Modal Specifications for Probabilistic Timed Systems

Tingting Hart  Christian Krause Marta Kwiatkowskd Holger Giesé
1. Department of Computer Science, 2. Hasso Plattner Institute,
University of Oxford University of Potsdam
{firstname.lastname}@cs.ox.ac.uk {firstname.lastname}@hpi.uni-potsdam.de

Modal automata are a classic formal model for componentdagstems that comes equipped with
a rich specification theory supporting abstraction, refieenand compositional reasoning. In re-
cent years, quantitative variants of modal automata wdrednced for specifying and reasoning
about component-based designs for embedded and mobitrsysiThese respectively generalize
modal specification theories for timed and probabilististeyns. In this paper, we define a modal
specification language for combined probabilistic timestsms, calledbstract probabilistic timed
automatawhich generalizes existing formalisms. We introduce appate syntactic and semantic
refinement notions and discuss consistency of our speddficEtnguage, also with respect to time-
divergence. We identify a subclass of our models for whicldefne the fundamental operations for
abstraction, conjunction and parallel composition, arahsseveral compositionality results.

1 Introduction

The design of complex embedded systems can be supportedrippooent-based design methodologies,
which can take the form of specification theories that previte notions of abstraction and refinement,
as well as a rich collection of compositional operators. @sslcal and widely used specification the-
ory for component-based design is that of modal automath [A6modal automaton is essentially a
deterministic automaton equipped witay and musttransitions, which are respectively used to spec-
ify allowed and required behavior. Several technical aispeicmodal automata have been studied in the
literature, including modal vs. thorough refinement, cstasicy, abstraction, as well as operators for par-
allel composition of components and conjunction, whereldtter supports independent development.
These notions enjoy a number of important properties, #hat conjunction is the greatest lower bound
w.r.t. modal refinement and that abstraction is compositidm this way, modal automata provide math-
ematical foundations for designing and reasoning aboufpcoent-based systems at the abstract level
of interfaces and to derive properties on the implementdéael of the global system.

In recent years, much attention has been dedicated to fatimglquantitative extensions of modal
automata, for example to support the development of compdresed systems which feature real-time
andor probabilistic behavior. An example of these developmeme a modal specification language
for timed systems calleilodal Event-Clock SpecificatiofMECS) [4]. MECS are essentially a modal
extension ofEvent-Clock AutomatdECAS) [2], which form a strict subclass of the classid@hed
Automata]l] model. Restricting to this model allows Bertrand et al[4] to lift a number of composi-
tionality properties known for modal automata to the timetlisg, i.e., to the model of MECS. Another
recent quantitative variant afbstract Probabilistic AutomatfiL1] (APAs). While MECS are used to
specify timed behavior, APAs enable the specification ofrabsprobabilistic behavior using probability
constraints. Probabilistic behavior is commonly requif@dquantifying the likelihood of events, such
as message loss in unreliable channels, or is exploiteceidelign of randomized protocols. Similarly
to MECS, APAs are equipped with notions for conjunction aachplel composition, as well as a number
of compositionality results that can be used for compasiticeasoning and abstraction. However, in
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many settings, such as in embedded and mobile systems, anadimi of probabilistic and timed be-
havior is required, which is not supported by APAs and MECEBha@ugh the specification of combined
probabilistic and timed behavior is possible wittobabilistic Timed Automatf 4] (PTAs), there are no
corresponding notions of modalities and abstract protstibibehavior for PTAs.

In this paper, we introduce a modal specification languagepifobabilistic timed systems, called
Abstract Probabilistic Timed Automaf@&PTAs), and a subclass of them, callddstract Probabilistic
Event-Clock AutomatéAPECASs). APTAs serve as a modal specification language yfstems with
nondeterministic, probabilistic and timed behavior anplpgut the abstract definition of underspecified
probabilistic behavior using constraints (as in APASs). diddes in the form of may- and must-edges are
used to distinguish between allowed and required beha&P®TAs are regarded as specifications which
areimplementedy PTAs. In terms of expressiveness, APTAs subsume PTAs,$Bad APAs. Appli-
cations of APTAs can be found in the area of component-bagsidmas with real-time and probabilistic
behavior, e.g., in communication and network protocolseimbedded and multimedia systems. As a
specific example, Stoelinga et al. considered PTAs for niagi¢the root contention protocol of the IEEE
1394 standard_[20]. The authors defined several intermeedigiomata in between the implementation
and the specification automaton which are related by singfieement notions. This case study could
benefit from modeling using APTASs that we introduce here bseeof their support for abstraction,
refinement and compositional operations.

We show the following important results for our models. F&TAs, we define several appropriate
refinement notions and establish a hierarchy among thenddterministic APTAs, we show that three
of these refinement notions coincide. We provide a congigteheck for APTAs based on a reduction
to stochastic two-player games. Both probabilistic anidtstime-divergence are considered in consis-
tency and refinement checking. We introduce APECASs as aasdhof APTAs and develop abstraction
techniques and a compositional theory for this model. Itigaar, we show that an APECA is related
with its abstractions by means of modal refinements. We defnginction and parallel composition for
APECAs, and show that they interact well with modal refinetzenl abstraction. Specifically, we show
that conjunction is the greatest lower bound after prurémgl that modal refinement is a precongruence
with respect to parallel composition. We further show tt@nponent-wise abstraction is as powerful
as applying the combination of the local abstractions tcetiteée model. To the best of our knowledge,
this is the first compositional modal specification and alasion theory for probabilistic timed systems.
Besides the integration of abstract probabilistic behati® work in this paper extends [4] by including
a consistency check and refinement relations that considerdivergence. Moreover, our notion for ab-
straction non-trivially extends the corresponding APA@apt in [11] by taking into account the guards
of transitions.

Related work. This paper is part of anfiort to develop a compositional specification theory and
assume-guarantee reasoning for component-based systeragiously, we have developed a linear-
time specification theory for components [6] and its timetkpgion [9]. We have also formulated the
corresponding sound and complete compositional assureigiee rules [8], demonstrating their appli-
cation on examples of component-based systems from theoriétg domain. Linear-time refinement
for probabilistic systems is known not to be compositiorzdd hence we focus on modal specifica-
tions. Modal specification theories for probabilistic €8t include APAS[11] and Constraint Markov
Chains [5]. A specification theory for real-time systemsaeééined in [10] including a set of operators
supporting stepwise design of timed systems. A generabapprfor quantitative specification theories
with modalities is presented inl[3]. A robust specificatibedry for Modal Event-Clock Automata is
discussed in[12]. And aggressive abstraction technigoregrbbabilistic automata are explored|in][18].
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Structure. In Section[2, we recall relevant notions for APAs and PTAscti®a[3 introduces our
new model of Abstract Probabilistic Timed Automata. In 8stH, refinement notions for APTAs are
defined and compared. Sectidn 5 is devoted to abstractidkPfdAs. In Sectioh B, we define conjunction
and parallel composition, and present compositionaliyilte for APECAS (a strict subclass of APTA).
Sectior ¥ concludes and discusses future work.

2 Preliminaries

In this section, we recall important definitions for PTAs][bhd refer the reader to [11] and [13] for
APAs. We first recall some elementary notionsdi&crete probability distributiorover a denumerable
setS is a functionu : S — [0, 1] with Y .5 u(S) = 1. The set of all discrete probability distributions over
S is denoted byDist(S). For a givens € S, the point distribution us is the unique distribution 0%
with ug(s) = 1. We denote bR, the set of non-negative reals. &t = {1, T} andB3 ={L,? T} be the
complete lattices with the respective orderings T and_L < ?< T, and meetr()) and join (1) operators.

2.1 Probabilistic Timed Automata

We now recall the standard timed automata notions of clotkatisns and guards. For a finite s€bf
clocks aclock valuationis a functionv: X — R,. The set of all clock valuations ovetis denoted by
RX. For anyv e R¥ andt € R,, we usev+t to denote the clock valuation defined as-¢)(x) = v(x) +t
for all xe X. We usev[Y := 0] to denote the clock valuation obtained frarhy resetting all of the clocks
in Y C X to 0, and leaving the values of all other clocks unchangeamnddly, V[Y := 0](x) =0 if xe Y
andv[Y := 0](x) = v(x) otherwise. We writd for the clock valuation that assign O to all clocks.

Let X = {x1,..., Xy} be a set of clocks. Alock constraintor guard gon X is an expression of the
form x ~ c such thatx,y € X, ce R, and~ € {<,<,>, >}, or a conjunction of guards. A clock valuation
satisfiesg, written asv> g, iff g evaluates to true when all clockss X are substituted with their clock
valuev(x). Let CC(X) denote the set of all guards ovweyand letCCy(X) denote the set of guards on
involving expressions with constants less or equdl tevhereN is the maximal constant in all guards.

Definition 1 [PTA [14]] A probabilistic timed automators a tuple M = (L,A, X,ARP,V,T,lg) whereL

is a finite set of locations with initial locatioly € L; A is a finite set of actionsX is a finite set of
clocks; AP is a finite set of atomic proposition¥ : L — 24P assigns atomic propositions to locations;
andT : L x CC(X) x Ax Dist(2X x L) — B5, is a probabilistic edge function.

We write | 25 wiff T(l,g,a,u) = T, which comprises a source locatibna guardg, and a probability
distribution u which assigns probabilities to pairs of the forml{), whereY C X is a set of clocks to
be reset andt is a target location. The behavior of a PTA is as follows: iy kExtation a probabilistic
edge can be taken if its guard is satisfied by the current salithe clocks. Once a probabilistic edge
is nondeterministically selected, the choice for a paldictarget location and set of clocks to be reset is
made probabilistically using.

We define the semantics of a PT¥ by mapping it to a probabilistic automatdm by employing
the classical region equivalence for timed automalta [1prébabilistic automator(PA) [17,[11]M =
(S,A,ARPV,T, 5) consists of a set of states with initial state sy, a set of action®, a set of atomic
propositionsAP, a valuation functiorV : S — 24P and a probabilistic transition functiof : S x Ax
Dist(S) — B». A regiond is the set of clock valuations which satisfy exactly the sgumerds ofCCy (X).
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Given a regiorg, we write Sucg®) for the union of all regions that can be obtained fréby letting time
elapse. Given a guaigle CC(X), we writed C g iff for all valuationsv € @ it holds thatv>g. We denote
the set of all regions b@y(X) and simply write® if clear from context. We now define the semantics
of a PTA in terms of a PA.

Definition 2 [Region PA] For a given PTAM = (L,A, X, ARV, T, lp), the associatedegion PAis given
by RIM) = (S, A, ARV’,T’, 59) whereS = L x ©® andsy = (Ip,0), A’ = ® x Ax (2¥)8, V'(1,6) = V(l), and
T’ is induced byT in the following way: for anyl € L and anyd € ® such that I(,6) is reachable from
(lIp,0), if | %M,u then for each regioft” € Sucgp) Ng there existg : S — 2% andy’ € Dist(S) such that

7

8".as ’ .
(|,6?) —RM) M and:
V. 0)=Yandy' (",8) = u(",Y) if @ ="[Y :=0]; andZ(",¢') = 0 andy/(I',¢') = 0 0.w.

In the derived region PA, the transition labe#s (a,¢) € A’ consist of the regio®”’ that represents the
time window in which the transition is taken, the fired actéon A, and for each target stage S the set
of clocksZ(s) € X that are being reset whexis probabilistically chosen. W.l.0.g., we assume RgM)

is always pruned, i.e., all its states are reachable.

Similarly as shown for timed specifications id [4], any PAttisadefined over the alphab@x A x
(2%)S can be interpreted as a PTA again. Intuitively, the stateébePA are interpreted as the locations
of the corresponding PTA and the information about the gajaadtions and clock resets for edges is
derived from the transition labels of the PA. We introduce diperatof/” which translates any given PA
M over the alphabed x Ax (2%)S into the PTA7 (M). The application of o R allows us, moreover, to
define a normal form for PTAs.

Definition 3 [Normal form] A PTA M is in normal formiff it is isomorphic to (the reachable part) of
(T oR)(M).

Note that, if a PTA in normal form, every location is assasihtvith a unigque region. Moreover,
(7 oR)(M) is isomorphic to T oR)?(M) for any PTAM. The PTA in normal form in needed later
for technical reasons (e.g., Proposifion 1 or Thedrem 1).

3 Abstract Probabilistic Timed Automata

We now defineAbstract Probabilistic Timed Automa{@PTAsS) as the central model of this paper. AP-
TAs extend PTAs in three ways: (1) probability distribuosire generalized to probability constraints,
(2) may- and must-transitions are distinguished, and (8tlons are labeled with sets of admissible
atomic propositions. All three modeling concepts are hoea from APAs[[11]. We use satisfaction
relations to relate APTAs with PTAs that implement them. &ptobability constrainty be a symbolic
representation of a set of probability distributions oveets. As in [11], we do not fix the language for
probability constraints. The set of probability distrilouts that satisfy is denoted bySa{y) C Dist(S).
We define the constrainteue andfalse for which we requiréSaftrue) = Dist(S) andSa{false =0. The
set of probability constraints ov&ris denoted byPC(S).

Definition 4 [APTA] An abstract probabilistic timed automatas a tupleA = (L,A X, ARV, T,lg),
whereL, A, X, AP, |g are defined as for PTA¥.: L — 22" assigns sets of admissible atomic propositions
to locations; and : anCC(X)xAxPC(ZXxL)—>B3 is a three-valued probabiliggc edge function.

We use the notatioh--» ¢ to denote may-edges (formally T(l,g,a,¢) = ?),| — ¢ for must-edges (if
T(,0,a,¢) =T), andl b ¢ for may- or must-edges, wheges CC(X) is a guarda € A is an action, and

¢ € PC(2X x L) is a probability constraint.
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Example 1 Fig.[d depicts an example APTA modeling a scheduler comgonanthe initial location
lo, tasks can be submitted to the scheduler and will be stariiihwl time unit. Two types of tasks
can occur: short- and long-running ones. The choice betilam is probabilistic according to the
probability constraintp, = (0.25< p1 < 0.75) A (0.25< pp < 0.75) A(p1+ p2 = 1). Tasks either finish
in the expected time frame or can be canceled at any point.c@iheeling of tasks is modeled using
may-edges, and thus is not required to be realized by impitatiens.

submitx:=0

submitx:=0

finishO< x<2
finish0< x<2
{short

[shortl  cancel <

start0<x<1 start0<x<1 0.3 s finish2< x< 6

o I
{{idle}} {busy

{long} "idle)

{{idle}, {busy} cancel

P2

oo 03
inish2<x<10
{{long}} finish 6 < x < 10

{long}

Figure 1: An example APTA specification for a Figure 2: An example PTA implementing the
scheduler component. APTA in Fig.[1.

Definition 5 [APTA Satisfaction] LetM = (L,A,X,ARV,T,lg) be a PTA in normal form andA =
(LA X, ARV’ T’,17) be an APTARC L x L’ is called asatisfaction relatioriff, for all (I,I") € R, these
conditions hold:

1. Vae A V¢’ € PC(2Xx L"), Yge CC(X) and V6 € @: if I %ﬂ ¢’ and both [,6) and (’,0) are
reachable inVl and.A respectively, theAne N, Ags, ..., g, € CC(X) andIus, .. ., un € Dist(2X x L)
with: (i) Sucdd) ng € Sucgd)NJiL, gi; and (i)Vi<i<n: I%M ui and3u € Saly’) s.t.uj erpf
(see the definition o€g in [13]);

2. Vae A Yu e Dist(2Xx L), ¥g e CCX): if | 25, 4 thendg € CC(X) and 3¢’ € PC(2X x L'):
' Wa e, gC g andIy’ € Saly’) with u e 1
3. V(l) e V'(I").

We say thatM satisfies#, denotedM = A, iff there exists a satisfaction relation relatiggandly,. If
ME A, Mis called arimplementatiorof A.

Condition 1 states that any must-edge in the specificatiogqisired to be realized in an implementation
(possibly split up into several edges emitting from one tiocg. Condition 2 ensures that any edge in
the implementation is allowed by the specification (as a nsay must-edge). Note that, sindd is in

normal form, the guard in the edgegiM,u is necessarily a region. The set of all implementationgiof
is given by[A] = {(M|M E A}.

Example 2 Fig.[2 depicts an implementation of the APTA for a schedulmponent in Fid.Il. We
indicate the satisfaction relation by using equal locatnafices, e.g., the locatiorig andl in the imple-
mentation are in relation with in the specification. The implementationfférs from the specification
in the following aspects. After a task has been submitteel sttheduler becomes busy, i.e., the set of
atomic propositiongbusy is chosen for locatiofy. Two types of long-running tasks are distinguished
in the implementation: ones that finish in the interval§f2and ones that finish in the interval, (@®].
Only tasks of the latter type can be canceled. The probgleitihstrainty, is realized by the probability
distribution assigning .@ to l,, and 03 to I3 andl’, respectively. Note, however, that this PTA is not
in normal form, because the locatibgican be reached within threefiirent regions: (@], (2,6] and
(6,10]. Thus, by splitting up locatioly, the normal form can be obtained and the satisfaction oglasi
constructed.
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3.1 The Region-Based Interpretation

We show now that the check for the existence of a satisfacttation between a PTA and an APTA
can be reduced to a check for a satisfaction relation betwssn corresponding probabilistic region
automata. Analogously to the mapping of a PTA to a PA usingélen construction (cf. D€f] 2), we
can transform any APTAA into an APAR(A). In the resulting APAR(A), the types of the three-valued
edge function are inherited frot. The transition relatioMr(#) : Sx O x AX (2X)S x PC(S) — B3 is
lifted from distributions to constraints by:

e foranyl e L, 6 € ® such thatl(6) is reachable fromlg,0): if | ﬂﬂ ¢ then for each®” € Sucg¢d) Ng
there existg : S — 2X andy’ € PC(S) such thatl(6) ﬂm(ﬂ) ¢, anddue Saly) iff u’ e Saly’)
with:

,0)=Yandu' (I',6") = u(l’,Y) if @ =0'[Y :=0]; andZ(I’,6’) =0 andw’(1',6’) = 0 0.w.
and analogously for all may-edges.

Proposition 1 Consider an APTAA = (L,A, X,ARV,T,lg) and a PAM = (S,A’,ARV’,T’,5) where
A = 0O(X)x Ax (2X)S. If M £ R(A) then7 (M) is in normal form and™ (M) E A.

This proposition will be used later in Sectibn13.2.

Theorem 1 GivenaPTAM = (L,A, X,ARV,T,lp) in normal form and APTAA=(L",A. X, ARV’ T’, Ig),
and letR(M) = (S,Ar,AP, VR, Tr, S0) andR(A) = (S',Ar, APV}, Tf, ) be the respective region au-
tomata. ThenM = A if and only if R(M) E R(A).

Theorent ]l does not hold for arbitrary PTAs, sinceifhgart only holds for PTAs in normal form. That is
to say, there exist a PTAd and an APTAA such thatM £ A, while R(M) E R(A). A similar example
for (non-probabilistic) timed modal specifications can terfd in [4].

Definition 6 [Deterministic APTA] Given an APTAA = (L,A, X,AR.V,T,lg) and its region automaton
R(A) = (S,A,APV',T’, 5). Ais called:

e action-deterministicift for all reachable statesin R(A) it holds: if there exiss ﬁﬁR(ﬂ) 1 and

02,
S %\%éng(y() @2 such thatpy # ¢, thend1N v, = 0;

o AP-deterministic iff se&%fR(y{) ¢ implies that for ally’,u”” € Sa{y), ands # s’ € S it holds:
W (S)>0A ' (8")>0)= V(S)N V(") =0.

A is calleddeterministicfT it is action-deterministic and AP-deterministic.

Note that Def.b is inspired by [11]. Action-determinacy @so be enforced on the syntactical level.
However, such a definition would only be alstient, but not a necessary condition.

3.2 Consistency

Consistency of a specification refers to the property thexietkexists at least one model for this specifi-
cation. In our setting, an APTA is said to be consistent if it admits at least one implemantahence
formally iff [A] # 0. For any given APTAA, we can decide whether the ARA) is consistent and,
if so, derive a PAM, such thatM E R(A) [11]. 7 (M) is then a PTA with finitely many states, and, by
Propositiori_ 1, a model afi.

In order to deal with consistency also on the syntactic |evelfurther define a locatione L in an
APTA A = (La, A, X, AR V4, T4, Ig{) to be consistent i¥/#(I) # 0 and for all guardg € CC(X), actions
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a e A and probability constraintp € PC(2X x L) it holds: if T#(l,g9,a,¢) = T thenSafy) # 0. Note
that inconsistency of a location does not imply inconsisfeof the whole APTA. In order to decide
whether an APTA is consistent, we follow the usual approauhwse goruning operatorg that filters
out distributions leading to inconsistent locations [Ihe detailed definition and properties of a pruning
operator can be found in [13].

The following theorem shows that the applicatiorBaiperator does not change the set of implemen-
tation. And it also implies that j8*(A) is empty, thenA is inconsistent.

Theorem 2 For any APTAA, it holds thatf[ A] = [B(A)] = [8°(A)].

The above definition of consistency, however, places naicéehs on the derived implementa-
tions. In particular, the derived PTA could show unreaisighaviors by preventing time from diverging.
Therefore, we also aim at checking consistency in such a heatyanly divergent implementations are
considered. Note that a divergent consistent APTA must Ibsistent, therefore we assume that the
APTAs that we deal with are already consistent.

We consider the set dtrict and probabilistic divergent(Sd and Pd, for short) implementations
of A given by [A]SY = {M | M £ A and M is strict divergent and [A]PY = (M | M E AandM is
probabilistic divergent respectively. The formal definitions of probabilistic astdct divergency can be
found in [19] and[[13]. Now we define an APTA to I$&l- or Pd-consistentf it admits at least on&d
or Pd implementation, i.e [A]S? # 0 or [A]"? # 0.

Theoreni B shows that a time-divergence sensitive consistadreck for APTAs can be defined based
on a reduction to APAs and stochastic two-player games. €hald of this technique can be found in
[13]. This result &ectively allows us to check whether an APTA has at least an& st probabilistic
divergent implementation.

Theorem 3 An APTA A is Pd (resp.Sd) consistent if and only if in the gam@(A), the®-player has a
winning strategy for the objectivie_; (O<¢tick) (resp. objectiveaotick).

3.3 Abstract Probabilistic Event-Clock Automata

We now introduceéAbstract Probabilistic Event-Clock Automat@aPECAS), which form a strict subclass
of APTA, where clock resets are not arbitrary: each actds associated with a clock, which is
reset exactly when the acti@occurs. This kind of clock resets originated fréaent-Clock Automata
(ECAS) [2]: they form a strict subclass of TA, but they enjogenproperties, e.g., they are closed under
union and intersection, and can be determinized.

Definition 7 [APECA] A (complete)abstract probabilistic event-clock automat¢hPECA) is a tuple
E=(L,A Xa, ARV, T,lpg), whereL, A, AP, o, andV are defined as for APTAS;

e Xais a set of clocks where every € Xa corresponds to an actiare A,

e T:LxCC(Xa)xAxPC(L) - B3 is a three-valued probabilistic transition function, ot. all
leL,ac A Vi{gi | d¢i i T(l,0,a,¢;) # L} = true.

Example 3 [APECA] Fig.[3 depicts two APECAEI andAcc Cl models a clients requesting access
to a given resource. It can either invogetto request the resource; grant to access it. The action
extrais used when a privileged access with extended time is ne&tledise ! and ? to indicate whether
an action comes from the designed component or from its@mwient. The clock corresponding to the
actiongetis xget. The client sends a secogédtrequest at most one time unit after the first request. With
a probability satisfying constraimgt;, the client terminates and stops requesting resourcds @&taThe
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client can also request extended time at any moment whiesifll active. Let the probability from state
1 to state 0 bgy; and from state 1 to state 2 Ipg in Cl. Theny, could be defined as€ p; <1/3 and
pr+p2=1

The APECAAcc specifies the behavior of an access controller. If the acteedise resource is
granted, then it should happen within 2 time units after pdoa of agetrequest. In case of a privileged
access with extra time, this duration will be extended to astd time units. However, with a certain
probability (satisfyingp,), the access controller will switch back to the default asdeme of 2 time units.
The probability constrainp, can be defined in a similar way as. The use of probability constraints is
explained in more detail in Examplek 5 dnd 6.

The main diference to APTAs is that the texra 'get, xger< 1
probability constraints in APECAs are de- ' 'get
fined onL instead on 2x L, and that we
require completeness for the edge function.
However, completeness is not a restriction,
e.g., we model the case where in location ;g
| there exists no outgoing-edge by setting
T(l,true, a,falsg = ?. Completing an APECA
in this way does not modify its set of imple- Igrantxge: < 4402
mentations. Note that a similar approach g, <2
also used in[[4] to obtain completeness for Access controller APECAce
timed modal specifications. An implementazigure 3: The two Figure 4: The parallel
tion of an APECA is aProbabilistic Event- ApeCcAsCI| andAcc compositionCl || Acc
Clock Automaton(PECA), which is a prob-
abilistic variant of ECAs. PECAs form a strict subclass ofABT Formally, a PECA is a tuple
C = (L,A Xa,ARPV,T,lg), whereL, A, AP, V andlg are as in PTAsX, is as in the APECA, and
T : LxCC(Xa) x Ax Dist(L) — B> is a two-valued probabilistic edge function.

Client APECACI

?extra

4 Refinement

In this section, we define various refinement notions for AR8Ad discuss their relationships. More
specifically, we define syntactical refinements based onlation relations and investigate their relation-
ship to semantical refinement (also referred tdhasoughrefinement), i.e., inclusion of sets of imple-
mentations. Since our refinement notions for APTAs are basdte refinement notions for APAs [11],

we recall relevant definitions now.

Definition 8 [Weak APA refinement[11]] Lef; = (S1,A,AP V1, T1,s)) andA; = (Sz, A, AP V5, T, S0)
be two APAs. A relatiorRC S; x S, is called aweak refinement relatioiff, for all (s, ) € R, the
following conditions hold:

1. Yae AVyr € PC(SZ) ) E)Q w2 = dp1 € PC(S]_) S il ©v1 andVﬂl € Sa(gol) = T NS Sattpz)
with u1 €gr uo (see the definition o&g in [13]);

a a
2. YaceAVy; € PC(S]_) DS w1 1 = dpp € PC(SZ) Sy w2 andv,ul € Sa(<p1) s dup € Sattpz)
with u1 €gr up; and

3. Vi(s1) € Va(s).
We write A; <w A iff there exists a weak refinement relation relaﬁﬁ@nd §
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Note that the correspondence function ($ee [13]) is not fixedivance in weak refinements. This is the
case instrongAPA refinements [11], which we denote by.

We are now in a position to define our refinement notions for A& TwWhile thoroughrefinement
is asemanticalinclusion between sets of implementatioaspngandweakrefinements are itsyntac-
tical counterparts. For the latter two, we apply the refinemenbnstfor APAs to the induced region
automata.

Definition 9 [APTA refinements] LetA; = (L1, A, X, AP, V1, T1,19) and A, = (L2, A X, ARV, T2,19) be
two APTAs. We say that

1. Az thoroughly refinesA,, denoted asA; <t Ay, iff [[A1] € [A-];
2. Ay Sd-thoroughly refinesA,, denoted asAy <39 Ay, iff [A1]% C [AL]S;
3. Ay Pd-thoroughly refinesA,, denoted asA; <B4 Ay, iff [A1]7 C [A]P;
4. A, strongly refinesA,, denoted asA; <s Ay, iff R(A;) <s R(A);
5. Ay weakly refinesA,, denoted asA; <w Ay, iff R(A1) w R(A>).

By TheorenilL, we can directly obtain that, for any APTAs and.Ay, it also holds that:
Azt Az iff  R(A1) =1 R(A2) 1)

whereR(Ay) <t R(Ay) refers to thorough refinement for APAs, which is also defiaednclusion of
implementation set§ [11] (analogously fg?d and=<"9). An example of a strong refinement can be found
in [13].

The following theorem establishes a hierarchy among tfierdint notions of refinement. We uR&; o
RF; to indicate that the refinemeRfF; is strictly finer than the refinemeRF.

Theorem 4 APTA refinements form the following hierarchy® > <P9 5 <1 5 <y > <s.

In Proposition 2, we relate weak and strong refinement withhabilistic time-abstracting bisimula-
tion [7] for PTAs. In Propositiof]3 we further show that stgpmeak and thorough refinements coincide
for deterministic APTAs.

Proposition 2 Let ~ denote probabilistic time-abstracting bisimilarity [ ®TAs. If A, and A, are
implementations, the(a) Ay <w Ay iff Ay ~ Ap; and(b) Ay <s Ay only if Ay ~ Ao.

Proposition 3 For deterministic APTAs, where the sets of admissible atgmndpositions in the initial
locations are singletons, thorough, strong and weak reénégoincide.

Remark 1 The counterexamples in Figl 5 also show that 8ze and Pd-thorough refinements do not
coincide with each other or with thorough refinement everd&gierministic APTAS.

b,x<1,¢’

1/2
ax<l1 1/2

Figure 5: Counterexamples for showing #tectly finer relations
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5 Abstraction

The goal of abstraction is to hide internal details of a dpmtion and thereby to obtain a simpler and
usually smaller specification. In the setting of automateglastraction can be defined by partitioning the
state space, i.e., by forming disjoint groups of statesdeations) where each of these groups is mapped
to one abstract state (or location).

Given a set of locationk, anabstraction functiorfor L is a surjective functiom : L — L. Its inverse
y : L - 2- is called aconcretization function The abstraction of: € Dist(2X x L), denoteda() €
Dist(2X x L) is uniquely defined byr(u)(1) = u(y(D)), for all T € L. Abstraction is lifted to sets of states,
sets of distributions, and sets of probability constraiimig pointwise manner. It follows that=a(y) iff
Sa(p) = a(Saly)). The abstraction of the product of constraint functipandy’ is given asx(¢ - ¢’) =
a(p) - a(y).

A technical challenge in defining abstraction for APTAs ie trandling of guards. For this purpose,
we introduce a pre-processing step that syntacticallystoeims an APTA into an equivalent APTA such
that an abstraction function can be applied.

Definition 10 LetA=(L,A X,ARV,T,lp) be an APTA~a ‘Lo Lbean abstrgction functiow,: L —>~2'-
its concretization function. We define the function IgxA— CC(X) s.t. g(,a) = Agi, if VI ey(l):
Jpi € PC(2X x L),g, € CC(X) : T(li,gi,a i) = T; and g(, a) = false otherwise.

Here, g calculates the common guards of all must-transitemitting fromi with actiona. Given the
function g, we define a pre-processing step for APTAs thatsspbme of the must-transitions such that
abstraction has the intended meaning.

Given a guardy € CC(X), we define the negation gf denotedy € CC(X), as the set of guards, such
that for any valuatiorv € RX it holds thatve g if and only if there exists ng’ € g such thatv>g’. The
negation of a guard can b&ectively computed by splitting the guard into its atomic @amsons and
inverting the comparisons.

Definition 11 [Pre-processing] LeA = (L,A, X, ARV, T,lg) be an APTAx : L — L be an abstraction
function, y : L — 2" be its concretization function. Let g_:x A — CC(X) be defined as before. The
pre-processing functiof?, mapsA to the APTAP, (A) = (L,A, X, ARV, T’,lp) such that for any € L,
ge CC(X) andp € PC(2* x L), if T(I,0,a,¢) = T, thenT’(l,g(a(l),a),a,¢) = T andVg € gea(l),a):
T'(,gand,a,¢i) = T;andT’(I,0,a,¢) = T(l,0,a,¢), otherwise.

As a result of the pre-processing function, the guards on st-tnansition are either the common guard
determined by g, or are disjoint with the common guard. Sagi{a€l),a) andgA g’ for all g’ € g@(l;),a)
form a partition ofg, it is easy to see tha&(A) = R(P,(A)). We are now in a position to define the
abstraction.

Definitiqn 12 [APTA Abstraction] Given an abstraction functian: L — L and its concretizaEion func-
tiony: L — 2', a pre-processed APTR,(A) = (L,A, X, ARV, T,lg) and a~guard function gL x A —
CC(X). Leta(Po(A)) = (LA X, ARV, T,a(lo)) be the APTA defined by(l) = U, V(1) and
T ifg=9(,a),andSalg) = (U gyeyixpceixL)T(.ga0)-T S8L¥))
? ifg=#g(,a),and3l e y(l),p € PC2*xL): T(l,§,a,¢) # L,and

Salp) = a(U p)eyixPe@xL)T(Lgae)xL Sal¥))
1 otherwise

HEENE

Lemma 1 Leta(P,(A)) be an abstraction ofl. Then there exists an APA abstraction function (cfl [11])
@’ onR(A), such thaR(a(P,(A))) = &' (Py (R(A))).
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Proposition 4 For any APTAA and abstraction function, A <y a(Py(A)).

Lemmall states that an abstraction function for an ABAAnduces an abstraction function &{A).
Propositior_4 follows directly from Lemnid 1 and a similarusnown for APAs [11]. This result is
important in order to ensure that applying an abstractiefdgia generalized specification, i.e., formally
that the original specification always weakly refines itsaesion. Note also that we show in Sectidn 6
that abstraction interacts well with parallel composition

Example 4 Another client specificatiol€l, is depicted in Fid.J6(a), where state 1 is split into 1
and 1” inCly. State 1’ can be seen as a “quick phase”, singetaequest should be sent in less than 2
time units, while state 1” is the “slow phase” due to the guagd> 2. Furthermore, in state 0’ and 1,
an extended time slot will be granted whether needed or notveder, in state 0, the additional time
will only be granted after 1 time unit. From state 17, it is pilde to either start from 0’ again (quick
phase), to move to state 1’ (slow phase), or to state 2’ (teatiun) after the access to the resource has
been granted.

Let the abstraction function be defined @) = 0 for | € {0’,1’} anda(l) = | for | € {1”,2'}. The
pre-processing splits the edgextratrue) from state 1’ into (Extra, Xexwa = 1) and (Bxtra, Xexira < 1).
The abstractiomr(Cly) is shown in Fig. 6(b). Any distributiop” satisfying the constraint} in o’(Cly)
is defined such that'(0) = u(0") + u(1’), for anyu € Safps) in Clj.

6 Conjunction and Parallel Composition

In this section, we define two composition operators for AREG.e., conjunction and parallel compo-
sition. These two operators are intentionally defined oatyXPECASs, and not for general APTAS, in
order to be able to ensure compositionality properties. j@mtion and parallel composition form the
cornerstones for a specification theory supporting indégendevelopment and structural composition.

6.1 Conjunction

Given two APECASsE; and &, their conjunction (oflogical compositiol, denoted a€1 A &y, is the
specification that realizes the conjunctive behavia®p&dnd&,. Specifically, the set of implementations
of the conjunction approximates the intersection of the eéimplementations af1 and&,. We define
conjunction here only for action-deterministic APECAs otlee same set of actions. For two automata
with different action sets, we add the missing actions in the respeitomaton, and complete the edge
function as explained in Sectién 8.3. We leave the genatadiz to nondeterministic APECASs for future
work.

lget, Xget > 2
lextraXextra > 1 lextra lextra, Xextra < 1 lextra
- RN - N

Iget xget=2 |

lextra,
Xextra> 1

/

?grantyps Iget ;get <2

(@) APECACI;. (b) The abstraction’(Cl,).
Figure 6: APECA abstraction.
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Definition 13 [APECA Conjunction] Let, = (Ll, A Xpa, APV, T, |g)') and82 = (Lz, A Xa, ARV, To, |%)
be two action-deterministic APECAs over the same sets adreetand atomic propositions. Th&on-

junctionis E1AEr = (L1 X Lo, A Xa ARV, Ty, (13 12))
whereV((1,12)) = Vi(I1) nVa(lo) for all |1 € Ly, 1> € Ly and T, is defined as follows: for al& € A,
01,02 € CC(Xa), andly € Ly, I € Ly:

1. Y1 € PC(L1), Y2 € PC(L2) such thatT1(l1,01,8,¢1) # L andTa(l2,02,8,¢2) # L, let TA((I1,12),
1A 02,8,¢4) = T1(l1, 91, & ¢1) U T2(l2, 92,8 ¢2) with ¢, the new constraint ifPC(Ly x L) such
o the distributioru; = { k1 = Yi,er, 14 ((Ke, k2)) } is in Safp1), and
e the distributionuy = { ko = Y er, 1a((Ke, K2)) } is in Salgpy).

2. For all othery’, € PC(L1x Lp) andg’ € CC(Xa) we defineT,({11,12),9",a,¢) = L.

Informally, the conjunctior€; A &, can be regarded as thergestspecification that refineS; and &,.
Note that we rely on the completeness of the edge functionse¥ample, assume that inthere is a
must-edge via the actiom and inl, the actiona is not enabled. As we require completeness, the latter

means that there is an edggi?false In the conjunction, this edge is combined with the mustedfdgm

[1 using Rulé 1. Thus, in the conjunction we obtain the edgé,) it false which means thatly, 1) is
inconsistent. On the other hand, for may-edges no incemsiss are produced.

lextra lextra lextra 'getxger<1
LN LN

lgetXget< 1

(a) APECACI,. (b) APECACIACI,.

Figure 7: APECA conjunction.

Example 5 Fig.[1(a) depictsCl, as another version of the client. The conjunctionGdfand Cl; is
shown in FigL¥(b). Lety; be defined as in Examplé 3 and let the probability from stateoState 0’
be g; and from state 1” to state 1’ bg and from state 1” to 2’ bey in Cl,. We setp, such that
O<qu<1/5 1Y3<qgp<landgr+g2+03=1. Now letu, be any distribution satisfying,. Let
UAOQ) =11, ua(0L) =12, ua(02) =r3, up(20') = rg, ur(22') =15, ur(22) =rg. Thoser’s should satisfy
the following constraints, given the constraints on pfeeand theg's:

M+ro+r3=p1 rag+rs+re=pP2 ri+rg=0q1 ro+rs=0 r3+re=0s.

We use the notatiod\; = A, to denote that bot; <w A, and A, <w A;. Next, we show that
conjunction is preserved by the region construction.

Lemma 2 For any APECASE1,Ey, it holds thatR(E1 A E7) = R(E1) AR(E2).

We now show that conjunction is the greatest lower bound oE@Rs w.r.t. weak refinement, after
pruning the conjunction. Note thgt(E) means applying the pruning operafon & for finitely many
times. Theoreml6 relates the sets of implementations ofdhgiaction with the implementation sets of
its components.
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Theorem 5 Let &1, & and&; be action-deterministic consistent APECAS. Then the valhg proper-
ties hold: (1)8*(E1AEL) < &E1; (2)if E3<E1 andE3 < &y, then&E3 < B*(E1 A ED).

Theorem 6 For any APECASE1, &; it holds: [E1 A &EL] C [E11N[EA].

6.2 Parallel Composition

We now define a parallel composition operator for APECAs Whénables modular specifications of
systems. The formal definition is similar to the one for cowfion and requires again that all actions are
shared. To enable interleaving of non-shared actions, alezeecompleteness of the edgefialiently.
Let a be an action o€, that does not occur i6,. We now adda to the set of actions @&, and for every
locationl in &, we add a self-loop must-edge such thadl, true, a, ¢) with Saiy) = {1}, wherey is the
point distribution on. This is repeated for all non-shared actiong€ef(symmetrically for&,) until &;
and &, have the same set of actions. This simplifies the definitioth@fparallel composition (and our
proofs for related theorems) since interleaved and syméted behavior can be uniformly treated using
a single composition rule.
Definition 14 [APECA Parallel Composition] Given two APECA = (L1, A, Xa, AP1,V1, Ty, I(l)), Er =
(Lo, A, Xa, AP, V5, To, Ig) with AP; N AP, = (. Theparallel compositiorof &, and&,, written as&, || &,
is defined as
E1llE2= (L1 x Lo, A Xa, APLUAP,, V|, T, (13,13))  where
e T, is defined as follows. For ali € Ly, 12 € Ly, 91,02 € CC(Xa), a€ A
— Vo1 € PC(L1) and V¢, € PC(L) such thatT1(l1,01,a8,¢1) # L andTo(l2,092,8,¢2) # L, let

Ty, 12), 91 A G2, ¢p) = Ta(l1, 91, & 1) M T2(l2, 92, @, ¢2) With ¢ the new constraint oy ||
A, defined as followsyy € Saly) if and only if there existiy € Sap1) anduy € Salyz) s.t.

Hy (K1, ko)) = pa(ke) - po(k) for allky € Ly, ko € Lo.
— Forall othen,ol’| € PC(L1 x Lp) andg’ € CC(Xp) we defineT(¢I4, |2>,g’,a,¢|") =1.
o V||(<|1,|2>) ={E1UEx|E1 € V1(|1) ANEs e V2(|2)} foralll; € Lq,l5 € Lo.

Example 6 Fig.[4 shows the parallel compositi@i || Acc of the client and access controller in Fig. 3.
Let ¢, be defined as in Examdlé 5. Let the probability from state Btate 0’ beps and from state 1’ to
state 1' beps in Acc Setp, be 0< p3 <1/2 andps+ ps = 1. InCl|| Acg let the probability from state 11’
to states 00’, 01’, 20’ and 21’ bey, o, g3 andqy, respectively. The resulting isq1 + G+ 0z +a =1
andd; = P1- Ps, 02 = P1- Pa, O3 = P2~ Pz andda = Pz - Pa.

Similarly to conjunction, parallel composition is preseaby the region construction (Lemia 3). More-
over, parallel composition interacts well with refinemeft¢oreni V) and abstraction (Theorem 8). The
latter result allows us to avoid state space explosion byyappabstraction component-wise instead of
computing the complete system specification and then applyie abstraction. By Theordm 7 we also
know that= is a congruence w.r.t. parallel composition.

Lemma 3 For any APECASE1, & it holds: R(E1 || E2) = R(E1) || R(E2).
Theorem 7 Weak refinement is a precongruence w.r.t. parallel comipasit

Theorem 8 Let & and&; be APECAS andry,a» be abstraction functions. The following equalities
hold up to isomorphism:

1. Pal(al) Il Paz(SZ) = Palxaz(gl | 82)1
2. @1(Poy(E1)) | @2(Po,(E2)) = (@1 X @2) (P, (E1) | @2(Pay(E2)));
3. (@10Py,)(E1) |l (@20P0,)(E2) = (@1 X @2) © (Payxa,)(E1 || E2).
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7 Conclusions

We introduced a modal specification theory of abstract goitistic timed automata (APTAS) that capture
systems which contain nondeterminism, probability ancktiffihe theory supports refinement, abstrac-
tion, and the operations of parallel composition and caetjon, the latter for independent development.
The main challenge in combining probabilistic and timedawbur was due to the need to consider
guards of transitions, as well as a time-divergence sgasitinsistency check. In order to obtain a com-
positional theory, we had to restrict to the class of abspeababilistic event clock automata (APECAS).
As future work, we aim at finding a class of modal specificaitor probabilistic timed systems that, in
terms of expressiveness, lies between APECAs and APTAstliutnjoys the compositionality prop-
erties of APECAs. Moreover, we plan to extend our work on raletibn to support counterexample
generation.
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