
Partial order reduction for model checking Markov decision processes under
unconditional fairness

Henri Hansen
Department of Software Systems,
Tampere University of Technology

PO Box 553, FI-33101 Tampere, FINLAND
Email: henri.hansen@tut.fi

Marta Kwiatkowska and Hongyang Qu
Department of Computer Science, University of Oxford

Wolfson Building, Parks Road
Oxford, OX1 3QD, UK

Email: marta.kwiatkowska,hongyang.qu@cs.ox.ac.uk

Abstract—Fairness assumptions are needed to verify liveness
properties of concurrent systems. In this paper we explore the
so-called unconditional fairness in Markov decision processes
(MDPs), which is a prerequisite for quantitative assume-
guarantee reasoning. Unconditional fairness refers to execu-
tions where all processes are guaranteed to participate. We
prove that realisability of unconditional fairness coincides with
the absence of partial deadlocks, i.e., end components where a
process suffers from starvation. We propose a weak variant of
the stubborn set method to reduce MDPs, while preserving the
realisability of unconditional fairness and maximal probabili-
ties of reaching bottom end components under fair schedulers.

Keywords-Probabilistic model checking; partial order reduc-
tion; Markov decision processes; unconditional fairness

I. INTRODUCTION

Probabilistic model checking refers to a range of auto-
mated and systematic techniques for verification of systems
exhibiting probabilistic behaviours. It has received much
attention in the last two decades and has been applied to var-
ious problems, from communication protocols to biological
systems. With continuous improvement of the technique, the
size of systems that can be handled by probabilistic model
checkers has increased. Nevertheless, the larger systems ex-
ceed the capacity of available tools. Recently, compositional
verification has been introduced for probabilistic model
checkers [1], [2]. In compositional verification, a system is
verified by analysing modules of the system individually.
Due to the probabilistic and concurrent characteristics of the
problem, fairness conditions in general, and unconditional
fairness in particular, are required for the verification of
probabilistic liveness properties [2].

In this paper, we present and implement an approach to
establish probabilistic properties under unconditional fair-
ness. In our approach, we incorporate partial order reduc-
tion to tackle the so called state space explosion problem.
Partial order reduction has been studied intensively for
non-probabilistic system, such as [3], [4], [5], [6]. For
probabilistic systems, only the ample set approach has been
investigated [7], [8], [9], [10] so far as ample sets are
comparably easier to compute than stubborn sets, in spite

of the better reduction from the latter. [11] gave a survey on
these methods. Our paper is the first to combine the stubborn
set approach and probabilistic model checking. In addition,
we adopt the weak stubborn set method, instead of the
well-known (strong) stubborn set, to obtain more compact
reduced models. Weak stubborn sets are often regarded as
impractical, but Hansen and Wang have recently described
an efficient and accessible method [12]. It is worth noting
that our approach can also be applied to probabilistic ver-
ification without fairness constraints. Another contribution
of this paper is the realisability check for unconditional
fairness, which can be performed efficiently on the non-
probabilistic version of the original model. This is very
useful for examining the compatibility of the components
in a parallel composition.

This paper is structured as follows. Section II presents
the background knowledge about LTSs, MDPs and uncondi-
tional fairness (UF). In Section III, we discuss our approach
for checking realisability of UF in MDPs, which can be
reduced to the realisability of UF in LTSs. In Section IV, we
use the weak stubborn sets to generate a reduced model and
to compute the maximum/minimum probability of reaching
a set of target states under unconditional fairness. The model
checking algorithm for computing the max/min probability is
explained in Section V. We briefly discuss some implemen-
tation choices and present experimental results in Section VI.
We conclude the paper in Section VII.

II. PRELIMINARIES

A. MDPs and LTSs

MDP An MDP is a tuple M = (S,Σ,Steps, s) where
• S is a finite set of states,
• s ∈ S is the initial state,
• Σ is a finite set of actions,
• Steps : (S × Σ) → Dist(S) ∪ {⊥} is the probabilistic

transition function.

The probabilistic transition function Steps maps each state
s ∈ S and action a ∈ Σ to an element of Dist(S) ∪ {⊥}.
For each state s ∈ S, Steps defines a set of enabled

actions en(s): en(s) = {a ∈ Σ | Steps(s, a) 6= ⊥}. We
usually write s

a−→ to denote a ∈ en(s). Steps associates
a probability distribution function µ to each enabled action
a at s. For convenience, we assume ⊥ simply assigns the
value zero to all states.

There are two steps to determine a successor state of
s. First, an action is chosen non-deterministically from the
set of enabled actions. Next, the probability of moving to
state s′ is decided by µ, i.e., µ(s′). We assume there are no
terminating states in MDPs.

An action a is said to be deterministic if for all states
Steps(s, a) is either ⊥ or the Dirac-distribution, i.e., it
assigns the probability 1 to some state. If an action is not
deterministic, we say that it is probabilistic.

A path in an MDP is a non-empty sequence of the form

s0

a1
−−−−→ s1

a2
−−−−→ s2 . . .

where for all i ≥ 0, si ∈ S, and there is some µi+1 such
that µi+1 = Steps(si, ai+1) and µi+1(si+1) > 0. We use
ω(i) to denote the ith state in the path ω, ωfin to denote
a finite path, last(ωfin) to denote the last state in ωfin,
and Pathfins (Paths) to denote the set of all finite (infinite)
paths starting in state s. Moreover, the ith action in ω is
represented by step(ω, i), and the i-length prefix of ω is
denoted ωi.

The sequence of actions that occur in ω is denoted by
Σ(ω). An execution ofM, from s to sn, is denoted s a1···an−−−−→
sn, and means that there is some path ω such that Σ(ω) =
a1 · · · an and last(ω) = sn.

The probability measure of a finite path, denoted p(ω), is

defined as the product
n∏
i=1

µi(ω(i)). In addition, we define

the probability of executions as
• p(s a−→ s′) = Steps(s, a)(s′),
• p(s a1···an−−−−→ s′) =∑
s∗∈S

p(s
a1···an−1−−−−−−→ s∗)Steps(s∗, an)(s′).

To resolve the non-deterministic choices when we execute
an MDP, we employ an adversary to select an action based
on the history of choices made so far.

Adversary An adversary A of an MDP M is a function
mapping every finite path ωfin onto an element A(ωfin) of
the set en(last(ωfin)). We use AdvM to denote the set of
all possible adversaries of the MDP and, for any adversary
A, we use PathAs denote the subset of Paths defined as

{ω | ω(0) = s ∧ ∀i.ω(i)
A(ωi)−−−−→ ω(i+ 1)}

We say that the paths in PathAs are controlled by A.

End component An end component (EC) of M is a pair
(R,A) such that R ⊆ S, A : R→ 2Σ and:
• ∅ 6= A(s) ⊆ en(s) for every s ∈ R,

• For each a ∈ A(s) and s ∈ R, {s′ | Steps(s, a)(s′) >
0} ⊆ R,

• R is strongly connected in the transition-state graph of
M.

A bottom EC is an end component with the condition
A(s) = en(s) for all states s ∈ R. Unless stated otherwise,
we assume an EC to be maximal, i.e., that there is no end
component (R′, A′) such that R ⊂ R′.

Parallel composition Let Mi = (Si,Σi,Stepsi, si) be
MDPs. Then the parallel composition M1||M2 is the MDP
(S,Σ,Steps, s), where:
• S = S1 × S2, • Σ = Σ1 ∪ Σ2, • s = (s1, s2),
• Steps((s1, s2), a) = µ1 × µ2 iff

– a ∈ Σ1 ∩ Σ2, Steps1(s1, a) = µ1 and
Steps1(s2, a) = µ2, or

– a ∈ Σ1\Σ2, Steps1(s1, a) = µ1, and µ2 = ηs2 , or
– a ∈ Σ2\Σ1, Steps2(s2, a) = µ2 and µ1 = ηs1

where µ1×µ2 is the product of distributions µ1 and µ2, and
ηsi
∈ Dist(Si) is the Dirac-distribution on si ∈ Si.

For a state s of the parallel composition of n components, we
write s(i) for the state of the ith component and eni(s) =
{a ∈ Σi | s(i)

a−→i}.
LTSs are a special type of MDPs1, where each distribution

is a Dirac-distribution. To distinguish LTSs from the full
class of MDPs, we write L = (S,Σ,∆, s) for an LTS. An
end component in LTSs is also called a strongly connected
component (SCC).

B. Computing maximum reachability probabilities

Verification of MDPs usually requires properties to be
specified in temporal logics, e.g., PCTL [13], [14] and
LTL [15]. Reachability probabilities are one of the key
properties central to probabilistic verification. In this paper,
we focus on maximum reachability probabilities of reaching
a set of target states F ⊆ S from s, over all possible
adversaries:

pmax
s (F) = sup

A∈AdvM

pAs (F)

pAs (F) = ProbAs ({ω ∈ PathAs | ∃i . ω(i) ∈ F}).
Our technique can be extended to minimum reachability
probabilities in a straightforward manner.

Usually, pmax
s (F) can be computed by value iteration or

linear programing. We use value iteration with partial order
reduction, as we dynamically prune transitions to speed
up the state space exploration and probability computation.
In value iteration, a vector is used to store the current
estimation of the probability of states. Iteratively, the vector
is updated by the multiplication of itself and the probabilistic
transition relation, which is represented as a matrix. Let

1Strictly speaking, LTSs allow non-deterministic actions, which does not
affect our proof in next section. Due to the page limit, we do not provide
the full definition of an LTS.

pmax,k
s be the probability of state s in the kth iteration.

Initially, i.e., k = 0, the states in F have probability one
in the vector, and other states have probability zero. For
k > 0, pmax,k

s is defined as follows:

pmax,k
s :=

{
1 if s ∈ F

max
µ∈Steps(s)

∑
s′∈S

µ(s′) · pmax,k−1
s′ if s ∈ S\F .

Eventually, pmax,k
s is guaranteed to converge to pmax

s (F).
In practice, precomputation, such as Prob0A [14] and
Prob1E [16], is performed before value iteration starts in
order to identify states that have either probability one or
zero. These states are excluded from value iteration to save
time and space. However, precomputation cannot be applied
before the state space is generated by partial order reduction.
Therefore, we omit it in this paper. We also write pmax

s ,
instead of pmax

s (F) for simplicity. In [17], [18], an MDP
is decomposed into SCCs first and value iteration is carried
out in each SCC in the reversed topological order, rather
than in the whole model directly. Experimental results in
both papers show that computation time can be dramatically
reduced in this way.

C. Unconditional fairness

Unconditional fairness is crucial in probabilistic assume-
guarantee reasoning [2], as it guarantees that the intermedi-
ate adversary computed during reasoning is not partial.

Unconditional fairness Given an MDP M =
(S,Σ,Steps, s) composed of n components M1, . . . ,Mn,
i.e., M = M1 ‖ . . . ‖ Mn, an infinite path π is
unconditionally fair, denoted π |= fair, if for each
component Mi there exists an action a ∈ Σi that
occurs infinitely often in the path. An adversary A is
unconditionally fair, or fair for short, if for every state
s ∈ S, every infinite path starting at s controlled by A is
unconditionally fair.

Realisability Unconditional fairness is realisable in an
MDP M if there exists some fair adversary for M.

A state is visited by an adversary if the state is reached
from the initial state in an execution controlled by the
adversary.

Generalised fair adversary When unconditional fairness
is not realisable in an MDP M , an adversary A is gen-
eralised fair (or fair for short) if for every state s ∈M that
is visited by A, all infinite paths starting at s are fair.

If there does not exist any fair adversary, then the maximum
probabilities are restricted to generalised fair adversaries.

To compute the maximum probabilities for an MDP under
unconditional fairness, we need to reduce the model, i.e.,
leave out the parts where fairness is not realisable. Basically,
states that cannot be visited by any fair adversary should be
removed, as suggested in [10], so that we only perform value

iteration over the remaining states. We address this issue in
Section V.

Figure 1. An MDP with four components M1, M2, M3 and M4

Example Figure 1 shows an MDP with four components.
Actions x, y and z are synchronised, and the others are
local. Unconditional fairness is not realisable in this model
because, in any global state containing s1, no actions in
M2 and M4 can be executed. The maximum probability of
reaching the target state s2, marked by a double circle in
the figure, is 0.8 if we do not consider fairness, while it
becomes 0.7 under unconditional fairness.

III. CHECKING REALISABILITY

In the rest of the paper, let L = (S,Σ,∆, s) be composed
of n components L1, . . . , Ln, i.e., L = L1 ‖ . . . ‖ Ln, and
M = M1 ‖ . . . ‖ Mn. Let Reach(s) ⊆ S be the set of
states that can be reached from state s.

Partial deadlock The process Li is partially deadlocked in
state s ∈ S if for each s′ ∈ Reach(s) and each a ∈ Σi we
have s′ 6 a−→. A partial deadlock of Li is a bottom SCC of L
such that Li is partially deadlocked in all the states of the
SCC.

Theorem 3.1: Unconditional fairness is realisable in L
iff, for all Li, there does not exist a partial deadlock in L.

Proof: “⇒”. Suppose there exists a partial deadlock
Ω for Li. Consequently, Li is partially deadlocked in any
state s ∈ Ω. Then there does not exist an infinite path π
starting at s such that action a appears infinitely often in π
for some a ∈ Σi. This is in contradiction with the definition
of unconditional fairness.

“⇐”. Suppose unconditional fairness is not realisable in
L. Thus we can find a state s ∈ S where it holds that, for
all infinite paths starting at s, there is some i such that no
a ∈ Σi occurs infinitely often. In particular, this holds for
all infinite paths that lead from s to some bottom SCC C,
and visit all the states of C in that SCC infinitely often.
Therefore, no a ∈ Σi is enabled in any state of C, and C is
a deadlock for Li.

In [10, Theorem 1], Baier et. al showed that a strong/weak
fairness constraint is realisable if and only if, for every
state s in an MDP M, there exists a path with non-
zero probability leading to a fair maximal end component
(FMEC). Since unconditional fairness can be formulated as a

strong fairness constraint, this result still holds. An FMEC in
our case is a maximum end component that contains at least
one action for each Mi. Let LM = (SM,ΣM,∆M, sM)
be an LTS obtained by converting probabilistic choice in an
MDP M = (S,Σ,Steps, s) into non-deterministic choices
as follows:
• SM = S,
• sM = s,
• For any s ∈ S and any a ∈ Σ, as′ ∈ ΣM and

(s, as′ , s′) ∈ ∆M iff Steps(s, a)(s′) > 0.
Synchronisation of actions in the resulting LTS-parallel
composition is somewhat involved; all the actions resulting
from actions with the same labels are synchronised, i.e.,
multi-way synchronisation, which does not affect partial
order reduction [12].

Theorem 3.2: Unconditional fairness is realisable in an
MDP M iff, for all LMi

, there does not exist a partial
deadlock in LM.

The proof is similar to that of Theorem 3.1, and hence
omitted here.

T -reduction Let L = (S,Σ,∆, s) be an LTS, and let T :
S → 2Σ be some function. Then the T -reduction of L is
the LTS (ST ,Σ,∆T , s), where ST and ∆T are minimal sets
such that:
• s ∈ ST ;
• if s ∈ ST , (s, a, s′) ∈ ∆ and a ∈ T (s), then s′ ∈ ST

and (s, a, s′) ∈ ∆T .

We also use the subscript s a−→T when talking about the
reduced LTS.

Stubborn set Let (S,Σ,∆, s) be an LTS, and let T : S →
2Σ. we say that the function T is a stubborn set generator
if, for all s ∈ S, T (s) satisfies the following properties:
D0 T (s) ∩ en(s) = ∅ iff en(s) = ∅,
D1 For all a ∈ T (s) and b1, . . . , bn ∈ Σ\T (s), and s′ ∈ S,

if s b1···bna−−−−−→ s′ then s ab1···bn−−−−−→ s′,
D2 Either en(s) = ∅, or there exists a ∈ T (s) such that,

for all b1, . . . , bn ∈ Σ \ T (s), s b1···bna−−−−−→ s′. An action
a ∈ T (s) with this property is called a key action.

The stubborn set defined above is sometimes referred to as
a weak stubborn set, in contrast to the (strong) stubborn
set. The difference is in the condition D2, which for strong
stubborn sets is replaced by a condition that requires that all
enabled actions of T (s) are key actions. If we reduce an LTS
with a (weak or strong) stubborn set generator, it is known
that the reduced LTS contains exactly the deadlocks of the
original LTS [19]. A case where D0–D2 are not enough to
preserve partial deadlocks can also be found in Figure 1. In
the state (s0, r0, w1, v0), the set {τ2} is a legitimate stubborn
set, but when M1 is in state s1, M2 and M4 are partially
deadlocked. What is more, in the resulting reduced LTS,
there is an “extra” partial deadlock induced, as the reduced

LTS would stay in that state for ever, and all other processes
would be “partially deadlocked”.

The phenomenon is a manifestation of the so-called
ignoring problem [20], [21], whereby a cycle of actions is
considered completed, with some transition enabled on the
way and never explored. When looking for global deadlocks,
this is not a problem. However, the stubborn set conditions
do not guarantee that we find all partial deadlocks, and thus
the problem needs to be addressed.

To solve the problem, an additional constraint must be
imposed on stubborn sets. This is the safety condition [22]:

S For every state s in ST and every b ∈ en(s), there
exists some a1, . . . , an such that s = s0

a1−→ s1
a2−→

· · · an−−→ sn, all ai are key actions, and b ∈ T (sn).
Lemma 3.3 ([3], [22]): Let T be a stubborn set generator

for L such that T satisfies D0 – D2 and S. Then, for every
bottom SCC C ⊆ S, C ∩ ST 6= ∅.

Theorem 3.4: If the stubborn set generator T satisfies D0
– D2 and S, then the reduced LTS LT = (L1|| · · · ||Ln)T
contains a partial deadlock if and only if L = (L1|| · · · ||Ln)
does.

Proof: The “if”-part follows from Lemma 3.3. Let C
be a bottom SCC of LT that is a partial deadlock for Lj in
LT . For proof by contradiction, assume there is no partial
deadlock for Lj in L. Let s0 ∈ C and b ∈ Σj such that
s0

a1···anb−−−−−→ is minimal among states of C. An obvious
contradiction comes if for some i, ai ∈ T (s0), as taking
minimal such i would give s0

ai−→T s′0 and there would be
a path of length n− 1 to a state where b is enabled.

Therefore, assume that each ai /∈ T (s0). S guarantees a
path of key actions x1, x2, · · · , xm such that s0

x1···xm−−−−−→T s
′
0

and a1 ∈ T (s′0). D1 guarantees, with a simple induction over
m, that either one ai is in a stubborn set in one of the states
on the path, contradicting minimality that was previously
assumed, or that minimality is contradicted by the state s∗

such that s′0
a1−→T s

∗.

IV. PRESERVING MAX PROBABILITIES UNDER
UNCONDITIONAL FAIRNESS

A. Preserving terminal states

Probabilistic stubborn set LetM = (S,Σ,Steps, s) be an
MDP. We say that the function T : S → 2Σ is a probabilistic
stubborn set generator if it satisfies the following properties:
D0 T (s) ∩ en(s) = ∅ if and only if en(s) = ∅.
D1 For every a ∈ T (s) and b1, . . . , bn /∈ T (s), s b1···bna−−−−−→

s′ implies p(s b1···bna−−−−−→ s′) = p(s ab1···bn−−−−−→ s′).
D2 If T (s) 6= ∅, then there exists at least one a ∈ T (s)

such that for all b1, . . . , bn /∈ T (s), s b1···bn−−−−→ s′ implies
s′

a−→. Such an action is called a key action.

Reduced MDP Let M = (S,Σ,Steps, s) be an MDP and
T be a stubborn set generator for M. We define the T -
reduced MDP, denoted MT = (ST ,Σ,StepsT , s), as the

minimal MDP that satisfies: if s ∈ ST , a ∈ T (s), then {s′ |
Steps(s, a)(s′) > 0} ⊆ ST and StepsT (s, a) = Steps(s, a).

To preserve safety properties and partial deadlocks for
MDPs, we need to tackle the ignoring problem in end
components. There are various ways of doing this in the
context of partial order reduction for MDPs. Such conditions
are often referred to as cycle conditions. Two variants in the
literature [7], [8] include:

A3a If (R,A) is an EC of MT and a ∈
⋂
s∈R

en(s) then

a ∈
⋃
s∈R

T (s);

A3b On each cycle s0
a1···an−−−−→ sn = s0 there exists a state

si which is fully expanded, i.e., T (s) = en(s).
Of the two, A3b is clearly stronger, but also easier to
implement, which is why most practical implementations
adopt it. However, we do not actually need such powerful
conditions if we are concerned only with reachability and
other safety properties. Instead, we use the S condition as it
stands.

It is a well-known problem for maximal probabilities, first
identified in [7], [9], that the usual non-probabilistic rules
do not guarantee the preservation of maximal probabilities.
This is true with rules D0–D2 and S. The most common fix
for this probabilistic branching problem is to impose a rule:
A5 If s b1···bnc−−−−−→ such that b1, . . . , bn, c /∈ T (s), and c is

probabilistic, then |T (s) ∩ en(s)| = 1.
Note that, for ample sets, in which we assume T (s) ⊆ en(s),
this rule seems to be different than for stubborn sets. The
difference, however, is only superficial. Rule D1 disallows
actions outside the stubborn set to enable disabled actions
within the stubborn set. The intricacies of the stubborn set
method do allow, however, a more careful analysis of the
condition. Rule A5 is hard to implement, as mentioned
in [7], which is why a number of heuristics have been
proposed for it. For instance, in [7], a stronger version is
given, which requires that T (s)∩en(s) is a singleton unless
it contains all the enabled actions.

We propose to replace A5 with another rule that is
stronger in the context of stubborn sets, in the sense that,
with the support of D1, this rule implies A5. This rule is sig-
nificantly weaker than the simplistic rule of always requiring
singleton sets, and should allow for more reduction.
PB If |T (s) ∩ en(s)| 6= 1, then T (s) contains all proba-

bilistic actions in the model.
Lemma 4.1: If T (s) satisfies D0–D2 and PB, then it

satisfies A5.
Proof: Let |T (s) ∩ en(s)| 6= 1 and s

b1···bnc−−−−−→, c be
probalistic and b1, . . . , bn deterministic. PB implies that c ∈
T (s). D1 guarantees that either c is enabled at s, or at least
one bi ∈ T (s). In both cases, then, A5 is satisfied.
The exact relationship of PB and A5 is unknown to us. On
the face of it, PB does seem stronger, because it requires that

disabled probabilistic actions are inside the set, but definite
evidence is lacking at this time.

Theorem 4.2: If T (s) satisfies D0–D2, S and PB, then
the maximum probability of reaching each bottom EC is
preserved through T -reduction.

Proof: Let C be a bottom EC in the original MDP
M. Let us denote by pmax

s0 (C) the maximum probability of
ending in C from s0 in M, and by qmax

s0 (C) the maximum
probability in the reduced MDP MT . If s0 ∈ C, then natu-
rally pmax

s0 (C) = qmax
s0 (C). This also holds if pmax

s0 (C) = 0,
i.e., C is not reachable from s0. We assume this is not the
case.

It is known that the maximum probability of reaching C
can be realised by a memoryless adversary. Let A be such
an adversary, and A(s0) the only action chosen by A for
s0. We prove that there exists a memoryless adversary AT
in MT such that pAs0(C) = qAT

s0 (C), where pAs0(C) and
qAT
s0 (C) are the probability of reaching C under A and AT

respectively.
If A(s0) ∈ T (s0), then AT (s0) = A(s0), and nothing

else is needed. Otherwise, to show that pAs0(C) = qAT
s0 (C),

we show that we can choose AT (s0) = b such that
pmax
s0 (C) =

∑
s′0

µ(s′0) · pmax
s′0

(C), where µ = Steps(s0, b). S

then guarantees that the execution can always make progress.
a) If A(s0) is probabilistic, then T (s0) ∩ en(s0) is a

singleton (PB). In this case, any sequence s0
a1···an−−−−→ sn

that does not contain b can be extended by b, and does not
have any other actions from T (s0) (D1), and p(s0

ba1···an−−−−−→
s′n) = p(s0

a1···anb−−−−−→ s′n). In particular, this holds for
sequences where ai+1 = A(si), and thus if sn ∈ C, then,
because C is a bottom EC and also s′n ∈ C, we obtain
pmax
s0 (C) =

∑
s′0

µ(s′0)pmax
s′0

(C).

b) PB guarantees that, if T (s0)∩en(s0) is not a singleton
(which means that A(s0) is not probabilistic), then in any
sequence s0

a1···an−−−−→ sn that starts with A(s0), either the first
probabilistic action or some action before it is in T (s0). Let
k be the index of such an action. D1 and the fact that ai is
deterministic for i < k guarantee that:

1) s0
a1···ak−1−−−−−−→ sk−1 is a deterministic sequence for

some state sk−1, and
2) for each s′0 such that Steps(s0, ak)(s′0) > 0, we

have s′0
a1···ak−1−−−−−−→ s′k−1 for some state s′k−1, and

Steps(s′k−1, ak)(s′k) = Steps(s0, ak)(s′0).
Again, this holds for all the sequences such that A(si) =
ai+1, so we have that pmax

s0 (C) =
∑
s′0

µ(s′0)pmax
s′0

(C).

When case b) happens, one action from the sequence
leading to the SCC is executed. On the other hand, the a)
case cannot happen indefinitely: S guarantees that, because
a1 ∈ en(s), there is a sequence of key actions that lead to
a state where a1 is in the stubborn set, and in the a) case,
there is only a single key action, so either a1 is eventually

in the stubborn set or the b) case materialises.
Theorem 4.2 does not consider the maximum probabilities

under unconditional fairness. We have to prune actions that
can lead to a partial deadlock in order to do so. The
following theorem guarantees that the maximum probability
under unconditional fairness in a reduced MDP is the same
as in the original MDP.

Theorem 4.3: If T (s) satisfies D0–D2, S and PB, then
the maximum probability of reaching a bottom FMEC under
unconditional fairness is preserved through T -reduction.

Proof: Note that a bottom FMEC is a bottom SCC
that has no partial deadlock, or an FMEC from which only
partially deadlocking bottom SCCs can be reached.

In the first case, we only need to consider states where
we can reach a number of bottom SCCs, some of which are
FMECs. Otherwise Theorem 4.2 suffices. Let s ∈ ST and let
AF be the fair adversary that maximises the probability. AF
will never assign an action that leads to a state from which
the maximal probability of reaching a fair bottom SCC is
less than one.

Using a construction similar to the one in the proof of
Theorem 4.2, we can prove that either there is some action
b ∈ T (s) such that AF might as well assign b, or that there
is some sequence of key actions that lead to the execution
of AF (s), and hence the maximum probability of reaching
the FMEC is the same.

V. MODEL CHECKING ALGORITHM

A. Generating basic stubborn sets

The concept of independence of actions is central in most
partial order reduction methods. It is important also for the
practical implementation of stubborn sets.

Traditionally, independence means that, when two actions
are enabled at the same state, they commute in the sense
that both actions can always be taken and the result is
independent of the order in which they are executed. We
shall refer to such independence as strong independence.

Strong Independence Let M = (S,Σ,Steps, s) be an
MDP and a, b ∈ Σ. We say that a and b are strongly
independent iff, for all states s ∈ S such that a ∈ en(s)
and b ∈ en(s), we have:
• for all s1 ∈ S, s a−→ s1 ⇒ b ∈ en(s1),
• for all s1 ∈ S, s b−→ s1 ⇒ a ∈ en(s1),
• for all s′ ∈ S it is true that p(s ab−→ s′) = p(s ba−→ s′).

If a and b are not strongly independent, they are strongly
dependent.

A careful examination of the rules for stubborn sets,
however, reveals that D1 is not entirely symmetric. Commu-
tativity of an inside action with some sequence of outside
actions is required only if executing a sequence of outside
actions, followed by an inside action, is possible to begin
with. In fact, D1 in no way rules out the possibility of a

becoming disabled by a sequence of b-actions. What is more,
D2 requires only that we have at least one action that cannot
be disabled by outside sequences.

The so-called weak independence is designed to capture
this asymmetry. We require commutativity only if a can be
executed after b. The relation does allow for b and a to
disable one another.

Weak Independence LetM = (S,Σ,Steps, s) be an MDP
and a, b ∈ Σ. We say that a is weakly independent of b iff,
for all states s ∈ S such that s ba−→, it holds that a ∈ en(s)
and:
• for all s1 ∈ S, s a−→ s1 ⇒ b ∈ en(s1),
• for all s1 ∈ S, s b−→ s1 ⇒ a ∈ en(s1),
• for all s′ ∈ S, it is true that p(s ab−→ s′) = p(s ba−→ s′).

If a is not weakly independent of b, we say that a is weakly
dependent with b.

We emphasise the difference: the requirement that a and
b commute is the same as in strong independence, but it
is “triggered” only if a can be executed after b. In fact, if
we know that b completely disables a, then a is weakly
independent of b.

The concept of causes and causality is also helpful in
designing a practical method for calculating stubborn sets.
D1 implies that, if a is a disabled inside action, then no
sequence of outside actions may enable a. Verifying this
can be computationally expensive, and, what is more, a
simple binary relation for actions may not fully capture all
the intricacies of action sequences enabling one another.

We introduce the following notational convention for 3-
ary relations: if Q is a 3-ary relation, we write in the
following (a, c,−) ∈ Q if there exists some b such that
(a, c, b) ∈ Q. We define the causality relation as follows.

Causality relation Let C be a finite set of causes at a state
s. A causality relation at s is a 3-ary relation Q ⊆ Σ×C×Σ,
such that for every a /∈ en(s), and b1, . . . , bn 6= a with
s
b1···bna−−−−−→, it holds that for every c such that (a, c,−) ∈ Q

we have (a, c, bi) ∈ Q for at least one i ∈ {1, . . . , n}.

The intuition of this definition is as follows. For a disabled
action a, there is some set of causes that need to be
“triggered” before a can happen. This is some subset of
C. Intuitively, C can be thought of as a set of guards or
conditions that must be met in order for actions to become
enabled. For example, in Petri nets, “actions” would be the
structural transitions and “causes” would be the places that
are empty. Now, if a is disabled in the current state, but
enabled after some sequence of actions, then all the causes
of a must be triggered by some action.

Note that the definition is conditioned on s, i.e., it is
dynamic. The set of causes can of course be static; the only
dynamic feature is when a cause is “active” (e.g., a true
guard) and when it is “inactive” (e.g.., a false guard). In a

parallel composition, for instance, the “inactive” causes can
simply be the components where the corresponding action is
disabled, and “active” causes are those where it is enabled.
The action becomes enabled when all causes are active.

Example In Figure 1, actions a and b are strongly dependent
of each other, as one disables the other. Similarly, y and
z, as well as y and c are strongly dependent. Action c
is weakly dependent of y, but not the other way around,
because the first condition in the definition of weak indepen-
dence is violated, i.e., (s2, r1, w0, v0) c−→ (s2, r1, w1, v0) 6⇒
y ∈ en(s2, r1, w1, v0). For the same reason, z is weakly
dependent of y. Actions a and b are the causes of x, y and
z (through component M1); x is a cause of z, and y is a
cause of x (through component M2).

Strong and weak dependency and causality are relations
on top of which we shall build what we call a dependency
graph. The role of this graph is to capture the information
in the relations so that we can calculate stubborn sets.

Dependency graph Let M = (S,Σ,Steps, s) be an MDP
and s ∈ S be a state. A dependency graph for s is a
tuple (E,D,C,;S ,;W ,;C) such that (E ∪D ∪ C,;S

∪ ;W ∪ ;C) is a directed graph satisfying the following
conditions:
• E = en(s),
• C 6= ∅ ∨D = ∅,

• D = Σ \ en(s),
• ;S⊆ E × Σ,

• ;W⊆ E × Σ,
• ;C⊆ (D × C) ∪ (C × Σ),
• ∀a ∈ D : ∃c ∈ C : a ;C c.
• for each v ∈ E and u ∈ Σ, either v ;S u or v and u

are strongly independent;
• for each v ∈ E and u ∈ Σ, either v ;W u or v and u

are weakly independent;
• there exists a causality relation Q such that for a ∈ D,
c ∈ C, and b ∈ Σ, (a, c, b) ∈ Q if and only if a ;C

c ;C b.

In the above definition, E is the set of enabled actions, D the
set of disabled actions, and C the set of “inactive” causes for
the actions in D. The relation ;C links the disabled actions
with their causes and causes to actions that can activate them.

Stubborn set for dependency graph A set V ⊆ Σ ∪ C is
a stubborn set for G if

1) Either E = ∅ or V ∩ E 6= ∅,
2) If V ∩ E 6= ∅, then there exists a v ∈ V ∩ E, such

that: {u | v ;S u} ⊆ V ,
3) For each v ∈ V ∩ E, it holds that either {u | v ;S

u} ⊆ V , or {u | v ;W u} ⊆ V ,
4) For each v ∈ V ∩C, it holds that {u | v ;C u} ⊆ V ,
5) For each v ∈ V ∩D we have {u | v ;C u} ∩ V 6= ∅.

We call these conditions the closure properties of the stub-
born set. The first requirement is natural; V must contain
some enabled action if there are any. The second requirement

is there to make sure some key action is in the set. The
third one requires that for each enabled action in V , either
the weakly or the strongly dependent actions are in V . The
fourth requirement says that if a cause is in V , then every
action that can activate that cause must be in V ; and the
last one that, if a disabled action is in V , at least one of its
causes must also be in V .

Theorem 5.1: If V is a stubborn set of a dependency
graph G at s, then V ∩ Σ is a stubborn set at s.

Proof: D0 follows from the first condition in the
definition of stubborn set for G. For D1, let a ∈ V ∩ Σ
and let b1, . . . , bn ∈ Σ \ V , and s′ ∈ S be a state such that
s
b1···bna−−−−−→ s′. There are two possibilities. (1) If a ∈ en(s),

then we can readily infer commutativity by induction from
(weak or strong) independence. (2) If a ∈ Σ \ en(s), then
let Q be the causality relation required by definition. From
the definition of causality, it follows that for at least one
i ∈ {1, . . . , n}, bi ∈ V , which leads to contradiction. D2
follows from the fact that there is some ak ∈ V ∩ en(s)
such that {u | ak ;S u} ⊆ V .

Relations for (weak or strong) dependency, and causality,
can be safely approximated in a number of ways. In a par-
allel composition, a common heuristic is to consider all the
actions inside a given component dependent on one another,
but such relations will not benefit from weak dependency.
One possibility is to analyse each component, as in [12],
so that every component is searched for manifestations of
dependency and causality. The causality is implemented so
that, for every action a and every i such that a ∈ Σi, there
is a “cause” cia, and (a, cia, b) is in the causality relation if
b enables a in some state of the ith component.

For shared variable models with, e.g., guarded commands,
the effects of actions on guards need to be assessed. A
common heuristic is to consider all write accesses as de-
pendencies, but, again, a more nuanced approach is needed
to make use of weak dependency.

Once the dependency and causality relations are known,
and we know which causes are relevant at the current state,
we can generate a dependency graph.

Example In the initial state (s0, r0, w0, v0) in Figure 1,
the dependency graph G = (E,D,C,;S ,;W ,;C) is as
follows:

• E = {a, b, c},
• D = {x, y, z, τ1, τ2},
• C = {τ1

1 , τ
3
2 , x

1, y1, y2, z1, z2},
• ;S= {(a, b), (b, a), (c, y)},
• ;W= {(c, y)},
• ;C = {(τ1, τ1

1), (τ2, τ3
2), (x, x1), (y, y1), (y, y2),

(z, z1), (z, z2), (x1, a), (x1, b), (τ1
1 , a), (τ3

2 , c),

(y1, a), (y1, b), (y2, x), (z1, a), (z1, b), (z2, x)}.
The stubborn set for G is {a, b}, where both a and b are the
key actions.

The algorithm for calculating stubborn sets is given in
Algorithm 1. The basic idea of generating stubborn sets is

Algorithm 1 T (s, U)
1: (E,D,C,;S ,;W ,;C) is a dependency graph for s
2: Stub := Σ ∪ C; Keys = en(s); Weak = en(s)
3: Untried := en(s) \ U
4: while Untried 6= ∅ do
5: pick a from Untried
6: Untried = Untried \ {a}
7: if U = ∅ ∧ Single(a) then
8: return ({a}, {a})
9: end if

10: if a /∈ Det then continue
11: Stub′ := Stub; Keys ′ := Keys;Weak′ := Weak
12: Delete(a)
13: if Keys = ∅ ∨ Prob 6⊆ Stub ∨ U 6⊆ Stub then
14: Stub := Stub′; Keys := Keys ′;Weak := Weak′

15: end if
16: end while
17: return (Stub ∩ en(s),Keys)

Algorithm 2 Delete(a)
1: Stub := Stub \ {a}; Keys := Keys \ {a}
2: Weak := Weak \ {a}
3: for all b: b ; a s.t. b ∈ Stub do
4: if b ∈ C then Delete(b) end if
5: if b ∈ en(s) then
6: if b ;S a then Keys := Keys \ {b} end if
7: if b ;W a then Weak := Weak \ {b} end if
8: if b /∈Weak ∧ b /∈ Keys then Delete(b) end if
9: end if

10: if b ∈ Σ \ en(s) ∧ {x | b ;C x} ∩ Stub = ∅ then
11: Delete(b)
12: end if
13: end for

as follows. We have a candidate stubborn set Stub, initially
the set of all actions. Det is the set of deterministic actions
in the model, and Prob = Σ\Det is the set of probabilistic
actions of the model. The set U is a set of required actions.
Usually this is empty, and has no effect on the generation
of the stubborn set. Sometimes, to satisfy the S-condition,
we must require that certain actions will be guaranteed in
the stubborn set.

We try each enabled action a in turn. If {a} is a legitimate
stubborn set, we return that. This is done using a predicate
Single(a), which checks the following conditions:

(a) {b | b ∈ en(s) ∧ a ;S b} = ∅
(b) for each b ∈ Σ \ en(s), such that a ;S b, we have
∃c ∈ C : {d | b ;C c ;C d} ∩ {x | a 6;S x} ⊆ {a}.

That these conditions are sufficient results from the fol-
lowing: (a) makes sure that a is strongly independent with
all other enabled actions, and (b) makes sure that, if b is an
action that a is dependent with, b has a cause that cannot
be satisfied without executing either a or some action that
a is dependent with. One such action would need to be
executed first, but this cannot happen without a, and thus
{a} is stubborn.

If either of these conditions fail, then we attempt to
remove a deterministic a. (If a is not deterministic, we
do not attempt to remove it as this could violate PB.)
We start with the current candidate set by the recursive
procedure Delete(a). The procedure makes sure that the
closure properties of stubborn sets are satisfied. It works as
follows: after deleting an action (or condition) a from the
set, we have possible violations of the closure properties.
The deletion of a may cause a violation for any b such that
b ; a. (We write b ; a whenever b ;X a for some
X ∈ {S,W,C}) We check for such a violation, and if it
happens, we also delete b.

If the removal of a would result in a void set, i.e., empty
or without key actions, a set violating PB, or not containing
the set U , the removal is cancelled. In such a case, the sets
Stub, Keys , and Weak must be returned to what they were
before the deletion of a. Otherwise we go with the new
values.

Naturally we can optimize Delete, and stop the procedure
if a probabilistic action or a member of U is deleted without
the need to complete the run. Other optimizations include
stopping the procedure when a member of U would be
deleted. Once we are done, we return the enabled actions
of the stubborn set, along with the key actions.

To show that this results in a stubborn set for the graph,
we present the following reasoning. Delete(a) removes
a from the candidate set. The closure properties may be
violated for b if b ; a. Firstly, if b ∈ C, then b needs
to be removed, as we know that b has no ;W -neighbours.
Secondly, if b ∈ en(s), we have to check that either all its
weak neighbours are in the set or it is a key action. If neither
is true, b needs to be deleted, otherwise its closure properties
are intact. Thirdly, if b ∈ Σ \ en(s), and all its causes have
been removed, it must be removed as well. If not, its closure
properties are still intact. Later we only need to check the
existence of key actions and that PB is not violated.

B. Combining partial order reduction with probability com-
putation

To check reachability properties, partial order reduction
is usually implemented in depth-first search (DFS). In this
section, we give a complete DFS algorithm for explor-
ing reduced state space under unconditional fairness and
computing maximum probability on-the-fly by SCC-based
value iteration [17], [18]. Our algorithm is based on the
Tarjan’s algorithm [23], which is an efficient algorithm for

identifying SCCs using DFS. Algorithm 3 combines partial
order reduction with an optimised version of the Tarjan’s
algorithm proposed in [24], as well as on-the-fly reduction.

Algorithm 3 por tarjan(s)
1: s.index := index; s.lowlink := index
2: index := index+ 1; s.pdl := false;
3: if s ∈ F then s.p := 1 else s.p := 0 end if
4: (Stub,Keys) := T (s, ∅); s.sat := Stub; R := Stub
5: repeat
6: while Stub 6= ∅ do
7: pick a from Stub; Stub := Stub\{a}
8: µ := Steps(s, a)
9: for all s′ with µ(s′) > 0 do

10: if s′.index is undefined then
11: por tarjan(s′)
12: if s′.pdl is false then
13: s.lowlink := min{s.lowlink, s′.lowlink}
14: else
15: R := R \ {a}; break
16: end if
17: else
18: if s′ ∈ stack then
19: s.lowlink := min{s.lowlink, s′.lowlink}
20: else if s′.pdl = true then
21: R := R \ {a}; break
22: end if
23: end if
24: if a ∈ Keys then s.sat := s.sat ∪ s′.sat
25: end for
26: end while
27: if en(s) \ s.sat 6= ∅ then
28: (Stub,Keys) := T (s, en(s)\s.sat);R := R∪Stub
29: s.sat := s.sat ∪ Stub
30: end if
31: until Stub = ∅
32: if R = ∅ then s.pdl := true
33: else
34: if s.lowlink = s.index then
35: scc := {s}
36: while stack 6=∅∧TOP (stack).index≥s.index do
37: scc := scc ∪ POP (stack)
38: end while
39: if scc is a partial deadlock then
40: s′′.pdl := true for each s′′ ∈ scc
41: else
42: compute s′′.p for each s′′ ∈ scc
43: end if
44: else PUSH(stack , s) end if
45: end if

In Algorithm 3, stack is the stack for the depth-first
search. TOP returns the element on top of stack, POP
and PUSH are the usual stack operations. Before the first

call to the recursive function por tarjan, stack contains
only the initial state s and the global variable index is set
to one. The attribute p of a state s is the probability in
s, and pdl indicates if no FMEC can be reached from s.
The process of action a is interrupted once we find it can
lead to a partial deadlock with non-zero probability. Then
a is removed from the set R, which initially represents the
whole weak stubborn set. The role of s.sat is to make sure
the condition S for partial order reduction is satisfied: it
denotes all the actions that have been executed after a path
of key actions. When the actions of a stubborn set have been
explored, if there are still “unsatisfied” actions left, we need
to generate a new stubborn set such that they are included.

Identifying a partial deadlock can be done in two steps.
(1) Identifying a bottom EC can be done by checking if there
exists an action in the EC leading to states outside the EC.
Note that an action that is not chosen by any fair adversaries
cannot be counted as an action leaving the EC. (2) To check
partial deadlock in a bottom EC, each state s in the EC is
associated with a vector, one entry per process. If a process
has an enabled action in s, then the corresponding entry is
set to true. We perform an entry-wise disjunction operation
on the vectors in the bottom EC. A partial deadlock is found
if and only if an entry remains false after the disjunction
operation.

VI. IMPLEMENTATION AND EXPERIMENTS

We implemented a prototype for the partial order re-
duction algorithm (Algorithm 3) in the probabilistic model
checker PRISM [25]. The strong and weak independence
relations are defined on the global state space, which we
try to avoid to generate. Therefore, we compute over-
approximations of these relations using the local state space
of each component. In PRISM, each component has a set
of local variables, which can be read in the guard of actions
in other components. Therefore, it might be impossible to
compute accurate local state spaces individually. Instead,
we compute an over-approximation again, which contains
the actual local state space, and may also include non-
reachable local states. The over-approximated local state
space is generated by removing all conjuncts containing non-
local variables from the actions’ guard, assuming each guard
is specified in conjunction normal form.

The performance of our reduction technique can be
demonstrated by a case study of the Zeroconf network
configuration protocol [26]. Table I shows the number of
states2 and running time under unconditional fairness, with
and without reduction respectively. These results clearly
show the advantage of partial order reduction, even under
the over-approximation of dependency relations. The time

2In this case study, the number of states under unconditional fairness is
the same as that without fairness in both the original and reduced models,
as the states in all partial deadlocks are explored.

Table I
EXPERIMENTAL RESULTS ON ZEROCONF.

Parameters No reduction With reduction
(K) States Time (s) States Time (s)
2 13474 103.819 461 2.479
4 57960 1940.343 747 2.805
6 125697* timeout 1033 3.582
8 163229* timeout 1319 4.181
10 176316* timeout 1605 4.929

* Computed using PRISM BDD engine

spent on computing these relations was compensated by the
much smaller models after reduction.

VII. CONCLUSION

In this paper, we first proved that realisability of un-
conditional fairness in MDPs can be carried out on their
non-probabilistic abstractions to enable fast check. Then we
proved the maximum probability of reaching some bottom
EC under unconditional fairness is preserved by the weak
stubborn set T -reduction. We also presented data structures
and the model checking algorithm for computing such
probability through T -reduction.

There are several possible future directions. The first
is to extend our approach to allow arbitrary target states,
rather than just bottom FMECs. Secondly, we would like
to optimise our initial implementation to improve the over-
approximations of computing dependency relation and con-
duct more case studies to explore the potential of weak
stubborn sets. Computing the maximum probability under
strong/weak fairness constraints via partial order reduction
has been discussed in [10]. It would be very interesting to
compare our approach with theirs.

ACKNOWLEDGEMENTS

The first author was supported by the TEKES post-
doctoral grant of 2010. The second and third authors are
partly supported by EC FP 7 project CONNECT (IST
231167) and ERC Advanced Grant VERIWARE.

REFERENCES

[1] M. Kwiatkowska, G. Norman, D. Parker, and H. Qu,
“Assume-guarantee verification for probabilistic systems,” in
Proc. of TACAS’10, vol. LNCS 6105. Springer, 2010, pp.
23–37.

[2] V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, and
H. Qu, “Quantitative multi-objective verification for proba-
bilistic systems,” in Proc. of TACAS’11, vol. LNCS 6605.
Springer, 2011, pp. 112–127.

[3] A. Valmari, “Stubborn sets for reduced state space genera-
tion,” in Proc. of the 10th International Conference on Appli-
cation and Theory of Petri Nets, vol. LNCS 483. Springer,
1989, pp. 491–515.

[4] P. Godefroid, “Using partial orders to improve automatic
verification methods,” in Proc. of CAV’90, vol. LNCS 531.
Springer, 1990, pp. 176–185.

[5] D. A. Peled, “All from one, one for all: on model checking
using representatives,” in Proc. of CAV’93, vol. LNCS 697.
Springer, 1993, pp. 409–423.

[6] K. McMillan and D. Probst, “A technique of state space
search based on unfolding,” Formal Methods in System De-
sign, vol. 6, no. 1, 1995.

[7] C. Baier, M. Grösser, and F. Cieinski, “Partial order reduction
for probabilistic systems,” in Proc. of QEST’04. IEEE CS
Press, 2004, pp. 230–239.

[8] C. Baier, P. D’Argenio, and M. Grösser, “Partial order re-
duction for probabilistic branching time,” ENTCS, vol. 153,
no. 2, pp. 97–116, 2006.

[9] P. R. D’Argenio and P. Niebert, “Partial order reduction on
concurrent probabilistic programs,” in QEST’04. IEEE CS
Press, 2004, pp. 240–249.

[10] C. Baier, M. Größer, and F. Ciesinski, “Quantitative analysis
under fairness constraints,” in Proc. of ATVA’09), vol. LNCS
5799. Springer, 2009, pp. 135–150.

[11] M. Größer and C. Baier, “Partial order reduction for markov
decision processes: A survey,” in Proc. of FMCO’05, vol.
LNCS 4111. Springer, 2005, pp. 408–427.

[12] H. Hansen and X. Wang, “Compositional analysis for weak
stubborn sets,” in Proc. of ACSD’11. IEEE CS Press, 2011,
to appear.

[13] H. Hansson and B. Jonsson, “A logic for reasoning about time
and reliability,” Formal Aspects of Computing, vol. 6, no. 5,
pp. 512–535, 1994.

[14] A. Bianco and L. de Alfaro, “Model checking of probabilistic
and nondeterministic systems,” in Proc. of FSTTCS’95, vol.
LNCS 1026. Springer, 1995.

[15] A. Pnueli, “The temporal logic of programs,” in Proc. of
FOCS’77. IEEE CS Press, 1977, pp. 46–57.

[16] L. de Alfaro, “Formal verification of probabilistic systems,”
Ph.D. dissertation, Stanford University, 1997.

[17] F. Ciesinski, C. Baier, M. Größer, and J. Klein, “Reduction
techniques for model checking Markov decision processes,”
in Proc. of QEST’08. IEEE CS Press, 2008, pp. 45–54.

[18] M. Kwiatkowska, D. Parker, and H. Qu, “Incremental quan-
titative verification for Markov decision processes,” in Proc.
PDS’11. IEEE CS Press, 2011, to appear.

[19] A. Valmari, “Stubborn set methods for process algebras,”
in Proc. of POMIV’96, ser. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 29,
1997, pp. 213–231.

[20] A. Valmari, “A stubborn attack on state explosion,” Formal
Methods in System Design, vol. 1, no. 1, pp. 297–322, 1992.

[21] S. Evangelista and C. Pajault, “Solving the ignoring problem
for partial order reduction,” International Journal on Software
Tools for Technology Transfer, vol. 12, no. 2, pp. 155–170,
2010.

[22] A. Valmari, “The state explosion problem,” in Lectures on
Petri Nets I: Basic Models. Springer, 1998, vol. LNCS 1491,
pp. 429–528.

[23] R. E. Tarjan, “Depth-first search and linear graph algorithms,”
SIAM Journal of Computing, vol. 1, no. 2, pp. 146–160, 1972.

[24] E. Nuutila and E. Soisalon-soininen, “On finding the strongly
connected components in a directed graph,” Information Pro-
cessing Letters, vol. 49, pp. 9–14, 1994.

[25] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker,
“PRISM: A tool for automatic verification of probabilistic
systems,” in Proc. of TACAS’06, vol. LNCS 3920. Springer,
2006.

[26] M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston,
“Performance analysis of probabilistic timed automata using
digital clocks,” FMSD, vol. 29, 2006.

