
Probabilistic Model Checking

Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

Abstract The model-checking approach was originally formulated for verifying
qualitative properties of systems, for example safety and liveness (see Chap. 2), and
subsequently extended to also handle quantitative features, such as real time (see
Chap. 29), continuous flows (see Chap. 30), as well as stochastic phenomena, where
system evolution is governed by a given probability distribution. Probabilistic model
checking aims to establish the correctness of probabilistic system models against
quantitative probabilistic specifications, such as those capable of expressing, for ex-
ample, the probability of an unsafe event occurring, expected time to termination,
or expected power consumption in the start-up phase. In this chapter, we present the
foundations of probabilistic model checking, focusing on finite-state Markov deci-
sion processes as models and quantitative properties expressed in probabilistic tem-
poral logic. Markov decision processes can be thought of as a probabilistic variant
of labelled transition systems in the following sense: transitions are labelled with ac-
tions, which can be chosen nondeterministically, and successor states for the chosen
action are specified by means of discrete probabilistic distributions, thus specifying
the probability of transiting to each successor state. To reason about expectations,
we additionally annotate Markov decision processes with quantitative costs, which
are incurred upon taking the selected action from a given state. Quantitative prop-

Christel Baier
Faculty of Computer Science, Technische Universität Dresden, Germany
e-mail: baier@tcs.inf.tu-dresden.de

Luca de Alfaro
Baskin School of Enginering, University of California, Santa Cruz, USA
e-mail: luca@soe.ucsc.edu

Vojtěch Forejt
Department of Computer Science, University of Oxford, United Kingdom
e-mail: Vojtech.Forejt@cs.ox.ac.uk

Marta Kwiatkowska
Department of Computer Science, University of Oxford, United Kingdom
e-mail: Marta.Kwiatkowska@cs.ox.ac.uk

1

2 Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

erties are expressed as formulas of the probabilistic computation tree logic (PCTL)
or using linear temporal logic (LTL). We summarise the main model-checking al-
gorithms for both PCTL and LTL, and illustrate their working through examples.
The chapter ends with a brief overview of extensions to more expressive models
and temporal logics, existing probabilistic model-checking tool support, and main
application domains.

1 Introduction

Markovian stochastic models, i.e., state-transition graphs annotated with probabili-
ties to model and reason about stochastic phenomena, are central to many applica-
tions. Traditionally, purely stochastic models such as Markov chains [95] have been
applied in, for example, queueing theory, performance evaluation, and the mod-
elling of telecommunication systems and networks [10, 60, 18], but they are also
widely used in other contexts. Dependability properties such as reliability and avail-
ability are expressed probabilistically. In systems biology, for example, stochas-
tic models can be used to reason about biological populations and the evolution
of concentrations of molecules in biological signalling networks [61]. Probabilis-
tic models with nondeterminism, for example Markov decision processes (abbre-
viated as MDPs) [98], which are the main focus of this chapter, are central to the
modelling of distributed coordination protocols that use randomization for medium
access control for wireless networks [84], breaking the symmetry in leader elec-
tion algorithms [67], or modelling security, anonymity and privacy protocols [89],
among many examples. MDPs are also widely used in operations research, eco-
nomics, robotics, and related disciplines that crucially rely on the concept of de-
cision making so as to choose the next action to optimize a certain goal function.
Another application of MDPs is modelling distributed systems that operate with un-
reliable components. For instance, for systems with communication channels that
might corrupt or lose messages, or interact with sensors that deliver wrong values
in certain cases, probability distributions can be used to specify the frequency of
faulty behaviour. Considering stochastic models more generally, further examples
are -ranking algorithms in search engines for the Internet, the analysis of soccer or
baseball matches, reasoning about the stochastic growth of waves of influenza or the
population dynamics of other pathogenic germs, speech recognition, and signature
recognition via biometric identification features. We give a brief overview of related
models at the end of this chapter.

1.1 Temporal Logics for Specifying Probabilistic Properties

Probabilistic temporal logics arise as generalisations of established temporal logics
such as computation tree logic (CTL) and linear temporal logic (LTL). Probabilistic

Probabilistic Model Checking 3

computation tree logic (PCTL) [58, 14, 12] is a probabilistic variant of CTL that
replaces the usual path quantifiers, with which one can reason about all or some
paths satisfying a certain condition, with operators instead imposing quantitative
constraints on the proportion of paths that satisfy this condition. More specifically,
PCTL provides a probabilistic operator whose role is to specify lower or upper prob-
ability bounds for reachability properties, in the sense of requiring that the proba-
bility of reaching a given set of states is above or below a given threshold value.
The reachability properties can be constrained using the CTL path modality “un-
til” U or its step-bounded variant U6k. For instance, using the probabilistic operator
one might formally establish the guarantee that a system failure will occur within
the next 100 steps with probability 10−8 or less, or that a leader will eventually be
elected almost surely, that is, with probability 1. Besides the probability operator,
expected cost operators can also be defined, which allow for reasoning, for example,
about the average cost to reach a certain set of target states, or the accumulated cost
within the next k steps. The cost operators can, for instance, be used to assert that the
expected energy consumption within the next 100 steps is less than a given thresh-
old. For Markov decision processes decorated with costs, model checking reduces to
the computation of the minimum or maximum probability/expectation values, over
the possible resolutions of nondeterminism.

While PCTL is a branching-time logic and its formulas express properties that
a state of a probabilistic model might or might not have, probabilistic systems can
also be analysed using purely linear-time (path-based) formalisms such as LTL or
automata over infinite words [96, 105, 106, 37, 8]. We will restrict our attention to
the logic LTL in this chapter. Unlike PCTL, it does not admit path quantifiers, but
it allows us to express more elaborate properties, because it is possible to combine
temporal operators. One can then, for example, express a path property “whenever
button 1 is pressed, the system will be operational until button 2 is pressed”. Such
a property would not be expressible in PCTL. Since the underlying model is prob-
abilistic, after fixing an LTL formula we are interested in quantitatively reasoning
about the proportion of the paths satisfying the specification, analogously to PCTL.
For this purpose we introduce LTL state properties, which are given by an LTL for-
mula and a probability bound, and are true in a state if the maximum probability of
the formula being satisfied is lower than the bound given. The solution methods we
present in this chapter also allow us to ask “quantitative” questions, i.e., to directly
compute the maximum probability that a given LTL formula is satisfied.

The two ways of reasoning about properties of MDPs which we study in this
chapter, i.e., PCTL and LTL state properties, offer different expressive power. Es-
sentially, the properties one can capture are in the same spirit as those in the non-
probabilistic variants, and hence we refer the reader to Chap. 2 for a comprehensive
overview. As in the non-probabilistic case, the properties expressed using LTL are
perhaps easier to obtain from requirements expressed in natural language than PCTL
formulas, but PCTL admits better complexity of model-checking algorithms, which
are also easier to implement. We note that the two logics, PCTL and LTL, can be
combined into a logic PCTL∗.

4 Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

In this chapter we will present the model-checking approach for Markov deci-
sion processes (MDPs) [98, 86, 39], which for the purposes of the model-checking
algorithms discussed here are equivalent to probabilistic automata due to Segala
[100, 101]. MDPs are of fundamental importance in probabilistic verification, since
they not only serve as a natural representation of many real-world applications, for
example distributed network protocols, but are also key to formulating abstractions
for more complex models which incorporate dense real time and probability, such
as continuous-time Markovian models and probabilistic variants of timed automata.
Both PCTL and LTL can be used for reasoning about qualitative and quantitative
properties of MDPs. Several variants of PCTL and LTL have been proposed for the
analysis of probabilistic models that rely on a dense time domain. These will be
briefly addressed in Sect. 9.

1.2 Model-Checking Algorithms for Probabilistic Systems

For finite-state Markov decision processes, the quantitative analysis against PCTL
or LTL specifications mainly relies on a combination of graph algorithms, automata-
based constructions, and (numerical) algorithms for computing the minimum/maximum
probability and expectation values. Compared to the non-probabilistic case, there is
the additional difficulty of solving linear programs, and also the required graph al-
gorithms are more complex. This makes the state space explosion problem even
more serious than in the non-probabilistic case, and the feasibility of algorithms
for quantitative analysis crucially depends on good heuristics to increase efficiency.
Hence, model-checking tools usually implement advanced versions of algorithms
we present in this chapter, and use intricate data structures to tackle the state space
explosion problem, such as multi-terminal binary decision diagrams [54] and sparse
matrices. We give a more detailed overview of the implementation approaches in
Sect. 7.1.

1.3 Outline

The remaining sections of this chapter are organized as follows. Sect. 2 presents
the definition of Markov decision processes and explains the main concepts that are
relevant for PCTL and LTL model checking. The syntax and semantics of PCTL
will be provided in Sect. 3. Sect. 4 summarizes the main steps of the PCTL model-
checking algorithm for MDPs. Sect. 5 introduces the syntax and semantics of LTL
and Sect. 6 describes the model-checking algorithm. Sect. 7 gives a brief overview of
available tools and interesting case studies; it also mentions outstanding challenges
of modelling and verification of probabilistic systems. Sect. 8 summarises related
models and logics, and Sect. 9 concludes the chapter.

Probabilistic Model Checking 5

2 Modelling Probabilistic Concurrent Systems

Markov decision processes [98, 86, 39], which are similar to probabilistic automata
[100, 101], are a convenient representation for distributed or concurrent systems
in which the system evolution is described by discrete probabilities. Intuitively, a
Markov decision process can be understood as a probabilistic variant of a labelled
transition system with transitions and states labelled with action labels and atomic
propositions, respectively. For each state s and action α that is enabled in state
s, a discrete probability distribution specifies the probabilities for the α-labelled
transitions emanating from s. This corresponds to the so-called reactive model in the
classification of [104]. In addition, a real-valued cost can be associated with each
state s and action α , representing the price one has to pay whenever executing action
α in state s. Dually, the cost assigned to (s,α) can also be viewed as a reward that
is earned when firing action α in s. To keep the presentation simple, in this chapter
we restrict ourselves to cost functions whose range is the non-negative integers.
Furthermore, we assume that all transition probabilities in the MDP are rational.

2.1 Preliminaries

Let X be a countable set. A (probability) distribution on X denotes a function D :
X → [0,1] such that

∑
x∈X

D(x) = 1.

The set Supp(D)
def
= {x ∈ X : D(x) 6= 0} is called the support of D. A distribution

D is Dirac if its support is a singleton. We write Distr(X) to denote the set of all
distributions on X .

As usual, N denotes the set of natural numbers 0,1,2, . . . and Q the set of rational
numbers.

2.2 Markov Decision Processes

A Markov decision process is a tuple M = (S,Act,P,sinit,AP,L,C) where

• S is a countable non-empty set of states,
• Act is a finite non-empty set of actions,
• P : S×Act×S→ [0,1]∩Q is the transition probability function such that

∑
s′∈S

P(s,α,s′) ∈ {0,1} for all states s ∈ S and actions α ∈ Act,

• sinit ∈ S is the initial state,
• AP is a finite set of atomic propositions,

6 Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

• L : S→ 2AP is a labelling function that labels a state s with those atomic propo-
sitions in AP that are supposed to hold in s,

• C : S×Act→ N is a cost function.

M is called finite if the state space S and the set of actions Act are finite. In this
chapter we assume that all MDPs are finite, unless specified otherwise. If s ∈ S then
Act(s) denotes the set of actions that are enabled in state s, i.e.

Act(s) def
=
{

α ∈ Act : P(s,α,s′)> 0 for some s′ ∈ S
}

.

For technical reasons, we suppose that there are no terminal states, i.e., for each
state s ∈ S the set Act(s) is non-empty. Furthermore, we require that C(s,α) = 0 if
α is an action that is not enabled in s, i.e., if α /∈ Act(s).

The intuitive operational behaviour of an MDP can be described as follows. The
MDP starts its computation in the initial state sinit. If after n steps the current state
is sn then, first, an enabled action αn+1 ∈ Act(sn) is chosen nondeterministically.
Firing αn+1 in state sn incurs the cost C(sn,αn+1). The effect of taking action αn+1
in state sn is given by the distribution P(sn,αn+1, ·). The next state sn+1 belongs to
the support of P(sn,αn+1, ·) and is chosen probabilistically. The resulting infinite se-
quence of states and actions π = s0 α1 s1 α2 s2 α3 . . . ∈ (S×Act)ω is called an (infi-
nite) path of M . More generally, any alternating sequence π = s0 α1 s1 α2 s2 α3 . . .∈
(S×Act)ω , with P(sn,αn+1,sn+1)> 0 for all n> 0, is called a path of state s0, and
will be written in the form

π = s0
α1−−→s1

α2−−→s2
α3−−→ . . .

PathsM (s), or for short Paths(s), denotes the set of all paths of M starting in state
s, and PathsM , or Paths, denotes the set of all paths. If π is as above then π ↑n

denotes the infinite suffix of π that starts in the (n+1)-th state sn, i.e. for the above
π we have

π ↑n def
= sn

αn+1−−−→sn+1
αn+2−−−→sn+2

αn+3−−−→ . . .

Similarly, π ↓n denotes the finite prefix that ends in sn, i.e.,

π ↓n
def
= s0

α1−−→s1
α2−−→s2

α3−−→ . . . αn−−→sn .

We refer to the finite prefixes of (infinite) paths as finite paths and denote the set
of finite paths starting in state s by FinPathsM (s), or for short FinPaths(s), and
we denote the set of all finite paths by FinPathsM or FinPaths. The length of a
finite path ς is given by the number of transitions taken in ς and denoted by |ς |;
the length of an infinite path is ω . We use the notation last(ς) for the last state of a
finite path ς . Similarly, first(·) is used to refer to the first state of a finite or infinite
path. The (n+1)-th state of a path is denoted by π[n]. Thus, if π is as above then
π[0] = first(π) = s0, |π ↓n |= n and π[n] = first(π ↑n) = last(π ↓n) = sn for all n∈N.

Given a finite path ς = s0
α1−−→s1

α2−−→ . . . αn−−→sn, the total or cumulated cost of
ς is defined by

cost(ς) def
=

n
∑

i=1
C(si−1,αi).

Probabilistic Model Checking 7

In addition to the cost function C(s,α) that assigns values to the pairs consisting
of a state and an enabled action, one can also define cost functions just for the
states Cst : S→ N, with the intuitive meaning that each visit to state s incurs the
cost Cst(s). Such cost functions are supported, for example, by the tool PRISM (see
Sect. 7), but are omitted here since they can be encoded in the variant of MDPs
presented in this chapter. If a cost function Cst for the states, rather than for pairs of
states and actions, is given, then we might switch from Cst to C : S×Act→ N as
follows

C(s,α)
def
=
{ Cst(s) if α ∈ Act(s)

0 otherwise

to meet the syntax of the MDP definition. Given an MDP as defined in Sect. 2.2 and
an additional cost function Cst : S→N that specifies the cost incurred upon visiting
state s, the effect of C and Cst can be mimicked by using the single cost function
C′ : S×Act→ N given by

C′(s,α)
def
= Cst(s)+C(s,α).

s0

{init}

s1

s2

{succ}

s3

{fail}

αgo,1 1

αsafe,1
0.7 0.3

αrisk,4
0.5

0.5αwait,0.1
1

αloop,0

1

αloop,0

1

Fig. 1 A running example of a Markov decision process annotated with costs

Example 1 (Running Example). Consider the MDP M = (S,Act,P,s0,AP,L,C)
from Fig. 1. The MDP models a simple system in which, after some initial step, two
kinds of decisions can be taken. One results in success with relatively high proba-
bility, but can fail completely, and another gives a smaller probability of immediate
success, but cannot result in a non-recoverable failure. Formally, S = {s0,s1,s2,s3},
Act = {αgo,αwait,αsafe,αrisk,αloop}, and P is as given by the numbers on ar-
rows originating from the dots, e.g., P(s1,αsafe,s0) = 0.7. Atomic propositions
are {init,succ, fail}, where the labels of states are as shown in the picture, e.g.,
L(s0) = {init}. Costs of the actions are shown in the picture as underlined numbers,
e.g., C(s1,αwait) = 0.1.

Observe that there is a non-trivial choice of an action only in the state s1, where
one can choose between αwait, αsafe and αrisk. Consider the path

π = s0
αgo−→ s1

αsafe−−→ s0
αgo−→ s1

αrisk−−→ s2
αloop−−→ s2

αloop−−→ ·· · .

8 Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

We have π ↑2= s0
αgo−→ s1

αrisk−−→ s2
αloop−−→ s2

αloop−−→ ·· · and π ↓2= s0
αgo−→ s1

αsafe−−→ s0. For the
finite path π ↓2 we have that the total or cumulated cost cost(π ↓2) = C(s0,αgo)+
C(s1,αsafe) = 2.

2.3 Markov Chains

Markov chains can be viewed as special instances of Markov decision processes,
where in each state exactly one action is enabled. Thus, there are no nondeterminis-
tic choices in a Markov chain and the operational behaviour is purely probabilistic.
Since, in the above definition of an MDP, the actions are used just to name the
nondeterministic alternatives and group together probabilistic transitions that be-
long to the same alternative, the concept of actions is irrelevant for Markov chains.
Thus, the transition probabilities of a Markov chain C can be specified by a function
PC : S×S→ [0,1]. Paths are then just sequences s0 s1 s2 . . . of states such that

PC (si,si+1)> 0 for all i> 0.

Using standard concepts of measure and probability theory, any Markov chain nat-
urally induces a probability space, i.e., a triple consisting of the set of outcomes
Ω , the set of events F ⊆ 2Ω which contains /0 and is closed under complements
and countable unions, and a probability measure Pr : F → [0,1] which is countably
additive and satisfies Pr(Ω) = 1. More concretely, in the induced probability space
the outcomes are the (infinite) paths and the events can be understood as linear-time
properties, i.e., conditions that an infinite path might satisfy or not (indeed, all LTL
formulas, PCTL path formulas, and even all ω-regular languages over sets of atomic
propositions specify measurable sets of paths [105, 37]). For details we refer to text-
books on Markov chains and probability theory, see, for example, [50, 74, 76], and
just sketch the main ideas. The underlying σ -algebra is the smallest σ -algebra that
contains the cylinder sets, namely, the sets containing all paths that have a common
prefix, i.e., the sets

Cyl(ς) def
=
{

π ∈ PathsC : ς is a prefix of π
}

for all finite paths ς in C . Using Carathéodory’s measure extension theorem [4], the
probability measure PrC is the unique probability measure on the σ -algebra such
that for each finite path ς = s0 s1 s2 . . . sn starting in C ’s initial state s0 = sinit we
have:

PrC (Cyl(ς)) = PC (s0,s1) ·PC (s1,s2) · . . . ·PC (sn−1,sn).

If ς is a finite path that does not start in the initial state then PrC (Cyl(ς)) = 0.

Probabilistic Model Checking 9

2.4 Schedulers

Reasoning about probabilities in an MDP relies on a decision-making approach that
resolves the nondeterministic choices—answering the question which action will be
performed in the current state—and turns an MDP into an infinite tree-like Markov
chain. We give here just a brief summary of the main concepts. Details can be found
in any textbook on Markov decision processes, e.g., [98].

The decision-making approach can be formalized with the help of the mathemat-
ical notion of a scheduler, often called policy or adversary. Intuitively, a scheduler
takes as input the “history” of a computation—namely, a finite path ς—and chooses
the next action according to some distribution. Formally, a history-dependent ran-
domized scheduler, for short called a scheduler, is a function

U : FinPathsM → Distr(Act)

such that Supp(U (ς)) ⊆ Act(last(ς)) for all finite paths ς . A (finite or infinite)
path π = s0

α1−→ s1
α2−→ s2 . . . is said to be a U -path, if

U (s0
α1−→ . . .

αi−→ si)(αi+1)> 0 for all 06 i < |π|.

A scheduler U is called deterministic if U (ς) is a Dirac distribution for all finite
paths ς , i.e., for each finite path ς there is some action α with U (ς)(α) = 1, and
U (ς)(β) = 0 for all actions β ∈ Act\{α}. Scheduler U is called memoryless if

U (ς) = U (ς ′) for all finite paths ς ,ς ′ such that last(ς) = last(ς ′).

Deterministic schedulers are given as functions U : FinPathsM → Act. Memory-
less randomized schedulers can be viewed as functions U : S→Distr(Act). Memo-
ryless deterministic schedulers, also called simple schedulers, are specified as func-
tions U : S→ Act. We write Sched to denote the set of all schedulers.

2.5 Probability Measures in MDPs

Given an MDP M and a scheduler U , the behaviour of M under U can be for-
malized by an infinite-state tree-like Markov chain C = M |U . The states of that
Markov chain represent the finite U -paths. The successor states of

ς = s0
α1−−→s1

α2−−→ . . . αn−−→sn

have the form ς ′ = ς
β−→s and the transition probability for moving from ς to ς ′ is

given by

U (ς)(β) ·P(sn,β ,s).

We write PrM ,U , or for short PrU , to denote the standard probability measure PrC

on that Markov chain. Thus, the probability measure PrU for a given scheduler U
is the unique probability measure on the σ -algebra generated by the finite U -paths
such that

10 Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

PrU (Cyl(ς)) =
n
∏
i=1

U (ς ↓i−1)(αi) ·P(si−1,αi,si)

if ς = s0
α1−−→s1

α2−−→ . . . αn−−→sn is a U -path starting in s0 = sinit.
Given a state s of M , we denote by PrUs the probability measure that is obtained

by U viewed as a scheduler for the MDP Ms that agrees with M , except that
s is the unique initial state of Ms. That is, if M = (S,Act,P,sinit,AP,L,C) then
Ms = (S,Act,P,s,AP,L,C). Note that if U is a deterministic scheduler then

PrUs (Cyl(ς)) =
n
∏
i=1

P(si−1,αi,si)

if ς = s0
α1−−→s1

α2−−→ . . . αn−−→sn is a U -path with first(ς) = s0 = s. Given an MDP
M , a scheduler U and a measurable path property E, then

PrUs (E) def
= PrUs

{
π ∈ PathsM | π satisfies E

}
denotes the probability that the path property E holds in M when starting in s and
using scheduler U to resolve the nondeterministic choices.

s0 s0 αgo s1 s0 αgo s1 αsafe s0

s0 αgo s1 αsafe s2

s0 αgo s1 αrisk s2

s0 αgo s1 αrisk s3

s0 αgo s1 αsafe s0 αgo s1 s0 αgo s1 αsafe s0 αgo s1 αsafe s0

s0 αgo s1 αsafe s0 αgo s1 αsafe s2

s0 αgo s1 αsafe s0 αgo s1 αrisk s2

s0 αgo s1 αsafe s0 αgo s1 αrisk s3

1 0.35

0.15

0.25

0.25

1 0.35

0.15

0.25

0.25

Fig. 2 A Markov chain for the running example and the scheduler from Example 2

Example 2. Consider again the MDP M from Figure 1, together with the scheduler
U that for every path ending in s1 picks the action αsafe or αrisk, both with proba-
bility 0.5. This scheduler is memoryless, but not deterministic, and gives rise to the
Markov chain M |U whose initial fragment is drawn in Figure 2. For the finite path

π = s0
αgo−→ s1

αsafe−−→ s0 we have

PrU (Cyl(π)) = U (s0)(αgo) ·P(s0,αgo,s1) ·U (s0
αgo−→ s1)(αsafe) ·P(s1,αsafe,s0)

= 1 ·1 ·0.5 ·0.7 = 0.35 ,

and for the set of paths R which never reach s2 or s3 we have PrU (R) = 0.

Probabilistic Model Checking 11

2.6 Maximal and Minimal Probabilities for Path Events

A typical task for the quantitative analysis of an MDP is to compute minimal or
maximal probabilities for some given property E when ranging over all schedulers.
If s is a state in M then we define

Prmax
s (E) def

= sup
U ∈Sched

PrUs (E) and Prmin
s (E) def

= inf
U ∈Sched

PrUs (E) .

This corresponds to the worst- or best-case analysis of an MDP. If, for example, , E
stands for the undesired behaviours then E is guaranteed not to hold with probability
at least 1−Prmax

s (E) under all schedulers, that is, even for the worst-case resolution
of the nondeterministic choices. For instance, many relevant properties fall under
the class of reachability probabilities where one has to establish a lower bound for
the minimal probability to reach a certain set F of “good” target states, possibly
with some side-constraints on the cumulated cost until an F-state has been reached.

2.7 Maximal and Minimal Expected Cost

Another typical task for analysing an MDP against cost-based properties is to com-
pute the minimal or maximal expected cumulated cost with respect to certain objec-
tives. For reachability objectives, we consider a set F of target states. Given a path
π = s0

α1−−→s1
α2−−→s2

α3−−→ . . ., we write π |= ♦F if and only if π eventually visits F ,
i.e., there is an i such that si ∈ F . The cumulated cost of π to reach F is defined as
follows. If π |= ♦F then

cost[♦F](π) = cost(π ↓n) =
n
∑

i=1
C(si−1,αi)

where sn ∈ F and {si : 0 6 i < n} ∩ F = ∅. If π never visits a state in F then
cost[♦F](π) is defined as ∞, irrespective of whether only finitely many actions
in π have nonzero cost (in which case the total cost of π would be finite). Given a
scheduler U for M and a state s in M , the expected cumulated cost for reaching
F from s, denoted ExU

s (cost[♦F]), is the expected value of the random variable
π 7→ cost[♦F](π) in the stochastic process (i.e., the Markov chain) induced by U .

• If PrUs ({π ∈ Paths | π |= ♦F}) = 1 then

ExU
s (cost[♦F]) = ∑

ς

PrUs (Cyl(ς)) ·cost(ς)

where the sum is taken over all finite U -paths ς with first(ς) = s and last(ς)∈F ,
while all other states of ς are in S\F .

• If PrUs ({π ∈ Paths | π |= ♦F})< 1 then with positive probability U schedules
paths that never visit F . Since the total cost of such paths is infinite, we have
ExU

s (cost[♦F]) = ∞.

The extremal expected cumulated cost for reaching F is then obtained by

12 Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

Exmax
s (cost[♦F])

def
= sup

U ∈Sched
ExU

s (cost[♦F])

Exmin
s (cost[♦F])

def
= inf

U ∈Sched
ExU

s (cost[♦F]) .

Note that Exmax
s (cost[♦F]) = ∞ if Prmin

s ({π ∈ Paths | π |= ♦F})< 1; the other di-
rection also holds, i.e., Prmin

s ({π ∈Paths | π |=♦F})= 1 implies that Exmax
s (cost[♦F])

is finite, although the proof is not as obvious.
Similarly, minimal and maximal expected cost for other objectives can be de-

fined. If an MDP is used as a discrete-time model then one might be interested
in the average cost within certain time intervals. This, for instance, permits us
to establish lower or upper bounds on the expected power consumption over one
time unit. For the cost cumulated up to time point k we use the random variable
π 7→ cost[6k](π) that assigns to each path the total cost for the first k steps, i.e., if
π = s0

α1−−→s1
α2−−→ . . . then

cost[6k](π) def
=

k

∑
i=1

C(si−1,αi).

Let ExU
s (cost[6k]) denote the expected value of the random variable cost[6k] un-

der scheduler U in the MDP Ms, i.e.,

ExU
s (cost[6k]) = ∑

ς

PrUs (Cyl(ς)) ·cost(ς)

where the sum is taken over all finite U -paths ς of length k starting in state s.
The supremum and infimum over all schedulers yields the extremal cumulated costs
within the first k steps

Exmax
s (cost[6k]) def

= sup
U ∈Sched

ExU
s (cost[6k])

Exmin
s (cost[6k]) def

= inf
U ∈Sched

ExU
s (cost[6k]) .

When we specify costs for the states by the function Cst : S→ N, then it is also
possible to reason about instantaneous costs in the k-th step. This can be defined
with the random variable π 7→ cost[=k](π) that assigns to each path π the cost
associated with the k-th action of π . If ExU

s (cost[=k]) denotes the expected value
of random variable cost[=k] under scheduler U then

Exmax
s (cost[=k]) = sup

U ∈Sched
ExU

s (cost[=k])

Exmin
s (cost[=k]) = inf

U ∈Sched
ExU

s (cost[=k])

stand for the extremal average instantaneous costs incurred at the k-th step. These
values can be of interest, for example, when reasoning about the minimal or maxi-
mal expected queue size at some time point k. For this purpose, we work with the

Probabilistic Model Checking 13

cost function C(t,α) = Cst(t) for all actions α that are enabled in state t, where
Cst(t) denotes the current queue size in state t.

Example 3. Let us return to our running example from Figure 1, and for clarity of
notation write just s instead of the singleton set {s}. We have that the maximal
probability of reaching s3, i.e., Prmax

s0
({π ∈ Paths | π |= ♦s3}), is equal to 0.5. A

(deterministic) scheduler that always chooses αrisk in paths ending with s1 witnesses
that Prmax

s0
({π ∈ Paths | π |= ♦s3}) ≥ 0.5; to see that this probability cannot be

higher, observe that upon taking αrisk half of the paths transition to s2, and both s2
and s3 have self-loops. On the other hand, Prmin

s0
({π ∈ Paths | π |= ♦s3}) = 0, as

witnessed by the scheduler that never chooses αrisk with nonzero probability.
For maximal expected cost, let us consider a single target state s2. We have

Exmax
s0

(cost[♦s2]) = ∞, because there exists a scheduler that with nonzero proba-
bility does not reach s2. For minimal expected cost Exmin

s0
(cost[♦s2]), we obtain the

value equal to 20
3 , as witnessed by the scheduler that always chooses αsafe; to see

that no scheduler can yield a better value is a simple exercise.
As an example of instantaneous cost, let us analyse the value Exmax

s0
(cost[=3]).

It is equal to 4, which can be seen by considering a scheduler that picks αwait in
s0

αgo−→ s1, and αrisk in s0
αgo−→ s1

αwait−−→ s1. This is also the maximal value, because
there is in fact no higher cost in the MDP.

3 Probabilistic Computation Tree Logic

In this section we present the syntax and semantics of Probabilistic Computation
Tree Logic (PCTL), which is a probabilistic counterpart of the well-known logic
CTL, introduced in Chap. 2. Formulas of this logic aim to express quantitative
probabilistic properties such as “with probability at least 0.99, if we reach a bad
state, we can recover with nonzero probability”. PCTL is a widely used specifica-
tion language in many contexts, including verification of purely probabilistic sys-
tems or systems with probability as well as nondeterminism, and for both finite- and
infinite-state probabilistic systems [12, 80, 19]. Our presentation will focus on the
logic PCTL interpreted over finite-state Markov decision processes.

3.1 Syntax of PCTL

As in CTL, the syntax of PCTL has two levels: one for the state formulas (denoted
by uppercase Greek letters Φ ,Ψ) and one for the path formulas (denoted by lower-
case Greek letters ϕ,ψ). The abstract syntax of state and path formulas is as follows

Φ ::= tt
∣∣ a
∣∣ Φ1∧Φ2

∣∣ ¬Φ
∣∣ P∼p(ϕ)

∣∣ E∼c(♦Φ)
∣∣ E∼c(6k)

∣∣ E∼c(=k)

ϕ ::=©Φ
∣∣ Φ1UΦ2

∣∣ Φ1U∼c
Φ2

14 Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

where tt stands for the constant truth value “true” and a is a state predicate, i.e., an
atomic proposition in AP. The other symbols are explained below.

The operators P∼p(·) and E∼c(·) are called the probability and expectation oper-
ators. The subscripts ∼ p and ∼ c specify strict or non-strict lower or upper bounds
for probabilities or costs, respectively. Formally, ∼ is a comparison operator 6, <,
> or >, p∈ [0,1]∩Q a rational threshold for probabilities, and c∈N a non-negative
integer that serves as a lower or upper bound for cumulated or instantaneous cost.

The PCTL state formula P∼p(ϕ) asserts that, under all schedulers, the proba-
bility for the event expressed by the path formula ϕ meets the bound specified by
∼ p. Thus, the probability operator imposes a condition on the probability mea-
sures PrUs for all schedulers U . The probability bounds “∼ p” can be understood as
quantitative counterparts to the CTL path quantifiers ∃ and ∀. Intuitively, the lower
probability bounds > p (with p > 0) or > p (with p > 0) can be understood as the
quantitative counterpart to existential path quantification. (See also Remark 1.)

As in CTL, path formulas are built from one of the temporal modalities© (next)
or U (until), where the arguments of the modalities are state formulas. No Boolean
connectors or nesting of temporal modalities are allowed in the syntax of path for-
mulas. In addition to the standard until-operator, the above syntax for path formulas
includes a cost-bounded version of until.1 The intuitive meaning of the path formula
Φ1U∼c

Φ2 is that a Φ2-state (i.e., some state where Φ2 holds) will be reached from
the current state along a finite path ς that yields a witness of minimal length for
the path formula Φ1UΦ2 (i.e., ς ends in a Φ2-state and all other states satisfy the
formula Φ1∧¬Φ2) and where the total cost of ς meets the constraint ∼ c.

The expectation operator E∼c(·) enables the specification of lower or upper
bounds for the expected cumulated or instantaneous cost. The state formula E∼c(♦Φ)
holds if the expected cumulated cost until a Φ-state is reached meets the require-
ment given by “∼ c” under all schedulers. Similarly, the state formulas E∼c(6k) and
E∼c(=k) assert that the cost accumulated in the first k steps and the instantaneous
cost at the k-th step, respectively, belong to the interval specified by “∼ c”.

3.2 Semantics of PCTL

Given an MDP, the satisfaction relation |= for state and path formulas is formally
defined below, in accordance with the above intuitive semantics. Let M be an MDP
as in Sect. 2.2 and s a state in M .

1 We did not introduce the step-bounded version of the until operator. This, however, can be de-
rived using the cost-bounded until operator and changing the MDP to the one with unit cost, i.e.,
C(s,α) = 1 for all states s and actions α ∈ Act(s).

Probabilistic Model Checking 15

s |= tt
s |= a iff a ∈ L(s)
s |= Φ1∧Φ2 iff s |= Φ1 and s |= Φ2

s |= ¬Φ iff s 6|= Φ

s |= P∼p(ϕ) iff PrUs (ϕ)∼ p for all schedulers U

where PrUs (ϕ)
def
= PrUs

{
π ∈ Paths | π |= ϕ

}
s |= E∼c(♦Φ) iff ExU

s (cost[♦Sat(Φ)])∼ c for all schedulers U

where Sat(Φ)
def
=
{

s ∈ S | s |= Φ
}

s |= E∼c(6k) iff ExU
s (cost[6k])∼ c for all schedulers U

s |= E∼c(=k) iff ExU
s (cost[=k])∼ c for all schedulers U

MDP M is said to satisfy a PCTL state formula Φ , denoted M |= Φ , if sinit |=
Φ . The semantics of the next- and until-operators is exactly as in CTL. If π =
s0

α1−−→s1
α2−−→s2

α3−−→ . . . is an infinite path in M then

π |=©Φ iff s1 |= Φ

π |= Φ1UΦ2 iff there exists k ∈ N with sk |= Φ2 and si |= Φ1 for all 06 i < k.

The semantics of the cost-bounded until-operator is as for the standard until-
operator, except that we require that the shortest prefix of π that ends in a Φ2-state
meets the cost-bound. Formally,

π |= Φ1U∼c
Φ2 iff there exists k ∈ N such that

(1) sk |= Φ2
(2) si |= Φ1∧¬Φ2 for all 06 i < k
(3) cost(π ↓k)∼ c.

We now justify the above definitions. First, using [105, 37] we get that the set
consisting of all paths where a PCTL path formula holds is indeed measurable.
Second, we observe that

s |= P6p(ϕ) iff Prmax
s
{

π ∈ Paths | π |= ϕ
}
6 p

s |= P<p(ϕ) iff Prmax
s
{

π ∈ Paths | π |= ϕ
}
< p.

The first statement is obvious. The second statement follows from the fact that,
for the events that can be specified by some PCTL path formula ϕ , there exists
a scheduler that maximizes the probability for ϕ , and so the supremum defining
Prmax

s can in fact be replaced with the maximum (see, e.g., [98]). For the next- and
unbounded until-operators such a scheduler can in fact be assumed to be simple.

An analogous statement holds for strict or non-strict lower probability bounds
and Prmin

s rather than Prmax
s . Similarly, we have

s |= E6c(C) iff Exmax
s (C) 6 c

s |= E<c(C) iff Exmax
s (C) < c

and the analogous statement for lower cost bounds, where C stands for one of the
three options ♦Φ , 6k, or =k. Here, again, minimal or maximal expected cost for

16 Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

the random variable associated with C can be achieved by some scheduler, and in
the case of ♦Φ simple schedulers suffice.

Although the above semantics of the probabilistic and expectation operators re-
lies on universal quantification over all schedulers, the existence of at least one
scheduler satisfying a certain condition can be expressed using negation in front of
the operator. For instance, ¬P6p(ϕ) asserts the existence of a scheduler U where ϕ

holds with probability > p.
Since probabilities are always values in the interval [0,1], there are some triv-

ial combinations of ∼ and p. For instance, P>0(ϕ) and P61(ϕ) are tautologies,
while P<0(ϕ) and P>1(ϕ) are not satisfiable. In what follows, we write P=1(ϕ) for
P>1(ϕ) and P=0(ϕ) for P60(ϕ). Similarly, as the cost function assigns non-negative
cost to all transitions, the total cost can never be negative. Hence, formulas of the
form E<0(·) are not satisfiable.

3.3 Derived Operators

Other Boolean operators can be derived from negation and conjunction as usual,
e.g.,

ff def
= ¬tt and Φ1∨Φ2

def
= ¬(¬Φ1∧¬Φ2).

The eventually operator ♦, a modality for path formulas, can be obtained as in CTL
or LTL by

♦Φ
def
= ttUΦ ,

and an analogous definition can be derived for the cost-bounded variant

♦∼c
Φ

def
= ttU∼c

Φ .

The always operator � and its cost-bounded variant �∼c can be derived using the
duality of lower and upper probability bounds. For instance, P6p(�Φ) can be de-
fined as P>1−p(♦¬Φ), and P>p(�∼cΦ) as P<1−p(♦∼c¬Φ).

Example 4 (PCTL Formulas for the Running Example). First, we give examples of
properties expressible in PCTL. The property “with probability at least 0.99, when-
ever we reach a bad state, we can recover with nonzero probability” from the be-
ginning of this section can be stated as the formula P≥0.99(�(bad→ P>0♦¬bad)).
Another property is “the expected energy consumption in the first 100 steps is at
most 20 units”, which is expressed by E620(6100), assuming that the relevant
cost function quantifies the energy consumed at every step. Further, the formula
P≤0.1(¬initialised Urequest) states that the probability of a request being made be-
fore the system initialisation phase completes is at most 0.1.

Now, let us return to the MDP from Example 1 to analyse some PCTL formulas
more thoroughly. Consider the formula Φ ≡ P≤0.6(¬succU≤5fail). First, observe

Probabilistic Model Checking 17

that the formula ¬succ holds in the states s0, s1 and s3, whereas the formula fail
holds only in the state s3. Paths that satisfy ¬succU≤5fail are exactly the paths
that reach s3 and whose cost is at most 5. It is easy to see that the probability of
these paths is maximal under any scheduler that always chooses αrisk determinis-
tically, in which case these paths have probability 0.5. Thus, for any U , we have
PrUs0

(¬succU≤5fail)≤ 0.6 and the formula Φ is satisfied.
On the other hand, the formula E≤5(6 4) is not satisfied. Consider, for example,

the scheduler that chooses αsafe in the path s0
αgo−→ s1 and αrisk in the path s0

αgo−→
s1

αsafe−−→ s0
αgo−→ s1. Under this scheduler, the expected cost cumulated in 4 steps is 5.5,

whereas the required upper bound is 5.

Remark 1 (Qualitative Properties). The conditions imposed by PCTL formulas of
the form P>0(ϕ) or P=1(ϕ) are often called qualitative properties. Their meaning
is quite close to CTL formulas ∃ϕ and ∀ϕ which are defined to be true if and only
if for every scheduler U there is a U -path satisfying ϕ (resp. all U -paths satisfy ϕ

in the case of ∀ϕ).
Indeed, if ϕ is a CTL path formula of the form©a, aUb or aU∼cb where a, b are

atomic propositions, then the PCTL formula P>0(ϕ) is equivalent to the CTL for-
mula ∃ϕ (interpreted as described above). This is a consequence of the observation
that the set of paths where ϕ holds can be written as a disjoint union of cylinder sets,
and hence the requirement to have at least one path π with π |= ϕ is equivalent to
the requirement that the probability measure of the paths that satisfy ϕ is positive.
Similarly, the PCTL formula P=1(�a) and the CTL formula ∀�a are equivalent: if
there is a path π = s0

α1−−→s1
α2−−→s2

α3−−→ . . . where some si does not satisfy a, then no
path starting with s0

α1−−→s1
α2−−→s2

α3−−→ . . .si satisfies �a, and so the probability of
paths satisfying �a is strictly lower than 1. The same equality holds for P=1(©a)
and ∀©a.

However, there is a mild difference between the meaning of the PCTL formula
P=1(♦a) and the CTL formula ∀♦a, because the quantification over “all paths”
is more restrictive than that over “almost all paths” in the case of reachability.
Observe that state s satisfies the CTL formula ∀♦a if and only if all paths starting
from s will eventually enter an a-state (i.e., a state s′ with s′ |= a). Satisfaction of the
PCTL formula P=1(♦a) in state s means that almost all paths will eventually visit
an a-state, in the sense that the probability measure of the paths π starting in s and
satisfying ϕ equals 1; this includes paths that never enter an a-state, as long as their
total probability measure is zero.

4 Model-Checking Algorithms for MDPs and PCTL

We now present an algorithm that, given a PCTL state formula and a Markov deci-
sion process, decides whether the formula holds in the MDP or not. The algorithm,
similarly to the algorithm for CTL model checking from Chap. 2, consists of sepa-
rate subprocedures for each (temporal or Boolean) connective. Instead of computing

18 Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

the validity of a formula in the initial state directly, for each subformula we use the
appropriate subprocedure and compute the set of all states in which the subformula
holds. We start with the smallest subformulas and then proceed to the larger ones,
using the sets of states already computed. Let us now describe the algorithm more
formally, including the aforementioned subprocedures.

The main procedure to check whether a given PCTL state formula Φ0 holds for
an MDP relies on the same concepts as for CTL. An iterative approach is used to
compute the satisfaction sets Sat(Φ) =

{
s ∈ S | s |= Φ

}
of all subformulas Φ of

Φ0. The treatment of the propositional logic fragment of PCTL follows directly
from the definition of the semantics. We will concentrate here on explaining how to
deal with probabilistic features. The algorithms we give run in polynomial time if
the cost bounds and cost functions are given in unary. Hence, checking whether a
given formula holds can be done in polynomial time under these assumptions.

In the sequel, let M = (S,Act,P,sinit,AP,L,C) be an MDP as in Sect. 2.2.

4.1 Probability Operator

Suppose that Φ = P∼p(ϕ). We consider here the case of upper probability bounds,
i.e., ∼∈ {6,<}, so the task is to compute maximal probabilities of satisfying ϕ for
every state. The set Sat(Φ) can then be identified easily, as we have

Sat(Φ) =
{

s ∈ S | Prmax
s (ϕ)∼ p

}
.

Lower probability bounds (i.e., the case when ∼∈ {>,>}) can be treated similarly,
but using minimum probability instead (see, e.g., [39, 98] for details). We distin-
guish three possible cases for the outermost operator of the path formula ϕ . For the
proper state subformulas of ϕ , we can assume that the satisfaction sets Sat(ϕ) have
already been computed. This allows us to treat them as atomic propositions.

First, we consider the next-operator. If ϕ =©Ψ then the maximal probabilities
for ϕ are obtained by

Prmax
s (ϕ) = max

α∈Act(s)
P(s,α,Sat(Ψ))

where P(s,α,Sat(Ψ)) = ∑t∈Sat(Ψ)P(s,α, t). An optimal simple scheduler simply
assigns an action α to the state s that maximizes the value P(s,α,Sat(Ψ)).

We now address the until-operator and suppose that ϕ = Φ1UΦ2. We first apply
graph algorithms to compute the sets

S0 =
{

s ∈ S | Prmax
s (Φ1UΦ2) = 0

}
S1 =

{
s ∈ S | Prmax

s (Φ1UΦ2) = 1
}
.

Note that S0 is equal to the set {s ∈ S | ∀π ∈ Paths(s) | π 6|= Φ1UΦ2} which can
be obtained using standard algorithms for non-probabilistic model checking (see
Chap. 2). The set S1 can be computed by iterating the following steps (1) and (2),

Probabilistic Model Checking 19

where we start with the set of all states and keep pruning all actions and states that
might lead to not satisfying the formula. Step (1) removes all states t from which
no path satisfying Φ1UΦ2 starts. Step (2) considers all the remaining states s and
removes all actions α from Act(s) such that P(s,α, t) > 0 for some state t that has
been removed in step (1). The set of states that are not removed after repeating steps
(1) and (2) constitutes the set S1.

Let S? = S\ (S0∪S1) and xs = Prmax
s (Φ1UΦ2) for s ∈ S. Clearly, xs = 0 if s ∈ S0,

xs = 1 if s∈ S1 and2 0< xs =Prmax
s (Φ1US1)< 1 if s∈ S?. The values xs for s∈ S? are

obtained as the unique solution of the linear program [71] given by the inequalities

xs > ∑
t∈S?

P(s,α, t) · xt + P(s,α,S1) for all α ∈ Act(s)

where ∑
s∈S?

xs is minimal and where P(s,α,S1) = ∑
u∈S1

P(s,α,u).

Intuitively, the inequalities of the above form capture the idea that the probability
in state s must be at least the weighted sum of probabilities of the one-step succes-
sors, for any action α . Notice that every state is considered at most once in the sum,
since S?∩S1 = /0.

A simple scheduler U with PrUs (Φ1UΦ2) = xs = Prmax
s (Φ1UΦ2) is obtained by

carefully choosing, for each state s ∈ S1, an action α with P(s,α,S1) = 1 and, for
each state s ∈ S?, an action α that maximizes the value

∑
t∈S?

P(s,α, t) · xt + P(s,α,S1).3

Some care is needed to ensure that the chosen action indeed makes some “progress”
towards reaching a Φ2-state. More formally, it is necessary to ensure that the actions
taken will not avoid a Φ2 state forever (the condition which captures this can be
found in [39]). To illustrate the possible problem, consider the MDP from Figure 3.

s t
b

α 1

β

1

Fig. 3 An MDP showing that care needs to be taken when computing a scheduler U with
PrUs (Φ1UΦ2) = Prmax

s (Φ1UΦ2)

Here, a simple scheduler that maximizes the probability for ttUb must not take
the action β for s, although P(s,β ,S1) = 1 since S1 = {s, t}.

Recall that all coefficients (transition probabilities in the MDP and the probabil-
ity bound p) are rational, and hence the linear program above can be constructed
in time polynomial in the size of M . Because the linear program can be solved in

2 The notation Φ1US1 is a shorthand for Φ1Ua where a is an atomic proposition satisfying a∈ L(s)
if and only if s ∈ S1.
3 For the states s ∈ S0 an arbitrary action can be chosen.

20 Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

polynomial time [71], the complexity of the problem to check whether an MDP sat-
isfies a PCTL formula of the form P6p(Φ1UΦ2) or P<p(Φ1UΦ2) is also polynomial
in the size of M , assuming that the satisfaction sets for Φ1 and Φ2 are given.

Besides using well-known linear programming techniques to compute the vector
x = (xs)s∈S? , one can use iterative approximation techniques. Most prominent are
value and policy iteration, see, e.g., [98, 99].

In the value iteration approach, one starts with x(0)s = 1 for all s ∈ S1 and x(0)s = 0
for all s ∈ S?∪S0, and then successively computes

x(n+1)
s

def
= max

α∈Act(s)
∑

t∈S?

P(s,α, t) · x(n)t + P(s,α,S1) for all s ∈ S?

until max
s∈S?

∣∣x(n+1)
s − x(n)s

∣∣< ε for some predefined tolerance ε > 0.

The idea of policy iteration is as follows. In each iteration, we select a simple
scheduler U and compute the probabilities PrUs (Φ1US1) for s ∈ S? in the induced
Markov chain (this can be done by solving a linear equation system). The method
then “improves” the current simple scheduler U by searching for some state s ∈ S?
such that

PrUs (Φ1US1) < max
α∈Act(s)

∑
t∈S?

P(s,α, t) ·PrUs (Φ1US1) + P(s,α,S1).

It then replaces U with V where U and V agree, except that V (s) = α for some
action α ∈ Act(s) that maximizes ∑t∈S?

P(s,α, t) ·PrUs (Φ1US1)+P(s,α,S1). The
next iteration is then performed with scheduler V . If no improvement is possible,
i.e., if

PrUs (Φ1US1) = max
α∈Act(s)

∑
t∈S?

P(s,α, t) ·PrUs (Φ1US1) + P(s,α,S1)

for all s ∈ S?, then U maximizes the probability of Φ1UΦ2.
In practice, both value iteration and policy iteration outperform the linear-

programming method, which does not scale to large models. The relative perfor-
mance of value iteration and policy iteration varies by model, but the space and
time efficiency of value iteration can be easily improved so that it outperforms pol-
icy iteration. Interested readers are referred to [52] for a brief comparison.

It remains to explain the treatment of the cost-bounded until-operator. We con-
sider here just the case of non-strict upper cost bounds. The task is to compute
Prmax

s (ϕ) for all states s ∈ S, where ϕ = Φ1U6c
Φ2 and c ∈ N. For s ∈ S and d ∈ N

we define

xs(d)
def
= Prmax

s (Φ1U6d
Φ2).

Then, we have xs(d) = 1 for each state s∈Sat(Φ2) and each cost bound d ∈N. Sim-
ilarly, xs(d) = 0 for each d ∈ N and state s satisfying Prmax

s (Φ1UΦ2) = 0. Suppose
now that Prmax

s (Φ1UΦ2)> 0 and s 6|= Φ2. Thus, the recursive equations

xs(d) = max
{

∑
t∈S

P(s,α, t) · xt(d−C(s,α)) | α ∈ Act(s),C(s,α)6 d
}

Probabilistic Model Checking 21

hold true, where the maximum over the empty set is defined to be 0. That is, xs(d) =
0 if C(s,α)> d for all actions α ∈Act(s). Assuming that C(s,α)> 0 for all states s
and enabled actions α , the above formulas for xs(d) can be computed by an iterative
procedure, e.g., by employing a dynamic programming approach using the above
equations. This yields the desired values Prmax

s (ϕ) = xs(c). If C(s,α) = 0 for some
states s and some actions α ∈ Act(s) then the solution can be obtained as a solution
to the linear program Lc which minimises ∑s∈S ∑0≤d≤c xs(d), subject to

xs(d) = 0 for d < 0
xs(d) = 1 for d ≥ 0 and s ∈ Sat(Φ2)

xs(d)≥∑
t∈S

P(s,α, t) · xt
(
d−C(s,α)

)
for d ≥ 0, s 6∈ Sat(Φ2) and α ∈ Act(s)

where Lc contains variables xs(d) for −M ≤ d ≤ c where M is the maximal num-
ber assigned by C. This approach can be optimised to consecutively solving d + 1
linear programs L′0, . . . ,L

′
c, where L′0 = L0 and for 1≤ i≤ c the linear program L′i is

obtained from Li by turning the variables xs(j) for j < i into constants whose values
were already computed earlier.

4.2 Expectation Operator

Suppose now that the task is to compute the satisfaction set Sat(E∼c(C)), where C is
the random variable cost[·] associated with the reachability condition ♦Ψ , the total
cost within the first k steps (i.e., C is “6k”), or the instantaneous cost incurred by
the k-th step (i.e., C is “=k”). Again, we just consider the case of maximal expected
cost where the goal is to compute Exmax

s (C) for all states s. The set Sat(E∼c(C)) is
then obtained by collecting all states s where Exmax

s (C)∼ c.
Let us first address the case of cumulated cost within k steps. We can rely on

the iterative computation scheme

Exmax
s (cost[6n]) = max

α∈Act(s)

(
C(s,α)+ ∑

t∈S
P(s,α, t) ·Exmax

t (cost[6n−1])
)

for 16 n6 k and Exmax
s (cost[60]) = 0.

In the case of instantaneous cost at time step k, the equations have the form

Exmax
s (cost[=1]) = max

α∈Act(s)
C(s,α)

Exmax
s (cost[=n]) = max

α∈Act(s)
∑

t∈S
P(s,α, t) ·Exmax

t (cost[=n−1])

for 1 < n6 k.
We now sketch the main steps for the computation of the maximal expected

cost for the reachability objective ♦Ψ . We first apply techniques for the standard
until-operator (see Sect. 3) to compute Prmin

s (♦Ψ) for all states s in M .
If t is a state in M with Prmin

t (♦Ψ)< 1 then there exists a scheduler U such that
PrUt (♦Ψ)< 1. But then ExU

t (cost[♦Ψ]) is infinite, and therefore

22 Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

Exmax
t (cost[♦Ψ]) = ∞.

The remaining task is to compute Exmax
s (cost[♦Ψ]) for all states s ∈ S′ where

S′ =
{

s ∈ S | Prmin
s (♦Ψ) = 1

}
.

Note that, if s ∈ S′ \Sat(Ψ), then for all actions α ∈ Act(s) and all states u with
P(s,α,u) > 0 we have u ∈ S′. The enabled actions of the states s ∈ Sat(Ψ) are
irrelevant. We may suppose that for these s, Act(s) is a singleton set {α} with
P(s,α,s) = 1. Clearly, for s ∈ Sat(Ψ) we have Exmax

s (cost[♦Ψ]) = 0. For all other
states s ∈ S′ \Sat(Ψ), we have

Exmax
s (cost[♦Ψ]) = max

α∈Act(s)

(
C(s,α) + ∑

u∈S′
P(s,α,u) ·Exmax

u (cost[♦Ψ])
)
.

These values can again be computed using linear programming techniques or the
value or policy iteration schemes.

Example 5. Consider the MDP from Example 1 and the formula E≤5(≤4). For all
0≤ i≤ 4, let xi denote the tuple(

Exmax
s0

(cost[≤i]),Exmax
s1

(cost[≤i]),Exmax
s2

(cost[≤i]),Exmax
s3

(cost[≤i])
)
.

We iteratively compute the following tuples by applying value iteration

x1 = (1, 4, 0, 0)
x2 = (5, 4, 0, 0)
x3 = (5, 4.5, 0, 0)
x4 = (5.5, 4.5, 0, 0)

and we conclude that the formula E≤5(≤4) is not satisfied, because the maximal
cumulated cost in s0 is 5.5.

Next, consider again the same MDP, but this time together with the formula
P≤0.5(¬initUsucc), and suppose we want to know precisely the states in which
the formula holds. We start by parsing the formula from the smallest subformu-
las. The subformula init is satisfied in s0, and succ in s2. Further, the subformula
¬init is satisfied in the states s1, s2, and s3. A more demanding task is to compute
Prmax

s (¬initUsucc). We compute the sets S0 and S1, which are

S0 = {s0,s3} and S1 = {s2}.

This leaves us with the set S? = {s1}. We construct the following simple linear
program

minimize xs1 subject to
xs1 ≥ xs1
xs1 ≥ 0.3 .

The solution to the above program is xs1 = 0.3, and hence we can conclude that the
formula P≤0.5(¬initUsucc) holds in states s0, s1 and s3.

Probabilistic Model Checking 23

5 Linear Temporal Logic

We continue this chapter with a brief overview of model checking Markov decision
processes against properties expressed in linear temporal logic (LTL). In this sec-
tion we define the logic and in the next section we show how the model-checking
algorithm works. The logic LTL that we will use is standard, as defined in Chap. 2,
except that we use only a subset of LTL which does not allow us to reason about
the past, and whose predicates are actions of an MDP. Having predicates over ac-
tions and not over states is only a matter of convention; all the constructions and
algorithms we present here can be easily modified to work with state predicates.

5.1 Syntax of LTL

For the purposes of this chapter, the syntax of LTL is as follows,

ϕ ::= tt
∣∣ α
∣∣ ϕ1∧ϕ2

∣∣ ¬ϕ
∣∣ ©ϕ

∣∣ ϕ1Uϕ2

where tt stands for the constant truth value “true”, and α is an action, i.e., an element
of the set of actions Act. We write U to denote the until-operator, instead of U used
in Chap. 2.

5.2 Semantics of LTL

The semantics of our logic LTL is defined on traces of paths of an MDP. A trace
for an infinite path π = s0

α1−−→s1
α2−−→s2

α3−−→ . . . is the infinite word trace(π) =
α1α2α3 . . . of actions. Let w = α0α1 . . . be an infinite word over the alphabet of
actions Act, and let w↑n denote the suffix of w starting with αn. Then,

w |= tt
w |= α iff α = α0
w |= ¬φ iff w 6|= φ

w |= ϕ1∧ϕ2 iff w |= ϕ1 and w |= ϕ2
w |=©ϕ iff w↑1|= ϕ

w |= ϕ1Uϕ2 iff there exists k ∈ N with w↑k|= ϕ2 and w↑i|= ϕ1 for 06 i < k.

As in the case of PCTL, it can be shown that the set of all infinite paths that satisfy
a given LTL formula is always measurable.

24 Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

5.3 Derived Operators

Similarly to PCTL, we can define Boolean operators such as ff, ∨ and → from
negation and conjunction, for example

ϕ1∨ϕ2
def
= ¬(¬ϕ1∧¬ϕ2) and ϕ1→ ϕ2

def
= (¬ϕ1)∨ϕ2.

The eventually-operator ♦ and the always-operator � are obtained by

♦ϕ
def
= ttUϕ and �ϕ

def
= ¬♦¬ϕ .

For simplicity, we did not introduce a cost-bounded version of the until-operator
U∼c, but in principle there is nothing preventing us from doing so. We point out
that the notation would become cumbersome; in particular, the definition of the
Rabin automaton below would then need to take costs of state-action pairs into
consideration.

5.4 LTL Model-Checking Problem

Let M = (S,Act,P,sinit,AP,L,C) be an MDP and P∼p(ϕ) an LTL state property,
where ∼ is a comparison operator 6 or <, p ∈ [0,1]∩Q and ϕ is an LTL formula.
The LTL model-checking problem is to decide whether

Prmax
sinit

{
π ∈ Paths | trace(π) |= ϕ

}
∼ p .

We can define the model-checking problem similarly for the comparison operators
> or >; in that case we ask whether

Prmin
sinit

{
π ∈ Paths | trace(π) |= ϕ

}
∼ p .

Because the LTL formulas are closed under negation, we have

Prmin
sinit

(
{

π ∈ Paths | trace(π) |= ϕ
}
)

= 1−Prmax
sinit

(
{

π ∈ Paths | trace(π) 6|= ϕ
}
)

= 1−Prmax
sinit

(
{

π ∈ Paths | trace(π) |= ¬ϕ
}
)

and so without loss of generality we can restrict our interest to the case of computing
maximal probabilities.

6 Model-Checking Algorithms for MDPs and LTL

In this section we describe a model-checking algorithm for MDPs and LTL. Before
going into formal definitions, let us describe it informally. We solve the LTL model-

Probabilistic Model Checking 25

checking problem using ω-regular automata. Every LTL formula can be transformed
into an automaton which accepts exactly the words on which the formula holds. We
then build the product of the MDP and the automaton, and show that the problem
of computing the optimal probability with which the automaton accepts traces of
the MDP is equal to the problem of computing the optimal probability of reaching
certain states in the product. The latter can be computed using algorithms from pre-
vious sections. The reader may observe that the outline of the algorithm is similar
to the (non-probabilistic) LTL model-checking algorithm from Chap. 2. The major
difference is that, instead of looking for one path in the product (called synchronous
composition in Chap. 2), we need to determine the probability of certain paths. It
turns out that, for this purpose, the definition of a just discrete system is not suffi-
cient. The solution we present here uses Rabin automata, whose crucial property is
that it has no nondeterminism.

The algorithm runs in time polynomial in the size of the MDP and doubly-
exponential in the size of the LTL formula. From the complexity-theoretic point
of view, the complexity bound is optimal since the model-checking problem for
Markov decision processes and LTL state properties is known to be complete for
the complexity class 2EXPTIME, even for qualitative LTL state properties [37].

Let us now describe the algorithm formally. We begin by introducing the notion
of deterministic Rabin automata and stating that, for every LTL formula ϕ , there is
a deterministic Rabin automaton that accepts exactly the set of words satisfying ϕ .

Definition 1 (Deterministic Rabin Automaton (DRA)). A deterministic Rabin
automaton is a tuple A = (Q,Act,δ ,qinit,Acc), where Q is a finite set of states,
qinit ∈ Q is an initial state, Act is a finite input alphabet, δ : Q×Act→Q is a transi-
tion function, and Acc={(L1,K1),(L2,K2), . . . ,(Lk,Kk)}, for k ∈ N and Li,Ki ⊆ Q,
1≤i≤k, is a set of accepting tuples of states.

We do not study Rabin automata in detail here and only mention their properties
directly relevant to LTL model checking. We refer the reader to Chap. 4 or to [55]
for additional details.

Let A = (Q,Act,δ ,qinit,Acc) be a DRA. For every infinite word w = α0α1α2 . . .
over the input alphabet Act there is a unique sequence q0α0q1α1q2α2 · · · where
q0 = qinit, and δ (qi,αi) = qi+1 for all i≥ 0. The word w is accepted by A if there is
(L,K)∈ Acc such that qi ∈ L for only finitely many i, and q j ∈K for infinitely many
j. The set of all infinite words over Act that A accepts is called the language of A
and is denoted L (A).

As mentioned above, for every LTL formula ϕ we can construct a DRA Aϕ with
the input alphabet Act such that for all w = α1α2 . . . we have

w |= ϕ ⇐⇒ w ∈L (Aϕ).

The construction of Aϕ is non-trivial and we do not present it in this chapter, refer-
ring the reader to [107, 38, 11]. Note that, in general, the size of Aϕ can be up to
doubly exponential in the size of ϕ . In practice, however, this is often not a serious
problem since LTL formulas expressing useful properties tend to be small compared
to the size of the MDP.

26 Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

Having defined the DRA Aϕ , we reduce the problem of computing the maximal
probability of paths satisfying ϕ in M to the problem of reaching a certain set of
states in a product MDP. The product MDP is defined so that its behaviour mimics
that of the original MDP, but in addition it remembers the state of the automaton in
which it ends after reading the sequence of actions performed so far.

Definition 2 (Product of an MDP and a DRA). Let M = (S,Act,P,sinit,AP,L,C)
be an MDP and A = (Q,Act,δ ,qinit,Acc) a DRA. Their product M⊗A is the
MDP (S×Q,Act,P′,(sinit,qinit),AP,L′,C′) where for any (s,q) ∈ S×Q and α ∈ Act
we define

P′((s,q),α,(s′,q′)) =

{
P(s,α,s′) if δ (q,α) = q′

0 otherwise.

The elements L′ and C′ are defined arbitrarily.

A path (s0,q0)
α1−−→(s1,q1)

α2−−→(s2,q2)
α3−−→ . . . in a product MDP is accepting if

there is (L,K) ∈ Acc such that qi ∈ L for only finitely many i and q j ∈ K for in-
finitely many j.

It can be proved that, for every state s and scheduler U in M , there is a scheduler
V in M⊗A such that

PrM ,U ({π ∈ PathsM (s) | trace(π) ∈L (A)})

= PrM⊗A ,V ({π ∈ PathsM⊗A ((s,qinit)) |π is an accepting path}) .

This is essentially because the product only extends the original by keeping track of
a computation of a DRA, and does not alter the power of schedulers.

So far, we have reduced the problem of LTL model checking to the problem
of determining the maximal probability of accepting paths in a product MDP. To
determine this probability, we introduce the notion of accepting end components,
which identify the states for which there is a scheduler ensuring that almost all
paths starting in these states are accepting. An accepting end component (EC) of
M⊗A is a pair (S̄, P̄) comprising a subset S̄⊆ S×Q of states and partial transition
probability function P̄ : S̄×Act×S̄→ [0,1]∩Q satisfying the following conditions:

1. (S̄, P̄) determines a sub-MDP of M⊗A , i.e., for all s′ ∈ S̄ and α ∈ Act we have
∑s′′∈S̄ P̄(s′,α,s′′)= 1, and, if P̄(s′,α,s′′) is defined, then P̄(s′,α,s′′)=P′(s′,α,s′′);

2. the underlying graph of (S̄, P̄) is strongly connected;
3. there is (L,K) ∈ Acc such that:

a. all (s,q) ∈ S̄ satisfy q 6∈ L;
b. there is (s,q) ∈ S̄ satisfying q ∈ K.

Using the above condition for an accepting path, together with the property that,
once an end component is entered, all its states can be visited infinitely often almost
surely [39], we can further show the following. Let T ⊆ S×Q such that (s′,q′) ∈ T
if and only if (s′,q′) appears in some accepting end component of M⊗A , then we
have

Probabilistic Model Checking 27

Prmax
s {π ∈ PathsM (s) | trace(π) ∈L (A)}

= Prmax
(s,qinit)

({π ∈ PathsM⊗A ((s,qinit)) |π contains a state from T}) .

Thus, we have reduced model checking of LTL properties to (i) the computation
of accepting end components in M⊗Aϕ , and (ii) the computation of maximum
probabilities of reaching these end components. The second step is a special case of
the problems studied in Sect. 4. The first step can be done efficiently using the results
of [39, 11]; an approach which is simpler to comprehend, but less efficient, is to use
PCTL model checking to identify all the states that lie in an accepting component
and satisfy the condition 3b. above. These are exactly the states (s,q) for which there
is (L,K)∈ Acc such that q∈K and it is possible to return to (s,q) with probability 1,
passing only through states (s′,q′) with q′ 6∈ L. A state (s,q) satisfies this condition if
and only if it satisfies a formula ¬P<1

(
©¬P<1 p¬L U p(s,q)) for some (L,K) ∈ Acc

with q ∈ K, where p(s,q) holds only in (s,q) and p¬L holds in all states (s′,q′) with
q′ 6∈ L. In step (ii) it is then sufficient to maximise the probability of reaching such
states.

Example 6. Consider the MDP from Example 1 together with the formula Φ =
♦(αwait ∧©αrisk), and assume we want to compute the maximal probability of sat-
isfying this formula. We follow the procedure described above and first convert Φ to
an equivalent DRA A = (Q,Act,δ ,qinit,Acc). Using one of the cited methods, we
might, for example, obtain the automaton shown in Fig. 4. Here, Q = {q0,q1,q2},

q0 q1 q2

{αwait}

Act\{αwait,αrisk}

{αrisk}

Act\{αwait} {αwait} Act

Fig. 4 A DRA for the formula ♦(αwait ∧©αrisk)

qinit = q0, δ (q,α) = q′ whenever there is an arrow from q to q′ labelled with a set
containing α , and Acc = {(/0,{q2})}

Next, we construct the product of M and A , yielding the MDP M⊗A from
Fig. 5 (note that only the states reachable from the initial state (s0,q0) are drawn).
The MDP M⊗A contains two accepting end components, one containing the state
(s2,q2) and a self-loop, and the other containing the state (s3,q2) and a self-loop.

It is now easy to apply the algorithms from Sect. 4 and calculate that the maximal
probability of reaching one of these end components from the initial state is equal
to 1.

28 Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

s0 q0 s1 q0

s2 q0

s3 q0

s1 q1

s2 q2

s3 q2

αgo 1

αsafe

0.7 0.3

αrisk

0.5

0.5
αwait

1

αloop

1

αloop

1

αwait
1

αsafe

0.7 0.3

αrisk
0.5

0.5

αloop

1

αloop

1

Fig. 5 The product MDP M⊗A for Example 6

7 Tools, Applications and Model Construction

7.1 Tool Support

There are several software tools which implement probabilistic model checking for
Markov decision processes. One of the most widely used is PRISM [80], an open-
source tool available from [97] which supports both PCTL and LTL model check-
ing as described here, including the probabilistic and expectation operators. PRISM
uses a probabilistic variant of reactive modules as a modelling notation, and addi-
tionally supports model checking for discrete- and continuous-time Markov chains
and probabilistic timed automata. The tools LIQUOR [35] and ProbDiVinE [13] im-
plement LTL model checking for MDPs: LIQUOR uses Probmela, which is a variant
of the SPIN Promela modelling language, whereas ProbDiVinE provides a parallel
implementation. RAPTURE [69] and PASS [57] apply abstraction-refinement tech-
niques.

A key challenge when implementing the algorithms is the state-explosion prob-
lem, well known from other fields of model checking, and also discussed in Chap. 8
of this book. Different tools take a different approach to overcome this problem.
The tool PRISM, for example, mainly uses a symbolic approach (see [6, 41] or
Chap. 31) and instead of storing the state space explicitly it stores it using a vari-
ant of binary decision diagrams [54]. ProbDiVinE makes use of distributed model
checking, while LIQUOR applies partial-order reduction techniques (see Chap. 6)
to reduce the state space. Several other methods to tackle the state-explosion prob-
lem have been proposed for probabilistic model checking, including symmetry re-
duction [77, 44], game-based quantitative abstraction refinement [73, 79], compo-
sitional probabilistic verification [81, 51, 42, 82], or algorithms for simulation and
bisimulation relations [28, 110]. Techniques to improve efficiency of probabilistic

Probabilistic Model Checking 29

model checking include approximate probabilistic model-checking [87], statistical
model checking [108, 109, 88, 16, 22] and incremental verification [85].

7.2 Applications

Probability is pervasive, and Markov decision processes underpin modelling and
analysis of a wide range of applications [98]. Probabilistic model checking, and
PRISM in particular, has been successfully applied to analyse and in some cases de-
tect flaws in a variety of application domains, including analysis of communication,
security, privacy and anonymity protocols, efficiency of power management proto-
cols, correctness of randomised coordination algorithms, performance of computer
systems and nanotechnology designs, in silico exploration of biological signalling,
detecting design flaws in DNA circuits, analysis of spread of diseases, scheduling,
planning, and controller synthesis (see, e.g., [45, 93, 78, 61]). More case studies are
available at the PRISM tool website [97].

7.3 Construction of Probabilistic Models

The usefulness and precision of the results obtained by the probabilistic model-
checking techniques presented here crucially depend on the adequacy of the model,
and in particular on the probability values. Several methods have been proposed
in the literature that support the stepwise and compositional design of probabilis-
tic models for systems with many components, ranging from approaches that use
stochastic process algebras (see, e.g., [70, 3]), probabilistic variants of Petri nets
(see, e.g., [2]), or bespoke models (see, e.g., [40]) to high-level modelling lan-
guages with guarded commands, probabilistic choice, and imperative programming
language concepts [59, 65, 17, 5, 72]. Such approaches can indeed be very helpful
when constructing reasonable models that reflect the architectural structure of the
system to be analysed, the control flow of its components, the interaction mech-
anism, and dependencies between components where the probabilities are known
or given, as is the case in randomised protocols. However, such formal modelling
approaches do not support the choice of the probability values. Estimating probabil-
ity distributions is one of the core problems studied in statistics. Indeed, for many
application areas, well-engineered statistical methods are available to derive good
estimates for the probability values in the models used for the quantitative analy-
sis. But even without the application of advanced statistical methods, probabilistic
model-checking techniques can yield useful information on the quantitative system
behavior. Repeated application of probabilistic model-checking techniques on mod-
els that only differ in the probability values might give insights into the significance
or irrelevance of certain probabilistic parameters. The model of Markov decision

30 Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

processes also permits the representation of incomplete information on the proba-
bility values by nondeterministic choices between several probabilistic distributions.
The results obtained by probabilistic model checking are lower or upper bounds for
all models that result by resolving the nondeterministic choices using any convex
combination of the chosen distributions. Alternatively, there are also methods that
deal with probability intervals rather than specific probability values, and methods
that operate with parametrized probabilistic models, see, e.g., [102, 56, 43, 34].

8 Extensions of the Model and Specification Notations

There are various models that extend Markov decision processes, such as stochas-
tic games [30, 31, 33], in which there are two kinds of nondeterminism (some-
times called “angelic” and “demonic” nondeterminism), or probabilistic timed au-
tomata [83, 94], which extend timed automata as defined in Chap. 29 and allow
for reasoning about time by adding real-time constraints on actions. Another class
of related models are continuous-time Markov Chains and continuous-time Markov
decision processes [98] in which we add a notion of time into the system and as-
sume that the steps from one state to another are taken with delays governed by an
exponential probability distribution. Continuous-time Markov Chains find applica-
tions, for example, in biochemistry (see, e.g., [26, 91, 62, 27, 36]). Note that MDPs
as defined in this chapter are sometimes called discrete-time MDPs to reflect the
intuition that each of their steps takes exactly 1 time unit. Also note that adding an
exponential distribution on time makes it more difficult to define parallel composi-
tion of two systems, leading to an alternative model of interactive Markov chains
(see, e.g., [63, 25]).

Probabilistic models with infinite state space have also been studied, where ex-
amples include models generated by pushdown systems (see, e.g., [19, 49, 23]) or
lossy channel systems [7, 1, 68].

Recently [29], alternatives to deterministic Rabin automata, such as generalized
Rabin automata [47, 75], have been shown suitable for probabilistic model checking.
These automata can be smaller by orders of magnitude and thus induce a smaller
product to be analyzed. See [15] for an overview of available tools for conversion
of LTL to different types of Rabin automata and their performance.

The logics LTL and PCTL can be naturally combined into the logic PCTL∗ [14],
which is itself a probabilistic variant of the logic CTL∗ [46]. There are also nu-
merous reward-based properties not included in our definition of PCTL, for ex-
ample a discounted reward or long-run average reward [98, 39]. There also exist
different logics that allow us to reason about probabilities, one example being the
works [90, 66, 92] which study a probabilistic variant of µ-calculus (see Chap. 26).
A new direction started recently concerns studying multi-objective model-checking
problems for Markov decision processes [32, 48, 53, 20].

A related problem is that of controller synthesis, where the question is whether
there exists a satisfying scheduler (as opposed to the model-checking problem,

Probabilistic Model Checking 31

where we ask whether all schedulers satisfy the formula). For the unrestricted
controller-synthesis problem, an alternative semantics of PCTL has been stud-
ied [9, 21, 24], yielding undecidability results.

9 Conclusion

In this chapter, we have given an overview of probabilistic model checking, fo-
cusing on Markov decision processes as an operational model for nondeterministic-
probabilistic systems against specifications given in temporal logics PCTL and LTL.
The PCTL model-checking algorithm is similar to that for the logic CTL, where the
parse tree of the formula is traversed bottom up and each subformula is treated sep-
arately. Model checking for the probabilistic and expectation operator reduces to a
linear programming problem, which can be solved using a variety of methods.

In the case of LTL, we first translate the LTL formula into an equivalent determin-
istic Rabin automaton, and then reduce the model-checking problem to the problem
of calculating the probability of reaching accepting end components in a product of
the MDP and the automaton. The construction of a deterministic Rabin automaton
for a given LTL formula can cause a doubly exponential blowup.

We have also presented a brief summary of tools that implement and extend the
algorithms presented in this chapter, and listed various related formalisms that exist
in the area of probabilistic model checking.

References

1. P. Abdulla, C. Baier, P. Iyer, and B. Jonsson. Reasoning about probabilistic lossy channel
systems. In C. Palamidessi, editor, Proc. CONCUR’00, volume 1877 of LNCS, pages 320–
330. Springer, 2000.

2. M. Ajmone-Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with
Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing, John Wiley and Sons,
1995.

3. A. Aldini, M. Bernardo, and F. Corradini. A Process Algebraic Approach to Software Archi-
tecture Design. Springer-Verlag, 2010.

4. R. Ash and C. Doléans-Dade. Probability and measure theory. Harcourt/Academic Press,
2000.

5. C. Baier, F. Ciesinski, and M. Größer. ProbMeLa: a modeling language for communicating
probabilistic systems. In Proc. of the 2nd ACM-IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE), pages 57–66. IEEE Computer Society
Press, 2004.

6. C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan. Symbolic
model checking for probabilistic processes. In P. Degano, R. Gorrieri, and A. Marchetti-
Spaccamela, editors, Proc. International Colloqium on Automata, Languages and Program-
ming (ICALP), volume 1256 of LNCS, pages 430–440. Springer, 1997.

7. C. Baier and B. Engelen. Establishing qualitative properties for probabilistic lossy channel
systems: An algorithmic approach. volume 1601 of LNCS, pages 34–52. Springer, 1999.

32 Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

8. C. Baier, M. Größer, and F. Ciesinski. Model checking linear time properties of probabilistic
systems. In M. Droste, W. Kuich, and H. Vogler, editors, Handbook of Weighted Automata,
Monographs in Theoretical Computer Science. An EATCS Series, pages 519–570. Springer-
Verlag, 2009.

9. C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski. Controller synthesis for prob-
abilistic systems. In J.-J. Lévy, E. Mayr, and J. Mitchell, editors, Proc. 3rd IFIP Int. Conf.
Theoretical Computer Science (TCS’06), pages 493–5062. Kluwer, 2004.

10. C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Performance evaluation and model
checking join forces. Commun. ACM, 53(9):76–85, 2010.

11. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
12. C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time logic with

fairness. Distributed Computing, 11:125–155, 1998.
13. J. Barnat, L. Brim, I. Černá, M. Češka, and J. Tůmová. ProbDiVinE-MC: Multi-core LTL

model checker for probabilistic systems. In Proceedings of the 2008 Fifth International
Conference on Quantitative Evaluation of Systems, pages 77–78, Washington, DC, USA,
2008. IEEE Computer Society.

14. A. Bianco and L. De Alfaro. Model checking of probabilistic and non-deterministic sys-
tems. In P. S. Thiagarajan, editor, Proceedings of Foundations of Software Technology and
Theoretical Computer Science, volume 1026 of LNCS, pages 499–513. Springer, 1995.

15. F. Blahoudek, M. Kretı́nský, and J. Strejcek. Comparison of LTL to deterministic rabin
automata translators. In K. L. McMillan, A. Middeldorp, and A. Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning - 19th International Conference, LPAR-
19, Stellenbosch, South Africa, December 14-19, 2013. Proceedings, volume 8312 of LNCS,
pages 164–172. Springer, 2013.

16. J. Bogdoll, L. M. F. Fioriti, A. Hartmanns, and H. Hermanns. Partial order methods for statis-
tical model checking and simulation. In R. Bruni and J. Dingel, editors, FMOODS/FORTE,
volume 6722 of LNCS, pages 59–74. Springer, 2011.

17. H. Bohnenkamp, P. D’Argenio, H. Hermanns, and J.-P. Katoen. MODEST: A compositional
modeling formalism for hard and softly timed systems. IEEE Transactions on Software
Engineering, 32(10):812–830, 2006.

18. G. Bolch, S. Greiner, H. de Meer, and K. Trivedi. Queueing networks and Markov
chains: modeling and performance evaluation with computer science applications. Wiley-
Interscience, 1998.

19. T. Brázdil. Verification of Probabilistic Recursive Sequential Programs. PhD thesis, Masaryk
University, 2007.

20. T. Brázdil, V. Brožek, K. Chatterjee, V. Forejt, and A. Kučera. Two views on multiple mean-
payoff objectives in Markov decision processes. In Proceedings of LICS’11, pages 33–42.
IEEE Computer Society, 2011.

21. T. Brázdil, V. Brožek, V. Forejt, and A. Kučera. Stochastic games with branching-time win-
ning objectives. In 21th IEEE Symp. Logic in Computer Science (LICS 2006), pages 349–
358. IEEE CS Press, 2006.

22. T. Brázdil, K. Chatterjee, M. Chmelı́k, V. Forejt, J. Křetı́nský, M. Kwiatkowska, D. Parker,
and M. Ujma. Verification of Markov decision processes using learning algorithms. In
F. Cassez and J. Raskin, editors, Proc. 12th International Symposium on Automated Technol-
ogy for Verification and Analysis (ATVA’14), volume 8837 of LNCS, pages 98–114. Springer,
2014.

23. T. Brázdil, J. Esparza, S. Kiefer, and A. Kučera. Analyzing probabilistic pushdown automata.
Formal Methods in System Design, 43(2):124–163, 2013.

24. T. Brázdil, V. Forejt, and A. Kučera. Controller synthesis and verification for Markov deci-
sion processes with qualitative branching time objectives. In L. Aceto, I. Damgård, L. Gold-
berg, M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, editors, Proc. 35th Int. Colloq.
Automata, Languages and Programming, Part II (ICALP’08), volume 5126 of LNCS, pages
148–159. Springer, 2008.

25. T. Brázdil, H. Hermanns, J. Krčál, J. Křetı́nský, and V. Řehák. Verification of open inter-
active Markov chains. In D. D’Souza, T. Kavitha, and J. Radhakrishnan, editors, FSTTCS,

Probabilistic Model Checking 33

volume 18 of LIPIcs, pages 474–485. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2012.

26. L. Brim, M. Češka, S. Dražan, and D. Šafránek. Exploring parameter space of stochastic
biochemical systems using quantitative model checking. In Sharygina and Veith [103], pages
107–123.

27. L. Cardelli. Artificial biochemistry. In A. Condon, D. Harel, J. N. Kok, A. Salomaa, and
E. Winfree, editors, Algorithmic Bioprocesses, Natural Computing Series, pages 429–462.
Springer Berlin Heidelberg, 2009.

28. S. Cattani and R. Segala. Decision algorithms for probabilistic bisimulation. In L. Brim,
P. Jančar, M. Křetı́nský, and A. Kučera, editors, Proc. 14th Int. Conf. Concurrency Theory
(CONCUR’02), volume 2421 of LNCS, pages 371–385. Springer, 2002.

29. K. Chatterjee, A. Gaiser, and J. Křetı́nský. Automata with generalized Rabin pairs for prob-
abilistic model checking and LTL synthesis. In Sharygina and Veith [103], pages 559–575.

30. K. Chatterjee, M. Jurdzinski, and T. Henzinger. Simple stochastic parity games. In M. Baaz
and J. A. Makowsky, editors, Proceedings of the International Conference for Computer
Science Logic (CSL), volume 2803 of LNCS, pages 100–113. Springer-Verlag, 2003.

31. K. Chatterjee, M. Jurdzinski, and T. Henzinger. Quantitative stochastic parity games. In J. I.
Munro, editor, Proceedings of the Annual Symposium on Discrete Algorithms (SODA), pages
121–130. SIAM, 2004.

32. K. Chatterjee, R. Majumdar, and T. A. Henzinger. Markov decision processes with multiple
objectives. In B. Durand and W. Thomas, editors, STACS, volume 3884 of LNCS, pages
325–336. Springer, 2006.

33. T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. Automatic verification of
competitive stochastic systems. Formal Methods in System Design, 43(1):61–92, 2013.

34. T. Chen, E. M. Hahn, T. Han, M. Kwiatkowska, H. Qu, and L. Zhang. Model repair for
Markov decision processes. In Proc. 7th International Symposium on Theoretical Aspects of
Software Engineering (TASE’13), pages 85–92. IEEE, 2013.

35. F. Ciesinski and C. Baier. LiQuor: a tool for qualitative and quantitative linear time analysis
of reactive systems. In Proc. QEST 2007, pages 131–132. IEEE CS Press, 2007.

36. F. Ciocchetta and J. Hillston. Bio-PEPA: A framework for the modelling and analysis of
biological systems. Theor. Comput. Sci., 410(33-34):3065–3084, 2009.

37. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. Journal
of the ACM, 42(4):857–907, 1995.

38. M. Daniele, F. Giunchiglia, and M. Vardi. Improved automata generation for linear temporal
logic. In N. Halbwachs and D. Peled, editors, Proc. International Conference on Computer
Aided Verification (CAV), volume 1633 of LNCS, pages 249–260. Springer, 1999.

39. L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford University,
Department of Computer Science, 1997.

40. L. de Alfaro, T. A. Henzinger, and R. Jhala. Compositional methods for probabilistic sys-
tems. In K. G. Larsen and M. Nielsen, editors, CONCUR, volume 2154 of LNCS, pages
351–365. Springer, 2001.

41. L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic model
checking of probabilistic processes using MTBDDs and the Kronecker representation. In
S. Graf and M. I. Schwartzbach, editors, Proc. Tools and Algorithms for Construction and
Analysis of Systems (TACAS), volume 1785 of LNCS, pages 395–410. Springer, 2000.

42. B. Delahaye, B. Caillaud, and A. Legay. Probabilistic contracts: A compositional reasoning
methodology for the design of stochastic systems. In Proc. 10th Int. Conf. Application of
Concurrency to System Design (ACSD’10), pages 223–232. IEEE CS Press, 2010.

43. B. Delahaye, J.-P. Katoen, K. Larsen, A. Legay, M. Pedersen, F. Sher, and A. Wasowski.
Abstract probabilistic automata. In R. Jhala and D. A. Schmidt, editors, 12th International
Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI), volume
6538 of LNCS, pages 324–339. Springer, 2011.

44. A. Donaldson and A. Miller. Symmetry reduction for probabilistic model checking using
generic representatives. In S. Graf and W. Zhang, editors, Proc. 4th Int. Symp. Automated

34 Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

Technology for Verification and Analysis (ATVA’06), volume 4218 of LNCS, pages 9–23.
Springer, 2006.

45. M. Duflot, M. Kwiatkowska, G. Norman, and D. Parker. A formal analysis of Bluetooth
device discovery. Int. Journal on Software Tools for Technology Transfer, 8(6):621–632,
2006.

46. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of The-
oretical Computer Science, volume B: Formal Models and Semantics, chapter 14, pages
996–1072. Elsevier, 1990.

47. J. Esparza and J. Křetı́nský. From LTL to deterministic automata: A safraless compositional
approach. In A. Biere and R. Bloem, editors, Computer Aided Verification - 26th Interna-
tional Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 18-22, 2014. Proceedings, volume 8559 of LNCS, pages 192–208. Springer,
2014.

48. K. Etessami, M. Z. Kwiatkowska, M. Y. Vardi, and M. Yannakakis. Multi-objective model
checking of Markov decision processes. Logical Methods in Computer Science, 4(4), 2008.

49. K. Etessami and M. Yannakakis. Model checking of recursive probabilistic systems. ACM
Trans. Comput. Logic, 13(2):1–40, Apr. 2012.

50. W. Feller. An Introduction to Probability Theory and Its Applications. Wiley, New York,
1950.

51. L. Feng, M. Kwiatkowska, and D. Parker. Compositional verification of probabilistic systems
using learning. In Proc. 7th Int. Conf. Quantitative Evaluation of Systems (QEST’10), pages
133–142. IEEE CS Press, 2010.

52. V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker. Automated verification techniques for
probabilistic systems. In M. Bernardo and V. Issarny, editors, Formal Methods for Eternal
Networked Software Systems (SFM’11), volume 6659 of LNCS, pages 53–113. Springer,
2011.

53. V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Quantitative multi-objective
verification for probabilistic systems. In P. Abdulla and K. Leino, editors, Proc. 17th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’11), volume 6605 of LNCS, pages 112–127. Springer, 2011.

54. M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-terminal binary decision diagrams: An
efficient data structure for matrix representation. Formal Methods in System Design: An
International Journal, 10(2/3):149–169, Apr. 1997.

55. E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games: A
Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume 2500
of LNCS. Springer, 2002.

56. E. Hahn, H. Hermanns, B. Wachter, and L. Zhang. PARAM: a model checker for parametric
Markov models. In T. Touili, B. Cook, and P. Jackson, editors, 22nd International Conference
on Computer Aided Verification (CAV), volume 6174 of LNCS, pages 660–664. Springer,
2010.

57. E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang. PASS: abstraction refinement for
infinite probabilistic models. In J. Esparza and R. Majumdar, editors, Proc. TACAS 2010,
volume 6015 of LNCS, pages 353–357. Springer, 2010.

58. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects
of Computing, 6(5):512–535, 1994.

59. V. Hartonas-Garmhausen, S. Campos, and E. Clarke. ProbVerus: Probabilistic symbolic
model checking. In J. Katoen, editor, 5th International AMAST Workshop on Formal Meth-
ods for Real-Time and Probabilistic Systems (ARTS), volume 1601 of LNCS, pages 96–110.
Springer, 1999.

60. B. Haverkort. Performance of Computer Communication Systems: A Model-Based Approach.
Wiley, 1998.

61. J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn. Probabilistic model
checking of complex biological pathways. Theoretical Computer Science, 319(3):239–257,
2008.

Probabilistic Model Checking 35

62. T. A. Henzinger and M. Mateescu. Propagation models for computing biochemical reaction
networks. In F. Fages, editor, Proc. CMSB’11, pages 1–3. ACM, 2011.

63. H. Hermanns and J.-P. Katoen. The how and why of interactive Markov chains. In F. S.
de Boer, M. M. Bonsangue, S. Hallerstede, and M. Leuschel, editors, FMCO’09, volume
6286 of LNCS, pages 311–337. Springer, 2010.

64. H. Hermanns and R. Segala, editors. Proc. 2nd Joint Int. Workshop Process Algebra and
Probabilistic Methods, Performance Modeling and Verification (PAPM-PROBMIV), volume
2399 of LNCS. Springer, 2002.

65. J. Hurd, A. McIver, and C. Morgan. Probabilistic guarded commands mechanized in HOL.
Theoretical Computer Science, 346(1):96–112, 2005.

66. M. Huth and M. Kwiatkowska. Quantitative analysis and model checking. In Proc. 12th
Annual IEEE Symposium on Logic in Computer Science (LICS’97), pages 111–122. IEEE
Computer Society Press, March 1997.

67. A. Itai and M. Rodeh. Symmetry breaking in distributed networks. Information and Compu-
tation, 88(1), 1990.

68. P. Iyer and M. Narasimha. Probabilistic lossy channel systems. In M. Bidoit and M. Dauchet,
editors, TAPSOFT ’97: Theory and Practice of Software Development, volume 1214 of
LNCS, pages 667–681. Springer, 1997.

69. B. Jeannet, P. R. d’Argenio, and K. G. Larsen. Rapture: A tool for verifying Markov Decision
Processes. In Tools Day’02, Technical Report. Masaryk University, Brno, 2002.

70. B. Jonsson, K. Larsen, and W. Yi. Probabilistic extensions of process algebras. In J. A.
Bergstra, A. Pomse, and S. A. Smolka, editors, Handbook of Process Algebra, pages 685–
710. Elsevier, 2001.

71. H. Karloff. Linear Programming. Birkhauser, 1991.
72. M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker. Abstraction refinement for

probabilistic software. In N. Jones and M. Müller-Olm, editors, Proc. 10th International
Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI’09), vol-
ume 5403 of LNCS, pages 182–197. Springer, 2009.

73. M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker. A game-based abstraction-
refinement framework for Markov decision processes. Formal Methods in System Design,
36(3):246–280, 2010.

74. J. Kemeny and J. Snell. Finite Markov Chains. D. Van Nostrand, 1960.
75. Z. Komárková and J. Křetı́nský. Rabinizer 3: Safraless translation of LTL to small determin-

istic automata. In F. Cassez and J. Raskin, editors, Automated Technology for Verification
and Analysis - 12th International Symposium, ATVA 2014, Sydney, NSW, Australia, Novem-
ber 3-7, 2014, Proceedings, volume 8837 of LNCS, pages 235–241. Springer, 2014.

76. V. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman & Hall, 1995.
77. M. Kwiatkowska, G. Norman, and D. Parker. Symmetry reduction for probabilistic model

checking. In T. Ball and R. B. Jones, editors, Proc. of the 18th International Conference on
Computer Aided Verification (CAV), volume 4144 of LNCS, pages 234–248. Springer, 2006.

78. M. Kwiatkowska, G. Norman, and D. Parker. Using probabilistic model checking in systems
biology. ACM SIGMETRICS Performance Evaluation Review, 35(4):14–21, 2008.

79. M. Kwiatkowska, G. Norman, and D. Parker. Stochastic games for verification of probabilis-
tic timed automata. In J. Ouaknine and F. W. Vaandrager, editors, Proc. 7th International
Conference on Formal Modelling and Analysis of Timed Systems (FORMATS’09), volume
5813 of LNCS, pages 212–227. Springer, 2009.

80. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-
time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd International Con-
ference on Computer Aided Verification (CAV’11), volume 6806 of LNCS, pages 585–591.
Springer, 2011.

81. M. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Assume-guarantee verification for
probabilistic systems. In R. M. J. Esparza, editor, 16th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), volume 6015 of LNCS,
pages 23–37, 2010.

36 Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

82. M. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Compositional probabilistic verification
through multi-objective model checking. Information and Computation, 232:38–65, 2013.

83. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification of real-time
systems with discrete probability distributions. Theoretical Computer Science, 282:101–150,
2002.

84. M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking of the IEEE
802.11 wireless local area network protocol. In H. Hermanns and R. Segala, editors, Proc.
2nd Joint International Workshop on Process Algebra and Probabilistic Methods, Perfor-
mance Modeling and Verification (PAPM/PROBMIV’02), volume 2399 of LNCS, pages 169–
187. Springer, 2002.

85. M. Kwiatkowska, D. Parker, and H. Qu. Incremental quantitative verification for Markov
decision processes. In Proc. IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN-PDS’11), pages 359–370. IEEE CS Press, 2011.

86. K. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and Compu-
tation, 94(1):1–28, 1991.

87. R. Lassaigne and S. Peyronnet. Approximate verification of probabilistic systems. In [64],
pages 213–214, 2002.

88. R. Lassaigne and S. Peyronnet. Approximate planning and verification for large Markov de-
cision processes. In Proceedings of the 27th Annual ACM Symposium on Applied Computing,
SAC ’12, pages 1314–1319. ACM, 2012.

89. N. Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco, 1996.
90. A. McIver and C. Morgan. Games, probability and the quantitative µ-calculus qMµ . In

M. Baaz and A. Voronkov, editors, Proc. LPAR 2002, volume 2514 of LNCS, pages 292–
310. Springer, 2002.

91. L. Mikeev, W. Sandmann, and V. Wolf. Numerical approximation of rare event probabilities
in biochemically reacting systems. In A. Gupta and T. A. Henzinger, editors, Proc. CMSB
2013, volume 8130 of LNCS, pages 5–18. Springer, 2013.

92. M. Mio. Probabilistic modal µ-calculus with independent product. Logical Methods in
Computer Science, 8(4), 2012.

93. G. Norman, D. Parker, M. Kwiatkowska, S. Shukla, and R. Gupta. Using probabilistic model
checking for dynamic power management. In M. Leuschel, S. Gruner, and S. L. Presti, edi-
tors, Proc. 3rd Workshop on Automated Verification of Critical Systems (AVoCS’03), Techni-
cal Report DSSE-TR-2003-2, University of Southampton, pages 202–215, April 2003.

94. G. Norman, D. Parker, and J. Sproston. Model checking for probabilistic timed automata.
Formal Methods in System Design, 43(2):164–190, 2013.

95. J. R. Norris. Markov chains. Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press, 1998.

96. A. Pnueli and L. Zuck. Probabilistic verification by tableaux. In Proc. Annual Symposium
on Logic in Computer Science (LICS), pages 322–331. IEEE Computer Society, 1986.

97. PRISM web site. www.prismmodelchecker.org. Accessed 20 August 2013.
98. M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wi-

ley, 1994.
99. A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.

100. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis, Massachusetts Institute of Technology, 1995.

101. R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In B. Jonsson
and J. Parrow, editors, Proc. CONCUR ’94, volume 836 of LNCS, pages 481–496. Springer,
1994.

102. K. Sen, M. Viswanathan, and G. Agha. Model-checking Markov chains in the presence of
uncertainties. In H. Hermanns and J. Palsberg, editors, 12th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), volume 3920
of LNCS, pages 394–410. Springer, 2006.

103. N. Sharygina and H. Veith, editors. Computer Aided Verification - 25th International Con-
ference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044
of LNCS. Springer, 2013.

Probabilistic Model Checking 37

104. R. van Glabbeek, S. A. Smolka, B. Steffen, and C. M. N. Tofts. Reactive, generative, and
stratified models of probabilistic processes. In Proc. 5th Annual Symposium on Logic in
Computer Science (LICS), pages 130–141. IEEE Computer Society Press, 1990.

105. M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In Proc.
26th IEEE Symposium on Foundations of Computer Science (FOCS), pages 327–338. IEEE,
1985.

106. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program veri-
fication. In Symposium on Logic in Computer Science (LICS’86), pages 332–345. IEEE
Computer Society Press, 1986.

107. M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Compu-
tation, 115(1):1–37, 1994.

108. H. Younes, M. Kwiatkowska, G. Norman, and D. Parker. Numerical vs. statistical proba-
bilistic model checking. International Journal on Software Tools for Technology Transfer
(STTT), 8(3):216–228, 2006.

109. H. Younes and R. Simmons. Probabilistic verification of discrete event systems using ac-
ceptance sampling. In E. Brinksma and K. G. Larsen, editors, Proc. 14th International
Conference on Computer Aided Verification (CAV), volume 2404 of LNCS, pages 223–235.
Springer, 2002.

110. L. Zhang and H. Hermanns. Deciding simulations on probabilistic automata. In K. Namjoshi,
T. Yoneda, T. Higashino, and Y. Okamura, editors, Proc. 5th Int. Symp. Automated Tech-
nology for Verification and Analysis (ATVA’07), volume 4762 of LNCS, pages 207–222.
Springer, 2007.

Index

accepting end component, 26
adversary, see scheduler
approximate probabilistic model checking, 29
atomic proposition, 5

bisimulation, 28

compositional verification, 28
controller synthesis problem, 30
cost, 11
cost function, 6, 7
cost-bounded until operator, 14, 15, 20, 24
cumulated cost, 6, 11, 14

step bounded, 12, 21

deterministic Rabin automaton, 25
language, 25

distribution, 5
DRA, see deterministic Rabin automaton

EC, see accepting end component
event, 8
expected cumulated cost, 11, 21

finite path, 6

incremental verification, 29
instantaneous cost, 12, 14, 21

labelling function, 6
linear programming, 19
lossy channel systems, 30
LTL, 3, 23–27

semantics, 23
syntax, 23

Markov chain, 8
continuous-time, 30

Markov decision process, 2, 5
continuous-time, 30
definition of probability measure, 9

MDP, see Markov decision process

next operator, 14, 18, 23

outcome, 8

partial order reduction, 28
path, 6
PCTL, 2, 13, 22, 27

semantics, 14
syntax, 13

PCTL∗, 30
policy, see scheduler
policy iteration, 20
probabilistic timed automata, 30
probability distribution, 5

Dirac, 5
probability measure, 8, 9
probability space, 8
product MDP, 25, 26
pushdown systems, 30

quantitative abstraction refinement, 28

Rabin automaton, see deterministic Rabin
automaton

scheduler, 9
simulation, 28
statistical model-checking, 29
stochastic game, 30
support of a distribution, 5
symmetry reduction, 28

total cost, see cumulated cost
trace, 23
transition probability function, 5

until operator, 14, 18, 23

value iteration, 20

39

