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Abstract— Design and control of computer systems that oper-
ate in uncertain, competitive or adversarial, environments can
be facilitated by formal modelling and analysis. In this paper,
we focus on analysis of complex computer systems modelled
as turn-based 21/2-player games, or stochastic games for short,
that are able to express both stochastic and non-stochastic
uncertainty. We offer a systematic overview of the body of
knowledge and algorithmic techniques for verification and
strategy synthesis for stochastic games with respect to a broad
class of quantitative properties expressible in temporal logic.
These include probabilistic linear-time properties, expected
total, discounted and average reward properties, and their
branching-time extensions and multi-objective combinations.
To demonstrate applicability of the framework as well as
its practical implementation in a tool called PRISM-games,
we describe several case studies that rely on analysis of
stochastic games, from areas such as robotics, and networked
and distributed systems.

I. INTRODUCTION

Since the dawn of the information age, correctness and
safety of computer systems have been central to their design
and analysis. Computer systems typically operate in uncer-
tain environments. The uncertainty can be stochastic due
to, e.g., unreliable communication media, faulty components
or simply due to the use of randomisation. Moreover, if
components that cannot be controlled are present in the
environment, their adversarial or competitive behaviour re-
sults in additional, non-stochastic uncertainty. Examples of
such systems appear in many domains, from robotics and
autonomous transport, to security, networked and distributed
systems, and power management.

It is natural to view such complex systems as games
between the controllable computer system and its (uncontrol-
lable) environment. In this work, we present a comprehensive
overview of techniques used in verification and controller
(also called a strategy) synthesis for systems modelled as
21/2-player games, or stochastic games for short. In every step
of a stochastic game, the two players, Player 1 and Player 2,
choose their moves and, based on their choices, the next state
of the game is determined, possibly in a probabilistic fashion.
Controller synthesis can then be viewed as finding a winning
strategy for Player 1, where Player 2 may play adversar-
ially. Stochastic games have been employed, for example,
to support decision making and synthesise controllers for
aircraft power distribution [1], sensor network management
in renewable energy production plants [2], in human-in-
the-loop UAV planning [3], and autonomous driving in the
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presence of hazards such as pedestrians [4], [5]. They arise
naturally in the context of security and defence, where they
have been used in patrol planning [6], port defence [7],
infrastructure protection [8], to generate countermeasures for
DNS bandwidth attacks [9] and to analyse complex attack-
defence scenarios in RFID goods management system [10].
Through the use of abstraction and discretisation, high-
level control of hybrid and continuous systems can also be
addressed.

Stochastic games were first introduced by Shapley in
1953 [11]. Various classes and modifications of these games
have been extensively studied since then and surveyed in,
e.g., [12], [13], [14], [15], [16], [17], [18]. In this survey,
we focus on turn-based games, where players choose their
moves in turns rather than concurrently as in [11], [12],
[13]. More specifically, we restrict our attention to turn-
based, finite, complete-observation, stochastic, discrete-time,
zero-sum games. We also consider a generalisation of these
games to multiple players. Compared to existing surveys
of these games such as [14], the distinguishing feature
of our survey is a comprehensive coverage of algorithms
for temporal logic properties, including reward and multi-
objective properties not covered in [14], and an illustration
of their practical application on a tutorial-style example.
Other surveys typically focus on related classes of games,
to mention concurrent games [11], [12], [13], or only on a
subclass of properties, e.g., single-objective [14].

We study various classes of properties of stochastic games
expressible in temporal logic. First, we consider quantitative
probabilistic properties over linear time, expressed as formu-
las of probabilistic linear temporal logic. Examples of such
properties include ‘the maximum probability of the airbag
failing to deploy within 0.02 seconds is at most 10−6’, or ‘the
minimum probability of the car to reach its destination with-
out colliding with pedestrians, while obeying traffic rules, is
at least 1−10−10’. Next, properties reasoning about rewards
associated with states of the game are introduced. Namely,
we consider the expected total and discounted cumulative
reward as well as long-run average reward. These can be used
to state properties such as ‘the minimum expected profit that
the investor can guarantee within a year is at least 1000’, or
‘the expected number of requests served per time unit in the
network is at least 5’. Finally, we allow to combine the above
linear-time and reward properties to express requirements
over branching time, thus allowing analysis of properties
such as ‘the probability that the network recovers from a bad
decision to a state from which a consensus can be reached
with probability at least 0.9 is at least 0.95’.

Given a stochastic game and a property, verification and



strategy synthesis problems, respectively, focus on the ex-
istence and construction of a strategy for Player 1 that
guarantees satisfaction of the property against all strategies
of Player 2. In this work, we discuss general findings for the
two problems and overview the existing algorithmic solutions
for various classes of properties. The solutions typically
rely on a reduction to simpler games or properties, and the
computation of optimal values and strategies, for which a
value iteration algorithm is typically utilised. In the multi-
player case, a coalition of players aims to cooperatively
enforce a property. Intuitively, multi-player stochastic games
can be seen as stochastic games with two players, where the
coalition acts as Player 1 and the remaining set of players as
Player 2. Finally, we analyse stochastic games with respect
to multi-objective properties that require simultaneous satis-
faction of multiple linear-time and reward properties. Here,
the properties can be conflicting and the techniques reduce
to the computation of an ε-approximation of the Pareto set
of optimal trade-offs between the individual properties.

While a number of software tools exist with partial support
for stochastic games, see Sec. V for a summary, they only
allow a subclass of such games, e.g., with one player or
without stochasticity, or perform analysis of stochastic games
against single-objective properties only. On the other hand,
most of the overviewed algorithms have been implemented
within the tool called PRISM-games [19], [20] for modelling,
verification, synthesis and simulation of stochastic games,
an extension of the PRISM model checker [21]. We briefly
overview the features and functionality of the tool and offer
a number of case studies, where complex computer systems
have been modelled as stochastic games and their properties
analysed in PRISM-games.

Contributions of this paper can be summarised as follows:

• we present a comprehensive framework for analysis of
stochastic games, focusing on high-level temporal logic
specifications;

• we overview the existing body of knowledge and algo-
rithmic solutions for verification and strategy synthesis
problems for stochastic games, and identify open prob-
lems;

• we offer a list of case studies of control systems that
are modelled and analysed through stochastic games.

The remainder of this paper is organised as follows.
In Sec. II, we introduce stochastic games and define a
specification language for linear-time and reward proper-
ties. In Sec. III, we formulate the verification and strategy
synthesis problems for single-objective properties, present
general findings for the problems, as well as algorithmic
solutions, and their extensions to branching-time properties
and multi-player games. Multi-objective combinations of
properties are then discussed in Sec. IV. We overview
existing tools for games in Sec. V and briefly describe the
functionality of PRISM-games, which currently provides the
most comprehensive support for stochastic games. Finally,
we list several case studies that rely on stochastic games in
Sec. VI. We finish with concluding remarks in Sec. VII. To

demonstrate the framework, an illustrative example modelled
and analysed in PRISM-games is used throughout the paper.

II. PRELIMINARIES

A. Notation

We use D(X) to denote the set of all probability distri-
butions over a set X . Given a finite or infinite sequence λ
of elements of X , we use λi to denote its i-th element for
i ≥ 0. For a finite sequence λ = x0x1 . . . xk of elements of
X , we use |λ| = k+ 1 to denote the length of the sequence
and last(λ) = xk denotes its last element.

B. Stochastic Games

Definition 1 (Stochastic game): A turn-based 21/2-player
game or simply a stochastic game is a tuple G =
(S, (S1, S2, Sp),∆), where S is a finite set of states par-
titioned into sets S1, S2 and Sp of Player 1, Player 2 and
probabilistic states, respectively, and ∆: S × S → [0, 1]
is a probabilistic transition function such that, for states
s ∈ S1∪S2, it holds that ∆(s, s′) ∈ {0, 1} for every s′ ∈ S,
where we assume that ∆(s, s′) = 1 for at least one s′ ∈ S,
and for states s ∈ Sp, it holds

∑
s′∈S ∆(s, s′) = 1.

Intuitively, the game is played as follows. The state of
the game is always determined uniquely and, in every step,
the next state is chosen according to the transition function.
When the current state of the game is a Player 1 state, i.e.,
s ∈ S1, then Player 1 chooses the next state s′ ∈ S such that
∆(s, s′) = 1, and similarly for Player 2. When the current
state is probabilistic, i.e., s ∈ Sp, the next state of the game
is sampled according to the distribution ∆(s, ·).

Formally, a path of a game G is an infinite sequence λ =
s0s1 . . . such that ∆(si, si+1) > 0 for all i ≥ 0. A finite
path of G is a finite prefix of a path. We use PathG,s to
denote the set of all paths originating in a state s ∈ S and
PathG = ∪s∈SPathG,s. The sets FPathG,s,FPathG of finite
paths are defined analogously. Given two states s, s′ ∈ S, we
say that s′ is reachable from s if and only if there exists a
finite path λ such that λ0 = s and last(λ) = s′.

Definition 2 (Labelling function): Given a finite set of
atomic propositions AP, a labelling function L : S → 2AP

assigns to each state s ∈ S of the game a set of atomic
propositions that hold true in s.

Definition 3 (Reward structure): Given a game G =
(S, (S1, S2, Sp),∆), a reward structure for G is a function
r : S → R≥0 or r : S → R≤0.

While the term reward intuitively suggests that the goal
will be to maximise functions over these values, we use a
reward structure as a general value assignment and consider
minimisation problems as well. In such a case, the values are
often referred to as costs rather than rewards. By inverting
the signature of all rewards, the resulting function is again
a reward structure, and this will allow us to translate min-
imisation problems to maximisation. Note that, unless stated
otherwise, in this work we do not consider reward structures
that assign both negative and positive values.

Stochastic games as defined above were first studied with
respect to reward properties in [22], [23], as a special case



of games originally defined by Shapley [11]. With respect to
reachability properties, simple stochastic games were studied
in [24]. In a simple stochastic game, every state has exactly
two successors and all transitions from probabilistic states
have probability 0.5, simulating a coin toss. More complex,
temporal properties of stochastic games were then introduced
in [25].

Our definition of a stochastic game (Def. 1) is based on
the definition used, e.g., in [24], [14]. An alternative way
to define such games is to partition the state space only
into Player 1 and Player 2 states and introduce a finite
set of actions. The transition function then defines at most
one probability distribution for each pair of a state and an
action. A reward structure assigns values to pairs of states
and actions. Note that this definition of games, appearing
e.g., in [11], [22], is equivalent to Def. 1.

Stochastic games include as a subclass many interesting
and widely studied models. If there are no probabilistic
states, i.e., Sp = ∅, the game is called a 2-player game or
a non-stochastic game. Similarly, if the game only has one
player and probabilistic states, i.e., S1 = ∅ or S2 = ∅, it
is called a 11/2-player game or a Markov decision process
(MDP). Moreover, if also Sp = ∅, the game is a transition
system. Finally, if both S1 = ∅ and S2 = ∅, the game reduces
to a Markov chain.

Definition 4 (Strategy): A Player 1 strategy is a tuple π =
(M,πu, πn, πinit), where M is a countable set of memory
elements, πu : M × S → M is a memory update function,
πn : M × S1 → D(S) is a next move function such that
πn(m, s)(s′) > 0 only if ∆(s, s′) > 0, and πinit : S → M
is an initial memory element function. A Player 2 strategy
σ = (M,σu, σn, σinit) is defined analogously.

Intuitively, strategies prescribe the behaviour of players as
follows. Given a Player 1 strategy π, first, an initial memory
element is chosen according to the function πinit. Then, in
every step of the game, Player 1 updates the current memory
element based on the current state of the game, using the
memory update function πu. Moreover, if the game is in a
Player 1 state, Player 1 chooses the next state of the game
using the next move action πn. Player 2 strategies are applied
in an analogous way.

We use Π and Σ to denote the set of all Player 1 and Player
2 strategies, respectively. A (finite) path under strategies π ∈
Π, σ ∈ Σ is any (finite) path resulting from Player 1 playing
according to strategy π and Player 2 playing according to
strategy σ. We use notation Pathπ,σG ,Pathπ,σG,s ,FPathπ,σG and
FPathπ,σG,s with obvious meaning.

Generally, a Player 1 strategy π is randomised. It is called
pure if the next move function πn is of type πn : M ×S1 →
S. Similarly, π is a memoryless strategy if M is a singleton, a
finite memory strategy if M is finite, and an infinite memory
strategy in the general case. For simplicity, we consider pure
memoryless strategies to be functions of type π : S1 → S.
Player 2 strategies are classified in the same way.

Let s ∈ S be a state of a game G and let π ∈ Π, σ ∈ Σ
be a Player 1 and Player 2 strategy, respectively. Given a
finite path λ ∈ FPathπ,σG,s , the cylinder set Cyl(λ) is the set

of all paths in Pathπ,σG,s that have λ as a prefix. Consider
the σ-algebra Σ of paths generated by the set of all such
cylinder sets. According to classical probability and measure
theory [26], there exists a unique probability measure Prπ,σG,s
over Σ such that

Prπ,σG,s (Cyl(s)) = 1,

Prπ,σG,s (Cyl(λ)) =

|λ|−1∏
i=0

∆(λi, λi+1)

for all λ ∈ FPathπ,σG,s . Given a random variable ρ over the
probability space (Pathπ,σG,s ,Σ,Prπ,σG,s ), the expected value of
ρ is defined as

Eπ,σG,s (ρ) =

∫
Ω

ρ dPrπ,σG,s .

Definition 5 (Stopping game): A state sf ∈ S of a
stochastic game G = (S, (S1, S2, Sp),∆) is called terminal
if and only if ∆(sf , sf ) = 1 and ∆(sf , s

′) = 0 for all
s′ 6= sf , s

′ ∈ S. A game is called stopping if it has at
least one terminal state and if it holds that, for every pair
of strategies π ∈ Π, σ ∈ Σ and every initial state, with
probability 1 the game eventually stops, i.e., a terminal state
is reached.

The principle of stopping games was introduced in [11],
where games were first studied with respect to reward proper-
ties, to avoid infinite accumulation of rewards. The original
definition imposed a stronger assumption, not required for
the results discussed here, that in every step the game
stops with non-zero probability. The more general notion of
stopping as in Def. 5 appears, for example, in [24].

Note that we do not consider partial observability and
assume the games are finite. Several related, more general
stochastic game models exist, which include concurrent
games [11], [12], [13], partial-observation games [17] and
uncertain (or bounded-parameter) MDPs [18]. In particu-
lar, uncertain MDPs generalise stochastic games to infinite
games by considering Player 2 with an infinite set of actions,
typically defined through convex uncertainty sets. The moti-
vation comes from the fact that, in many practical problems,
estimating transition probabilities of systems with stochastic
uncertainty from data may be very difficult but they can be
over-approximated using sets. These models have a strong
connection to partial-observation and concurrent games, see
e.g., [27], [28], [29].

Example 1: Consider the stochastic game G =
(S, (S1, S2, Sp),∆) depicted in Fig. 1(a). It can be
seen as a simplified version of the autonomous driving case
study presented in [5]. The game models a car driving in
an urban area that is given a route to navigate through.
While navigating the route, it has to autonomously react
to hazards. We consider two hazards, a traffic jam and a
pedestrian. In order to avoid a hazard, the car chooses to
perform one of three reactions, namely, change lane, honk
or brake. The game proceeds as follows. Starting from
the probabilistic state s0, a hazard is encountered or the
car successfully finishes its route by entering the terminal
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Fig. 1: (a) Stochastic game modelling a car autonomously reacting to hazards on a road. Player 1, Player 2 and probabilistic states
are depicted as squares, diamonds and circles, respectively. Transition probabilities are indicated unless equal to 1. The set of atomic
propositions is AP = {succ, viol, acc} and, for convenience, states with a non-empty set of labels are also shown in colour. Hazards
and reactions are indicated as annotations. (b) Two reward structures over G. States not shown in the table are assigned value 0 in both
reward structures.

TABLE I: Semantics of properties defined in Def. 6. Here, G is a stochastic game, s ∈ S is its state, L is a labelling function over a set
of atomic propositions AP, Π and Σ are the sets of Player 1 and Player 2 strategies, respectively, λ = λ0λ1 . . . ∈ PathG is a path, r is
a reward structure on G and β ∈ (0, 1) is a discount factor.

s |= P./p[ψ] ⇐⇒ ∃π ∈ Π such that ∀σ ∈ Σ : Prπ,σG,s (ψ) = Prπ,σG,s ({λ ∈ PathG,s | λ |= ψ}) ./ p
s |= Rr./x[ρ] ⇐⇒ ∃π ∈ Π such that ∀σ ∈ Σ : Eπ,σG,s (rew(r, ρ)) ./ x

λ |= true always
λ |= a ⇐⇒ a ∈ L(λ0)

λ |= ¬ψ ⇐⇒ λ 6|= ψ

λ |= ψ1 ∧ ψ2 ⇐⇒ λ |= ψ1 ∧ λ |= ψ2

λ |= Xψ ⇐⇒ λ1λ2 . . . |= ψ

λ |= ψ1 Uψ2 ⇐⇒ ∃i ≥ 0 : (λiλi+1 . . . |= ψ2 ∧ ∀j < i : (λjλj+1 . . . |= ψ1))

rew(r, C≤k)(λ) =
∑k
i=0 r(λi)

rew(r, C)(λ) =
∑∞
i=0 r(λi)

rew(r, F∗ a)(λ) =


∗ if ∀i ≥ 0 : a 6∈ L(λi) and ∗ ∈ {0,∞}∑∞
i=0 r(λi) if ∀i ≥ 0 : a 6∈ L(λi) and ∗ = c∑k−1
i=0 r(λi) otherwise, where k = min{i | a ∈ L(λi)}

rew(r, Dβ)(λ) =
∑∞
i=0 β

ir(λi)

rew(r, S)(λ) = lim infk→∞
rew(r,C≤k)(λ)

k+1

state labelled with atomic proposition succ, shown in green
in Fig. 1(a). In the former case, each of the two hazards
appears with probability 0.3 and, with probability 0.2, the
choice of a hazard is left to Player 2. The outcome of the
three reactions to each hazard is indicated in Fig. 1(a). For
example, honking in the event of a traffic jam results with
probability 0.05 in an accident, i.e., entering the red terminal
state labelled with proposition acc, and with probability 0.95
in successfully resolving the hazard, i.e., returning back to
state s0. The results of braking in a traffic jam, and changing
lane and honking when approaching a pedestrian are similar,
with varying probabilities of the individual transitions. In

addition, braking when approaching a pedestrian may have
no effect on the hazard, i.e., with probability 0.16 the
pedestrian remains a hazard and the car can make a new
choice of a reaction by returning back to state s3. Finally,
changing lane in a traffic jam results in resolving the hazard
with probability 0.8 and, with probability 0.2, it results in
a violation of road rules, i.e., entering the grey terminal
state labelled with proposition viol. Note that the game G
is a stopping game since, regardless of Player 1 and Player
2 choices in their respective states, the game ends with
probability 1 in one of the terminal states labelled with
proposition succ, viol or acc.



We consider two reward structures, renergy and rtime, over
G defined in Fig. 1(b) that represent the energy and time
demands of individual reactions to hazards, respectively.

We modelled the game in the tool PRISM-games and anal-
ysed it with respect to several properties. The corresponding
input files for PRISM-games can be found in [30], and we
report on the results in the following sections.

C. Properties

In this work, we are interested in both temporal and reward
properties of stochastic games. The specification language
defined below allows us to formulate such properties over
linear time, namely probabilistic linear-time properties, and
various expected reward functions. The language is motivated
by the language used by the PRISM model checker [21]
and its extension for stochastic games known as PRISM-
games [19], [20], based on probabilistic Computation Tree
Logic (PCTL) and its extension PCTL* [31], which com-
bines Linear Temporal Logic (LTL) together with the prob-
abilistic and reward operators in a CTL-like branching-time
fashion.

Definition 6 (Property): A property is a formula φ in the
following grammar:

φ ::= P./p[ψ] | Rr./x[ρ],

ψ ::= true | a | ¬ψ | ψ ∧ ψ | Xψ | ψ Uψ,

ρ ::= C≤k | C | F∗ a | Dβ | S,

where a ∈ AP is an atomic proposition, ./∈ {≤, <,≥, >},
p ∈ [0, 1], r is a reward structure, x ∈ R, k ∈ N0, ∗ ∈
{0,∞, c} and β ∈ (0, 1).

The semantics of the properties is listed in Table I. In
particular, formulas φ, i.e., the probabilistic and reward
operator, are interpreted over states of the game, and linear
temporal formulas ψ and reward functions are interpreted
over paths of the game. Below, we give a brief description
grouping properties from Def. 6 into categories according to
their syntactic form.

Probabilistic reachability: Properties of the form
P./p[F a], where F a = true U a, are called probabilistic
reachability properties. Given a state s, the property
requires that there exists a Player 1 strategy π ∈ Π such
that, for all Player 2 strategies σ ∈ Σ, the probability of
reaching a state labelled with atomic proposition a, starting
from s, under the two strategies satisfies the bound ./ p.
Probabilistic reachability properties represent a simple
but fundamental class of properties since many properties
of games can be reduced to probabilistic reachability. A
step-bounded probabilistic reachability is a property of the
form P./p[F

≤k a], where k ∈ N0, F
≤k a =

∨k
i=0 X

i a and Xi

is an abbrevation for a sequence of i consecutive instances
of the operator X. In this case, the goal is to visit a state
labelled with atomic property a within the first k steps of
a path. Finally, properties of the form P≥1[F a] are called
almost-sure reachability properties.

Probabilistic LTL: Properties of the form P./p[ψ] are
generally referred to as probabilistic LTL properties since,
according to Def. 6, ψ can be an arbitrary LTL formula [32].
Recently, LTL has been increasingly often used in various
areas of control as it is expressive enough to describe
many interesting properties of systems and, at the same
time, it resembles natural language statements. Examples of
properties that can be expressed in LTL include reachability
F a, safety G a = ¬F¬a, liveness G(a ⇒ F b), persistent
surveillance GF a or stability FG a. Similarly to probabilistic
reachability, almost-sure LTL properties are properties of the
form P≥1[ψ].

Total reward properties: Properties of the form Rr./x[ρ],
where ρ is equal to C, C≤k or F∗ a, are called total reward
properties. They are concerned with the expected cumulative
reward collected in states of the game over infinite time
horizon (C), in the first k steps of a path for k ∈ N0 (C≤k),
or until a state labelled with proposition a is reached (F∗ a).
In the latter case, if such a state is never visited, we allow to
treat the cumulative reward in different ways through the use
of the flag ∗. Namely, we consider the reward being zero (∗ =
0), infinity (∗ = ∞), or we allow the reward to accumulate
indefinitely (∗ = c). Just as reachability properties are
fundamental probabilistic properties, total reward properties
are fundamental reward properties.

Discounted reward properties: Properties of the form
Rr./x[Dβ ] analyse the expected cumulative reward over infinite
time horizon, where the collected rewards are increasingly
discounted by the discount factor β ∈ (0, 1).

Average reward properties: Finally, properties of the form
Rr./x[S] analyse the expected average reward collected in
states of the game over infinite time horizon.

III. SINGLE-OBJECTIVE GAME SOLVING

In this section, we first formulate the problem of solving
a stochastic game with respect to a property and discuss
general findings for this problem. Next, we overview the al-
gorithmic solutions for different types or properties. Finally,
we discuss extensions of these techniques to properties over
branching time and multi-player stochastic games.

A. Problem Formulation

Problem 1 (Verification): Given a stochastic game G with
an initial state s ∈ S, a set of atomic propositions AP and
a labelling function L, and a property over AP from Def. 6,
i.e., φ = P./p[ψ] or φ = R./x[ρ], does it hold that s |= φ?

Problem 2 (Strategy synthesis): Given a stochastic game
G with an initial state s ∈ S, a set of atomic propositions
AP and a labelling function L, and a property over AP from
Def. 6, i.e., φ = P./p[ψ] or φ = R./x[ρ], construct a Player 1
strategy π ∈ Π (if it exists) that is a witness to the satisfaction
s |= φ.

A Player 1 strategy that is a solution to Problem 2 is called
a winning Player 1 strategy. Conversely, Player 2 aims to
violate the property φ and a winning Player 2 strategy is such
that, for all Player 1 strategies, the property is not satisfied.



Games with this semantics are called zero-sum games since
the objectives of the two players are complementary.

In order to solve both verification and strategy synthesis
problems, we consider the optimal values of path formulas
ψ and reward functions ρ from Def. 6 defined as follows:

Prmin
G,s (ψ) = inf

π∈Π
sup
σ∈Σ

Prπ,σG,s (ψ),

Prmax
G,s (ψ) = sup

π∈Π
inf
σ∈Σ

Prπ,σG,s (ψ),

Emin
G,s (rew(r, ρ)) = inf

π∈Π
sup
σ∈Σ

Eπ,σG,s (rew(r, ρ)),

Emax
G,s (rew(r, ρ)) = sup

π∈Π
inf
σ∈Σ

Eπ,σG,s (rew(r, ρ)).

(1)

A Player 1 strategy π ∈ Π starting from state s is called opti-
mal if it achieves the optimal value, e.g., supσ∈Σ Prπ,σG,s (ψ) =

Prmin
G,s (ψ). Similarly, the strategy is called ε-optimal, for

ε > 0, if it achieves a value deviating by at most ε from
the optimum, e.g., supσ∈Σ Prπ,σG,s (ψ) ≥ Prmin

G,s (ψ) + ε.
A stochastic game is called determined with respect to

a chosen optimality criterion if the corresponding equality
holds:

Prmin
G,s (ψ) = sup

σ∈Σ
inf
π∈Π

Prπ,σG,s (ψ),

Prmax
G,s (ψ) = inf

σ∈Σ
sup
π∈Π

Prπ,σG,s (ψ),

Emin
G,s (rew(r, ρ)) = sup

σ∈Σ
inf
π∈Π

Eπ,σG,s (rew(r, ρ)),

Emax
G,s (rew(r, ρ)) = inf

σ∈Σ
sup
π∈Π

Eπ,σG,s (rew(r, ρ)).

Determinacy also guarantees existence of ε-optimal strate-
gies for all ε > 0 for both players from every state. A deep
result in [33] established determinacy for a large class of
games including stochastic games with respect to any Borel
measurable property and, in particular, with respect to all
properties in Def. 6.

Note that determinacy does not necessarily imply the
existence of optimal strategies. However, for all classes of
properties described in Sec. II-C it has been shown that
both players have optimal strategies and pure memoryless
strategies suffice, except for the step-bounded properties,
the class of general probabilistic LTL properties and total
reward properties with ρ = F0 a, where pure finite-memory
strategies may be required, see [34], [14], [35] and references
therein. The optimal values and strategies can be used
to solve the verification problem stated in Problem 1 in
the following way. For example, to solve the verification
problem for G, s and property P≥p[ψ], it suffices to verify
that Prmax

G,s (ψ) ≥ p. The remaining properties in Def. 6 can
be addressed in an analogous way. To solve the strategy
synthesis problem stated in Problem 2, we compute an
optimal or a suitable ε-optimal Player 1 strategy. Together
with the existence of optimal strategies, this implies that, for
every property in Def. 6, there exists a winning strategy for
one of the players.

To directly address the computation of optimal values and
strategies, we extend the syntax of properties to include
numerical queries for computing optimal strategies.

Definition 7 (Numerical query): Let ψ, r and ρ be as
defined in Def. 6. Numerical queries Pmin=?[ψ], Pmax=?[ψ],
Rrmin=?[ρ] and Rrmax=?[ρ] aim to compute the optimal values
defined in Eq. 1, respectively, together with the correspond-
ing optimal Player 1 strategies.

As discussed above, the problem of computing the optimal
values for states, called quantitative query solving, and
constructing an optimal Player 1 strategy, called strategic
query solving, are two separate problems utilised to solve
the verification and strategy synthesis problems for games.
In [34], it has been shown that all problems of quantitative
and strategic query solving for probabilistic reachability,
total, discounted as well as average reward properties are
polynomially equivalent, i.e., there exists a polynomial-time
reduction between the problems. The computational com-
plexity of these problems is NP ∩ coNP. No polynomial-time
algorithm is known, even for reachability objectives, and the
widely used exponential-time algorithm for the correspond-
ing quantitative query solving problems, i.e., computing the
optimal values for states, is a value iteration algorithm,
presented in detail later in this section. It is not necessarily
true that the strategic solution can be easily derived from
the quantitative solution, i.e., an optimal strategy might not
be easily constructed from the optimal values. For the case
of probabilistic reachability, total and discounted reward
this nevertheless is the case, and optimal strategies can
be constructed from the optimal values in linear time. For
average reward properties, the existence of a similar (even
polynomial-time) algorithm remains an open question [34].

In the following Sec. III-B to III-F, we discuss algorithmic
solutions to the verification and strategy synthesis problems
for properties in Def. 6 as classified in Sec. II-C. Firstly, note
that from determinacy we get

Prmin
G,s (ψ) = 1− Prmax

G,s (¬ψ),

Emin
G,s (rew(r, ρ)) = Emax

G,s (rew(−r, ρ)),

and hence it suffices to discuss maximisation numerical
queries. In Sec. III-G, we discuss a generalisation of these
techniques to a logic that combines properties from Def. 6
in a PCTL*-like fashion to obtain properties over branching
time. Finally, Sec. III-H overviews an extension of verifi-
cation and strategy synthesis for stochastic games with two
players to general, multi-player stochastic games.

B. Probabilistic Reachability
Consider the numerical reachability query Pmax=?[F a] for

a game G with an initial state s ∈ S. To quantitatively solve
the query, we can use an adaptation of the value iteration
algorithm that first appeared in [24] for simple stochastic
games defined in Sec. II-B. The algorithm computes the
optimal values for Player 1 states s ∈ S1 as

Prmax
G,s (F a) = v∗(s) = lim

n→∞
v∗n(s), (2)

where v∗n(s) is iteratively computed as indicated in Fig. 2.
While the limit may not converge in finite time, a precision
threshold α can be computed such that, if the value itera-
tion algorithm is terminated once the maximum difference



v∗n(s) =


1 if a ∈ L(s),

0 if a 6∈ L(s) and n = 0,

max{v∗n−1(s), v′n(s)} if n > 0,

v′n(s) =


maxs′∈S{∆(s, s′) · v∗n−1(s′)} if a 6∈ L(s) and s ∈ S1,

mins′∈S{∆(s, s′) · v∗n−1(s′)} if a 6∈ L(s) and s ∈ S2,∑
s′∈S ∆(s, s′) · v∗n−1(s′) if a 6∈ L(s) and s ∈ Sp.

Fig. 2: Value iteration algorithm for the probabilistic reachability numerical query Pmax=?[F a].

between v∗n(s) and v∗n+1(s), for s ∈ S, is not more than
α, the limit values can be obtained by simple rounding [36].
Moreover, using this procedure, the algorithm always stops in
a number of iterations that is at most exponential in the size
of the game. It was proven in [34] that, given the quantitative
solution to the query, the necessary and sufficient conditions
for the strategic solution, i.e., a pure memoryless optimal
Player 1 strategy π∗, are the following. First, an optimal
strategy π∗ satisfies, for every s ∈ S1, the set membership

π∗(s) ∈ arg max
s′∈S

∆(s, s′) · v∗(s′), (3)

and second, under π∗, the game reaches a state labelled
with proposition a with non-zero probability starting from
any state s ∈ S such that v∗(s) > 0, under any Player 2
strategy. An optimal Player 1 strategy can be constructed
from the optimal values in time linear in the size of the
game using a technique called retrograde analysis, first
introduced in the artificial intelligence community to solve
chess endgames [37]. Intuitively, the strategy is computed
from states labelled with a, using backward propagation. For
details of the construction, see [34].

The minimisation queries Pmin=?[F a] can be solved anal-
ogously. The value iteration algorithm can also be used for a
fixed number of iterations to approximate the optimal values
and strategy. For example, to solve the strategy synthesis
problem for properties of type P≥p[F a], the maximisation
query is considered and value iteration is terminated once the
value v∗n(s) is greater or equal to p for the chosen state s ∈ S
and the corresponding Player 1 strategy is then computed in
a way similar to the optimal case above.

Besides the value iteration algorithm, one can adapt the
equations from Fig. 2 to design a quadratic program and a
strategy iteration algorithm that iterates over pure memory-
less strategies [38]. For a chosen Player 1 strategy π ∈ Π,
the strategy iteration algorithm computes the optimal values
v∗π obtainable by Player 2 if Player 1 plays according to π,
and then the algorithm locally improves π to achieve better
values for Player 1. While the best known bound for the
number of iterations is exponential, the algorithm performs
well in practice and no class of games is known for which
an exponential number of iterations is required.

Finally, there also exists a randomised subexponential-
time algorithm to solve the problem. For simple stochastic
games, it was introduced in [39] and can be extended to
general stochastic games as shown in [40]. Intuitively, the

algorithm randomly tries to guess the optimal transition in a
chosen Player 1 state of the game and verifies whether the
best strategy with the chosen transition is optimal. If not, it
removes the transition and proceeds.

For the special case of almost-sure reachability properties
P≥1[F a], the strategy synthesis problem can be solved in
quadratic time as follows. The problem is first reduced
to an equivalent strategy synthesis problem for a 2-player,
non-stochastic game with a reachability property as shown
in [41], which is then solved using a simple graph algorithm,
see, e.g., [14] and references therein.

For step-bounded numerical reachability queries
Pmin=?[F≤k a] and Pmax=?[F≤k a], pure finite-memory
strategies need to be considered. Intuitively, longer paths
with higher probability of reaching a state labelled with
proposition a may be preferred when enough time remains
until the deadline k, whereas shorter paths with lower
probability might need to be considered when the deadline
is approaching. The optimal values and a Player 1 strategy
for a game G can be computed by performing a fixed
number k of iterations of the value iteration algorithm on
the game G≤k that is an extension of the game G to keep
track of the number of steps performed. Formally, G≤k has
states of the form (s, i), where s ∈ S and i ∈ {0, 1, . . . , k},
and the transition function is

∆≤k((s, i), (s′, i+ 1)) = ∆≤k((s, k), (s′, k)) = ∆(s, s′)

for s, s′ ∈ S and i < k. It is easy to see that, indeed,
Prmax
G,s (F≤k a) = v∗k((s, 0)).
We conclude this section by commenting on a reduction

from reachability to reward properties. The strategy synthesis
problem for a game G, state s ∈ S and probabilistic reacha-
bility property P./p[F a] can be reduced to strategy synthesis
for a game G′, s and a total reward property Rr./p[F

c a], where
the game G′ is G with a new probabilistic terminal state sf .
The transitions of all states s ∈ S labelled with proposition
a are defined as ∆(s, sf ) = 1 and ∆(s, s′) = 0 otherwise.
The reward structure is defined as r(s) = 1 for all s ∈ S
labelled with a and r(s) = 0 otherwise.

Example 2: Recall the autonomous car example intro-
duced in Ex. 1, modelled with the stochastic game G shown
in Fig. 1(a) with starting state s0 ∈ Sp. Consider the
numerical query Pmax=?[F succ] to determine the maximal
probability of reaching a state labelled with proposition
succ indicating that the car successfully finished the route.



Fig. 3: Optimal values obtained for step-bounded numerical query
Pmax=?[F≤k succ] for the game introduced in Ex. 1.

The maximal probability is approximately 0.87 and the
corresponding pure memoryless optimal strategy is to brake
for both hazards. Next, consider the step-bounded numeri-
cal query Pmax=?[F≤k succ]. We computed results for step
bounds 1 ≤ k ≤ 30. The optimal values can be observed in
Fig. 3. For k ≤ 3, the only way for the car to successfully
finish the route in at most 3 steps starting from s0 is not to
encounter any hazards, and thus the maximum probability
is 0.2. For k = 4 and k = 5, the maximum probability is
approximately 0.32 and 0.35, respectively, and there exists
a pure memoryless optimal strategy that always brakes in a
traffic jam and honks when approaching a pedestrian. Finally,
for k ≥ 6, the maximum probability is gradually increasing
with k and, here, optimal strategies are pure, but require finite
memory. To be specific, an optimal strategy is to always
brake in a traffic jam, and when approaching a pedestrian
react as follows. If at most 4 or at least 6 steps remain
until the bound k, then honk. If exactly 5 steps remain to
successfully finish the route, then brake.

C. Probabilistic LTL

The standard approach to solving numerical queries of
the form Pmax=?[ψ] with an arbitrary LTL formula ψ is to
translate the formula ψ into a deterministic Rabin automa-
ton [42] of the size up to doubly exponential in the size
of the formula. Since LTL formulas considered in control
are typically small, the size of the corresponding automaton
is manageable. The synchronous product of the game G
and the automaton is a Rabin stochastic game. Such games
can be solved by combining the value iteration algorithm
for reachability queries with any algorithm for Rabin non-
stochastic games as presented in [43]. Alternatively, the
deterministic Rabin automaton can be translated to a different
type of automaton called a parity automaton [44] and the
product parity stochastic game can be solved using the
strategy iteration or randomised subexponential algorithm
presented in [45].

Similarly as for the reachability properties, the problem of
solving a stochastic game with respect to an almost-sure LTL
property P≥1[ψ] can be solved by reducing the corresponding
almost-sure Rabin stochastic game to an equivalent Rabin
2-player, non-stochastic game [41]. An overview of existing
algorithms, exponential and deterministic subexponential, for
non-stochastic Rabin games can be found in [14].

Example 3: Consider the safety numerical query
Pmax=?[G¬acc] for the autonomous car example from
Ex. 1. The query aims to compute the maximum probability
with which an accident can be avoided. The maximum
probability is approximately 0.92, which is higher than the
maximum probability of successfully finishing the route
computed in Ex. 2. The reason is that violation of road
rules is not considered an accident. There exists a pure
memoryless optimal strategy, namely, to change lane in a
traffic jam and to brake when approaching a pedestrian.

D. Total Reward Properties

To solve the numerical query Rrmax=?[ρ], techniques sim-
ilar to those for probabilistic reachability as described in
Sec. III-B can be applied.

First, let ρ = C and assume that the considered game is
stopping, all rewards are non-negative r : S → R≥0 and
terminal states have reward 0. This means that the expected
total reward is always finite. The optimal values for Player
1 states s ∈ S1 are defined as

Emax
G,s (rew(r, C)) = v∗(s) = lim

n→∞
v∗n(s), (4)

where v∗n(s) is iteratively computed as indicated in Fig. 4.
Similarly as for the value iteration in Sec. III-B, the limit
is not guaranteed to converge in finite time, but using a
precision threshold the limit values can be computed in a
number of iterations that is at most exponential in the size of
the game [36]. Unlike in the reachability case, since the game
is assumed to be stopping, there is only one necessary and
sufficient condition for a (pure memoryless) optimal Player
1 strategy π∗. Namely, for every state s ∈ S1, it must hold
that

π∗(s) ∈ arg max
s′∈S

∆(s, s′) · v∗(s′). (5)

An optimal strategy can thus be constructed from the optimal
values in linear time using the above equations. Maximisa-
tion queries with non-positive rewards r : S → R≤0, as well
as minimisation queries, can be solved in an analogous way,
and the value iteration can be used for a fixed number of
iterations to approximate the optimal value and strategy to
solve properties of the type φ = Rr./x[C].

For non-stopping games, the set of states that receive
infinite total reward can be computed by solving the game
with respect to a parity condition [2]. After removing these
states, value iteration algorithm can be applied to compute
the (bounded) optimal values for the remaining states.

Next, let ρ = F∗ a. For ∗ = c, the query can be reduced
to the case above, with ρ = C, by adding a new terminal
state sf with r(sf ) = 0 and altered transitions for states s
such that a ∈ L(s) by letting ∆(s, sf ) = 1 and ∆(s, s′) = 0
otherwise. For ∗ = ∞, we proceed in a similar fashion.
However, while value iteration in Fig. 4 computes the least
fixed point, in this case we need to compute the greatest
fixed point as zero reward paths that do not reach a state
labelled with proposition a need to be identified. This can be
done using computation in Fig. 4 for an altered game, where
all zero rewards are changed to an arbitrary ε > 0 [35].



v∗n(s) =


0 if n = 0,

maxs′∈S{r(s) + ∆(s, s′) · v∗n−1(s′)} if n > 0 and s ∈ S1,

mins′∈S{r(s) + ∆(s, s′) · v∗n−1(s′)} if n > 0 and s ∈ S2,

r(s) +
∑
s′∈S ∆(s, s′) · v∗n−1(s′) if n > 0 and s ∈ Sp.

Fig. 4: Value iteration algorithm for the total reward numerical query Rrmax=?[C].

Finally, for ∗ = 0, the optimal strategy may depend on the
rewards accumulated so far and pure finite memory strategies
suffice for Player 1 to win. The computation combines value
iteration algorithms from Fig. 2 and 4, see [35] for details.

Step-bounded numerical queries with ρ = C≤k can be
solved using a fixed number k of iterations of the value
iteration algorithm on the game G≤k defined in Sec. III-B
and optimal strategies might thus require memory.

Example 4: For the autonomous car in Ex. 1, we com-
pute the minimum expected total energy and time demands
before successful route completion, R

renergy
min=?[Fc succ] and

R
rtime
min=?[Fc succ]. For energy, the minimum value is approx-

imately 3.33 with the pure memoryless optimal strategy
to honk for both hazards. For time, the minimum value
is approximately 2.71 with the pure memoryless optimal
strategy to change lane for both hazards. Note that changing
lane in a traffic jam might violate traffic rules, resulting in
entering the grey terminal state in Fig. 1(a). While in such a
case the route cannot be successfully completed any more,
the time cost drops to 0 for all the following steps, and thus
changing lane, while potentially violating road rules, results
in lower expected total time. In comparison, if the time cost
assigned to the terminal state corresponding to traffic rules
violation was 1, the optimal strategy would be to brake in a
traffic jam and change lane when approaching a pedestrian
with the expected total time approximately 3.46.

E. Discounted Reward Properties

To solve numerical queries of the form Rrmax=?[Dβ ],
we present their reduction to probabilistic reachability
queries [34], as well as to total reward queries [46].

Let G be a stochastic game with a reward structure r.
First, we describe the reduction to probabilistic reacha-
bility. Without loss of generality, assume that all rewards
take values in the interval [0, 1]. Construct a game G′ =
(S′, (S1, S2, S

′
p),∆

′) defined as follows. First, add two ter-
minal probabilistic states s0, s1 ∈ S′p. Next, for every Player
1 or Player 2 state s ∈ S1 ∪ S2 and every s′ ∈ S such that
∆(s, s′) = 1, we add a new probabilistic state ts,s′ ∈ S′p
and define ∆′(s, ts,s′) = 1,∆′(s, s′) = 0. For probabilistic
states ts,s′ , we let

∆′(ts,s′ , t) =


β(1− r(s)) if t = s0,

βr(s) if t = s1,

1− β if t = s′,

0 otherwise.

Finally, for probabilistic states s ∈ Sp we define

∆′(s, s′) =


β(1− r(s)) if s′ = s0,

βr(s) if s′ = s1,

(1− β)∆(s, s′) otherwise.

Consider AP = {a} and the labelling function defined as
L(s1) = {a} and L(s) = ∅ otherwise. It holds that every
optimal strategy for G′ with respect to the numerical query
Pmax=?[F a] is also an optimal strategy for G with respect to
the numerical query Rrmax=?[Dβ ].

Next, we present a reduction to total reward queries that
builds on the same principles. Construct a game G′ =
(S′, (S1, S2, S

′
p),∆

′) and a reward structure r′ defined as
follows. First, for every s ∈ S1 ∪S2 add a new probabilistic
state ts ∈ S′p and add a new terminal probabilistic state
sf ∈ S′p. For all states s, s′ ∈ S such that ∆(s, s′) > 0
define ∆′(s, ts′) = ∆(s, s′),∆′(s, s′) = 0. For probabilistic
states ts, we let

∆′(ts, t) =


β if t = sf ,

1− β if t = s,

0 otherwise.

The reward structure r′ is such that r′(s) = r(s) for s ∈ S
and the reward is 0 otherwise. It holds that every optimal
strategy for G′ with respect to numerical query Rr

′

max=?[C] is
also an optimal strategy for G with respect to the numerical
query Rrmax=?[Dβ ].

F. Average Reward Properties
Unlike other infinite horizon properties such as total

reward, expected average reward disregards all transient
behaviour. Nevertheless, it was proven in [22], [23] that pure
memoryless strategies still suffice for both players to win.
In [23], the authors show that, for a game G with an average
reward numerical query Rrmax=?[S], there exists a discount
factor β such that any strategy optimal in G with respect
to discounted reward numerical query Rrmax=?[Dβ ] is also
optimal with respect to the average reward query. Moreover,
for a strategy to be optimal for the latter, it suffices if it
is optimal for the former for every β sufficiently close to
1. The authors in [34] then compute a concrete value of
the discount factor and prove that a solution to numerical
queries of the form Rrmax=?[S] can be found as a solution to
numerical query Rrmax=?[Dβ ] for any β ∈ [β∗, 1), where

β∗ = 1−
(
(n!)2 · 22n+3 · r2n2

max

)−1
,

n = |S|,
rmax = max

s∈S
r(s).



Alternatively, it has been shown in [47] that, unlike for
the general case, for stochastic games that are ergodic, i.e.,
the optimal average reward is independent of an initial state
of the game, optimal strategies can be constructed using
locally optimal moves. The algorithm reduces the game,
using a potential transformation, to a canonical form in which
the locally optimal moves are also globally optimal. The
algorithm is pseudo-polynomial if the game has a constant
number of probabilistic states, and otherwise it can be up to
exponential in the number of probabilistic states.

Finally, for a related property called an almost-sure aver-
age reward property, where the aim is to achieve a certain
average reward with probability 1 (as opposed to the ex-
pected average), one can use the approach presented in [1].
As the algorithm was primarily designed to solve games with
respect to a conjunction of such properties, we discuss the
property and the approach in more detail in Sec. IV-G.

G. Branching-time Properties

The definition of properties in Def. 6 allows one to reason
about probabilistic and expected reward properties of games
over linear time. Below, we extend the definition to branching
time by combining properties in a PCTL∗-like fashion. The
resulting logic has been introduced and studied in [35], [2].

Definition 8 (Branching-time property): A branching-
time property is a formula φ in the following grammar:

φ ::= true | a | ¬φ | φ ∧ φ | P./p[ψ] | Rr./x[F∗φ],

ψ ::= φ | true | a | ¬ψ | ψ ∧ ψ | Xψ | ψ Uψ,

where a ∈ AP is an atomic proposition, ./∈ {≤, <,≥, >},
p ∈ [0, 1], r is a reward structure, x ∈ R, and ∗ ∈ {0,∞, c}.

Note that, unlike in Def. 6, here we only allow ρ = F∗ a
for the reward operator Rr./x[ρ]. The semantics for branching-
time properties is as shown in Tab. I, with formulas φ being
interpreted over states s ∈ S of the game G, and formulas
ψ being interpreted over paths λ ∈ PathG of the game. For
completeness, the definitions not shown in Tab. I are given
as follows:

s |= true always,
s |= a ⇐⇒ a ∈ L(s),
s |= ¬φ ⇐⇒ s 6|= φ,
s |= φ1 ∧ φ2 ⇐⇒ s |= φ1 and s |= φ2,
λ |= φ ⇐⇒ λ0 |= φ .

The problem of verification for branching-time properties
is formulated in a way analogous to Problem 1. Given
a game G, its state s and a branching-time property φ,
the verification problem can be solved similarly to PCTL∗

model checking for MDPs [31]. Intuitively, the solution is
achieved by traversing the parse tree of φ in a bottom-up
fashion. Iteratively, the innermost subformulas, which are
either probabilistic LTL properties or total reward properties,
are solved using techniques discussed in Sec. III-B-III-D,
and replaced by new atomic propositions such that a state is
labelled with the new proposition if and only if the answer
to Problem 1 for the corresponding property is ‘yes’. For full
description, see [2].

On the other hand, the formulation of the strategy syn-
thesis problem in Problem 2 does not extend to branching-
time properties in a straightforward way. For example, for a
formula φ = P./p1 [ψ1]∧P./p2 [ψ2], the semantics implies that
s |= φ if there exists a Player 1 strategy π1 ∈ Π such that,
for all Player 2 strategies σ ∈ Σ, it holds Prπ1,σ

G,s (ψ1) ./ p1,
and, at the same time, there exists a Player 1 strategy
π2 ∈ Π (possibly different than π1) such that, for all Player
2 strategies σ ∈ Σ, it holds Prπ2,σ

G,s (ψ2) ./ p2. This means
that, even if the satisfaction s |= φ holds, there may not exist
a single Player 1 strategy that is a witness to it. While the
problem of strategy synthesis cannot be formulated in this
way for the full logic from Def. 8, there exist branching-
time properties for which the problem can be formulated
and is indeed interesting. For example, consider a formula
φ = P./p[F R./x[Fc a]] which states that, starting from a
state s ∈ S, there exists a Player 1 strategy π1 such that,
with probability that satisfies the bound p and under any
Player 2 strategy, the game reaches a state s′ ∈ S from
which there exists a (possibly different) Player 1 strategy
π2 that guarantees that the expected total reward before
reaching a state labelled with proposition a satisfies the
bound x. Note that, if indeed s |= φ, a witness to this
satisfaction is the strategy π1 and the strategy π2 does not
need to be constructed. In [2], the author discussed the
strategy synthesis problem for a fragment of branching-time
properties in Def. 8. To be specific, an algorithm is described
to synthesise a winning Player 1 strategy for branching-
time properties of the form P./p[ψ] and R./x[F∗ φ]. Similarly
to the verification case above, the algorithm is based on
traversing the parse tree of the formula and constructing
strategies for probabilistic LTL and total reward properties
using techniques from Sec. III-B-III-D.

Remark 1: The semantics of branching-time properties
can also be defined in a different way as follows. First, let the
properties in Def. 6 be interpreted over Markov chains rather
than over states of a game. More formally, given a game G,
its state s ∈ S, a Player 1 strategy π ∈ Π, and a Player 2
strategy σ ∈ Σ, we let G, s, π, σ |= P./p[ψ] if and only if
Prπ,σG,s (ψ) ./ p, and the semantics for the reward operator
Rr./x[ρ] is defined in an analogous way. Given a state s ∈ S
and a property φ = P./p[ψ] or φ = Rr./x[ρ], the verification
problem then asks for existence of a Player 1 strategy π such
that, for all Player 2 strategies σ, it holds G, s, π, σ |= φ, and,
likewise, the strategy synthesis problem aims to construct
such a Player 1 strategy. This semantics of properties can
be straightforwardly extended to branching-time properties
in Def. 8. For example, for a formula φ = φ1 ∧ φ2, it
holds that G, s, π, σ |= φ if and only if G, s, π, σ |= φ1

and G, s, π, σ |= φ2. Especially, note the difference between
this semantics of a conjunction and the semantics given
earlier in this section, after Def. 8. Both formulations of
the verification and strategy synthesis problems can now
be directly extended from simple linear-time and reward
properties to branching-time properties. The problems are,
however, very intricate. It has been shown in [48] that,
already for PCTL, a fragment of the above branching-time



properties with the probabilistic operator, the games are
generally not determined. That means that there might exist
states of the games from which neither of the two players has
a winning strategy. Moreover, winning strategies may require
(possibly infinite) memory and/or randomisation. Therefore,
it makes sense to formulate the verification and strategy
synthesis problems for specific subclasses of strategies, e.g.,
pure finite-memory or randomised infinite-memory strate-
gies. In [48], the authors prove several complexity results for
the verification problem with restricted classes of properties
and strategies, including an undecidability result for a simple
fragment of PCTL and finite-memory strategies.

H. Stochastic Games with Multiple Players

The definition of a stochastic game in Def. 1 can be
extended to a multi-player stochastic game as follows.

Definition 9 (Multi-player stochastic game):
A multi-player stochastic game is a tuple G =
(S, (S1, . . . , Sn, Sp),∆), where S is a finite set of
states partitioned into a set of probabilistic states Sp and
sets S1, . . . , Sn of states of Players 1 to n, respectively.
Probabilistic transition function ∆: S × S → [0, 1] is
such that for all states s ∈

⋃
1≤i≤n Si it holds that

∆((s, s′)) ∈ {0, 1} for every s′ ∈ S, and for probabilistic
states s ∈ Sp we have

∑
s′∈S ∆((s, s′)) = 1.

A strategy for Player i ∈ {1, . . . , n} is defined as in
Def. 4. A strategy for a coalition of players C ⊆ {1, . . . , n}
consists of a set of strategies for the players in the coalition,
one for each player. Definitions of linear- and branching-
time properties in Def. 6 and 8 can be extended to consider
coalitions of players C ⊆ {1, . . . , n} using syntax 〈〈C〉〉φ.
For branching-time properties, the resulting logic is called
rPATL∗; for detailed definition of the semantics, see [35], [2].
Intuitively, multi-player verification and strategy synthesis
problems ask whether and how players of the coalition C
can cooperatively guarantee satisfaction of the property φ.
These problems reduce to the corresponding Problem 1 and 2
for the stochastic game with two players, where Player 1
represents the collective behaviour of the coalition C and
Player 2 represents the remaining players {1, . . . , n} \ C.

IV. MULTI-OBJECTIVE GAME SOLVING

In this section, we discuss the problem of strategy syn-
thesis, where the goal is to simultaneously satisfy a certain
combination of properties of the form in Def. 6.

A. Problem Formulation

Definition 10 (Multi-objective property): A multi-
objective property Φ is a conjunction of properties of the
form P≥p[ψ] and Rr≥x[ρ].

The semantics of a multi-objective property involving n
probabilistic properties and m reward properties, i.e.,

Φ =

n∧
i=1

P≥pi [ψi] ∧
m∧
j=1

R
rj
≥xj

[ρj ]

is defined over states s ∈ S of a game G as follows. It holds
that s |= Φ if and only if there exists a Player 1 strategy π ∈

Π such that, for all Player 2 strategies and 1 ≤ i ≤ n, it holds
Prπ,σG,s (ψi) ≥ pi, and similarly, for all Player 2 strategies and
1 ≤ j ≤ m, it holds Eπ,σG,s (rew(rj , ρj)) ≥ rj . Note that,
while such a conjunction is syntactically a branching-time
property according to Def. 8, its semantics is different. In
fact, the semantics of a multi-objective property is in line
with the alternative semantics of branching-time properties
discussed in Rem. 1.

Every property of the form Rr≤x[ρ] is equivalent to property
R−r≥−x[ρ] and, similarly, every property of the form P≤p[ψ]
is equivalent to P≥1−p[¬ψ]. Thus, the above definition of a
multi-objective property covers conjunctions of all properties
from Def. 6. While in Def. 10 we define multi-objective
properties only as conjunctions (unlike, e.g., in [49], where
any positive Boolean combinations are allowed), we address
more complex combinations for some classes of properties
further in this section.

Let Φ be a multi-objective property involving n proba-
bilistic properties and m reward properties. For simplicity,
we use r = (r1, . . . , rm) to denote the vector of reward
structures and r(s) = (r1(s), . . . , rm(s)), for every s ∈ S.
Similarly, p = (p1, . . . , pn) and x = (x1, . . . , xm) denote
the vectors of probability and reward bounds. Instead of Φ,
we sometimes write Φ(p,x) to emphasise the corresponding
bounds. We say that Φ(p,x), or the vector of bounds (p,x)
for Φ, is achievable if and only if there exists a winning
strategy for Player 1 that guarantees all properties in Φ with
bounds p,x. The optimal achievable vectors of bounds are
called Pareto vectors.

Definition 11 (Pareto set): Let Φ be a multi-objective
property involving n probabilistic and m reward properties.
A vector (p,x) ∈ Rn+m is called a Pareto vector if the
property Φ(p− ε,x− ε) is achievable for every ε > 0 and
Φ(p + ε,x + ε) is not achievable for any ε > 0. Pareto set
P is the set of all Pareto vectors for Φ.

The problems of multi-objective verification and strategy
synthesis is formulated analogously to the single-objective
case stated in Problem 1 and 2. Unlike in the single-objective
case, optimal strategies might not exist. This is already true,
for example, for precise-value games, where the objective is
to achieve a precise value (related to probability or reward).
Such a property can be expressed as a conjunction of two
single-objective properties, and it has been shown in [46]
that, in these games, a winning strategy may not exist for
either of the two players.

In this section, we discuss existing solutions to multi-
objective strategy synthesis depending on what type of
properties are being combined. The solutions compute ε-
approximations of Pareto sets and the corresponding ε-
optimal strategies.

Definition 12 (Pareto set approximation): For ε > 0, an
ε-approximation of the Pareto set is a set of vectors Q such
that for every (q,y) ∈ Q there exists a Pareto vector (p,x) ∈
P with ‖(q,y) − (p,x)‖ ≤ ε, and vice versa, for every
Pareto vector (p,x) ∈ P there exists a vector (q,y) ∈ Q
with ‖(q,y) − (p,x)‖ ≤ ε, where ‖ · ‖ is the Manhattan
distance defined as the sum of componentwise differences.



V ∗n (s) =


{x ∈ Rm≥0 | x ≤ r(s)} if n = 0,

dwc(r(s) + conv(
⋃

∆(s,s′)=1 V
∗
n−1(s′))) if n > 0 and s ∈ S1,

dwc(r(s) +
⋂

∆(s,s′)=1 V
∗
n−1(s′)) if n > 0 and s ∈ S2,

dwc(r(s) +
∑

∆(s,s′)>0 ∆(s, s′) · V ∗n−1(s′)) if n > 0 and s ∈ Sp,
x ·X = {x · x | x ∈ X},

x +X = {x + x′ | x′ ∈ X},
dwc(X) = {y | ∃x ∈ X : y ≤ x},
conv(X) = {y | ∃x,x′ ∈ X,α ∈ [0, 1] : y = αx + (1− α)x′}.

Fig. 5: Iterative computation of an ε-approximation of the Pareto set for a multi-objective total reward property. Here, x ∈ R≥0 is a real
number, x ∈ Rm≥0 is a vector, X ⊆ Rm≥0 is a set, and ≤ is the componentwise partial order on Rm≥0. Given a stopping game G with
multiple reward structures r and a multi-objective total reward property Φ(x), the approximation is computed for every state s ∈ S in
k = |S|+ d|S| · ln(ε·(n·M)−1)

ln(1−δ) e iterations, where M = |S| · maxi,s∈S ri(s)
δ

, δ = ∆
|S|
min, and ∆min is the smallest positive probability in G.

B. Multi-Objective Total Reward Properties

Here we discuss the strategy synthesis problem for multi-
objective properties that only involve total reward properties
of the form Rr≥x[C]. The problem has been recently inves-
tigated in [49], [5]. As discussed in Sec. IV-A, there exist
games in which neither Player 1 nor Player 2 have winning
strategies. Moreover, for stopping games with precise-value
objectives randomised exponential memory strategies may be
needed for Player 1 to win [46], and, for stopping games with
general total reward objectives, randomised infinite memory
strategies may be required [49]. The problem of whether
there exists a pure winning strategy for Player 1, in stopping
games, is undecidable [49].

The ε-approximation of the Pareto set for a stopping game
G and a multi-objective property Φ(x) can be computed
using the iteration algorithm in Fig. 5. Intuitively, the set
V ∗n (s) for a state s ∈ S computed in the n-th iteration of
the algorithm is the downward closure of vectors of bounds
achievable by Player 1, from s, in the finite time horizon of
up to n steps. As Player 1 can randomise between successors
of his/her states, the set V ∗n (s) for s ∈ S1 is computed as
a downward, convex closure of the union of V ∗n−1(s′), for
all s′ such that ∆(s, s′) = 1. For s ∈ S2, the bounds must
be achievable for all successor states and, hence, we take
the intersection. Finally, for probabilistic states s ∈ Sp, we
consider the sum weighted by the corresponding probabilistic
distribution.

Given an ε-approximation of the Pareto set, the corre-
sponding ε-optimal Player 1 strategy can be constructed
as described in [5]. To succinctly represent such strategies
using a finite set of memory elements, the authors extend
the definition of a strategy from Def. 4 to allow stochastic
memory update, i.e., the memory update function is of type
πu : M × S → D(M) and the initial memory element
function is πinit : S → D(M). In the construction, the
vertices of approximation sets V ∗n (s), s ∈ S, act as memory
elements and represent the vector of reward bounds that
the strategy currently aims to achieve. The distributions in
functions πu and πinit are constructed so that the expected

value of the next memory element is an ε-approximation
of the target reward bounds x. Comparing to deterministic
update strategies from Def. 4, with stochastic memory update
strategies the memory required to win reduces from up to
exponential to linear for stopping games with precise-value
objectives [46] and from up to infinite to finite for stopping
games with general total reward objectives [49].

Besides conjunctions of total reward properties, the au-
thors in [49] discuss multi-objective properties constructed as
a disjunction of total reward properties. It is shown that there
exists a strategy achieving the disjunction if and only if there
exists a strategy achieving a certain single-objective total
reward property and thus pure memoryless strategies suffice
to achieve a disjunction of total reward properties. Moreover,
an algorithm for computing an ε-approximation of the Pareto
sets for stopping games is presented. By combining the
two algorithms for conjunctions and disjunctions, we obtain
a solution for any positive Boolean combination of total
reward properties for stopping stochastic games through first
rewriting the combination into conjunctive normal form.

Example 5: For the autonomous car from Ex. 1, we
consider the conjunction of total reward properties Rrtime

≤x1
[C]∧

R
renergy
≤x2

[C] that aims to compute a strategy that, simultane-
ously, guarantees that the expected total time is at most
x1, and the expected total energy is at most x2. An ε-
approximation of the Pareto set computed using the algo-
rithm in Fig. 5 for ε = 0.1 is shown in Fig. 6. For example,
for x1 = 3.4, x2 = 5.7, the winning strategy generated
by PRISM-games for the property is a stochastic memory
update strategy with 155 memory elements that, in a non-
trivial way, probabilistically switches between changing lane
and honking for both hazards. The strategy can be viewed
at [30].

C. Multi-Objective Probabilistic Reachability Properties

Using the reduction of probabilistic reachability proper-
ties to total reward properties described in Sec. III-B, the
iterative algorithm in Fig. 5 can be adapted to compute ε-
approximations of Pareto sets for any stopping stochastic
game with a multi-objective property that involves only prob-



Fig. 6: An ε-approximation of the Pareto set for multi-objective
total reward property R

rtime
≤x1 [C] ∧ Rrenergy

≤x2 [C] for the game introduced
in Ex. 1.

abilistic reachability properties. Disjunctions of probabilistic
reachability properties can be addressed in a similar manner,
using the reduction from Sec. III-B with the algorithm for
disjunctions of total reward properties from [49]. Hence,
stopping games with any positive Boolean combination of
probabilistic reachability properties can be handled.

D. Multi-Objective Probabilistic LTL Properties

For stopping stochastic games, the strategy synthesis prob-
lem for multi-objective properties involving only probabilis-
tic LTL properties P≥pi [ψi], 1 ≤ i ≤ n, has been discussed
in [5]. In this case, the solution is to construct a deterministic
Rabin automaton for each ψi and then build a synchronous
product of all the automata and the original game G, with
a new terminal state which is entered after G enters any of
its terminal states. Since G is stopping, it indeed suffices to
analyse satisfaction of formulas upon reaching a terminal
state. The problem then reduces to solving the product
game with respect to a multi-objective reachability property.
Finally, since the resulting product game is again stopping,
we can apply the approach from Sec. IV-C. It follows that,
in fact, we can solve any positive Boolean combination of
probabilistic LTL properties for stopping stochastic games.

For general stochastic games, the strategy synthesis prob-
lem for multi-objective probabilistic LTL properties remains
open.

Example 6: Consider the conjunction P≥p1 [F succ] ∧
P≥p2 [G¬acc] of the reachability and safety LTL properties
for the autonomous car example. An ε-approximation of
the Pareto set computed using the algorithm in Fig. 5 for
ε = 0.001 is shown in Fig. 7. For example, for p1 =
0.7, p2 = 0.2, there exists a pure memoryless winning
strategy (in PRISM-games generated as a stochastic memory
update strategy with 25 memory elements) that brakes in a
traffic jam and honks when approaching a pedestrian. The
strategy can be viewed at [30].

E. Mixed Multi-Objective Properties and Compositional
Strategy Synthesis

From the sections above it follows that, for stopping
stochastic games, we can ε-approximate Pareto sets for any
positive Boolean combination of total reward, probabilistic
reachability and probabilistic LTL properties.

Fig. 7: An ε-approximation of the Pareto set for multi-objective
probabilistic LTL property P≥p1 [F succ] ∧ P≥p2 [G¬acc] for the
game introduced in Ex. 1.

In [50], the authors also discuss a different approach to
multi-objective strategy synthesis through composition. First,
a composition of stochastic games is defined, in a way
that preserves the identity of Player 1. Here, the compo-
nent stochastic games Gi, i ∈ I = {1, . . . , N}, that are
being composed are considered to have labels on Player 1
and Player 2 transitions referred to as actions and, in the
composed game G =‖i∈I Gi, component games synchronise
on actions. Properties of the component games, as well as
the composed game, are then defined over sequences of
actions called traces, rather than over paths as in Def. 6.
Under the assumption that the component games are com-
patible, i.e., all actions of Player 1 in each composite game
are enabled and fully controlled by Player 1, the Player
1 strategy π = ‖i∈I πi for G that is a composition of
Player 1 strategies πi for component games Gi preserves
all properties. More precisely, if strategies πi guarantee a
(possibly multi-objective) property Φi in component games
Gi, then the composed strategy π guarantees property Φ in
G, where Φ is any property for the composed game that can
be derived from Φi using, for example, assume-guarantee
rules in [51]. In particular, Player 1 of different component
games can cooperate to achieve a common goal: if in one
component game Player 1 guarantees a property Φ2 under
some assumption Φ1 on the environment, i.e., Φ1 ⇒ Φ2, and
Player 1 in a different component game ensures Φ1, then the
composition satisfies property Φ2.

The framework for compositional strategy synthesis pre-
sented in [50] first computes an ε-approximation Q of the
Pareto set for Φ based on ε-approximations Qi of Pareto
sets for Φi. For a chosen achievable vector of bounds (p,x)
for Φ, Player 1 strategies πi are synthesised for component
games Gi that achieve Φi(pi,xi), where (pi,xi) are the
bounds obtained by projecting (p,x) from Q to Qi. The
composed strategy π = ‖i∈I πi then achieves Φ(p,x). Note
that in order to take full advantage of assume-guarantee rules,
we would need to be able to synthesise strategies for arbitrary
Boolean combinations of properties.

Example 7: An example illustrating the compositional ap-
proach to multi-objective game solving can be found in [52].
Here, we present results obtained using reductions to total
reward properties as discussed earlier in this section. We
combine various properties for the autonomous car from



Fig. 8: An ε-approximation of the Pareto set for mixed multi-
objective property P≥p1 [F succ]∧P≥p2 [G¬acc]∧Rrenergy

≤x1 [C] for the
game introduced in Ex. 1.

Ex. 1 in the following conjunction:

P≥p1 [F succ] ∧ P≥p2 [G¬acc] ∧ Rrenergy
≤x1

[C].

An ε-approximation of the Pareto set computed using the
algorithm in Fig. 5 for ε = 0.01 is shown in Fig. 8. For exam-
ple, for p1 = 0.7, p2 = 0.13, x1 = 5.7, the winning strategy
for the property generated by PRISM-games is a stochastic
memory update strategy with 775 memory elements that, in
a non-trivial way, probabilistically chooses between all three
reactions for a traffic jam and between honking and braking
for a pedestrian. The strategy can be viewed at [30].

F. Multi-Objective Discounted Reward Properties

To the best of our knowledge, properties that combine mul-
tiple discounted reward properties have only been addressed
for the subclass of stochastic games with one player and
probabilistic states, i.e., MDPs [53]. Note that the reduction
from discounted reward to total reward properties discussed
in Sec. III-E alters the transition probabilities of the game
depending on the discount factor β ∈ (0, 1). It follows that,
using this reduction, the iterative algorithm in Fig. 5 can be
applied to compute ε-approximations of Pareto sets for any
stochastic game with a Boolean combination of discounted
reward properties with the same discount factor.

G. Multi-Objective Average Reward Properties

For multi-objective synthesis with multiple average re-
ward properties, we cannot apply the approach presented
in Sec. IV-B. The reason is that the algorithm in Fig. 5
approximates the Pareto set in a finite number of iterations by
combining the achievable values of successive states. How-
ever, infinite horizon properties such as the expected average
reward disregard all transient behaviour. Preliminary results
for multi-objective average reward synthesis have been pre-
sented in [1], where the authors consider conjunctions of a
special case of the (single-objective) expected average reward
properties, almost sure average reward properties Rr=1,≥x[S],
that require that the average reward achieved over a path is

above a given bound with probability 1. Formally, given a
game G, its state s ∈ S, a reward structure r and Player
1 and Player 2 strategies π, σ, respectively, the relation
G, s, π, σ |= Rr=1,≥x[S] holds true if and only if

Prπ,σG,s ({λ ∈ Paths | rew(r, S)(λ) ≥ x}) = 1.

Note that this implies G, s, π, σ |= Rr≥x[S], but the reverse
implication is not necessarily true, see [1] for an example.

The authors show that synthesis for multi-objective prop-
erties of this type reduces to synthesis for multi-objective
expected energy properties. Intuitively, given a reward struc-
ture r possibly assigning both positive and negative values to
states, the expected energy property requires that, for every
state s ∈ S of the game, there exists a bound x such that
the expected total reward obtained starting from s in k steps
is at least x for all k ≥ 0. Only finite-memory (possibly
stochastic memory update) strategies are considered and it
holds that every Player 1 strategy that satisfies the expected
energy property also satisfies the almost sure average reward
property over the same reward structure with bound 0, and
hence the same applies for ε-optimal strategies. As Rr=1,≥x[S]

is equivalent to Rr−x=1,≥0[S], the above property can be adapted
for any almost sure average reward property.

Given a game G, multiple reward structures r (allowing
both positive and negative reward values), a vector of bounds
x for the almost sure average reward properties and ε > 0,
the authors design an algorithm that terminates with a finite-
memory stochastic update ε-optimal strategy if the vector x
is achievable. The algorithm uses value iteration to compute
ε-optimal strategies for the corresponding multi-objective
expected energy property.

Finally, the authors generalise the almost sure average
reward property to a ratio reward property R

r/c
=1,≥x[S], where,

given a game G, its state s ∈ S, two reward structures r, c
and Player 1 and Player 2 strategies π, σ, respectively, the
relation G, s, π, σ |= R

r/c
=1,≥x[S] holds true if and only if

Prπ,σG,s ({λ ∈ Paths | rew(r/c, S)(λ) ≥ x}) = 1, where

rew(r/c, S)(λ) := lim inf
k→∞

rew(r, C≤k)(λ)

rew(c, C≤k)(λ) + 1
.

Note that property Rr=1,≥x[S] is equivalent to property
R
r/c
=1,≥x[S] for a reward structure c(s) = 1, s ∈ S. To

solve the strategy synthesis problem for a ratio reward
property R

r/c
=1,≥x[S], it suffices to solve the problem for the

almost sure average reward property Rr−x·c=1,≥0[S], and this can
be straightforwardly extended to multi-objective properties
using vectors.

V. IMPLEMENTATION

Software tools for analysis of games include the fol-
lowing. Among the tools that focus on subclasses of
stochastic games, QUASY [54] offers synthesis of strate-
gies for MDPs and non-stochastic games with mean-payoff
objectives. Methods for expected ratio reward objectives
are implemented in [55]. MultiGain [56] solves MDPs
with multi-objective mean-payoff properties. PRISM [21]



performs verification for MDPs with single- and multi-
objective properties, namely probabilistic LTL and expected
total reward. MOCHA [57] is a tool for verification and
strategy synthesis for non-stochastic games with alternating-
time temporal logic (ATL) specifications, as well as for
automatic checking of assume-guarantee queries.

For stochastic games, GIST [58] offers support for quali-
tative verification, i.e., probability 1 or non-zero probability,
of stochastic games with ω-regular properties. GAVS+ [59]
includes implementation of value and policy iteration for
stochastic games with reachability properties.

Finally, for various extensions of stochastic games briefly
discussed in Sec. VII below, EAGLE [60] and PRA-
LINE [61] analyse Nash equilibria for non-stochastic games.
Uppaal Stratego [62] performs strategy synthesis for real-
time systems against quantitative properties. The TuLiP tool-
box [63] provides synthesis for linear (continuous) systems
with GR(1) specification.

In comparison, most of the algorithmic solutions presented
in this paper including single- and multi-objective, as well
as compositional strategy synthesis problems for stochastic
games and games with multiple players, have been imple-
mented in the open-source tool called PRISM-games [19],
[20], which can be downloaded from [64]. PRISM-games
can be used to model, verify, solve and simulate stochastic
games with complex properties. It has been developed as
an extension of the probabilistic model checker PRISM [21]
and takes advantage of PRISM’s modelling and specification
language, as well as the existing user interface and simulator.

The original version, PRISM-games 1.0 [19], allows one to
model multi-player stochastic games as introduced in Def. 9
using modules with synchronising actions. The recently re-
leased version, PRISM-games 2.0 [20], adds a compositional
modelling approach to facilitate the compositional strategy
synthesis discussed in Sec. IV-E.

The specification language is based on rPATL [35], a
fragment of the branching-time logic in Def. 8 that also
allows specification of properties for coalitions of players
as discussed in Sec. III-H. In particular, rPATL subsumes
single-objective probabilistic reachability, a restricted class
of probabilistic LTL properties, and total reward properties
with ρ = F∗ a, and their Boolean combinations. In the first
version, PRISM-games supports rPATL formulas, numerical
queries and precise-value operators P=p, R

r
=x [46]. The new

version adds several single-objective properties, namely total
reward properties with ρ = C for stopping games, average
reward and ratio properties for a special class of games
called controllable multichain games (for details, see [52]),
and almost sure average reward and ratio properties. Besides
single-objective properties, PRISM-games 2.0 allows multi-
objective properties expressed as Boolean combinations of
the same type of reward properties, except for the almost
sure average and ratio reward properties for which only
conjunctions are supported.

From the implementation point of view, PRISM-games
builds on the Java-based engine of PRISM and handles
games in an explicit-state fashion. In the multi-objective

strategy synthesis, a feature introduced in the new version
of the tool, the computation relies on the Parma Polyhedra
Library [65] for symbolic manipulation of convex sets during
ε-approximate computation of Pareto sets.

VI. CASE STUDIES

Stochastic games have been used to model and analyse
various control and networked systems. Here we list a set
of examples that have been evaluated using PRISM-games,
and offer their intuitive description. As mentioned in Sec. V,
tools such as GIST and GAVS+ provide partial support
for stochastic games, but have only been used with small,
illustrative examples. For more information, we refer the
interested reader to the indicated publications and references
therein. Experimental evaluation of some of the examples
can also be found in [19], [20]. A more exhaustive list of
examples is maintained in the publications section of the
PRISM-games website [64] and in the database of PRISM
and PRISM-games case studies [66].

Microgrid demand-side management [2]: The example
models a decentralised energy management algorithm for
smart grids. The system consists of a set of households that
generate loads of various duration. Each household follows a
simple algorithm to execute a load if the current energy cost
is below a pre-agreed limit, otherwise it only executes the
load with a pre-agreed probability. The energy cost to execute
a load for a single time unit is the number of loads currently
being executed in the grid. The algorithm is analysed with
respect to the expected load per cost unit for a household,
formulated as a single-objective total reward property.

Collective decision making for sensor networks [2]:
Sensor networks comprise of a set of low-power, autonomous
devices that often must collaborate to achieve a goal. Here,
a set of sensors is considered with the goal to agree on a
target with the highest quality using a decentralised decision
algorithm. In the algorithm, a sensor can probabilistically
change its preferred target either based on its own exploration
of available targets or based on communication with other
sensors. The proposed decision procedure is analysed with
respect to the speed of convergence, formulated as a total re-
ward property, and robustness, i.e., the ability to recover from
a bad decision to a good one, formulated as a branching-time
property with nested probabilistic operators.

Reputation protocol for user-centric networks [2]: User-
centric networks are designed to encourage users to cooper-
ate in sharing resources and services in order to, for example,
provide connectivity in a mobile ad-hoc network. The case
study presents a general model consisting of providers offer-
ing services to requesters. A requester chooses a provider and
submits a request. The provider decides whether to accept
the request based on a trust level towards the requester that
is dependent on his/her reputation across all users in the
network. If the request is accepted, the cost of the service
is negotiated. After service delivery, the requester chooses
whether to pay the cost or not, thus increasing or decreasing
his/her trustworthiness, respectively. Using expected total
reward properties, the maximum number of unpaid services



that the requester can obtain is computed as well as the
minimum price at which the requester can buy a particular
number of services. Strategy synthesis is used to uncover
possibly undesirable optimal behaviour of the requester in
the latter case, and an adjustment to the protocol is suggested
to improve it.

Futures market investor [66]: An investor in a futures
market decides when to invest in shares of a specific com-
pany. The decision can be made on the first day of any
month collecting the payoff one month later. The market
value of shares changes probabilistically over time within
a bounded range and the distribution changes based on
the current value. Moreover, the market can temporarily
decide to bar the investor from making the investment. The
corresponding stochastic game is analysed to compute the
maximum expected payoff that the investor can guarantee
for various initial share values and the optimal strategies are
discussed.

Human-in-the-loop UAV mission planning [3]: An un-
manned aerial vehicle (UAV) is performing road network
surveillance, reacting to inputs from a human operator. The
UAV acts autonomously in fulfilling most of the piloting
functions, such as selecting most of the waypoints that com-
prise the route, and flying the route. The operator primarily
performs sensor tasks at waypoints but may also pick a
road for the UAV at waypoints. The optimal UAV piloting
strategy depends on mission objectives, e.g., safety, reacha-
bility, coverage, and operator characteristics, i.e., workload,
proficiency, and fatigue. For the stochastic game modelling
the situation, the minimum expected time of completing the
temporal mission of covering a set of waypoints is computed.
Moreover, a multi-objective property is considered to analyse
the trade-off between the completion time and the number
of visits to restricted operating zones.

Autonomous urban driving [5]: An autonomous car is
considered that drives through an urban environment and
reacts to hazards such as pedestrians, obstacles, and traffic
jams. Note that this case study serves as a motivation for our
illustrative example presented in Ex. 1. Here, the car does not
only decide on the reactions to hazards, but also chooses the
roads to take in order to reach a target location. The presence
of hazards, as well as the effects of reactions, may differ
between roads. Through multi-objective strategy synthesis,
strategies with optimal trade-off between the probability
of reaching the target location, the probability of avoiding
accidents and the overall quality of roads on the route, are
identified.

Aircraft power distribution [1]: An aircraft electrical
power network is considered, where power is to be routed
from generators to buses through controllable switches. The
generators can exhibit failures and switches have delays. The
system consists of several components, each containing buses
and generators, and the components can deliver power to
each other. The network is modelled as a composition of
stochastic games, one for each component. Compositional
strategy synthesis is applied to find strategies with good
trade-off between uptime of buses and failure rate. The prop-

erty is modelled as a conjunction of ratio reward properties.
Self-adaptive software architectures [67], [68], [69], [70]:

Software systems dealing with distributed applications in
changing environments normally require human supervision
to continue operation in all conditions. Self-adaptive software
architecture is a response to these demands, where the system
automatically adapts its structure and behaviour according
to changes in real time. Both single- and multi-objective
verification of multi-player stochastic games is applied to
analyse three self-adaptive software architectures, namely,
the impact of communication topology for collections of
fully cooperative systems defending against an external at-
tack, the infrastructure for a news website, and an adaptive
industrial middleware used to monitor and manage sensor
networks in renewable energy production plants.

DNS Bandwidth Amplification Attack [9]: The Domain
Name System (DNS) is an Internet-wide hierarchical naming
system for assigning IP addresses to domain names, and any
disruption of the service can lead to serious consequences. A
notable threat to DNS, namely the bandwidth amplification
attack, where an attacker attempts to flood a victim DNS
server with malicious traffic, is modelled as a stochastic
game. Verification and strategy synthesis is used to analyse
and generate countermeasures to defend against the attack.

VII. CONCLUSION

In this work, we have overviewed the existing body
of knowledge and algorithmic solutions to the verification
and strategy synthesis problems for stochastic games. We
addressed a large class of properties, from probabilistic
linear-time through various expected reward properties, to
their branching-time and multi-objective combinations. As
demonstrated through the case studies, the techniques can
be used to analyse various control systems, for example,
in network management, autonomous and human-in-the-loop
planning, and security attack countermeasures. Evaluation
of such systems can be achieved using the practical im-
plementation of the algorithms in PRISM-games. Though
several of the algorithms have have high computational
complexity, the range of case studies that have been tackled
using stochastic games is encouraging, and we anticipate
that by adapting implementation techniques that have been
successful in probabilistic verification, for example symbolic
methods and Monte carlo sampling, will allow us to broaden
the applicability even further.

While some of the open questions have already been
identified in the previous sections, the following extensions
of games pose further challenges.

Concurrent games, where players choose their moves
concurrently rather than in turns, comprise the original games
with probability introduced by Shapley [11], and they are a
natural extension of stochastic games discussed here. For an
overview of existing techniques, see, e.g., [12], [13], [14].

Partial-observation games, where the current state of the
game is only partially observed (by one or both of the play-
ers), represent another widely studied model of games [17],
[71]. Recent results include [72], [73]. Besides concurrent



and stochastic games, they subsume models such as partially
observable Markov decision processes (POMDPs) [74] and
probabilistic automata [75].

There exist several extensions of games to infinite
state spaces. For example, uncertain or bounded-parameter
MDPs [18], [27], [28], [29], pushdown games [76], and a
large class of timed games [77], [78], [79], [80].

Finally, one can consider nonzero-sum games, or games
with equilibria, where the objectives of players are not
necessarily dual. For an overview of results, see, e.g., [81],
[82] and references therein.
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[69] J. Cámara, G. A. Moreno, and D. Garlan, “Reasoning About Human
Participation in Self-adaptive Systems,” in Proc. of Software Engi-
neering for Adaptive and Self-Managing Systems SEAMS, 2015, pp.
146–156.

[70] ——, “Stochastic Game Analysis and Latency Awareness for Proactive
Self-adaptation,” in Proc. of Software Engineering for Adaptive and
Self-Managing Systems SEAMS, 2014, pp. 155–164.

[71] D. Rosenberg, E. Solan, and N. Vieille, “Stochastic Games with
Imperfect Monitoring,” in Advances in Dynamic Games, ser. Annals of
the International Society of Dynamic Games, 2006, vol. 8, pp. 3–22.

[72] K. Chatterjee and L. Doyen, “Partial-Observation Stochastic Games:
How to Win when Belief Fails,” Transactions on Compuational Logic,
vol. 15, no. 2, p. 16, 2014.

[73] K. Chatterjee, L. Doyen, S. Nain, and M. Y. Vardi, “The Complexity
of Partial-Observation Stochastic Parity Games with Finite-Memory
Strategies,” in Proc. of Foundations of Software Science and Compu-
tation Structures FOSSACS, 2014, pp. 242–257.

[74] C. Papadimitriou and J. N. Tsitsiklis, “The Complexity of Markov
Decision Processes,” Mathematics of Operations Research, vol. 12,
no. 3, pp. 441–450, 1987.

[75] M. O. Rabin, “Probabilistic automata,” Information and Control,
vol. 6, no. 3, pp. 230 – 245, 1963.

[76] K. Etessami and M. Yannakakis, “Recursive Concurrent Stochastic
Games,” CoRR, vol. abs/0810.3581, 2008.

[77] P. Bouyer and V. Forejt, “Reachability in Stochastic Timed Games,”
in Proc. of International Colloquium on Automata, Languages and
Programming ICALP, ser. LNCS, 2009, pp. 103–114.

[78] V. Forejt, M. Kwiatkowska, G. Norman, and A. Trivedi, “Expected
Reachability-Time Games,” in Proc. of Formal Modelling and Analysis
of Timed Systems FORMATS, ser. LNCS, 2010, pp. 122–136.

[79] T. Brázdil, V. Forejt, J. Krčál, J. Křetı́nský, and A. Kučera,
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