
Challenges in automated verification and
synthesis for molecular programming

Marta Kwiatkowska
Department of Computer Science, University of Oxford, UK

marta.kwiatkowska@cs.ox.ac.uk

Abstract

Molecular programming is concerned with building synthetic nanoscale
devices from molecules, which can be programmed to autonomously per-
form a specific task. Several artifacts have been demonstrated experi-
mentally, including DNA circuits that can compute a logic formula and
molecular robots that can transport cargo. In view of their natural inter-
face to biological components, many potential applications are envisaged,
e.g. point-of-care diagnostics and targeted delivery of drugs. However,
the inherent complexity of the resulting biochemical systems makes the
manual process of designing such devices error-prone, requiring automated
design support methodologies, analogous to design automation tools for
digital systems. This paper gives an overview of the role that probabilis-
tic modelling and verification techniques can play in designing, analysing,
debugging and synthesising programmable molecular devices, and outlines
the challenges in achieving automated verification and synthesis software
technologies in this setting.

1 Introduction

Recently, significant advances have been made in the experimental design and
engineering of synthetic, biomolecular systems, such as those built from DNA,
RNA or enzymes. The interest in such devices stems from the fact that they
are autonomous – they can interact with the biochemical environment, process
information, make decisions and act on them – and programmable, that is, they
can be systematically configured to perform specific computational or mechanical
tasks. The computational power of such systems has been shown to be equivalent
to Turing computability (Soloveichik et al. 2010), albeit the computation itself
proceeds through molecules acting as inputs, interacting with each other and

1



producing product molecules. Experimental advances are fast accelerating, with
examples that have been demonstrated including diagnostic biosensors (Jung and
Ellington 2014), logic circuits built from DNA (Seelig et al. 2006; Qian and Win-
free 2011), DNA-only controllers (Chen et al. 2013) and molecular robots that
can deliver cargo (Yurke et al. 2000; Yin et al. 2004). Since such systems can
perform information processing within living cells, their use is envisaged in health-
care applications, where safety is paramount. The fast-growing field of molecular
programming is concerned with developing techniques to design, analyse and re-
alise the computational potential of such programmable molecular devices. In
conjunction with the DNA self-assembly capabilities, which has enabled a wide
range of structure-forming technologies at the nanoscale (Rothemund 2006), the
future potential of these developments is tremendous, particularly for smart ther-
apeutics, point-of-care diagnostics and synthetic biology.

Device design is supported by electronic design automation (EDA) environ-
ments, which provides methodologies and tools to automate the design, verifica-
tion, testing and synthesis of electronic systems from a high-level description. The
software level, at which design is applied, is separate from the hardware level, e.g.
fabrication, and can involve multiple levels of abstractions. In the semiconductor
industry, design automation has established itself as a key technology to tackle
the complexity of the designs, improve design quality, and increase reuse. In the
1990s, VLSI design was revolutionised by formal verification, and in particular
automated methods such as model checking, now a key component of modern
EDA tools, which ensure device safety and reliability, and significantly reduce
development costs.

Molecular programming aims to devise programming languages, techniques
and software tools to achieve automatic compilation of a molecular system down
to the set of components that can be implemented physically at the molecular
level and executed. This is analogous to the motivation for hardware description
languages, e.g. VHDL, which are refined automatically, through a series of in-
termediate abstractions, down to a detailed physical implementation in silicon.
This paper puts forward the view that formal verification will play a similar role
in design automation for molecular programming. However, the latter brings
with it unique challenges: the necessity to consider inherent stochasticity of the
underlying molecular interactions, the need to state requirements in quantitative
form, and the importance to consider control of molecular systems, and not just
programming in the conventional sense. Therefore, probabilistic modelling and
automated, quantitative verification techniques (Kwiatkowska 2007; Kwiatkowska
et al. 2007, 2011), such as those already developed for systems biology (Regev
et al. 2001; Heath et al. 2008; Ciocchetta and Hillston 2009; Kwiatkowska et al.
2010) in addition to tools tailored to DNA computing (Phillips and Cardelli 2009;

2



Aubert et al. 2014), will form a key component of design automation for molecular
programming.

The paper begins by giving a brief introduction to molecular programming,
illustrated by a simple example of DNA biosensing, and then reviews the current
status of formal modelling and verification technologies for molecular program-
ming, outlining the research challenges. More detail about application of auto-
mated, quantitative verification in DNA computing can be found in the tutorial
paper (Kwiatkowska and Thachuk 2014) and (Lakin et al. 2012; Dannenberg et al.
2013b,a, 2014).

2 Molecular programming

The term molecular programming (Hagiya 2000; Winfree 2008) refers to the ap-
plication of computational concepts and design methods to the field of nanotech-
nology, and specifically biochemical reaction systems. The idea is to design bio-
chemical networks that can process information and are programmable, that is,
can be configured to perform a given task, be it computation of a logic formula
or transporting a cargo to a specified target. Chemical reaction networks (CRNs)
provide a canonical notation for describing biochemical systems, based on well
understood stochastic or kinetic laws, and the computational and nanorobotic
mechanisms that they can implement. A molecular program is thus a series of
reactions, for example X+Y → Z, meaning that inputs (specially designed DNA
strands) X and Y are transformed to produce strand Z. An example is the Ap-
proximate Majority program (Angluin et al. 2008), where, starting with given
initial numbers of molecules X and Y placed in solution, with high probability
the network will converge to a state that only contains the molecules that were
initially in majority.

In order to implement molecular programs, DNA technologies have been de-
veloped, of which DNA strand displacement (DSD) (Zhang et al. 2007; Zhang
and Seelig 2011) is particularly popular, since it uses only DNA molecules, is
enzyme-free, and easy to synthesize chemically. Any CRN can be implemented
using the limited set of DSD reactions (Soloveichik et al. 2010); in fact, the DSD
realisation of Approximate Majority was experimentally demonstrated in (Chen
et al. 2013) and related to the cell cycle in (Cardelli and Csikász-Nagy 2012).
DSD can be used to implement logic gates, where inputs and outputs are (single)
DNA strands. An example is the transducer gate designed by Cardelli (Cardelli
2010) and diagnostic biosensors of (Jung and Ellington 2014).

The promise of DNA systems is that they can interact with biological com-
ponents in their local environment, including within living cells. An important
application of such systems is therefore biosensing, a decision process that aims to

3



Figure 1: A DNA walker track that acts as a biosensor, shown here with six
blockades.

detect various input biomarkers in an environment, such as strands of messenger
RNA within a cell, and take action based on the detected input. We illustrate
molecular programming applications with an example of a biosensor based on
DNA walker circuits, which are realised using DNA strand displacement technol-
ogy. DNA walkers (Wickham et al. 2011) can traverse tracks of DNA strands
(anchorages) that are tethered to a surface, typically DNA origami tile (Rothe-
mund 2006), taking directions at junctions that fork into two tracks, respectively
labelled with X and ¬X. When the system is prepared, a self-consistent set of
unblocking strands is added to unblock X or ¬X but not both, ensuring that
the walker is directed towards the target. Alternatively, the walker senses the
strands that guide it towards the target, indicating detection and readiness to
take action. The tracks can also join, and in general this type of DNA walker
can be represented as a planar circuit that can compute an arbitrary Boolean
function (Dannenberg et al. 2013b, 2014).

Example 1. We consider a biosensor that detects the presence of DNA strands
X and Y , and delivers cargo to the end node. Figure 1 shows the walker circuit,
where the tracks labelled X and ¬Y are unblocked, meaning Y is absent. At the
junction, the walker selects or senses the unblocked track.

The stepping process is illustrated in Figure 2. The walker strand carries
a load (Q) that will quench fluorophores (F) that are attached to absorbing
anchorages (1). It starts on the initial anchorage and, when a nicking enzyme (E)
is present (2), traverses the circuit until it reaches an absorbing anchorage, which
prevents further stepping. When the nicking enzyme is added to the solution, it
binds to the walker-anchorage complex and cuts the anchorage into two strands.
The strand formed from the tip is too short to remain hybridized to the walker,
and melts away into solution. This exposes the top six nucleotides of the walker,

4



Figure 2: DNA walker circuit that can sense incoming strands (the domain
coloured green).

which then attach to the next anchorage (3). In a displacement reaction, the
walker becomes completely attached to the new anchorage (4). The reaction is
energetically favourable, as the walker re-forms the six base-pairs with the intact
anchorage that were lost after the nicking.

Repeating this process, the walker arrives at the junction. The walker contin-
ues down the track that was unblocked due to the presence of the strand being
sensed (5), eventually quenching the fluorophore (F) on reaching the final node.
The change in fluorescence is easily detectable, indicating that the presence of a
certain configuration of molecules has been detected.

The biosensing example illustrates well the functionality that design automa-
tion for molecular programming must support. Firstly, we need modelling frame-
works that can provide rigorous foundations to the mechanisms described by
populations of molecules interacting through biochemical reactions, both in well-
mixed solution, as well as localised, e.g., tethered to a surface. These must be
able to capture molecular motion and structure-forming, in addition to informa-
tion processing and decision making. Secondly, we need programming languages
tailored to molecular programming and programming abstractions, to provide the
layers through which molecular programs are transformed into the actual phys-
ical realisations. Thirdly, in view of the stochasticity, quantitative specifications
are needed, which the designed molecular programs must meet, such as ensuring
that “the probability of incorrect detection is tolerably low”, and “the expected
time for the walker to reach the target node is sufficiently fast”. Finally, a broad
range of analysis and synthesis methods is necessary, where the former should
focus on predictability, correctness and resource usage, and the latter will need
to cover automated synthesis of both the mechanism as well as the layout, as in
DNA walker circuits.

5



3 Design automation for molecular programming

Modelling frameworks. A computational process is typically formalised by
defining a transition system comprising a set of system states and a formal set
of rules that govern the evolution of the system over time. A molecular pro-
gram combines discrete, continuous and stochastic dynamics. The class of mod-
els that naturally captures such behaviours is known as stochastic hybrid sys-
tems. In view of their complexity and intractability, the modelling frameworks
for stochastic hybrid systems resort to discretisation or approximation, which,
under suitably strong conditions, can reduce the system model to, e.g., a finite-
state Markov chain variant or a coupled system of linear equations, which are
all tractable. When in solution, molecular networks, such as DNA strand dis-
placement networks above, induce discrete stochastic dynamics; if spatiality is
included, however, the continuous dimension must also be integrated to model
motion in the physical space. Another important requirement is the need to aug-
ment models with quantitative features specific to molecular programming, e.g.,
thermodynamics, kinetics and resource usage.

There are two established frameworks for modelling molecular reactions in
solution, the continuous deterministic approach and the discrete stochastic ap-
proach (Kurtz 1972; Gillespie 1977; McAdams and Arkin 1997). In the deter-
ministic approach, one approximates the number of molecules by a continuous
function that represents the time-dependence of the molecular concentration and
evolves according to differential equations (ODEs) based on mass action kinetics.
The ODE approach is suitable for modelling averaged behaviour and assumes
large numbers of molecules. The discrete stochastic framework, on the other
hand, models the stochastic evolution of populations of molecules. Reactions are
discrete, stochastic events governed by rates that are typically assumed to be de-
pendent only on the number of molecules: the system is conveniently represented
as a continuous-time Markov chain (CTMC). This approach is more accurate in
cases where the number of molecules is small and the system behaviour becomes
non-continuous. It is also appropriate when it is necessary to take account of ab-
stract spatial information, such as track layout in the case of molecular walkers.

The modelling challenge: State-based abstractions of molecular programs have
the potential to enable analysis of correctness of the computation performed by
the molecular program, for example deadlock, presence or absence of a given
strand, or termination. The key challenge is scalability, which can be improved
by identifying suitable model reductions, for example based on bisimulation quo-
tients, symmetry reductions or symbolic techniques, or compositional theories.
Another difficulty is the need to integrate the discrete, continuous and stochastic
dynamics within a tractable modelling framework, in order to model molecular
robotic systems and origami folding.

6



Languages for molecular programming. A number of programming lan-
guages exist that are specifically tailored to DNA computation, for example Visual
DSD (Phillips and Cardelli 2009), from which CTMC models are automatically
generated; Caltech’s Seesaw Compiler, which accepts descriptions of logic circuits
and outputs DNA sequences; and DACCAD (DNA Artificial Circuits Computer-
Assisted Design) (Aubert et al. 2014), which outputs reaction networks in ODE
semantics. The tools also output SBML format for further processing. One
advantage of textual design descriptions is their flexibility and ease of modifi-
cation, with the view to enable design reusability. Another advantage is that,
as for conventional circuit designs, a range of analysis techniques are available
to check for correctness of the designs, in addition to specialised properties of
DNA systems such as sequencing thermodynamic properties, e.g. NUPACK, and
structural descriptions for origami designs, as supported by CadNano. More gen-
erally, a variety of stochastic process algebras supported by software tools, such
as stochastic pi-calculus (Regev et al. 2001) and BioPEPA (Ciocchetta and Hill-
ston 2009), are capable of modelling molecular networks. Systems biology tools
such as COPASI (Hoops et al. 2006) are also often applicable.

The language challenge: Though existing process-algebraic languages have
proved useful for describing complex molecular programs, much more effort is
needed to design high-level languages for emerging experimental phenomena, such
as localised hybridization, origami design and molecular motors, to capture as-
pects such as spatiality, geometry and mobility, together with associated rigorous
semantics, equivalence/refinement notions, and compositional behavioural theo-
ries.

Programming abstractions for design automation. Design automation
tools implement design flows that compile high-level system descriptions, via in-
termediate languages, down to the physical design. Typically, at the top level,
designs will be given in the form of a Boolean function or component-based de-
signs, and compiled into intermediate notations, such as the CRN level and the
sequence level, before they can be physically realised through nanofabrication.
An example intermediate language is Cardelli’s Strand Algebra (Cardelli 2010),
a stochastic process algebra supported by the DSD tool (Phillips and Cardelli
2009). Designs can be analysed using a variety of techniques at the intermediate
level, in technology neutral fashion. In common with digital designs, molecular
programming languages are modular, and can be built from appropriate bio-
components, which are themselves abstractions of certain biological mechanisms,
for example molecular motors, local hybridization or self-assembly. Composition-
ality at the design level is therefore a desirable feature of the abstractions, both
at the level of syntax, as well as semantics, which is harder to achieve in presence

7



of stochasticity and hybrid dynamics.
The abstraction challenge: Despite progress made towards modeling well-

mixed molecular systems, for example using stochastic pi-calculus, there is an
urgent need to develop quantitative theories for the different levels of abstraction
hierarchy, in order to support the design of predictable molecular systems. In
particular, we need to develop compiler technology for molecular programming,
including design and implementation of intermediate language abstractions, and
efficient algorithms for computing approximate abstractions to a specified level
of precision.

Specification notations. Since molecular programs are naturally characterised
using quantities, for example kinetics, thermodynamics and stochasticity, the
specifications that these programs must meet have to reflect these characteristics.
For example, a biosensor must detect the given molecule with sufficiently high
probability, and a molecular walker will need to guarantee delivery in a specified
time interval, while tolerating a predefined failure rate. Stochastic and real-time
temporal logics, for example CSL (Baier et al. 2003; Kwiatkowska et al. 2007),
can be used to express many such properties for CTMC models, and logics such
as MTL and STL for hybrid models. Conventional temporal logic notations also
have their uses; for example, we may wish to require that a molecular program
reaches some final state. Furthermore, characteristics typical for device engineer-
ing, such as safety, reliability and performance, also apply here. For example, for
the DNA walker, which may fail to step correctly on to the next anchorage and
instead jump to the following one, we may express the probability of finishing
correctly at time T by the CSL formula P=?[F

[T,T ] finished-correct ].
The specification challenge: Designs must meet specifications that are set

in advance. There has been little work concerning quantitative specification for-
malisms that capture aspects specific to the molecular programming setting, such
as kinetic energy and thermodynamics, as well as behavioural specifications for
out-of-equilibrium systems, e.g. oscillations. Devising suitable logic formalisms
to support these more expressive specifications is desirable.

Analysis methods. A broad range of analysis methods exist to exercise mod-
els of molecular programs, which are dependent on the modelling framework used.
They include techniques similar to those for digital systems, for example equiv-
alence checking and substitutivity for components, and must extend to capture
specialised features, to mention support for DNA self-assembly and structure
forming, where thermodynamics and sequence design play a part. For ODE or
hybrid models of molecular programs, analytical methods or numerical simula-
tion can be used to plot average quantities, such as population sizes, over time.

8



For discrete stochastic models, stochastic simulation, for example Gillespie’s algo-
rithm, generates individual trajectories by applying Monte Carlo techniques. In
contrast, automated verification via model checking is able to establish whether a
given temporal logic property – e.g., can the system reach a terminal (deadlock)
state? – holds in the model. For discrete stochastic models, we apply auto-
mated, quantitative verification (also known as probabilistic or stochastic model
checking) (Kwiatkowska et al. 2007), which accepts a model description and a
property specified as a probabilistic temporal logic formula, and computes the
probability that the property is satisfied in the model, or expected cost/reward.
Compared with simulation, such methods are exhaustive and can offer guaran-
tees on reliability or performance. The computation can be exact, involving
numerical algorithms based on uniformisation (Baier et al. 2003) or fast-adaptive
uniformisation (Dannenberg et al. 2013a) (for transient probability), or approxi-
mate, based on probability estimation of the proportion of simulated trajectories
that satisfy the property (Younes et al. 2006) (referred to as statistical model
checking). These techniques have been applied to analyse molecular signalling
networks (Heath et al. 2008) and have since been adapted to molecular programs.
For example, an undesirable deadlock state was automatically discovered in the
Cardelli transducer gate design modelled in Visual DSD, and the probability of
reaching deadlock obtained using the PRISM (Kwiatkowska et al. 2011) proba-
bilistic model checker as a back-end (Lakin et al. 2012). In Dannenberg et al.
(2013b,a, 2014), DNA walker systems were subjected to comprehensive analysis
of their reliability and performance; a CTMC model was developed based on ex-
perimental data (Wickham et al. 2011) and analysed with PRISM. The results of
the analysis by PRISM can be used by the designer to improve the design of the
circuit.

Example 2. We illustrate the role of automated, quantitative verification tech-
niques in molecular programming through assessing the reliability and perfor-
mance of a biosensor implemented using DNA walker circuits (Dannenberg et al.
2013b, 2014). Experiments (Wickham et al. 2011) demonstrate that the walker
can traverse a track with one or more omitted anchorages, which shows that the
walker is capable of stepping across distances that are double or triple the nor-
mal anchorage-to-anchorage distance. This has been incorporated in the model,
resulting in the walker being able to jump over blockades, or even reverse direc-
tion, which can prevent it from reaching the intended absorbing anchorage and
quenching the fluorophore. The walker may also deadlock before reaching an
absorbing anchorage, which happens when no uncut anchorages are within reach.
This affects the safety of biosensors implemented using DNA walkers.

The trade-off between reliability and deadlock as a function of blockade length
is depicted in Fig. 3, obtained by model checking the model in Fig. 1 against the

9



CSL property P=?[F
[T,T ] end-node ] that queries the probability of the walker

being either finished or deadlocked at time T , where T is 8 mins multiplied by
circuit depth. Note that the probability that the walker arrives at the incorrect
end-node drops off, while the probability of deadlock increases with the depth of
the circuit.

Figure 3: Probability of reaching an absorbing anchorage or deadlock by time T
(8 mins times circuit depth) for the walker circuit in Fig. 1.

The analysis challenge: Stochastic simulation methods are known to be com-
putationally intensive and their performance is poor for molecular systems that
we wish to design and analyse today. We need much more efficient simulation
techniques, for example those based on multi-scale simulation which have shown
promise. Formal verification techniques, such as automated verification via model
checking or interactive theorem proving, are able to establish, via a systematic
exploration of the model or mathematical proof, the correctness of a molecu-
lar program. Their limitation is the size of the state-space of the model that
can be handled, and therefore scalable, quantitative verification techniques are a
major goal of this research. Promising techniques include SAT/SMT methods,
abstraction-refinement schemes and compositional proof methods. Since the mod-
els of molecular programs typically include quantitative and possibly continuous
aspects, for example stochasticity and energy, we ultimately need the analysis
methods to extend to the full class of stochastic hybrid systems. To facilitate
their analysis one must apply abstractions and (numerical) approximations. This
raises the question of the level of precision, including accuracy and error bounds,
that the analysis method can inherently guarantee, in turn impacting the pre-
dictability of the molecular program’s behavior.

10



Synthesis methods. In addition to being able to perform verification of molec-
ular programs against requirements, an important question is whether it is possi-
ble, given a specification, to automatically synthesize a program that is guaran-
teed to satisfy the specification. This approach would ensure correct-by-construction
designs, and is in its infancy, particularly regarding quantitative synthesis. Tech-
niques developed in systems biology to infer models from experimental data are
naturally applicable here. For example, parameter synthesis (or estimation) can
be used to fit the kinetic rates in a molecular program to observations (Hoops
et al. 2006), or even find the optimal values of parameters to satisfy a given quan-
titative formula for stochastic models (Brim et al. 2013). One example based on
the DNA walker circuits is finding the range of walker failure rate parameters so
that a specified reliability of the design can be guaranteed. More generally, for
a given (quantitative) specification, synthesis methods can be used to automati-
cally configure a system from components; to synthesise a program (mechanism)
that guarantees the satisfaction of the property; or even to evolve such as pro-
gram, using techniques from evolutionary computation or genetic programming.
For nanorobotic systems, a natural question is whether we can synthesise pro-
grammable controllers that ensure the safety of the molecular device. Similarly to
digital systems, synthesis algorithms are also necessary to support and optimise
the structural designs, including 2D/3D origami structures and the geometric
layout of DNA walker circuits.

The synthesis challenge: This topic has been little researched in the context
of quantitative or hybrid models, and its complexity and intractability pose a
huge challenge. Promising technique might include template-based synthesis of
mechanisms, and developing controller synthesis methods, including from multi-
objective specifications.

Integration. A major challenge is to integrate all abstraction levels (from ther-
modynamics, to sequence, to CRNs), and to achieve fully automatic compilation
from high-level specifications to physical structures, with analysis enabled at each
level and connected across levels. This can be achieved by relying on modular
designs and substitutivity of component specifications for their implementations.
The compositional design methodologies and CAD tools that result from this
effort will support effective processes to engineer systems from independently
specified bio-components.

The integration challenge: Once the integrated CAD tools have been devel-
oped, their usefulness must be evaluated on real molecular programs and synthetic
biology designs. Criteria for success include the rate of take up of the technolo-
gies, improvement in scale and complexity of the designs, the efficiency of software
tools, the accuracy of predictions for quantitative aspects, and the quality of the

11



synthesised designs.

4 Conclusions

This paper has given a brief overview of the emerging field of molecular program-
ming, discussing existing techniques to support the design process and outlining
future research challenges. Molecular programming has the potential to revo-
lutionise personalised medicine and synthetic biology, with many applications
envisaged, for example programmable intraveneous systems to deliver drugs that
target specific molecules. Since safety is a paramount concern when deploying
such devices, we have put forward the view that quantitative, automated ver-
ification techniques will constitute a key component of design automation for
molecular programming. This can only be achieved through collaboration be-
tween experimental scientists, engineers and computer scientists.

Acknowledgments. The author is supported by the ERC Advanced Grant
VERIWARE and would like to acknowledge participants of the NSF workshop
“Advances in Molecular Programming and Computing: Toward Chemistry as a
New Information Technology” held in 2013 in Copenhangen for helpful discus-
sions.

References

D. Angluin, J. Aspnes, and D. Eisenstat. A simple population protocol for fast
robust approximate majority. Distributed Computing, 21(2):87–102, 2008.

N. Aubert, C. Mosca, T. Fujii, M. Hagiya, and Y. Rondelez. Computer-assisted
design for scaling up systems based on dna reaction networks. Journal of The
Royal Society Interface, 11(93):20131167, 2014.

C. Baier, B. Haverkort, H. Hermanns, and J. Katoen. Model-checking algorithms
for continuous-time markov chains. IEEE Transactions on Software Engineer-
ing, 29:524–541, 2003.

L. Brim, M. Ceska, S. Drazan, and D. Safránek. Exploring parameter space of
stochastic biochemical systems using quantitative model checking. In N. Shary-
gina and H. Veith, editors, Proc. CAV, volume 8044 of Lecture Notes in Com-
puter Science, pages 107–123. Springer, 2013.

L. Cardelli. Two-domain DNA strand displacement. Developments in Computa-
tional Models, 26:47–61, 2010.

12



L. Cardelli and A. Csikász-Nagy. The cell cycle switch computes approximate
majority. Nature Scientific Reports, 2, 2012.

Y.-J. Chen, N. Dalchau, N. Srinivas, A. Phillips, L. Cardelli, D. Soloveichik,
and G. Seelig. Programmable chemical controllers made from DNA. Nature
Nanotechnology, 8(10):755–762, 2013.

F. Ciocchetta and J. Hillston. Bio-PEPA: A framework for the modelling and
analysis of biological systems. Theoretical Computer Science, 410(33-34):3065–
3084, 2009.

F. Dannenberg, E. M. Hahn, and M. Kwiatkowska. Computing cumulative re-
wards using fast adaptive uniformisation. In A. Gupta and T. Henzinger,
editors, Proc. 11th Conference on Computational Methods in Systems Biology
(CMSB’13), volume 8130 of LNCS, pages 33–49. Springer, 2013a.

F. Dannenberg, M. Kwiatkowska, C. Thachuk, and A. Turberfield. DNA walker
circuits: computational potential, design, and verification. In D. Soloveichik
and B. Yurke, editors, Proc. 19th International Conference on DNA Computing
and Molecular Programming (DNA 19), volume 8141 of LNCS, pages 31–45.
Springer, 2013b.

F. Dannenberg, M. Kwiatkowska, C. Thachuk, and A. Turberfield. DNA walker
circuits: computational potential, design, and verification. Natural Computing,
2014. To appear.

D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry, 81(25):2340–2361, 1977.

M. Hagiya. From molecular computing to molecular programming. In A. Condon
and G. Rozenberg, editors, DNA Computing, volume 2054 of Lecture Notes in
Computer Science, pages 89–102. Springer, 2000.

J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn. Proba-
bilistic model checking of complex biological pathways. Theoretical Computer
Science, 319(3):239–257, 2008.

S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu,
P. Mendes, and U. Kummer. COPASI - a COmplex PAthway SImulator. Bioin-
formatics, 22(24):3067–3074, 2006.

C. Jung and A. D. Ellington. Diagnostic applications of nucleic acid circuits.
Accounts of Chemical Research, 2014. To appear.

13



T. G. Kurtz. The relationship between stochastic and deterministic models for
chemical reactions. The Journal of Chemical Physics, 57:2976, 1972. ISSN
00219606. doi: 10.1063/1.1678692.

M. Kwiatkowska. Quantitative verification: Models, techniques and tools. In
Proc. 6th joint meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE), pages 449–458. ACM Press, September 2007.

M. Kwiatkowska and C. Thachuk. Probabilistic model checking for biology. In
Software Safety and Security, NATO Science for Peace and Security Series - D:
Information and Communication Security. IOS Press, 2014. To appear.

M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. In
M. Bernardo and J. Hillston, editors, Formal Methods for the Design of
Computer, Communication and Software Systems: Performance Evaluation
(SFM’07), volume 4486 of LNCS (Tutorial Volume), pages 220–270. Springer,
2007.

M. Kwiatkowska, G. Norman, and D. Parker. Symbolic Systems Biology, chapter
Probabilistic Model Checking for Systems Biology, pages 31–59. Jones and
Bartlett, 2010.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc.
CAV’11, volume 6806 of LNCS, pages 585–591. Springer, 2011.

M. Lakin, D. Parker, L. Cardelli, M. Kwiatkowska, and A. Phillips. Design
and analysis of DNA strand displacement devices using probabilistic model
checking. Journal of the Royal Society Interface, 9(72):1470–1485, 2012.

H. H. McAdams and a. Arkin. Stochastic mechanisms in gene expression. Pro-
ceedings of the National Academy of Sciences of the United States of America,
94:814–9, 1997. ISSN 0027-8424.

A. Phillips and L. Cardelli. A programming language for composable DNA cir-
cuits. Journal of the Royal Society Interface, 2009.

L. Qian and E. Winfree. Scaling up digital circuit computation with DNA strand
displacement cascades. Science, 332:1196–1201, 2011.

A. Regev, W. Silverman, and E. Y. Shapiro. Representation and simulation of
biochemical processes using the pi-calculus process algebra. In Pacific Sympo-
sium on Biocomputing, pages 459–470, 2001.

14



P. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature,
440:297–302, 2006.

G. Seelig, D. Soloveichik, D. Zhang, and E. Winfree. Enzyme-free nucleic acid
logic circuits. Science, 314:1585–1588, 2006.

D. Soloveichik, G. Seelig, and E. Winfree. DNA as a universal substrate for
chemical kinetics. Proceedings of the National Academy of Science, 107(12):
5393–5398, 2010.

S. F. J. Wickham, M. Endo, Y. Katsuda, K. Hidaka, J. Bath, H. Sugiyama,
and A. J. Turberfield. Direct observation of stepwise movement of a synthetic
molecular transporter. Nature nanotechnology, 6:166–9, 2011.

E. Winfree. Toward molecular programming with DNA. SIGPLAN Not., 43(3):
1–1, Mar. 2008. URL http://doi.acm.org/10.1145/1353536.1346282.

P. Yin, H. Yan, X. G. Daniell, A. J. Turberfield, and J. H. Reif. A unidirectional
DNA walker that moves autonomously along a track. Angewandte Chemie
International Edition, 43:4906–4911, 2004.

H. Younes, M. Kwiatkowska, G. Norman, and D. Parker. Numerical vs. statisti-
cal probabilistic model checking. International Journal on Software Tools for
Technology Transfer (STTT), 8(3):216–228, 2006.

B. Yurke, A. Turberfield, A. Mills, F. Simmel, and J. Neumann. A DNA-fuelled
molecular machine made of DNA. Nature, 406(6796):605–8, 2000.

D. Zhang and G. Seelig. Dynamic DNA nanotechnology using strand displace-
ment reactions. Nature Chemistry, 3:103–113, 2011.

D. Y. Zhang, A. J. Turberfield, B. Yurke, and E. Winfree. Engineering entropy-
driven reactions and networks catalyzed by DNA. Science, 318(5853):1121,
2007.

15

http://doi.acm.org/10.1145/1353536.1346282

	Introduction
	Molecular programming
	Design automation for molecular programming
	Conclusions

