φ and satisfies pent(ψ, θ) 6 c?

Alternatively, in a more quantitative fashion, we can aim to synthesise (if it
exists) an optimally permissive sound multi-strategy.

Definition 5 (Optimally permissive). Let G, ?, φ and (ψ, t) be as in Defn. 4.

A sound multi-strategy θ̂ ∈ Θ?G is optimally permissive if its penalty pent(ψ, θ̂)
equals inf{pent(ψ, θ) | θ ∈ Θ?G and θ is sound for φ}.

Example 3. We return to Ex. 2 and consider a static penalty scheme (ψ, sta)
assigning 1 to the actions north, east , south (in any state). The deterministic
multi-strategy θ from Ex. 2 is optimally permissive for φ = Rmoves

65 [C], with
penalty 1 (just north in s3 is blocked). If we instead use φ′ = Rmoves

616 [C], the multi-
strategy θ′ that extends θ by also allowing north is now sound and optimally
permissive, with penalty 0. Alternatively, the randomised multi-strategy θ′′ that
picks 0.7:{north}+0.3:{north, east} in s3 is sound for φ with penalty just 0.7.

Next, we establish several fundamental results about the permissive controller
synthesis problem. Proofs can be found in [13].

Optimality. Recall that two key parameters of the problem are the type of
multi-strategy sought (deterministic or randomised) and the type of penalty
scheme used (static or dynamic). We first note that randomised multi-strategies
are strictly more powerful than deterministic ones, i.e. they can be more permis-
sive (yield a lower penalty) for the same property φ.

Theorem 1. The answer to a permissive controller synthesis problem (for ei-
ther a static or dynamic penalty scheme) can be “no” for deterministic multi-
strategies, but “yes” for randomised ones.

This is why we explicitly distinguish between classes of multi-strategies when
defining permissive controller synthesis. This situation contrasts with classi-
cal controller synthesis, where deterministic strategies are optimal for the same
classes of properties φ. Intuitively, randomisation is more powerful in this case
because of the trade-off between rewards and penalties: similar results exist in,
for example, multi-objective controller synthesis on MDPs [14].

Second, we observe that, for the case of static penalties, the optimal penalty
value for a given property (the infimum of achievable values) may not actually
be achievable by any randomised multi-strategy.

7

Theorem 2. For permissive controller synthesis using a static penalty scheme,
an optimally permissive randomised multi-strategy does not always exist.

If, on the other hand, we restrict our attention to deterministic strategies, then
an optimally permissive multi-strategy does always exist (since the set of deter-
ministic, memoryless multi-strategies is finite). For randomised multi-strategies
with dynamic penalties, the question remains open.

Complexity. Next, we present complexity results for the different variants of
the permissive controller synthesis problem. We begin with lower bounds.

Theorem 3. The permissive controller synthesis problem is NP-hard, for either
static or dynamic penalties, and deterministic or randomised multi-strategies.

We prove NP-hardness by reduction from the Knapsack problem, where weights
of items are represented by penalties, and their values are expressed in terms
of rewards to be achieved. The most delicate part is the proof for randomised
strategies, where we need to ensure that the multi-strategy cannot benefit from
picking certain actions (corresponding to items being put to the Knapsack) with
probability other than 0 or 1. For upper bounds, we have the following.

Theorem 4. The permissive controller synthesis problem for deterministic (resp.
randomised) strategies is in NP (resp. PSPACE) for dynamic/ static penalties.

For deterministic multi-strategies it is straightforward to show NP membership
in both the dynamic and static penalty case, since we can guess a multi-strategy
satisfying the required conditions and check its correctness in polynomial time.
For randomised multi-strategies, with some technical effort we can encode exis-
tence of the required multi-strategy as a formula of the existential fragment of
the theory of real arithmetic, solvable with polynomial space [7]. See [13].

A natural question is whether the PSPACE upper bound for randomised
multi-strategies can be improved. We show that this is likely to be difficult, by
giving a reduction from the square-root-sum problem. We use a variant of the
problem that asks, for positive rationals x1,. . . ,xn and y, whether

∑n
i=1

√
xi 6 y.

This problem is known to be in PSPACE, but establishing a better complexity
bound is a long-standing open problem in computational geometry [17].

Theorem 5. There is a reduction from the square-root-sum problem to the per-
missive controller synthesis problem with randomised multi-strategies, for both
static and dynamic penalties.

4 MILP-Based Synthesis of Multi-Strategies

We now consider practical methods for synthesising multi-strategies that are
sound for a property φ and optimally permissive for some penalty scheme. Our
methods use mixed integer linear programming (MILP), which optimises an
objective function subject to linear constraints that mix both real and integer
variables. A variety of efficient, off-the-shelf MILP solvers exists.

8

An important feature of the MILP solvers we use is that they work incre-
mentally, producing a sequence of increasingly good solutions. Here, that means
generating a series of sound multi-strategies that are increasingly permissive. In
practice, when resources are constrained, it may be acceptable to stop early and
accept a multi-strategy that is sound but not necessarily optimally permissive.

4.1 Deterministic Multi-Strategies

We first consider synthesis of deterministic multi-strategies. Here, and in the
rest of this section, we assume that the property φ is of the form Rr>b[C]. Upper
bounds on expected rewards (φ = Rr6b[C]) can be handled by negating rewards
and converting to a lower bound. For the purposes of encoding into MILP, we
rescale r and b such that supσ,π E

σ,π
G,s (r) < 1 for all s, and rescale every (non-zero)

penalty such that ψ(s, a) > 1 for all s and a ∈ A(s).

Static penalties. Fig. 2 shows an encoding into MILP of the problem of finding
an optimally permissive deterministic multi-strategy for property φ = Rr>b[C]
and a static penalty scheme (ψ, sta). The encoding uses 5 types of variables:
ys,a ∈ {0, 1}, xs ∈ R>0, αs ∈ {0, 1}, βs,a,t ∈ {0, 1} and γt ∈ [0, 1], where s, t ∈ S
and a ∈ A. So the worst-case size of the MILP problem is O(|A|·|S|2·κ), where
κ stands for the longest encoding of a number used.

Variables ys,a encode a multi-strategy θ: ys,a=1 iff θ allows action a in s
(constraint (2) enforces at least one action per state). Variables xs represent
the worst-case expected total reward (for r) from state s, under any controller
strategy complying with θ and under any environment strategy. This is captured
by constraints (3)–(4) (which amounts to minimising the reward in an MDP).
Constraint (1) imposes the required bound of b on the reward from s.

The objective function minimises the static penalty (the sum of all local
penalties) minus the expected reward in the initial state. The latter acts as a
tie-breaker between solutions with equal penalties (but, thanks to rescaling, is
always dominated by the penalties and therefore does not affect optimality).

As an additional technicality, we need to ensure that the values of xs are
the least solution of the defining inequalities, to deal with the possibility of zero
reward loops [24]. To achieve this, we use an approach similar to the one taken
in [28]. It is sufficient to ensure that xs = 0 whenever the minimum expected
reward from s achievable under θ is 0, which is the case if and only if, starting
from s, it is possible to avoid ever taking an action with positive reward.

In our encoding, αs = 1 if xs is positive (constraint (5)). The binary variables
βs,a,t = 1 represent, for each such s and each action a allowed in s, a choice of
successor t ∈ supp(δ(s, a)) (constraint (6)). The variables γs then represent a
ranking function: if r(s, a) = 0, then γs > γt(s,a) (constraint (8)). If a positive
reward could be avoided starting from s, there would in particular be an infinite
sequence s0, a1, s1, . . . with s0 = s and, for all i, si+1 = t(si, ai) and r(si, ai) = 0,
and therefore γsi > γsi+1

. Since S is finite, this sequence would have to enter a
loop, leading to a contradiction.

Dynamic penalties. Next, we show how to compute an optimally permissive
sound multi-strategy for a dynamic penalty scheme (ψ, dyn). This case is more

9

Minimise: − xs +
∑

s∈S♦

∑
a∈A(s)

(1− ys,a)·ψ(s, a) subject to:

xs > b (1)

1 6
∑

a∈A(s)
ys,a for all s ∈ S♦ (2)

xs 6
∑

t∈S
δ(s, a)(t)·xt + r(s, a) + (1− ys,a) for all s ∈ S♦, a ∈ A(s) (3)

xs 6
∑

t∈S
δ(s, a)(t)·xt for all s ∈ S�, a ∈ A(s) (4)

xs 6 αs for all s ∈ S (5)

ys,a = (1− αs) +
∑

t∈supp(δ(s,a))
βs,a,t for all s ∈ S, a ∈ A(s) (6)

ys,a = 1 for all s ∈ S�, a ∈ A(s) (7)

γt < γs + (1− βs,a,t) + r(s, a) for all (s, a, t) ∈ supp(δ) (8)

Fig. 2. MILP encoding for deterministic multi-strategies with static penalties.

Minimise: zs subject to (1), . . . , (7) and:

`s =
∑

a∈A(s)
ψ(s, a)·(1− ys,a) for all s ∈ S♦ (9)

zs >
∑

t∈S
δ(s, a)(t)·zt + `s − c·(1− ys,a) for all s ∈ S♦, a ∈ A(s) (10)

zs >
∑

t∈S
δ(s, a)(t)·zt for all s ∈ S�, a ∈ A(s) (11)

Fig. 3. MILP encoding for deterministic multi-strategies with dynamic penalties.

subtle since the optimal penalty can be infinite. Hence, our solution proceeds
in two steps as follows. Initially, we determine if there is some sound multi-
strategy. For this, we just need to check for the existence of a sound strategy,
using standard algorithms for solution of stochastic games [12,15].

If there is no sound multi-strategy, we are done. If there is, we use the MILP
problem in Fig. 3 to determine the penalty for an optimally permissive sound
multi-strategy. This MILP encoding extends the one in Fig. 2 for static penal-
ties, adding variables `s and zs, representing the local and the expected penalty
in state s, and three extra sets of constraints. Equations (9) and (10) define
the expected penalty in controller states, which is the sum of penalties for all
disabled actions and those in the successor states, multiplied by their transition
probability. The behaviour of environment states is captured by Equation (11),
where we only maximise the penalty, without incurring any penalty locally.

The constant c in (10) is chosen to be no lower than any finite penalty
achievable by a deterministic multi-strategy, a possible value being

∑∞
i=0(1 −

p|S|)i·p|S|·i·|S|·penmax, where p is the smallest non-zero probability assigned by δ,
and penmax is the maximal local penalty over all states. If the MILP problem has
a solution, this is the optimal dynamic penalty over all sound multi-strategies.
If not, no deterministic sound multi-strategy has finite penalty and the optimal
penalty is ∞ (recall that we established there is some sound multi-strategy). In
practice, we might choose a lower value of c than the one above, resulting in a
multi-strategy that is sound, but possibly not optimally permissive.

10

s ..
.

a1

ak
s

s1

sm

s′1

s′n

p1

pm

b1

bn

b1

bn

..
.

a1

ak

..
.

a1

ak

Fig. 4. Transformed game for approximating randomised multi-strategies (Section 4.2).

4.2 Approximating Randomised Multi-Strategies

As shown in Section 3, randomised multi-strategies can outperform deterministic
ones. The MILP encodings in Fig.s 2 and 3, though, cannot be adapted to the
randomised case, since this would need non-linear constraints.

Instead, in this section, we propose an approximation which finds the optimal
randomised multi-strategy θ in which each probability θ(s,B) is a multiple of
1
M for a given granularity M . Any such multi-strategy can then be simulated by
a deterministic one on a transformed game, allowing synthesis to be carried out
using the MILP-based methods described in the previous section.

The transformed game is illustrated in Fig. 4. For each controller state s,
we add two layers of states: gadgets s′j (for 1 6 j 6 n) representing the subsets
B ⊆ A(s) with θ(s,B) > 0, and selectors si (for 1 6 i 6 m), which distribute
probability among the gadgets. The si are reached from s via a transition using
fixed probabilities p1, . . . , pm which need to be chosen appropriately (see below).
For efficiency, we want to minimise the number of gadgets n and selectors m for
each state s. We now present several results used to achieve this.

First, note that, if |A(s)| = k, a randomised multi-strategy chooses probabil-
ities for all n = 2k−1 non-empty subsets of A(s). Below, we show that it suffices
to consider randomised multi-strategies whose support in each state has just two
subsets, allowing us to reduce the number of gadgets from n = 2k−1 to n = 2,
resulting in a smaller MILP problem to solve for multi-strategy synthesis.

Theorem 6. 1. For a (static or dynamic) penalty scheme (ψ, t) and any sound
multi-strategy θ we can construct another sound multi-strategy θ′ such that
pent(ψ, θ) > pent(ψ, θ

′) and |supp(θ′(s))| 6 2 for any s ∈ S♦.
2. Furthermore, for static penalties, we can construct θ′ such that, for each

state s ∈ S♦, if supp(θ′(s))={B1, B2}, then either B1 ⊆ B2 or B1 ⊆ B2.

Part 2 of Theorem 6 states that, for static penalties, we can further reduce
the possible multi-strategies that we need to consider. This, however, does not
extend to dynamic penalties (see [13]).

Lastly, we define the probabilities p1, . . . , pm on the transitions to selectors
in Fig. 4. We let m = b1 + log2Mc and pi = li

M , where l1 . . . , lm ∈ N are

defined recursively as follows: l1 = dM2 e and li = dM−(l1+···+li−1)
2 e for 2 6 i 6 m.

Assuming n = 2, as discussed above, this allows us to encode any probability
distribution (l

M , M−lM) between two subsets B1 and B2.
The following result states that, by varying the granularity M , we can get

arbitrarily close to the optimal penalty for a randomised multi-strategy and, for
the case of static penalties, defines a suitable choice of M .

11

Name
[param.s]

Param.
values

States
Ctrl.
states

Property Penalty
Time
(s)

cloud
[vm]

5 8,841 2,177 P>0.9999[F deployed] 0.001 9.08
6 34,953 8,705 P>0.999[F deployed] 0.01 72.44

android
[r, s]

1, 48 2,305 997
Rtime
610000[C]

0.0009 0.58
2, 48 9,100 3,718 0.0011 10.64
3, 48 23,137 9,025 0.0013 17.34

mdsm
[N]

3 62,245 9,173 P60.1[F deviated] 52 50.97
3 62,245 9,173 P60.01[F deviated] 186 15.84

investor
[vinit, vmax]

5,10 10,868 3,344 R
profit
>4.98[C] 1 3.32

10, 15 21,593 6,644 R
profit
>8.99[C] 1 18.99

team-form
[N]

3 12,476 2,023
P>0.9999[F done1]

0.8980 0.12
4 96,666 13,793 0.704 2.26

cdmsn [N] 3 1240 604 P>0.9999[F prefer1] 2 0.46

Table 1. Experimental results for synthesising optimal deterministic multi-strategies.

Theorem 7. Let θ be a sound multi-strategy. For any ε > 0, there is an M and
a sound multi-strategy θ′ of granularity M satisfying pent(ψ, θ

′)−pent(ψ, θ) 6 ε.
Moreover, for static penalties it suffices to take M = d

∑
s∈S,a∈A(s)

ψ(s,a)
ε e.

5 Experimental Results

We have implemented our techniques within PRISM-games [9], an extension of
the PRISM model checker for performing model checking and strategy synthe-
sis on stochastic games. PRISM-games can thus already be used for (classical)
controller synthesis problems on stochastic games. To this, we add the ability
to synthesise multi-strategies using the MILP-based method described in Sec-
tion 4. Our implementation currently uses CPLEX to solve MILP problems. It
also supports SCIP and lp solve, but in our experiments (run on a PC with a
1.7GHz i7 Core processor and 4GB RAM) these were slower in all cases.

We investigated the applicability and performance of our approach on a va-
riety of case studies, some of which are existing benchmark examples and some
of which were developed for this work. These are described in detail below and
the files used can be found online [29].

Deterministic multi-strategy synthesis. We first discuss the generation of
optimal deterministic multi-strategies, the results of which are summarised in
Table 1. In each row, we first give details of the model: the case study, any
parameters used, the number of states (|S|) and of controller states (|S♦|). Then,
we show the property φ used, the penalty value of the optimal multi-strategy
and the time to generate it. Below, we give further details for each case study,
illustrating the variety of ways that permissive controller synthesis can be used.

cloud: We adapt a PRISM model from [6] to synthesise deployments of services
across virtual machines (VMs) in a cloud infrastructure. Our property φ specifies
that, with high probability, services are deployed to a preferred subset of VMs,
and we then assign unit (dynamic) penalties to all actions corresponding to

12

deployment on this subset. The resulting multi-strategy has very low expected
penalty (see Table 1) indicating that the goal φ can be achieved whilst the
controller experiences reduced flexibility only on executions with low probability.

android: We apply permissive controller synthesis to a model created for run-
time control of an Android application that provides real-time stock monitoring
(see [29] for details). We extend the application to use multiple data sources and
synthesise a multi-strategy which specifies an efficient runtime selection of data
sources (φ bounds the total expected response time). We use static penalties,
assigning higher values to actions that select the two most efficient data sources
at each time point and synthesise a multi-strategy that always provides a choice
of at least two sources (in case one becomes unavailable), while preserving φ.

mdsm: Microgrid demand-side management (MDSM) is a randomised scheme for
managing local energy usage. A stochastic game analysis [8] previously showed
it is beneficial for users to selfishly deviate from the protocol, by ignoring a
random back-off mechanism designed to reduce load at busy times. We synthesise
a multi-strategy for a (potentially selfish) user, with the goal (φ) of bounding
the probability of deviation (at either 0.1 or 0.01). The resulting multi-strategy
could be used to modify the protocol, restricting the behaviour of this user to
reduce selfish behaviour. To make the multi-strategy as permissive as possible,
restrictions are only introduced where necessary to ensure φ. We also guide where
restrictions are made by assigning (static) penalties at certain times of the day.

investor: This example [22] synthesises strategies for a futures market investor,
who chooses when to reserve shares, operating in a (malicious) market which can
periodically ban him from investing. We generate a multi-strategy that achieves
90% of the maximum expected profit (obtainable by a single strategy) and assign
(static) unit penalties to all actions, showing that, after an immediate share
purchase, the investor can choose his actions freely and still meet the 90% target.

team-form: This example [10] synthesises strategies for forming teams of agents
in order to complete a set of collaborative tasks. Our goal (φ) is to guarantee that
a particular task is completed with high probability (0.9999). We use (dynamic)
unit penalties on all actions of the first agent and synthesise a multi-strategy
representing several possibilities for this agent while still achieving the goal.

cdmsn: Lastly, we apply permissive controller synthesis to a model of a protocol
for collective decision making in sensor networks (CDMSN) [8]. We synthesise
strategies for nodes in the network such that consensus is achieved with high
probability (0.9999). We use (static) penalties inversely proportional to the en-
ergy associated with each action a node can perform to ensure that the multi-
strategy favours more efficient solutions.

Analysis. Unsurprisingly, permissive controller synthesis is slightly more costly
to execute than (classical) controller synthesis. But we successfully synthesised
deterministic multi-strategies for a wide range of models and properties, with
model sizes ranging up to approximately 100,000 states. The performance and
scalability of our method is affected (as usual) by the state space size. But,
in particular, it is affected by the number of actions in controller states, since

13

Name†
Par-
am.s

States
Ctrl.
states

Property
Pen.
(det.)

Pen. (randomised)
M=100 M=200 M=300

android
1,1 49 10 P>0.9999[F done] 1.01 0.91 0.905 0.903
1,10 481 112 P>0.999[F done] 19.13 18.14∗ 17.73∗ 17.58∗

cloud 5 8,841 2,177 P>0.9999[F deployed] 1 0.91 0.905 0.906∗

investor 5,10 10,868 3,344 R
profit
>4.98[C] 1 1∗ 1∗ 0.996∗

team-form 3 12,476 2,023 P>0.9999[F done1] 264 263.96∗ 263.95∗ 263.94∗

† See Table 1 for parameter names.
∗ Sound but possibly non-optimal multi-strategy obtained after 5 minute MILP time-out.

Table 2. Experimental results for approximating optimal randomised multi-strategies.

these result in integer MILP variables, which are the most expensive part of the
solution. Performance is also sensitive to the penalty scheme used: for example,
states with all penalties equal to zero can be dealt with more efficiently.

Randomised multi-strategy synthesis. Finally, Table 2 presents results for
approximating optimal randomised multi-strategies on several models from Ta-
ble 1. We show the (static) penalty values for the generated multi-strategies for
3 different levels of precision (i.e. granularities M ; see Section 4.2) and compare
them to those of the deterministic multi-strategies for the same models.

The MILP encodings for randomised multi-strategies are larger than deter-
ministic ones and thus slower to solve, so we impose a time-out of 5 minutes. We
are able to generate a sound multi-strategy for all the examples; in some cases
it is optimally permissive, in others it is not (denoted by a ∗ in Table 2). As
would be expected, we generally observe smaller penalties with increasing values
of M . In the instance where this is not true (cloud, M=300), we attribute this to
the size of the MILP problem, which grows with M . For all examples, we built
randomised multi-strategies with smaller penalties than the deterministic ones.

6 Conclusions

We have presented a framework for permissive controller synthesis on stochastic
two-player games, based on generation of multi-strategies that guarantee a spec-
ified objective and are optimally permissive with respect to a penalty function.
We proved several key properties, developed MILP-based synthesis methods and
evaluated them on a set of case studies. Topics for future work include synthesis
for more expressive temporal logics and using history-dependent multi-strategies.

Acknowledgements. The authors are part supported by ERC Advanced Grant
VERIWARE and EPSRC projects EP/K038575/1 and EP/F001096/1.

References

1. G. Behrmann, A. Cougnard, A. David, E. Fleury, K. Larsen, and D. Lime.
UPPAAL-Tiga: Time for playing games! In Proc. CAV’07, volume 4590, 2007.

2. J. Bernet, D. Janin, and I. Walukiewicz. Permissive strategies: from parity games
to safety games. ITA, 36(3):261–275, 2002.

14

3. P. Bouyer, M. Duflot, N. Markey, and G. Renault. Measuring permissivity in finite
games. In Proc. CONCUR’09, pages 196–210, 2009.

4. P. Bouyer, N. Markey, J. Olschewski, and M. Ummels. Measuring permissiveness
in parity games: Mean-payoff parity games revisited. In Proc. ATVA’11, 2011.

5. R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola. Self-adaptive soft-
ware needs quantitative verification at runtime. CACM, 55(9):69–77, 2012.

6. R. Calinescu, K. Johnson, and S. Kikuchi. Compositional reverification of proba-
bilistic safety properties for large-scale complex IT systems. In LSCITS, 2012.

7. J. Canny. Some algebraic and geometric computations in PSPACE. In Proc,
STOC’88, pages 460–467, New York, NY, USA, 1988. ACM.

8. T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. Automatic
verification of competitive stochastic systems. In Proc. TACAS’12, 2012.

9. T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. PRISM-games:
A model checker for stochastic multi-player games. In Proc. TACAS’13, 2013.

10. T. Chen, M. Kwiatkowska, D. Parker, and A. Simaitis. Verifying team formation
protocols with probabilistic model checking. In Proc. CLIMA’11, 2011.

11. T. Chen, M. Kwiatkowska, A. Simaitis, C. Wiltsche. Synthesis for multi-objective
stochastic games: An application to autonomous urban driving. In QEST’13, 2013.

12. A. Condon. On algorithms for simple stochastic games. Advances in computational
complexity theory, DIMACS Series, 13:51–73, 1993.

13. K. Draeger, V. Forejt, M. Kwiatkowska, D. Parker, and M. Ujma. Permissive
controller synthesis for probabilistic systems. Technical Report CS-RR-14-01, De-
partment of Computer Science, University of Oxford, 2014.

14. K. Etessami, M. Kwiatkowska, M. Vardi, and M. Yannakakis. Multi-objective
model checking of Markov decision processes. LMCS, 4(4):1–21, 2008.

15. J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.
16. V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Quantitative

multi-objective verification for probabilistic systems. In Proc. TACAS’11, 2011.
17. M. R. Garey, R. L. Graham, and D. S. Johnson. Some np-complete geometric

problems. In STOC ’76, pages 10–22, New York, NY, USA, 1976. ACM.
18. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal

Aspects of Computing, 6(5):512–535, 1994.
19. J. Kemeny, J. Snell, and A. Knapp. Denumerable Markov Chains. Springer, 1976.
20. R. Kumar and V. Garg. Control of stochastic discrete event systems modeled by

probabilistic languages. IEEE Trans. Automatic Control, 46(4):593–606, 2001.
21. M. Lahijanian, J. Wasniewski, S. Andersson, and C. Belta. Motion planning and

control from temporal logic specifications with probabilistic satisfaction guaran-
tees. In Proc. ICRA’10, pages 3227–3232, 2010.

22. A. McIver and C. Morgan. Results on the quantitative mu-calculus qMu. ACM
Transactions on Computational Logic, 8(1), 2007.

23. N. Ozay, U. Topcu, R. Murray, and T. Wongpiromsarn. Distributed synthesis of
control protocols for smart camera networks. In Proc. ICCPS’11, 2011.

24. M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley and Sons, 1994.

25. A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, 1998.
26. N. Shankar. A tool bus for anytime verification. In Usable Verification, 2010.
27. G. Steel. Formal analysis of PIN block attacks. TCS, 367(1-2):257–270, 2006.
28. R. Wimmer, N. Jansen, E. Ábrahám, B. Becker, and J.-P. Katoen. Minimal critical

subsystems for discrete-time Markov models. In Proc. TACAS’12. 2012. Extended
version available as technical report SFB/TR 14 AVACS 88.

29. http://www.prismmodelchecker.org/files/tacas14pcs/.

15

http://www.prismmodelchecker.org/files/tacas14pcs/

	Permissive Controller Synthesis for Probabilistic Systems
	Introduction
	Preliminaries
	Permissive Controller Synthesis
	Multi-Strategies
	Penalties and Permissivity
	Permissive Controller Synthesis

	MILP-Based Synthesis of Multi-Strategies
	Deterministic Multi-Strategies
	Approximating Randomised Multi-Strategies

	Experimental Results
	Conclusions

