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Modal automata are a classic formal model for component-based systems that comes equipped with
a rich specification theory supporting abstraction, refinement and compositional reasoning. In re-
cent years, quantitative variants of modal automata were introduced for specifying and reasoning
about component-based designs for embedded and mobile systems. These respectively generalize
modal specification theories for timed and probabilistic systems. In this paper, we define a modal
specification language for combined probabilistic timed systems, calledabstract probabilistic timed
automata, which generalizes existing formalisms. We introduce appropriate syntactic and semantic
refinement notions and discuss consistency of our specification language, also with respect to time-
divergence. We identify a subclass of our models for which wedefine the fundamental operations for
abstraction, conjunction and parallel composition, and show several compositionality results.

1 Introduction

The design of complex embedded systems can be supported by component-based design methodologies,
which can take the form of specification theories that provide the notions of abstraction and refinement,
as well as a rich collection of compositional operators. A classical and widely used specification the-
ory for component-based design is that of modal automata [16]. A modal automaton is essentially a
deterministic automaton equipped withmay- andmust-transitions, which are respectively used to spec-
ify allowed and required behavior. Several technical aspects of modal automata have been studied in the
literature, including modal vs. thorough refinement, consistency, abstraction, as well as operators for par-
allel composition of components and conjunction, where thelatter supports independent development.
These notions enjoy a number of important properties, e.g.,that conjunction is the greatest lower bound
w.r.t. modal refinement and that abstraction is compositional. In this way, modal automata provide math-
ematical foundations for designing and reasoning about component-based systems at the abstract level
of interfaces and to derive properties on the implementation level of the global system.

In recent years, much attention has been dedicated to formulating quantitative extensions of modal
automata, for example to support the development of component-based systems which feature real-time
and/or probabilistic behavior. An example of these developments are a modal specification language
for timed systems calledModal Event-Clock Specifications(MECS) [4]. MECS are essentially a modal
extension ofEvent-Clock Automata(ECAs) [2], which form a strict subclass of the classicalTimed
Automata[1] model. Restricting to this model allows Bertrand et al. in [4] to lift a number of composi-
tionality properties known for modal automata to the timed setting, i.e., to the model of MECS. Another
recent quantitative variant areAbstract Probabilistic Automata[11] (APAs). While MECS are used to
specify timed behavior, APAs enable the specification of abstract probabilistic behavior using probability
constraints. Probabilistic behavior is commonly requiredfor quantifying the likelihood of events, such
as message loss in unreliable channels, or is exploited in the design of randomized protocols. Similarly
to MECS, APAs are equipped with notions for conjunction and parallel composition, as well as a number
of compositionality results that can be used for compositional reasoning and abstraction. However, in
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many settings, such as in embedded and mobile systems, a combination of probabilistic and timed be-
havior is required, which is not supported by APAs and MECS. Although the specification of combined
probabilistic and timed behavior is possible withProbabilistic Timed Automata[14] (PTAs), there are no
corresponding notions of modalities and abstract probabilistic behavior for PTAs.

In this paper, we introduce a modal specification language for probabilistic timed systems, called
Abstract Probabilistic Timed Automata(APTAs), and a subclass of them, calledAbstract Probabilistic
Event-Clock Automata(APECAs). APTAs serve as a modal specification language for systems with
nondeterministic, probabilistic and timed behavior and support the abstract definition of underspecified
probabilistic behavior using constraints (as in APAs). Modalities in the form of may- and must-edges are
used to distinguish between allowed and required behavior.APTAs are regarded as specifications which
areimplementedby PTAs. In terms of expressiveness, APTAs subsume PTAs, MECS, and APAs. Appli-
cations of APTAs can be found in the area of component-based systems with real-time and probabilistic
behavior, e.g., in communication and network protocols forembedded and multimedia systems. As a
specific example, Stoelinga et al. considered PTAs for modeling the root contention protocol of the IEEE
1394 standard [20]. The authors defined several intermediate automata in between the implementation
and the specification automaton which are related by simple refinement notions. This case study could
benefit from modeling using APTAs that we introduce here because of their support for abstraction,
refinement and compositional operations.

We show the following important results for our models. For APTAs, we define several appropriate
refinement notions and establish a hierarchy among them. Fordeterministic APTAs, we show that three
of these refinement notions coincide. We provide a consistency check for APTAs based on a reduction
to stochastic two-player games. Both probabilistic and strict time-divergence are considered in consis-
tency and refinement checking. We introduce APECAs as a subclass of APTAs and develop abstraction
techniques and a compositional theory for this model. In particular, we show that an APECA is related
with its abstractions by means of modal refinements. We defineconjunction and parallel composition for
APECAs, and show that they interact well with modal refinement and abstraction. Specifically, we show
that conjunction is the greatest lower bound after pruning,and that modal refinement is a precongruence
with respect to parallel composition. We further show that component-wise abstraction is as powerful
as applying the combination of the local abstractions to theentire model. To the best of our knowledge,
this is the first compositional modal specification and abstraction theory for probabilistic timed systems.
Besides the integration of abstract probabilistic behavior, the work in this paper extends [4] by including
a consistency check and refinement relations that consider time divergence. Moreover, our notion for ab-
straction non-trivially extends the corresponding APA concept in [11] by taking into account the guards
of transitions.

Related work. This paper is part of an effort to develop a compositional specification theory and
assume-guarantee reasoning for component-based systems.Previously, we have developed a linear-
time specification theory for components [6] and its timed extension [9]. We have also formulated the
corresponding sound and complete compositional assume-guarantee rules [8], demonstrating their appli-
cation on examples of component-based systems from the networking domain. Linear-time refinement
for probabilistic systems is known not to be compositional,and hence we focus on modal specifica-
tions. Modal specification theories for probabilistic systems include APAs [11] and Constraint Markov
Chains [5]. A specification theory for real-time systems is defined in [10] including a set of operators
supporting stepwise design of timed systems. A general approach for quantitative specification theories
with modalities is presented in [3]. A robust specification theory for Modal Event-Clock Automata is
discussed in [12]. And aggressive abstraction techniques for probabilistic automata are explored in [18].
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Structure. In Section 2, we recall relevant notions for APAs and PTAs. Section 3 introduces our
new model of Abstract Probabilistic Timed Automata. In Section 4, refinement notions for APTAs are
defined and compared. Section 5 is devoted to abstraction forAPTAs. In Section 6, we define conjunction
and parallel composition, and present compositionality results for APECAs (a strict subclass of APTA).
Section 7 concludes and discusses future work.

2 Preliminaries

In this section, we recall important definitions for PTAs [14] and refer the reader to [11] and [13] for
APAs. We first recall some elementary notions. Adiscrete probability distributionover a denumerable
setS is a functionµ : S→ [0,1] with

∑

s∈Sµ(s) = 1. The set of all discrete probability distributions over
S is denoted byDist(S). For a givens ∈ S, the point distributionµs is the unique distribution onS
with µs(s) = 1. We denote byR+ the set of non-negative reals. LetB2 = {⊥,⊤} andB3 = {⊥,?,⊤} be the
complete lattices with the respective orderings⊥<⊤ and⊥< ?<⊤, and meet (⊓) and join (⊔) operators.

2.1 Probabilistic Timed Automata

We now recall the standard timed automata notions of clock valuations and guards. For a finite setX of
clocks, a clock valuationis a functionv : X→ R+. The set of all clock valuations overX is denoted by
R

X
+. For anyv ∈ RX

+ andt ∈ R+, we usev+ t to denote the clock valuation defined as (v+ t)(x) = v(x)+ t
for all x∈ X. We usev[Y := 0] to denote the clock valuation obtained fromv by resetting all of the clocks
in Y ⊆ X to 0, and leaving the values of all other clocks unchanged; formally, v[Y := 0](x) = 0 if x ∈ Y
andv[Y := 0](x) = v(x) otherwise. We write0 for the clock valuation that assign 0 to all clocks.

Let X = {x1, . . . , xn} be a set of clocks. Aclock constraintor guard gon X is an expression of the
form x∼ c such thatx,y ∈ X, c ∈ R+ and∼ ∈ {≤,<,>,≥}, or a conjunction of guards. A clock valuationv
satisfiesg, written asv⊲g, iff g evaluates to true when all clocksx ∈ X are substituted with their clock
valuev(x). Let CC(X) denote the set of all guards overX, and letCCN(X) denote the set of guards onX
involving expressions with constants less or equal toN, whereN is the maximal constant in all guards.

Definition 1 [PTA [14]] A probabilistic timed automatonis a tupleM = (L,A,X,AP,V,T, l0) whereL
is a finite set of locations with initial locationl0 ∈ L; A is a finite set of actions;X is a finite set of
clocks; AP is a finite set of atomic propositions;V : L→ 2AP assigns atomic propositions to locations;
andT : L×CC(X)×A×Dist(2X× L)→ B2 is a probabilistic edge function.

We write l
g,a
−−→ µ iff T(l,g,a,µ) = ⊤, which comprises a source locationl, a guardg, and a probability

distributionµ which assigns probabilities to pairs of the form (Y, l′), whereY ⊆ X is a set of clocks to
be reset andl′ is a target location. The behavior of a PTA is as follows: in any location a probabilistic
edge can be taken if its guard is satisfied by the current values of the clocks. Once a probabilistic edge
is nondeterministically selected, the choice for a particular target location and set of clocks to be reset is
made probabilistically usingµ.

We define the semantics of a PTAM by mapping it to a probabilistic automatonM by employing
the classical region equivalence for timed automata [1]. Aprobabilistic automaton(PA) [17, 11]M =
(S,A,AP,V,T, s0) consists of a set of statesS with initial state s0, a set of actionsA, a set of atomic
propositionsAP, a valuation functionV : S→ 2AP and a probabilistic transition functionT : S×A×
Dist(S)→B2. A regionθ is the set of clock valuations which satisfy exactly the sameguards ofCCN(X).
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Given a regionθ, we writeSucc(θ) for the union of all regions that can be obtained fromθ by letting time
elapse. Given a guardg ∈CC(X), we writeθ ⊆ g iff for all valuationsv ∈ θ it holds thatv⊲g. We denote
the set of all regions byΘN(X) and simply writeΘ if clear from context. We now define the semantics
of a PTA in terms of a PA.

Definition 2 [Region PA] For a given PTAM = (L,A,X,AP,V,T, l0), the associatedregion PAis given
by R(M) = (S,A′,AP,V′,T′, s0) whereS = L×Θ ands0 = (l0,0), A′ = Θ×A× (2X)S, V′(l, θ) = V(l), and
T′ is induced byT in the following way: for anyl ∈ L and anyθ ∈ Θ such that (l, θ) is reachable from

(l0,0), if l
g,a
−−→M µ then for each regionθ′′ ∈ Succ(θ)∩g there existsζ : S→ 2X andµ′ ∈Dist(S) such that

(l, θ)
θ′′,a,ζ
−−−−→R(M) µ

′ and:

ζ(l′, θ′) = Y andµ′(l′, θ′) = µ(l′,Y) if θ′ = θ′′[Y := 0]; andζ(l′, θ′) = ∅ andµ′(l′, θ′) = 0 o.w.

In the derived region PA, the transition labels (θ′′,a, ζ) ∈ A′ consist of the regionθ′′ that represents the
time window in which the transition is taken, the fired actiona∈ A, and for each target states∈ S the set
of clocksζ(s) ⊆ X that are being reset whens is probabilistically chosen. W.l.o.g., we assume thatR(M)
is always pruned, i.e., all its states are reachable.

Similarly as shown for timed specifications in [4], any PA that is defined over the alphabetΘ×A×
(2X)S can be interpreted as a PTA again. Intuitively, the states ofthe PA are interpreted as the locations
of the corresponding PTA and the information about the guards, actions and clock resets for edges is
derived from the transition labels of the PA. We introduce the operatorT which translates any given PA
M over the alphabetΘ×A× (2X)S into the PTAT (M). The application ofT ◦R allows us, moreover, to
define a normal form for PTAs.

Definition 3 [Normal form] A PTAM is in normal formiff it is isomorphic to (the reachable part) of
(T◦R)(M).

Note that, if a PTA in normal form, every location is associated with a unique region. Moreover,
(T◦R)(M) is isomorphic to (T◦R)2(M) for any PTAM. The PTA in normal form in needed later
for technical reasons (e.g., Proposition 1 or Theorem 1).

3 Abstract Probabilistic Timed Automata

We now defineAbstract Probabilistic Timed Automata(APTAs) as the central model of this paper. AP-
TAs extend PTAs in three ways: (1) probability distributions are generalized to probability constraints,
(2) may- and must-transitions are distinguished, and (3) locations are labeled with sets of admissible
atomic propositions. All three modeling concepts are borrowed from APAs [11]. We use satisfaction
relations to relate APTAs with PTAs that implement them. Leta probability constraintϕ be a symbolic
representation of a set of probability distributions over asetS. As in [11], we do not fix the language for
probability constraints. The set of probability distributions that satisfyϕ is denoted bySat(ϕ) ⊆ Dist(S).
We define the constraintstrueandfalse, for which we requireSat(true) =Dist(S) andSat(false)=∅. The
set of probability constraints overS is denoted byPC(S).

Definition 4 [APTA] An abstract probabilistic timed automatonis a tupleA = (L,A,X, AP,V,T, l0),
whereL, A, X, AP, l0 are defined as for PTAs;V : L→ 22AP

assigns sets of admissible atomic propositions
to locations; andT : L×CC(X)×A×PC(2X×L)→B3 is a three-valued probabilistic edge function.
We use the notationl

g,a
d ϕ to denote may-edges (formally ifT(l,g,a,ϕ) = ?), l

g,a
−−→ ϕ for must-edges (if

T(l,g,a,ϕ) = ⊤), andl
g,a
 ϕ for may- or must-edges, whereg ∈CC(X) is a guard,a ∈ A is an action, and

ϕ ∈ PC(2X× L) is a probability constraint.



70 Modal Specifications for Probabilistic Timed Systems

Example 1 Fig. 1 depicts an example APTA modeling a scheduler component. In the initial location
l0, tasks can be submitted to the scheduler and will be started within 1 time unit. Two types of tasks
can occur: short- and long-running ones. The choice betweenthem is probabilistic according to the
probability constraintϕp = (0.25≤ p1 ≤ 0.75)∧ (0.25≤ p2 ≤ 0.75)∧ (p1+ p2 = 1). Tasks either finish
in the expected time frame or can be canceled at any point. Thecanceling of tasks is modeled using
may-edges, and thus is not required to be realized by implementations.

l1

{{idle}, {busy}}

l2

{{short}}

l3

{{long}}

l0
{{idle}}

start,0≤ x< 1

p1

p2

submit, x := 0

finish,0< x≤ 2

cancel

finish,2< x≤ 10

cancel

l1

{busy}

l2

{short}

l3

{long}

l′3
{long}

l0
{idle}

start,0≤ x< 1 0.3

0.4

0.3

submit, x := 0

finish,2< x≤ 6

finish,0< x≤ 2

finish,6< x≤ 10

cancel

Figure 1: An example APTA specification for a
scheduler component.

Figure 2: An example PTA implementing the
APTA in Fig. 1.

Definition 5 [APTA Satisfaction] LetM = (L,A,X,AP,V,T, l0) be a PTA in normal form andA =
(L′,A,X,AP,V′,T′, l′0) be an APTA.R⊆ L× L′ is called asatisfaction relationiff, for all (l, l′) ∈ R, these
conditions hold:

1. ∀a ∈ A, ∀ϕ′ ∈ PC(2X × L′), ∀g ∈ CC(X) and∀θ ∈ Θ: if l′
g,a
−−→A ϕ

′ and both (l, θ) and (l′, θ) are
reachable inM andA respectively, then∃n∈N, ∃g1, . . . ,gn ∈CC(X) and∃µ1, . . . ,µn ∈Dist(2X×L)

with: (i) Succ(θ)∩g⊆Succ(θ)∩
⋃n

i=1 gi ; and (ii)∀1≤ i ≤ n: l
gi ,a
−−−→M µi and∃µ′i ∈Sat(ϕ′) s.t.µi ⋐Rµ

′
i

(see the definition of⋐R in [13]);

2. ∀a ∈ A, ∀µ ∈ Dist(2X × L), ∀g ∈ CC(X): if l
g,a
−−→M µ then∃g′ ∈ CC(X) and∃ϕ′ ∈ PC(2X × L′):

l′
g′,a
 A ϕ

′, g⊆ g′ and∃µ′ ∈ Sat(ϕ′) with µ ⋐R µ
′;

3. V(l) ∈ V′(l′).
We say thatM satisfiesA, denotedM |=A, iff there exists a satisfaction relation relatingl0 and l′0. If
M |=A,M is called animplementationofA.

Condition 1 states that any must-edge in the specification isrequired to be realized in an implementation
(possibly split up into several edges emitting from one location). Condition 2 ensures that any edge in
the implementation is allowed by the specification (as a may-or a must-edge). Note that, sinceM is in

normal form, the guard in the edgel
g,a
−−→M µ is necessarily a region. The set of all implementations ofA

is given by~A� = {M|M |=A}.

Example 2 Fig. 2 depicts an implementation of the APTA for a scheduler component in Fig. 1. We
indicate the satisfaction relation by using equal locationindices, e.g., the locationsl3 andl′3 in the imple-
mentation are in relation withl3 in the specification. The implementation differs from the specification
in the following aspects. After a task has been submitted, the scheduler becomes busy, i.e., the set of
atomic propositions{busy} is chosen for locationl1. Two types of long-running tasks are distinguished
in the implementation: ones that finish in the interval (2,6] and ones that finish in the interval (6,10].
Only tasks of the latter type can be canceled. The probability constraintϕp is realized by the probability
distribution assigning 0.4 to l2, and 0.3 to l3 and l′3, respectively. Note, however, that this PTA is not
in normal form, because the locationl0 can be reached within three different regions: (0,2], (2,6] and
(6,10]. Thus, by splitting up locationl0, the normal form can be obtained and the satisfaction relation is
constructed.
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3.1 The Region-Based Interpretation

We show now that the check for the existence of a satisfactionrelation between a PTA and an APTA
can be reduced to a check for a satisfaction relation betweentheir corresponding probabilistic region
automata. Analogously to the mapping of a PTA to a PA using theregion construction (cf. Def. 2), we
can transform any APTAA into an APAR(A). In the resulting APAR(A), the types of the three-valued
edge function are inherited fromA. The transition relationTR(A) : S×Θ×A× (2X)S ×PC(S)→ B3 is
lifted from distributions to constraints by:

• for anyl ∈ L, θ ∈Θ such that (l, θ) is reachable from (l0,0): if l
g,a
−−→A ϕ then for eachθ′′ ∈Succ(θ)∩g

there existsζ : S→ 2X andϕ′ ∈ PC(S) such that (l, θ)
θ′′,a,ζ
−−−−→R(A) ϕ

′, and∃µ∈Sat(ϕ) iff ∃µ′∈Sat(ϕ′)
with:

ζ(l′, θ′) = Y andµ′(l′, θ′) = µ(l′,Y) if θ′ = θ′′[Y := 0]; andζ(l′, θ′) = ∅ andµ′(l′, θ′) = 0 o.w.

and analogously for all may-edges.

Proposition 1 Consider an APTAA = (L,A,X,AP,V,T, l0) and a PAM = (S,A′,AP,V′,T′, s0) where
A′ = Θ(X)×A× (2X)S. If M |= R(A) thenT (M) is in normal form andT (M) |=A.

This proposition will be used later in Section 3.2.

Theorem 1 Given a PTAM= (L,A,X,AP,V,T, l0) in normal form and APTAA= (L′,A,X, AP,V′,T′, l′0),
and letR(M) = (S,AR,AP,VR,TR, s0) andR(A) = (S′,AR,AP,V′R,T

′
R, s
′
0) be the respective region au-

tomata. ThenM |=A if and only if R(M) |= R(A).

Theorem 1 does not hold for arbitrary PTAs, since theif -part only holds for PTAs in normal form. That is
to say, there exist a PTAM and an APTAA such thatM 6|=A, while R(M) |= R(A). A similar example
for (non-probabilistic) timed modal specifications can be found in [4].

Definition 6 [Deterministic APTA] Given an APTAA = (L,A,X,AP,V,T, l0) and its region automaton
R(A) = (S,A′,AP,V′,T′, s0). A is called:

• action-deterministic, iff for all reachable statess in R(A) it holds: if there exists
θ1,a,ζ1
 R(A) ϕ1 and

s
θ2,a,ζ2
 R(A) ϕ2 such thatϕ1 , ϕ2, thenθ1∩ θ2 = ∅;

• AP-deterministic, iff s
θ,a,ζ
 R(A) ϕ implies that for allµ′,µ′′ ∈ Sat(ϕ), and s′ , s′′ ∈ S it holds:

(µ′(s′) > 0 ∧ µ′′(s′′) > 0)=⇒ V(s′) ∩ V(s′′) = ∅.

A is calleddeterministiciff it is action-deterministic and AP-deterministic.

Note that Def. 6 is inspired by [11]. Action-determinacy canalso be enforced on the syntactical level.
However, such a definition would only be a sufficient, but not a necessary condition.

3.2 Consistency

Consistency of a specification refers to the property that there exists at least one model for this specifi-
cation. In our setting, an APTAA is said to be consistent if it admits at least one implementation, hence
formally iff ~A� , ∅. For any given APTAA, we can decide whether the APAR(A) is consistent and,
if so, derive a PAM, such thatM |= R(A) [11]. T (M) is then a PTA with finitely many states, and, by
Proposition 1, a model ofA.

In order to deal with consistency also on the syntactic level, we further define a locationl ∈ LA in an
APTAA = (LA,A,X,AP,VA,TA, l0A) to be consistent ifVA(l) , ∅ and for all guardsg ∈CC(X), actions
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a ∈ A and probability constraintsϕ ∈ PC(2X × LA) it holds: if TA(l,g,a,ϕ) = ⊤ thenSat(ϕ) , ∅. Note
that inconsistency of a location does not imply inconsistency of the whole APTA. In order to decide
whether an APTA is consistent, we follow the usual approach and use apruning operatorβ that filters
out distributions leading to inconsistent locations [11].The detailed definition and properties of a pruning
operator can be found in [13].

The following theorem shows that the application ofβ operator does not change the set of implemen-
tation. And it also implies that ifβ∗(A) is empty, thenA is inconsistent.

Theorem 2 For any APTAA, it holds that~A� = ~β(A)� = ~β∗(A)�.

The above definition of consistency, however, places no restrictions on the derived implementa-
tions. In particular, the derived PTA could show unrealistic behaviors by preventing time from diverging.
Therefore, we also aim at checking consistency in such a way that only divergent implementations are
considered. Note that a divergent consistent APTA must be consistent, therefore we assume that the
APTAs that we deal with are already consistent.

We consider the set ofstrict and probabilistic divergent(Sd and Pd, for short) implementations
of A given by~A�Sd = {M | M |= A andM is strict divergent} and~A�Pd = {M | M |= A andM is
probabilistic divergent}, respectively. The formal definitions of probabilistic andstrict divergency can be
found in [19] and [13]. Now we define an APTA to beSd- or Pd-consistentif it admits at least oneSd
or Pd implementation, i.e.,~A�Sd , ∅ or ~A�Pd , ∅.

Theorem 3 shows that a time-divergence sensitive consistency check for APTAs can be defined based
on a reduction to APAs and stochastic two-player games. The details of this technique can be found in
[13]. This result effectively allows us to check whether an APTA has at least one strict or probabilistic
divergent implementation.

Theorem 3 An APTAA is Pd (resp.Sd) consistent if and only if in the gameG(A), the�-player has a
winning strategy for the objectiveP=1(�^tick) (resp. objective�^tick).

3.3 Abstract Probabilistic Event-Clock Automata

We now introduceAbstract Probabilistic Event-Clock Automata(APECAs), which form a strict subclass
of APTA, where clock resets are not arbitrary: each actiona is associated with a clockxa which is
reset exactly when the actiona occurs. This kind of clock resets originated fromEvent-Clock Automata
(ECAs) [2]: they form a strict subclass of TA, but they enjoy nice properties, e.g., they are closed under
union and intersection, and can be determinized.

Definition 7 [APECA] A (complete)abstract probabilistic event-clock automaton(APECA) is a tuple
E = (L,A,XA,AP,V,T, l0), whereL, A, AP, l0, andV are defined as for APTAs;

• XA is a set of clocks where everyxa ∈ XA corresponds to an actiona ∈ A;

• T : L×CC(XA)×A×PC(L)→ B3 is a three-valued probabilistic transition function, s.t.for all
l ∈ L,a ∈ A:

∨

i{gi | ∃ϕi : T(l,gi ,a,ϕi) , ⊥} = true.

Example 3 [APECA] Fig. 3 depicts two APECAsCl andAcc. Cl models a clients requesting access
to a given resource. It can either invokeget to request the resource; orgrant to access it. The action
extra is used when a privileged access with extended time is needed. We use ! and ? to indicate whether
an action comes from the designed component or from its environment. The clock corresponding to the
actionget is xget. The client sends a secondget-request at most one time unit after the first request. With
a probability satisfying constraintϕ1, the client terminates and stops requesting resources (state 2). The
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client can also request extended time at any moment while it is still active. Let the probability from state
1 to state 0 bep1 and from state 1 to state 2 bep2 in Cl. Thenϕ1 could be defined as 0≤ p1 ≤ 1/3 and
p1+ p2 = 1.

The APECAAcc specifies the behavior of an access controller. If the accessto the resource is
granted, then it should happen within 2 time units after reception of aget request. In case of a privileged
access with extra time, this duration will be extended to at most 4 time units. However, with a certain
probability (satisfyingϕ2), the access controller will switch back to the default access time of 2 time units.
The probability constraintϕ2 can be defined in a similar way asϕ1. The use of probability constraints is
explained in more detail in Examples 5 and 6.

0 1

2

!get

?grant,ϕ1

!extra

!extra

!get, xget≤ 1

0’ 1’

?get

!grant,xget ≤ 2

?get

?extra

!grant,xget ≤ 4,ϕ2

Client APECACl

Access controller APECAAcc

00’ 10’

20’

01’ 11’

21’

get

grant,xget ≤ 2

extra

get,xget≤ 4, ϕ‖

get

get,xget≤ 1

get,xget≤ 1

extra

Figure 3: The two
APECAsCl andAcc.

Figure 4: The parallel
compositionCl ‖ Acc.

The main difference to APTAs is that the
probability constraints in APECAs are de-
fined on L instead on 2XA × L, and that we
require completeness for the edge function.
However, completeness is not a restriction,
e.g., we model the case where in location
l there exists no outgoinga-edge by setting
T(l, true,a, false) = ?. Completing an APECA
in this way does not modify its set of imple-
mentations. Note that a similar approach is
also used in [4] to obtain completeness for
timed modal specifications. An implementa-
tion of an APECA is aProbabilistic Event-
Clock Automaton(PECA), which is a prob-
abilistic variant of ECAs. PECAs form a strict subclass of PTAs. Formally, a PECA is a tuple
C = (L,A,XA,AP,V,T, l0), where L, A, AP, V and l0 are as in PTAs,XA is as in the APECA, and
T : L×CC(XA)×A×Dist(L)→ B2 is a two-valued probabilistic edge function.

4 Refinement

In this section, we define various refinement notions for APTAs and discuss their relationships. More
specifically, we define syntactical refinements based on simulation relations and investigate their relation-
ship to semantical refinement (also referred to asthoroughrefinement), i.e., inclusion of sets of imple-
mentations. Since our refinement notions for APTAs are basedon the refinement notions for APAs [11],
we recall relevant definitions now.

Definition 8 [Weak APA refinement [11]] LetA1 = (S1,A,AP,V1,T1, s0
1) andA2 = (S2,A,AP,V2,T2, s0

2)
be two APAs. A relationR⊆ S1×S2 is called aweak refinement relationiff, for all (s1, s2) ∈ R, the
following conditions hold:

1. ∀a ∈ A,∀ϕ2 ∈ PC(S2) : s2
a
−→2 ϕ2 =⇒ ∃ϕ1 ∈ PC(S1) : s1

a
−→1 ϕ1 and∀µ1 ∈ Sat(ϕ1) : ∃µ2 ∈ Sat(ϕ2)

with µ1 ⋐R µ2 (see the definition of⋐R in [13]);

2. ∀a ∈ A,∀ϕ1 ∈ PC(S1) : s1
a
 1 ϕ1 =⇒ ∃ϕ2 ∈ PC(S2) : s2

a
 2 ϕ2 and∀µ1 ∈ Sat(ϕ1) : ∃µ2 ∈ Sat(ϕ2)

with µ1 ⋐R µ2; and

3. V1(s1) ⊆ V2(s2).

We writeA1 �W A2 iff there exists a weak refinement relation relatings0
1 ands0

2.
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Note that the correspondence function (see [13]) is not fixedin advance in weak refinements. This is the
case instrongAPA refinements [11], which we denote by�S.

We are now in a position to define our refinement notions for APTAs. While thoroughrefinement
is asemanticalinclusion between sets of implementations,strongandweakrefinements are itssyntac-
tical counterparts. For the latter two, we apply the refinement notions for APAs to the induced region
automata.

Definition 9 [APTA refinements] LetA1 = (L1,A,X,AP,V1,T1, l01) andA2 = (L2,A,X,AP,V2,T2, l02) be
two APTAs. We say that

1. A1 thoroughly refinesA2, denoted asA1 �T A2, iff ~A1� ⊆ ~A2�;

2. A1 Sd-thoroughly refinesA2, denoted asA1 �
Sd
T A2, iff ~A1�

Sd ⊆ ~A2�
Sd;

3. A1 Pd-thoroughly refinesA2, denoted asA1 �
Pd
T A2, iff ~A1�

Pd ⊆ ~A2�
Pd;

4. A1 strongly refinesA2, denoted asA1 �SA2, iff R(A1) �S R(A2);

5. A1 weakly refinesA2, denoted asA1 �WA2, iff R(A1) �W R(A2).

By Theorem 1, we can directly obtain that, for any APTAsA1 andA2, it also holds that:

A1 �T A2 iff R(A1) �T R(A2) (1)

whereR(A1) �T R(A2) refers to thorough refinement for APAs, which is also definedas inclusion of
implementation sets [11] (analogously for�Sd

T and�Pd
T ). An example of a strong refinement can be found

in [13].
The following theorem establishes a hierarchy among the different notions of refinement. We useRF1 ⊃

RF2 to indicate that the refinementRF1 is strictly finer than the refinementRF2.

Theorem 4 APTA refinements form the following hierarchy:�Sd
T ⊃ �

Pd
T ⊃ �T ⊃ �W ⊃ �S.

In Proposition 2, we relate weak and strong refinement with probabilistic time-abstracting bisimula-
tion [7] for PTAs. In Proposition 3 we further show that strong, weak and thorough refinements coincide
for deterministic APTAs.

Proposition 2 Let ∼ denote probabilistic time-abstracting bisimilarity [7] on PTAs. IfA1 andA2 are
implementations, then(a)A1 �WA2 iffA1 ∼A2; and(b)A1 �SA2 only if A1 ∼A2.

Proposition 3 For deterministic APTAs, where the sets of admissible atomic propositions in the initial
locations are singletons, thorough, strong and weak refinement coincide.

Remark 1 The counterexamples in Fig. 5 also show that theSd- and Pd-thorough refinements do not
coincide with each other or with thorough refinement even fordeterministic APTAs.

A1 : l1 l2 A′1 : l0 l1

b, x< 1,ϕ′

b, x< 1,ϕ′
A2,A

′
2 : l0a, x< 1 1/2

1/2

l0
a, x< 1,ϕ

Figure 5: Counterexamples for showing thestrictly finer relations
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5 Abstraction

The goal of abstraction is to hide internal details of a specification and thereby to obtain a simpler and
usually smaller specification. In the setting of automata, an abstraction can be defined by partitioning the
state space, i.e., by forming disjoint groups of states (or locations) where each of these groups is mapped
to one abstract state (or location).

Given a set of locationsL, anabstraction functionfor L is a surjective functionα : L→ L̃. Its inverse
γ : L̃ → 2L is called aconcretization function. The abstraction ofµ ∈ Dist(2X × L), denotedα(µ) ∈
Dist(2X × L̃) is uniquely defined byα(µ)(l̃) = µ(γ(l̃)), for all l̃ ∈ L̃. Abstraction is lifted to sets of states,
sets of distributions, and sets of probability constraintsin a pointwise manner. It follows that ˜ϕ = α(ϕ) iff
Sat(ϕ̃) = α(Sat(ϕ)). The abstraction of the product of constraint functionϕ andϕ′ is given asα(ϕ ·ϕ′) =
α(ϕ) ·α(ϕ′).

A technical challenge in defining abstraction for APTAs is the handling of guards. For this purpose,
we introduce a pre-processing step that syntactically transforms an APTA into an equivalent APTA such
that an abstraction function can be applied.

Definition 10 LetA = (L,A,X,AP,V,T, l0) be an APTA,α : L→ L̃ be an abstraction function,γ : L̃→ 2L

its concretization function. We define the function g :L̃×A→ CC(X) s.t. g(̃l,a) =
∧

gi , if ∀l i ∈ γ(l̃) :
∃ϕi ∈ PC(2X× L),gi ∈CC(X) : T(l i ,gi ,a,ϕi) = ⊤; and g(̃l,a) = false, otherwise.

Here, g calculates the common guards of all must-transitions emitting froml̃ with actiona. Given the
function g, we define a pre-processing step for APTAs that splits some of the must-transitions such that
abstraction has the intended meaning.

Given a guardg∈CC(X), we define the negation ofg, denoted ¯g⊆CC(X), as the set of guards, such
that for any valuationv ∈ RX it holds thatv⊲g if and only if there exists nog′ ∈ ḡ such thatv⊲g′. The
negation of a guard can be effectively computed by splitting the guard into its atomic comparisons and
inverting the comparisons.

Definition 11 [Pre-processing] LetA = (L,A,X,AP,V,T, l0) be an APTA,α : L→ L̃ be an abstraction
function, γ : L̃→ 2L be its concretization function. Let g :L̃×A→ CC(X) be defined as before. The
pre-processing functionPα mapsA to the APTAPα(A) = (L,A,X,AP,V,T′, l0) such that for anyl ∈ L,
g ∈ CC(X) andϕ ∈ PC(2X × L), if T(l,g,a,ϕ) = ⊤, thenT′(l,g(α(l),a),a,ϕ) = ⊤ and∀g′ ∈ ḡ(α(l),a):
T′(l,g∧g′,a,ϕi) = ⊤; andT′(l,g,a,ϕ) = T(l,g,a,ϕ), otherwise.

As a result of the pre-processing function, the guards on a must-transition are either the common guard
determined by g, or are disjoint with the common guard. Sinceg(α(l),a) andg∧g′ for all g′ ∈ ḡ(α(l i),a)
form a partition ofg, it is easy to see thatR(A) = R(Pα(A)). We are now in a position to define the
abstraction.

Definition 12 [APTA Abstraction] Given an abstraction functionα : L→ L̃ and its concretization func-
tion γ : L̃→ 2L, a pre-processed APTAPα(A) = (L,A,X,AP,V,T, l0) and a guard function g :̃L×A→
CC(X). Letα(Pα(A)) = (L̃,A,X,AP, Ṽ, T̃,α(l0)) be the APTA defined by:̃V(l̃) =

⋃

l∈γ(l̃) V(l) and

T̃(l̃, g̃,a, ϕ̃) =































⊤ if g̃= g(l̃,a),andSat(ϕ̃) = α(
⋃

〈l,ϕ〉∈γ(l̃)×PC(2X×L):T(l,g̃,a,ϕ)=⊤Sat(ϕ))
? if g̃, g(l̃,a),and∃l ∈ γ(l̃),ϕ ∈ PC(2X× L) : T(l, g̃,a,ϕ) , ⊥,and

Sat(ϕ̃) = α(
⋃

〈l,ϕ〉∈γ(l̃)×PC(2X×L):T(l,g̃,a,ϕ),⊥Sat(ϕ))
⊥ otherwise

Lemma 1 Letα(Pα(A)) be an abstraction ofA. Then there exists an APA abstraction function (cf. [11])
α′ on R(A), such thatR(α(Pα(A))) = α′(Pα′ (R(A))).
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Proposition 4 For any APTAA and abstraction functionα,A �W α(Pα(A)).

Lemma 1 states that an abstraction function for an APTAA induces an abstraction function onR(A).
Proposition 4 follows directly from Lemma 1 and a similar result known for APAs [11]. This result is
important in order to ensure that applying an abstraction yields a generalized specification, i.e., formally
that the original specification always weakly refines its abstraction. Note also that we show in Section 6
that abstraction interacts well with parallel composition.

Example 4 Another client specificationCl1 is depicted in Fig. 6(a), where state 1 inCl is split into 1’
and 1” inCl1. State 1’ can be seen as a “quick phase”, since aget request should be sent in less than 2
time units, while state 1” is the “slow phase” due to the guardxget≥ 2. Furthermore, in state 0’ and 1’,
an extended time slot will be granted whether needed or not. However, in state 0’, the additional time
will only be granted after 1 time unit. From state 1”, it is possible to either start from 0’ again (quick
phase), to move to state 1’ (slow phase), or to state 2’ (termination) after the access to the resource has
been granted.

Let the abstraction function be defined asα(l) = 0 for l ∈ {0′,1′} andα(l) = l for l ∈ {1′′,2′}. The
pre-processing splits the edge (!extra,true) from state 1’ into (!extra, xextra≥ 1) and (!extra, xextra< 1).
The abstractionα(Cl1) is shown in Fig. 6(b). Any distributionµ′ satisfying the constraintϕ′3 in α′(Cl1)
is defined such thatµ′(0)= µ(0′)+µ(1′), for anyµ ∈ Sat(ϕ3) in Cl1.

6 Conjunction and Parallel Composition

In this section, we define two composition operators for APECAs, i.e., conjunction and parallel compo-
sition. These two operators are intentionally defined only for APECAs, and not for general APTAs, in
order to be able to ensure compositionality properties. Conjunction and parallel composition form the
cornerstones for a specification theory supporting independent development and structural composition.

6.1 Conjunction

Given two APECAsE1 andE1, their conjunction (orlogical composition), denoted asE1∧E2, is the
specification that realizes the conjunctive behavior ofE1 andE2. Specifically, the set of implementations
of the conjunction approximates the intersection of the sets of implementations ofE1 andE2. We define
conjunction here only for action-deterministic APECAs over the same set of actions. For two automata
with different action sets, we add the missing actions in the respective automaton, and complete the edge
function as explained in Section 3.3. We leave the generalization to nondeterministic APECAs for future
work.

0’ 1’ 1”

2’

!get, xget< 2
!get, xget≥ 2

?grant,ϕ3

!extra !extra

!get xget≤ 2

!get, xget≥ 2

!extra,xextra≥ 1

(a) APECACl1.

0 1”

2’

!get, xget≥ 2

?grant,ϕ′3

!extra,xextra< 1

!get, xget< 2 !get, xget≤ 2

!extra

!extra,
xextra≥ 1

(b) The abstractionα′(Cl1).

Figure 6: APECA abstraction.
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Definition 13 [APECA Conjunction] LetE1= (L1,A,XA,AP,V1,T1, l10) andE2= (L2,A,XA,AP,V2,T2, l20)
be two action-deterministic APECAs over the same sets of actions and atomic propositions. Theircon-
junction is

E1∧E2 = (L1× L2,A,XA,AP,V∧,T∧, 〈l
1
0, l

2
0〉)

whereV∧(〈l1, l2〉) = V1(l1)∩V2(l2) for all l1 ∈ L1, l2 ∈ L2 and T∧ is defined as follows: for alla ∈ A,
g1,g2 ∈CC(XA), andl1 ∈ L1, l2 ∈ L2:

1. ∀ϕ1 ∈ PC(L1), ∀ϕ2 ∈ PC(L2) such thatT1(l1,g1,a,ϕ1) , ⊥ andT2(l2,g2,a,ϕ2) , ⊥, let T∧(〈l1, l2〉,
g1∧g2,a,ϕ∧) = T1(l1,g1,a,ϕ1) ⊔ T2(l2,g2,a,ϕ2) with ϕ∧ the new constraint inPC(L1× L2) such
thatµ∧ ∈ Sat(ϕ∧) iff

• the distributionµ1 = { k1 7→
∑

k2∈L2
µ∧(〈k1,k2〉) } is in Sat(ϕ1), and

• the distributionµ2 = { k2 7→
∑

k1∈L1
µ∧(〈k1,k2〉) } is in Sat(ϕ2).

2. For all otherϕ′∧ ∈ PC(L1× L2) andg′ ∈CC(XA) we defineT∧(〈l1, l2〉,g′,a,ϕ′∧) = ⊥.

Informally, the conjunctionE1∧E2 can be regarded as thelargestspecification that refinesE1 andE2.
Note that we rely on the completeness of the edge functions. For example, assume that inl1 there is a
must-edge via the actiona, and inl2 the actiona is not enabled. As we require completeness, the latter

means that there is an edgel2
g,a
d false. In the conjunction, this edge is combined with the must-edge from

l1 using Rule 1. Thus, in the conjunction we obtain the edge〈l1, l2〉
g,a
−−→ false, which means that〈l1, l2〉 is

inconsistent. On the other hand, for may-edges no inconsistencies are produced.

0’ 1’ 1”

2’

!get !get

?grant,ϕ4

!extra !extra

!get xget≤ 2

(a) APECACl2.

00’ 11’ 11”

02’ 20’ 21’ 22’ 01’

!get !get,xget≤ 1

?grant,ϕ∧

!extra

!extra

!get,xget≤ 1

!extra

(b) APECACl∧Cl2.

Figure 7: APECA conjunction.

Example 5 Fig. 7(a) depictsCl2 as another version of the client. The conjunction ofCl and Cl2 is
shown in Fig. 7(b). Letϕ1 be defined as in Example 3 and let the probability from state 1”to state 0’
be q1 and from state 1” to state 1’ beq2 and from state 1” to 2’ beq3 in Cl2. We setϕ4 such that
0 ≤ q1 ≤ 1/5, 1/3 ≤ q2 ≤ 1 andq1 + q2 + q3 = 1. Now let µ∧ be any distribution satisfyingϕ∧. Let
µ∧(00′) = r1, µ∧(01′) = r2, µ∧(02′) = r3, µ∧(20′) = r4, µ∧(21′) = r5, µ∧(22′) = r6. Thoser ’s should satisfy
the following constraints, given the constraints on thep’s and theq’s:

r1+ r2+ r3 = p1 r4+ r5+ r6 = p2 r1+ r4 = q1 r2+ r5 = q2 r3+ r6 = q3.

We use the notationA1 ≡ A2 to denote that bothA1 �W A2 and A2 �W A1. Next, we show that
conjunction is preserved by the region construction.

Lemma 2 For any APECAsE1,E2, it holds thatR(E1∧E2) ≡ R(E1)∧R(E2).

We now show that conjunction is the greatest lower bound of APECAs w.r.t. weak refinement, after
pruning the conjunction. Note thatβ∗(E) means applying the pruning operatorβ onE for finitely many
times. Theorem 6 relates the sets of implementations of the conjunction with the implementation sets of
its components.
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Theorem 5 Let E1, E2 andE3 be action-deterministic consistent APECAs. Then the following proper-
ties hold: (1)β∗(E1∧E2) � E1; (2) if E3 � E1 andE3 � E2, thenE3 � β

∗(E1∧E2).

Theorem 6 For any APECAsE1, E2 it holds: ~E1∧E2� ⊆ ~E1�∩~E2�.

6.2 Parallel Composition

We now define a parallel composition operator for APECAs which enables modular specifications of
systems. The formal definition is similar to the one for conjunction and requires again that all actions are
shared. To enable interleaving of non-shared actions, we realize completeness of the edges differently.
Let a be an action ofE1 that does not occur inE2. We now adda to the set of actions ofE2 and for every
locationl in E2 we add a self-loop must-edge such thatT2(l, true,a,ϕ) with Sat(ϕ) = {µl}, whereµl is the
point distribution onl. This is repeated for all non-shared actions ofE2 (symmetrically forE1) until E1

andE2 have the same set of actions. This simplifies the definition ofthe parallel composition (and our
proofs for related theorems) since interleaved and synchronized behavior can be uniformly treated using
a single composition rule.

Definition 14 [APECA Parallel Composition] Given two APECAsE1 = (L1,A,XA,AP1,V1,T1, l10), E2 =

(L2,A,XA,AP2,V2,T2, l20) with AP1∩AP2 = ∅. Theparallel compositionof E1 andE2, written asE1 ‖ E2,
is defined as

E1 ‖ E2 = (L1× L2,A,XA,AP1∪AP2,V‖,T‖, 〈l
1
0, l

2
0〉) where

• T‖ is defined as follows. For alll1 ∈ L1, l2 ∈ L2, g1,g2 ∈CC(XA), a ∈ A:

– ∀ϕ1 ∈ PC(L1) and∀ϕ2 ∈ PC(L2) such thatT1(l1,g1,a,ϕ1) , ⊥ andT2(l2,g2,a,ϕ2) , ⊥, let
T‖(〈l1, l2〉,g1∧g2,a,ϕ‖) = T1(l1,g1,a,ϕ1)⊓T2(l2,g2,a,ϕ2) with ϕ‖ the new constraint onA1 ‖

A2 defined as follows:µ‖ ∈ Sat(ϕ‖) if and only if there existµ1 ∈ Sat(ϕ1) andµ2 ∈ Sat(ϕ2) s.t.
µ‖(〈k1,k2〉) = µ1(k1) ·µ2(k2) for all k1 ∈ L1,k2 ∈ L2.

– For all otherϕ′
‖
∈ PC(L1× L2) andg′ ∈CC(XA) we defineT‖(〈l1, l2〉,g′,a,ϕ′‖) = ⊥.

• V‖(〈l1, l2〉) = {E1∪E2 | E1 ∈ V1(l1)∧E2 ∈ V2(l2)} for all l1 ∈ L1, l2 ∈ L2.

Example 6 Fig. 4 shows the parallel compositionCl ‖ Accof the client and access controller in Fig. 3.
Let ϕ1 be defined as in Example 5. Let the probability from state 1’ tostate 0’ bep3 and from state 1’ to
state 1’ bep4 in Acc. Setϕ2 be 0≤ p3 ≤ 1/2 andp3+ p4 = 1. InCl ‖ Acc, let the probability from state 11’
to states 00’, 01’, 20’ and 21’ beq1, q2, q3 andq4, respectively. The resultingϕ‖ is q1+q2+q3+q4 = 1
andq1 = p1 · p3, q2 = p1 · p4, q3 = p2 · p3 andq4 = p2 · p4.

Similarly to conjunction, parallel composition is preserved by the region construction (Lemma 3). More-
over, parallel composition interacts well with refinement (Theorem 7) and abstraction (Theorem 8). The
latter result allows us to avoid state space explosion by applying abstraction component-wise instead of
computing the complete system specification and then applying the abstraction. By Theorem 7 we also
know that≡ is a congruence w.r.t. parallel composition.

Lemma 3 For any APECAsE1,E2 it holds: R(E1 ‖ E2) ≡ R(E1) ‖ R(E2).

Theorem 7 Weak refinement is a precongruence w.r.t. parallel composition.

Theorem 8 Let E1 andE2 be APECAs andα1,α2 be abstraction functions. The following equalities
hold up to isomorphism:

1. Pα1(E1) ‖ Pα2(E2) = Pα1×α2(E1 ‖ E2);

2. α1(Pα1(E1)) ‖ α2(Pα2(E2)) = (α1×α2)(Pα1(E1) ‖ α2(Pα2(E2)));

3. (α1◦Pα1)(E1) ‖ (α2◦Pα2)(E2) = (α1×α2)◦ (Pα1×α2)(E1 ‖ E2).
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7 Conclusions

We introduced a modal specification theory of abstract probabilistic timed automata (APTAs) that capture
systems which contain nondeterminism, probability and time. The theory supports refinement, abstrac-
tion, and the operations of parallel composition and conjunction, the latter for independent development.
The main challenge in combining probabilistic and timed behaviour was due to the need to consider
guards of transitions, as well as a time-divergence sensitive consistency check. In order to obtain a com-
positional theory, we had to restrict to the class of abstract probabilistic event clock automata (APECAs).
As future work, we aim at finding a class of modal specifications for probabilistic timed systems that, in
terms of expressiveness, lies between APECAs and APTAs, butstill enjoys the compositionality prop-
erties of APECAs. Moreover, we plan to extend our work on abstraction to support counterexample
generation.
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