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ABSTRACT
We present a framework for modelling ad-hoc Wireless Sen-
sor Networks (WSNs) and studying both their connecti-
vity properties and their performance in terms of energy
consumption, throughput and other relevant indices. Our
framework is based on a probabilistic process calculus where
system executions are driven by Markovian probabilistic sche-
dulers, allowing us to translate process terms into discrete
time Markov chains (DTMCs) and use the probabilistic mo-
del checker PRISM to automatically evaluate/estimate the
connectivity properties and the energy costs of the networks.
To the best of our knowledge, this is the first work that pro-
poses a unique framework for studying qualitative (e.g., by
proving the equivalence of components or the correctness
of a behaviour) and quantitative aspects of WSNs using a
tool that allows both exact and approximate (via Monte
Carlo simulation) analyses. We demonstrate our framework
at work by considering different communication strategies
based on gossip routing protocols, for a typical topology
and a mobility scenario.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
systems—modeling techniques; C.2.1 [Computer-Communi-
cation Networks]: Network architecture and design—Wire-
less Communication

General Terms
Theory, reliability
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1. INTRODUCTION
Wireless Sensor Networks (WSNs) [2] are collections of

spatially distributed sensing devices equipped with limited
computing and radio communication capabilities. They are
employed in a variety of applications, ranging from military
surveillance to health care or assisted living, and from smart
cities to environmental monitoring.

A typical sensor network is characterized by a large num-
ber of sensor nodes, which are densely deployed, and have
frequent topology changes due to the mobility of its devices.
Nodes communicate using wireless transmission in a speci-
fied range, with communication between nodes implemented
in terms of routing protocols.

A critical issue in wireless sensor networks is the limited
availability of energy within the network devices. There-
fore, judicious choice of routing protocols that can reduce
the nodes’ power consumption is crucial, not only for the
performance of each single node, but also throughout the
network lifetime.

In this paper we introduce a framework for the specifi-
cation, modelling and automated analysis or simulation of
connectivity properties and the evaluation or estimation of
energy consumption in ad-hoc WSNs. The framework is
based on a variant of the Probabilistic Energy-aware Broad-
cast Unicast and Multicast (PEBUM) calculus introduced
in [5], and supports the automatic performance evaluation
through (approximate) probabilistic model checking, e.g.,
using the PRISM model checker [9].

The advantage of using a process algebra is due to its
compositional nature, which allows us to decompose both
the model construction and the qualitative analysis. Con-
cerning the quantitative analysis, we utilise the various kinds
of properties which can be specified in terms of a temporal
logic and verified using model checking.

The calculus we propose is built around nodes, represent-
ing the sensor devices of the systems, and locations, identi-
fying the position cells across which each device may move
inside the network. Node mobility is governed by proba-
bility distributions. By contrast, wireless synchronisations
are controlled by sequential processes inside the nodes: each
transmission broadcasts a message within a given transmis-
sion range. The semantics of our calculus is inspired by
Segala’s probabilistic automata [15] driven by schedulers to
resolve the nondeterministic choice among the probability
distributions over target states.

Differently from [5], in this work we assume that nodes are
not equipped with a unique identifier and they all share the
same transmission frequency. These choices reflect the fact



Networks Processes

M,N ::= 0 Empty network P,Q ::= 0 Inactive process
| [P ]Jl Sensor Node | (x̃).P Input
|M1|M2 Parallel composition | 〈w̃〉L,r.P Output

| [w1 = w2]P,Q Matching
| A〈w̃〉 Recursion

Table 1: Syntax

that transmissions in ad-hoc sensor networks are directed to
a geographical location rather than to a specific node and,
due to the low-cost hardware of sensors, only one frequency
is used at a given time [17]. Moreover, in contrast to [6,
5], in this paper we employ Markovian probabilistic sched-
ulers, mapping the non-deterministic choices among the dif-
ferent actions a system may enable into probability distri-
butions. As a consequence, the labelled transition system
underlying process terms is a discrete time Markov chain
(DTMC), which can be used for automatically performing a
range of qualitative and quantitative analyses by means of
probabilistic model checking, e.g., using PRISM. We define a
probabilistic observational congruence in the style of [13] to
equate networks exhibiting the same connectivity behaviour.
As in [5], and in contrast to [12], the notion of observability
is associated with specific locations in the network, reflect-
ing the fact that in ad-hoc WSNs the transmissions are not
addressed to specific nodes but to specific locations. We
provide a coinductive characterization of the observational
congruence based on a probabilistic labelled bisimilarity. Fi-
nally, we define an energy-aware preorder over networks, to
contrast networks having the same behaviour, but different
energy costs.

We use our framework for a comparative study of gossip
based routing protocols for wireless ad-hoc sensor networks.
We address the problem of state space explosion using sta-
tistical model checking implemented in PRISM in terms of
Monte Carlo simulation. Specifically, we consider different
scenarios obtained by varying both the protocol parameters
and the network power strategies, in order to find the best
solution that reduces the power consumption while main-
taining the same connectivity.

The paper is organised as follows. Section 2 presents the
calculus, its observational semantics expressed in terms of
behavioural equivalences and a characterization based on a
notion of probabilistic bisimilarity. In Section 3 an energy-
aware preorder over networks is defined: it allows us to
compare the average energy cost of different networks but
exhibiting the same connectivity behaviour. Finally, in Sec-
tion 4, gossip based routing protocols for different scenarios
are considered, and we show the framework at work study-
ing the sensitivity of the performance of these protocols to
some configuration parameters. Finally, Section 5 discusses
the related bibliography and concludes the paper.

2. A CALCULUS FOR WSN
We present a variant of the PEBUM calculus introduced in

[5], which focuses on the main features of ad-hoc wireless
sensor networks. Specifically, nodes are not equipped with a
unique identifier and only one transmission frequency is used.

Syntax. We use letters l for locations, r for transmission

radii, x and y for variables. Closed values contain locations,
transmission radii and any basic value (booleans, integers,
...). Values include also variables. We use u and v for closed
values and w for (open) values. We write ṽ, w̃ for tuples of
values. We write N for the set of all networks and Loc for
the set of all locations. While movement may be assumed to
be continuous, we identify locations as the countable set of
cells that constitute the observing areas within the network.

The syntax of our calculus is shown in Table 1. This is
defined in a two-level structure: the lower one for processes,
the upper one for networks.

Networks are collections of sensor nodes running in par-
allel and communicating messages. As usual, 0 denotes the
empty network and M1|M2 denotes the parallel composi-
tion of two networks. We denote by

∏
i∈IMi the parallel

composition of the networks Mi, for i ∈ I. [P ]Jl denotes a
sensor node located at the physical location l and execut-
ing the process P . J is the transition matrix of a discrete
time Markov chain modelling node mobility: each entry Jlk
is the probability that the sensor node located at l moves
to the location k. Hence,

∑
k∈Loc Jlk = 1 for all locations

l ∈ Loc. Static nodes inside a network are associated with
the identity Markov chain, i.e., the identity matrix Jll = 1
for all l ∈ Loc and Jlk = 0 for all l 6= k.

Processes are sequential and live within the nodes: 0 is the
inactive process, (x̃).P is ready to listen to a transmission,
while 〈w̃〉L,r.P is ready to transmit. In (x̃).P , the variables
in x̃ are bound with scope in P . As to the output form, the
tag r represents the transmission radius of the sender, while
the tag L is used to maintain the set of physical locations
of the intended recipients: L = Loc represents a broadcast
transmission, while a finite set of locations L denotes a mul-
ticast communication (unicast if L is a singleton). As stated
in the introduction, communication protocols for ad-hoc sen-
sor networks are usually intended to reach a certain location,
rather than a specific device, due to the absence of global
identifiers associated with the sensor devices. The remain-
ing syntactic forms are standard: [w1 = w2]P,Q behaves as
P if w1 = w2, and as Q otherwise. A〈w̃〉 is the process de-

fined via a (possibly recursive) definition A(x̃)
def
= P , with

|x̃| = |w̃| where x̃ contains all variables appearing free in P .
Probability distributions for networks. We denote by µJ

l

the probability distribution associated with a node located
at l with transition matrix J, i.e., the function over Loc such
that µJ

l (k) = Jlk for all k ∈ Loc. We model the probabilistic
evolution of the network according to these distributions.

Let M be a network. We denote by M{[P ]Jk/[P ]Jl } the
network obtained by replacing l with k inside the sensor
node [P ]Jl . We also denote by JMKµJ

l
the probability distri-

bution over networks induced by µJ
l and defined by: for all



(R-Bcast)
[〈ṽ〉L,r.P ]Jl |

∏
i∈I [(x̃i).Pi]

Ji

li
−→J[P ]Jl |

∏
i∈I [Pi{ṽ/x̃i}]J

i

li
K∆

where ∀i ∈ I.d(l, li) ≤ r and |x̃i| = |ṽ|

(R-Move)
[P ]Jl −→J[P ]Jl KµJ

l

(R-Par)
M−→JM ′Kθ

M |N−→JM ′|NKθ
(R-Struct)

N ≡M M−→JM ′Kθ M ′ ≡ N ′

N−→JN ′Kθ

Table 2: Reduction Semantics

networks M ′,

JMKµJ
l
(M ′) =

 µJ
l (k) if M ′ = M{[P ]Jk/[P ]Jl }

0 otherwise.

Intuitively, JMKµJ
l
(M ′) is the probability that the networkM

evolves to M ′ due to the movement of the sensor node [P ]Jl .
We say thatM ′ is in the support of JMKµJ

l
if JMKµJ

l
(M ′) 6= 0.

We write JMK∆ for the Dirac distribution on the network M ,
i.e., the probability distribution defined as: JMK∆(M) = 1
and JMK∆(M ′) = 0 for all M ′ 6= M . Finally, we let θ range
over {µJ

l | J is a transition matrix and l ∈ Loc} ∪ {∆}.
Reduction semantics. The dynamics of the calculus is

specified by the probabilistic reduction relation (−→) described

in Table 2: it takes the form M−→JM ′Kθ denoting a transi-
tion that leaves from M and leads to a probability distri-
bution JM ′Kθ. As usual, reduction relies on structural con-
gruence (≡), such that, e.g., M |N ≡ N |M , (M |N)|M ′ ≡
M |(N |M ′) and M |0 ≡M .

Nodes cannot be created or destroyed, and move autono-
mously. Node connectivity is verified by looking at the phys-
ical location and the transmission radius of the sender: a
message broadcast by a node is received only by the nodes
that lie in the area delimited by the transmission radius of
the sender. We presuppose a function d(·, ·) which returns
the distance between two locations.

Rule (R-Bcast) models the transmission of a tuple of mes-
sages ṽ by a sensor node located at l and using a radius r.
The index set I may be empty, i.e., the rule can be applied
even if no nodes are ready to receive. The radius r associ-
ated with the output action denotes the transmission radius
of that communication which may depend on the energy con-
sumption strategy adopted by the surrounding protocol. All
the nodes that lie in the range of the sender (i.e., such that
d(l, li) ≤ r) will receive the messages. Rule (R-Move) deals
with node mobility: a node [P ]Jl executing a move action
will reach a location with a probability described by the dis-
tribution µJ

l that depends on the Markov chain J statically
associated with the node. The remaining rules are standard.

Since we are dealing with a probabilistic reduction seman-
tics, which maps networks into probability distributions, we
need a way of representing the steps of each probabilistic
evolution of a network. Formally, given a network M , we
write M−→θN if M−→JM ′Kθ and N is in the support of
JM ′Kθ. Following [6], an execution for M is a (possibly infi-

nite) sequence of steps M−→θ1M1−→θ2M2....
Observational semantics. According to standard practice,

we formalise the observational semantics of our calculus in
terms of a notion of barb that provides the basic unit of
observation [13]. As in other calculi for wireless communi-

cation, the definition of barb is naturally expressed in terms
of message transmission.

We denote by behave(M) = {JM ′Kθ | M −→ JM ′Kθ} the
set of the possible behaviours of M . In order to solve the
nondeterminism in a network execution, we consider each
possible probabilistic transition M −→ JM ′Kθ as arising from
a probabilistic scheduler defined as follows.

Definition 1 (Scheduler). A probabilistic scheduler
is a total function F assigning to a network M a distribution
φ on the set behave(M).

We denote by Sched the set of all probabilistic schedulers.
Given a network M and a scheduler F , we define the set of
all executions starting from M and driven by F as:

ExecFM = {e = M0−→p1θ1M1−→p2θ2M2... |M0 ≡M and

∀j > 0 : Mj−1 −→ JM ′jKθj , pj = F (Mj−1)(JM ′jKθj )
and Mj is in the support of JM ′jKθj}.

For a finite execution e = M−→p1θ1M1...−→pkθkMk ∈ ExecFM
starting from M and driven by a scheduler F we define

PFM (e) = p1 · JM ′1Kθ1(M1) · ... · pk · JM ′kKθk (Mk)

where ∀j ≤ k, pj = F (Mj−1)(JM ′jKθj ). We denote by

last(e) the final state of a finite execution e, by ej the

prefix execution M−→p1θ1M1 . . .−→pjθjMj of length j of the

execution e = M−→p1θ1M1 · · · −→pjθjMj−→pj+1θj+1Mj+1 · · · ,
and by e ↑ the set of ē such that e≤prefixē. We write

M →F
∗ M ′ if there exists a finite execution e ∈ ExecFM

with last(e) = M ′.
We define the probability space on the executions starting

from a given network M as follows. Given a scheduler F ,
σFieldFM is the smallest sigma field on ExecFM that contains
the basic cylinders e ↑, where e ∈ ExecFM . The probability
measure ProbFM is the unique measure on σFieldFM such that
ProbFM (e ↑) = PFM (e). Given a measurable set of networks
H, we denote by ExecFM (H) the set of executions starting
from M and crossing a state in H. Formally ExecFM (H) =
{e ∈ ExecFM | last(ej) ∈ H for some j}. We denote the
probability for a network M to evolve into a network in
H, according to the policy given by F , as ProbFM (H) =
ProbFM (ExecFM (H)).

Note that the use of probabilistic schedulers allows us to
model networks as discrete time Markov chains (DTMCs).
This is the result of the application of a two level probability
distribution: the reduction semantics maps a network M
into a probability distribution in the set behave(M) while, in
turn, the probabilistic scheduler maps M into a probability
distribution φ over the probability distributions in the set
behave(M), giving rise to a fully probabilistic model.



(Output)
−

〈ṽ〉L,r.P
ṽL,r−−−→ P

(Input)
−

(x̃).P
ṽ−→ P{ṽ/x̃}

(Then)
P

η−→ P ′

[ṽ = ṽ]P,Q
η−→ P ′

(Else)
Q

η−→ Q′ ṽ1 6= ṽ2

[ṽ1 = ṽ2]P,Q
η−→ Q′

(Rec)
P{ṽ/x̃} η−→ P ′

A〈ṽ〉 η−→ P ′
A(x̃)

def
= P

Table 3: LTS rules for Processes

Example 1. Consider the network M ≡ [〈ṽ〉L,r.P ]Jl con-
sisting of a single sensor node. The set of possible behaviours
of M is {J[P ]Jl K∆, J[〈ṽ〉L,r.P ]Jl KµJ

l
}, since the sensor node at

the next step can either move or transmit. Then, for each
F ∈ Sched, ∀e ∈ ExecFN such that N ∈ N and last(e) =
M we get F (e) = φ such that there exist p1 and p2 with
p1 + p2 ≤ 1 and for all M ′ ∈ N :

φ(M ′) =


p1 if M ′ ≡ [P ]Jl
p2 ∗ qi if M ′ ≡ [〈L, r〉v.P ]Jk and

J[〈L, r〉v.P ]Jl KµJ
l
([〈L, r〉v.P ]Jk) = qi

0 otherwise.

The notion of barb introduced below denotes an observ-
able transmission with a certain probability according to a
fixed scheduler. We first introduce the notion of strong barb:
for a network M , we write M ↓K when M ≡ [〈ṽ〉L,r.P ]Jl |M ′
with ∅ 6= K ⊆ L and forall k ∈ K, d(l, k) ≤ r. Roughly, a
transmission is observable only if at least one location in the
set of the intended recipients is able to receive the message.
We say that a network M has a barb with probability p at
the set K of locations, according to the scheduler F , written
M⇓FpK, if ProbFM ({M ′|M →F

∗ M
′ ↓K}) = p. Intuitively, for

a given network M and scheduler F , if M⇓FpK then there
is a positive probability that M , driven by F , performs a
transmission and at least one of the intended recipients is
able to correctly listen to it.

In the following, we introduce a notion of probabilistic ob-
servational congruence relative to a specific set of schedulers
F ∈ Sched. Since our semantics is contextual, we need to
ensure that the set of schedulers we consider allows the spe-
cific networks we analyse to interact with any possible con-
text. Hence, for a set F of schedulers, we define the contex-
tual superset FC of F as the largest set of schedulers allowing
networks to interact with any possible context even when
driven by F (see [4] for a formal definition). It holds that
SchedC = Sched. Hereafter, a context C[·] is a term with a
hole defined by the grammar: C[·] ::= [·] | [·]|M | M |[·].

Our probabilistic observational congruence relative to a
specific set of schedulers is defined as follows.

Definition 2. Given a set F ⊆ Sched and a relation R
over networks:
- R is barb preserving relative to F if MRN and M⇓FpK
for some F ∈ FC implies that there exists F ′ ∈ FC such that

N⇓F
′

p K.
- R is reduction closed relative to F if MRN implies that
for all F ∈ FC there exists F ′ ∈ FC such that for all classes

C ∈ N/R, ProbFM (C) = ProbF
′

N (C).
- R is contextual if MRN implies that C[M ]RC[N ] for ev-
ery context C[·].

- Probabilistic observational congruence relative to F , writ-
ten ∼=Fp , is the largest symmetric relation over networks which
is reduction closed, barb preserving and contextual.

Two networks are related by ∼=Fp if they exhibit the same
probabilistic (connectivity) behaviour relative to F .

In the next section a bisimulation-based proof technique
for ∼=Fp is developed in order to provide an efficient method

to check whether two networks are related by ∼=Fp .
Deciding the Observational Congruence. We express the

semantics of the calculus in terms of labelled transition sys-
tems (LTS) which are built upon two sets of rules: one for
processes and one for networks. Table 3 presents the LTS

rules for processes. Transitions are of the form P
η−→ P ′,

where η ranges over input and output actions: η ::= ṽ | ṽL,r.
Table 4 presents the LTS rules for networks. Transitions

are of the form M
γ−→ JM ′Kθ, where M is a network and

JM ′Kθ is a distribution over networks. Probabilities are used
to model the mobility of nodes. Tag γ ranges over the labels:

γ ::= L!ṽ[l, r] | ?ṽ@l |R!ṽ@K | τ.

Rule (Snd) models the sending of tuple ṽ to a specific set
L of locations with transmission radius r, while rule (Rcv)
models the reception of ṽ at l. Rule (Bcast) models the
broadcast message propagation: all the nodes lying within
the transmission cell of the sender may receive the message,
regardless of the fact that they lie in one of the locations in
L. Rule (Obs) models the observability of a transmission:
every transmission may be detected (and hence observed)
by any recipient lying in one of the observation locations
within the transmission cell of the sender. The label R!ṽ@K
represents the transmission of the tuple ṽ of messages: the
set R is the set of all the locations receiving the message,
while its subset K contains only the locations where the
transmission is observed. Rule (Lose) models message loss.
As usual, τ -transitions denote non-observable actions. Rule
(Move) models node mobility according to the probability
distribution µJ

l . Finally, (Par) is standard.
Based on the LTS semantics, we define a probabilistic la-

belled bisimilarity that is a characterisation of our probabilis-
tic observational congruence. It is built upon the actions:

α ::=?ṽ@l | R!ṽ@K | τ.

We write lbehave(M) for the set of all possible behaviors

of M , that is, lbehave(M) = {(α, JM ′Kθ) | M
α−→ JM ′Kθ}.

Labelled executions arise by resolving the non-determinism
of both α and JMKθ. As a consequence, a scheduler1 for
the labelled semantics is a function F assigning a proba-
bility to each pair (α, JMKθ) ∈ lbehave(M) with a network
1We abuse notation and still use F to denote a scheduler for
the LTS semantics.



(Snd)
P

ṽL,r−−−→ P ′

[P ]Jl
L!ṽ[l,r]−−−−→ J[P ′]Jl K∆

(Rcv)
P

ṽ−→ P ′

[P ]Jl
?ṽ@l−−−→ J[P ′]Jl K∆

(Bcast)
M

L!ṽ[l,r]−−−−→ JM ′K∆ N
?ṽ@l′−−−→ JN ′K∆

M |N L!ṽ[l,r]−−−−→ JM ′|N ′K∆

d(l, l′) ≤ r

(Obs)
M

L!ṽ[l,r]−−−−→ JM ′K∆

M
R!ṽ@K−−−−→ JM ′K∆

R ⊆ {l′ ∈ Loc : d(l, l′) ≤ r} K = R ∩ L, K 6= ∅

(Lose)
M

L!ṽ[l,r]−−−−→ JM ′K∆

M
τ−→JM ′K∆

(Move)
[P ]Jl

τ−→ J[P ]Jl KµJ
l

(Par)
M

γ−→ JM ′Kθ
M |N γ−→ JM ′|NKθ

Table 4: LTS rules for Networks

M . We denote by LSched the set of schedulers for the LTS
semantics. A labelled execution e of a network M driven
by a scheduler F is a finite (or infinite) sequence of steps:

M
α1−−→p1θ1 M1

α2−−→p2θ2 M2...
αk−−→pkθk Mk. By abuse of no-

tation, we define ExecFM , last(e), ej and e↑ as for unlabeled
executions.

Since we are interested in weak observational equivalences,
that abstract over τ -actions, we introduce the notion of weak
action as follows: =⇒ is the transitive and reflexive closure
of

τ−→;
α

=⇒ denotes =⇒ α−→=⇒ ∀α 6= τ . We write
α̂

=⇒ for the
weak action

α
=⇒ if α 6= τ , and =⇒ otherwise.

We denote by ExecFM (
α

=⇒, H) the set of all executions
that, starting from M , according to the scheduler F , lead to
a network in the set H by performing

α
=⇒. We define the

probability of reaching a network in H from M by perform-
ing

α
=⇒, according to a scheduler F as ProbFM (

α
=⇒, H) =

ProbFM (ExecFM (
α

=⇒, H)).

For F ⊆ Sched, we denote by F̂C ⊆ LSched its contextual
superset for the LTS semantics (see [4]).

Definition 3. Let M and N be two networks. An equiv-
alence relation R over networks is a probabilistic labelled
bisimulation relative to a set F of schedulers, if MRN im-
plies: for all schedulers F ∈ F̂C there exists a scheduler
F ′ ∈ F̂C such that for all α and for all classes C ∈ N/R:

- if α 6=?ṽ@l then ProbFM (
α−→, C) = ProbF

′
N (

α̂
=⇒ C);

- if α =?ṽ@l then either ProbFM (
α−→, C) = ProbF

′
N (

α
=⇒, C) or

ProbFM (
α−→, C) = ProbF

′
N (=⇒, C).

Probabilistic labelled bisimilarity relative to F , written ≈Fp ,
is the largest probabilistic labelled bisimulation relative to F
over networks.

Probabilistic labelled bisimilarity is a characterization of
our probabilistic observational congruence [4].

Theorem 1. M ∼=Fp N if and only if M ≈Fp N.

3. MEASURING ENERGY CONSUMPTION
In this section, based on the LTS semantics, we define a

preorder over networks which allows us to study the per-
formance, in terms of energy consumption, of different net-
works, but exhibiting the same (or similar) connectivity be-
haviour. For this purpose we associate an energy cost with

labelled transitions as follows. For a transmission with ra-
dius r, let

En(r) = Enelec × packet len + Enampl × packet len× r2

where Enelec (nJ/b) is the energy dissipated to run the trans-
mitter circuit, while Enampl (pJ/b/m2) is the radio amplifier
energy (see [11]). We define

Cost(M,N) =


En(r) if M

L!ṽ[l,r]−−−−→∆ N
for some L, ṽ, l and r

0 otherwise

For an execution e = M0
α1−−→θ1 M1

α2−−→θ2 M2...
αk−−→θk Mk,

Cost(e) =
∑k

i=1
Cost(Mi−1,Mi).

Let H be a set of networks; we denote by PathsFM (H) the
set of all executions from M ending in H and driven by F
which are not prefix of any other execution ending in H.
More formally, PathsFM (H) = {e ∈ ExecFM (H) | last(e) ∈
H and ∀e′ such that e <prefix e

′, e′ 6∈ PathsFM (H)}.
Now, we are ready to define the average cost of reaching

a set of networks H from the initial network M according
to the scheduler F .

Definition 4. The average cost of reaching a set of net-
works H from an initial network M according to the sched-
uler F is

CostFM (H) =

∑
e∈PathsF

M
(H)Cost(e)× PFM (e)∑

e∈PathsF
M

(H)P
F
M (e)

.

The average cost is computed by weighting the cost of each
execution by its probability according to F and normalized
by the overall probability of reaching H.

The following definition provides an efficient method to
perform both qualitative and quantitative analyses.

Definition 5. Let H be a countable set of sets of net-
works and let F ⊆ LSched a set of schedulers. We write

N vFH M,

if N ≈Fp M and, for all schedulers F ∈ LSched and for
all H ∈ H, there exists a scheduler F ′ ∈ LSched such that

CostF
′

N (H) ≤ CostFM (H).
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Figure 1: Topology of the Static Network (SN)

4. STUDYING GOSSIP PROTOCOLS
Gossip protocols are a family of communication protocols

inspired by the way that gossiping disseminates informa-
tion in social networks. A gossip protocol is a variant of
the flooding algorithm, where each node forwards a message
with some probability to reduce the overhead of the routing
protocols. Gossiping-based routing protocols are commonly
used in large-scale networks (see, e.g., [3, 10, 7]) to reduce
the number of retransmissions and the energy cost.

In this section we show that our framework is suitable
for providing an integrated automatic analysis of the gos-
sip strategy in terms of both connectivity maintenance and
energy consumption. In particular, we assume that, when
a node receives a message, it forwards it with a fixed pro-
bability psend and discards it with probability 1 − psend.
Common values for psend range from 0.6 to 0.8: it is shown
that, in practical scenarios, these values provide a reduction
of more than 30% of the forwarding transmissions without
deteriorating the network connectivity [7].

Sensor networks are usually characterised by a large num-
ber of small devices, densely distributed in the network area,
sensing the environment and forwarding data. Here we con-
sider two different network configurations on a rectangular
area of 50× 100m. We assume omnidirectional antenna and
a fixed transmission power for each sensor node, which cov-
ers circular areas with a radius of 10m. In the following, we
denote by [Pi]

J
l the sensor node i located at l, executing the

process Pi and moving according to the transition matrix J.
We study the behaviour of the networks by varying the

value of the parameter psend.
The first network we consider consists of 50 static nodes,

evenly distributed within the network area (see Figure 1).
Node mobility is characterised by the identity matrix I.

In our tests, we consider a fixed receiver [P50]I50, while the
sender node’s location varies in the set {12, 23, 35, 37, 44},
in order to study how the connectivity behaviour of the net-
work changes, depending on the distance between the sender
node and the receiver. The network is expressed by the term:

Mj
def
=

∑50

i=1
[Pi]

I
i ,

with j ∈ {12, 23, 35, 37, 44}, and

Pi
def
= (xi).〈xi〉{50},10.Pi, ∀i 6∈ {j, 50},

Pj
def
= 〈xj〉{50},10.Pj ,

P50
def
= (x50).P50,

modelling the communication between [Pj ]
I
j and [P50]I50.

The second configuration consists of 25 mobile sensor nodes,
again evenly distributed within the network area. Each sen-
sor node can move between two adjacent locations, mod-
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Figure 2: Topology of the Mobile Network (MN)

elling the instability caused by, e.g., environmental condi-
tions (see Figure 2). The probability distribution associated
with node mobility can be captured by the transition ma-
trix J such that: Jl(l+5) = J(l+5)l = ε ∀l ∈ {5, 15, 25, 35, 45},
and Jl(l+1) = J(l+1)l = ε for all the other odd locations in
the network area, and Jll = 1− ε for all the locations, with
0 < ε < 1. Notice that the choice of ε and the definition of
the scheduler allow us to model the relative speed between
movements and transmissions. Henceforth we assume that
ε = 0.8. This network is expressed by the term:

Nh ≡
∑25

i=1
[Pi]

J
(2i−1),

with h ∈ {12, 17, 22}, where
Pi ≡ (xi).〈xi〉{45,50},10.Pi, ∀i 6∈ {h, 25},
Ph ≡ 〈xh〉{45,50},10.Ph and
P25 ≡ (x25).P25,

modelling the communication between [Ph]J(2h−1) and [P25]Jz ,
where z ∈ {45, 50} is the set of locations where we expect
to find P25.

We model several different gossip strategies by varying the
value of psend in the interval [0.6 − 1.0]. In particular, for
each value of psend we assume a set Fpsend of schedulers such
that, at each step, the probability for each node to perform
a synchronisation or a movement is the same. Moreover,
we do not consider message loss due to link failure or other
environmental causes: a message can be lost only when a
node discards it, consistently with the protocol.

The analysis is performed using the PRISM model checker
[8] (see the Appendix for details). The first step of our
methodology consists in translating the process-algebraic
definition of our networks into the language supported by
PRISM. This can be achieved in a purely algorithmic way.
In general, the exact analysis of real WSNs’ models is infea-
sible due to the explosion of the state space of the model.
For this reason, we choose to perform an exact analysis to
study problems of equivalence or performance in case of
small components, e.g., to replace a network’s node with
a functionally equivalent one that has better performance
in terms of throughput or energy consumption. Conversely,
when studying the overall properties of wide WSNs we ap-
ply approximate model checking (also known as statistical
model checking), that relies on a Monte Carlo simulation
of the underlying DTMC. As a consequence, PRISM will
compute estimates of the desired indices rather than exact
results, whose precision is controlled by means of confidence
interval specifications (absolute width and confidence). This
approach is suitable for most practical purposes. When sim-
ulation is adopted, the estimates are obtained by sampling,
i.e., generating a large number of random paths through the



Figure 3: (SN) Fraction of nodes reached by a trans-
mission

process underlying the model, hence avoiding the generation
of whole DTMC.

In our case studies we assume that the sender node keeps
retransmitting the same packet until the destination node
receives it. The outcomes of this study allow us to deter-
mine the expected number of retransmissions of the same
packet that are needed to reach the intended recipient or,
in more detail, the number of retransmissions needed in or-
der to reach the destination with a probability higher than
a given threshold. Our goal is the comparison between the
different network configurations, according to the definition
of the energy-aware preorder introduced in Section 3. The
following proposition is important for the termination condi-
tion of the simulations. It states that, by varying the sender
location, the packet eventually reaches the intended recipi-
ent.

Proposition 1.

(i) ∀Fpsend, psend ∈ [0.6−1.0] and ∀j1, j2 ∈ {12, 23, 35, 37, 44}

Mj1 ≈
Fpsend
p Mj2 .

(ii) ∀Fpsend, psend ∈ [0.6− 1.0] and ∀h1, h2 ∈ {12, 17, 22}

Nh1 ≈
Fpsend
p Nh2 .

Proof. The proof can be formally done by observing that
the sender keeps retransmitting the packet and that there
is a non-null probability for a packet to reach the destina-
tion given any WSN configuration. Nevertheless, we can use
the PRISM model checker in order to automatically verify
the bisimulation among the different networks within a cer-
tain confidence. Usually, since this platform supports sev-
eral temporal logics, this can be done by constructing char-
acteristic formulas for bisimulation. Since in our case the
movements and the forwarding transmissions are silent ac-
tions, while the only observable action is the transmission of
the packet to the location 50 (resp. {45, 50} for the mobile
network), and our bisimulation does not take into account
silent actions, we can simply verify that the probability for
[P50]I50 ([P25]J45) to receive the message is always 1 (with the
specified confidence).

We use the PCTL (Probabilistic Computation Tree Logic)
P operator (for reachability properties). In particular, we
verify P=? [F goal], i.e., what is the probability to eventu-
ally perform a transmission at location 50 ({45, 50}). goal
is the formula indicating that P50 (P25) has correctly re-
ceived the message, and F means that the goal state will

Figure 4: (MN) Fraction of nodes reached by a
transmission

be eventually reached in a finite number of steps. For each
network the probability to eventually reach the successful
state turns out to be 1, where the confidence interval width
is 0.01 based on 95% confidence level.

Once we proved that the networks we are considering have
the same connectivity, we are ready to compare their en-
ergy costs, by changing the value of psend and the distance
among the sender and the receiver. Using the PRISM model
checker, we exploit the possibility of defining reward mea-
sures to compute the energy cost function defined in Sec-
tion 3. Assuming that the energy spent for each transmis-
sion is fixed and that all the nodes have the same physical
characteristics, we simply count the number of transmissions
rather than summing up their energy cost.

The cost function is expressed in terms of a PCTL for-
mula in the PRISM property specification language, aug-
mented with rewards (or costs), which are real-valued quan-
tities associated with states and/or transitions (see the Ap-
pendix for more details). Specifically, we verify the formula
R =? [F goal], which expresses the cumulative expected en-
ergy cost to complete the communication.

Validation of the simulator. We have validated our simula-
tions with those proposed in [7]. Specifically, the same kind
of estimates shown in [7] can be computed by simulating
our models in PRISM. For the static and mobile networks
described above, we show the estimates of the fractions of
nodes that are expected to be reached by a transmission in
Figure 3 and 4, respectively.

Simulation of static networks. The estimates for the static
network are shown in Figure 5. The simulations have been
performed with an average of 10000 experiments, and a max-
imum confidence interval width of 1% of the estimated mea-
sure based on 95% of confidence. The plots show how the
distance between sender and receiver critically influences
the energy performance of the algorithm. For a distance
larger then 30m we have a monotonic decreasing plot show-
ing that, for large distances, the gossip protocol can cause
energy to be wasted. Using the standard flooding strategy
(psend = 1.0) all the cases converge to 49, because each
node will forward the message exactly one time.

We can verify that there exists a preorder among different
network configurations within the confidence of the simula-
tion.

Proposition 2.

∀psend ∈ {0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 1.0}



Figure 5: (SN) Expected energy cost

Figure 6: (SN) Expected number of transmissions
for a successful communication

Figure 7: (MN) Expected energy cost

and ∀j1 < j2 ∈ {12, 23, 35, 37, 44}:

Mj1 v
Fpsend

H Mj2

where H is the set of network configurations where the com-
munication has been successfully completed.

Figure 6 shows the expected number of retransmissions
that the sender node must perform before the communica-
tion is successfully completed. Notice that, the smaller the
value of psend, the higher is the probability that the mes-
sage is lost during the path, forcing a new transmission (for
the sake of simplicity we do not model the acknowledge-
ments, but assume that the sender node will wait for an
acknowledgement until a timeout occurs, then it will trans-
mit again); hence, even if a small value of psend reduces the
forwarding explosion, it may increase the number of replica-
tions.

Simulation of networks with mobility. Figure 7 shows
the estimates of the expected energy cost for a successful
transmission in the WSN with mobility.

Figure 8: (MN) Expected number of transmissions
for a successful communication

The mobility of the nodes critically increases the size of
the state space, hence the obtained results have wider con-
fidence intervals (ranging from 5% to 10% of the measure)
than those obtained with the static network simulation, based
on 95% of confidence. However, the results are very simi-
lar to the previous case: for distances larger than 25m the
gossip protocol causes a very high energy waste. Also, in
this case we can verify that there exists a preorder among
different network configurations:

Proposition 3.

∀psend ∈ {0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 1.0}

and ∀h1 < h2 ∈ {12, 17, 22}:

Nh1 v
Fpsend

H Nh2

where H is the set of network configurations where the com-
munications has been successfully completed.

Figure 8 shows the average number of retransmissions that
the sender must perform before the communication has suc-
cessfully completed. It is worth noticing that, with respect
to the static network, in this case the distance between the
sender and the receiver has a greater impact on the protocol
performances.

5. RELATED WORK AND CONCLUSIONS
A large amount of research on sensor networks has been

reported in the last decade. From the energy consumption
viewpoint, several papers address the problem of studying
the energy consumption for specific communication proto-
cols. For instance, in [18] the authors define a Markov re-
ward process (see, e.g., [14]) modelling some protocols for
point to point reliable transmissions. A steady-state quan-
titative analysis is then obtained, and from this the aver-
age performance indices are computed. In [1], Bernardo et
al. present a methodology to predict the impact of power
management techniques on system functionality and perfor-
mance. In [16], the authors define a set of metrics to analyse
the energy consumption which are then estimated through
simulation, and show how some modifications in the pro-
tocols can improve their efficiency. In [7], gossip protocols
running on WSNs are studied, but the authors develop an ad
hoc simulator to estimate their performance. By contrast,
in our setting, a general purpose tool, e.g., PRISM, can be
used since the performance indices or properties to be eval-
uated (or estimated) can be formally specified in a rigorous
logic. Moreover, with respect to all the above mentioned



contributions, the model we propose here aims at provid-
ing a common framework for automatically performing both
qualitative and quantitative analyses. Indeed, PRISM can
be used for different purposes. The energy preorder defined
in Section 3 can be efficiently decided for small network com-
ponents using model checking methods, and hence one may
decide to replace a node with another which is behaviourally
equivalent but less energy consuming; conversely, when the
complexity of the process underlying the model makes ex-
act analyses infeasible, approximate (or statistical) model
checking can be employed. This corresponds to the well-
known Monte Carlo simulation; using the temporal logic
implemented in the tool, one can verify a property within a
certain level of confidence (e.g., the network equipped with
a certain protocol is connected with a confidence of 99.9%).
To the best of our knowledge, such an integrated qualita-
tive and quantitative approach supported by the same tool
represents a novelty in the study of WSNs.
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APPENDIX
PRISM [8] is a probabilistic model checker, a tool for formal
modelling and analysis of systems that exhibit random or
probabilistic behaviour. It supports a wide range of proba-
bilistic models, such as Markov decision processes (MDPs),
discrete-time Markov chains (DTMCs) and continuous-time
Markov chains (CTMCs), and these models are described
using the PRISM language. Moreover, PRISM provides a
specification language to specify rewards and quantitative
properties, and it supports the automated analysis of these
properties with respect to the probabilistic models.

Modelling the network. We translate process terms into
DTMCs in order to automatically evaluate the performance,
in terms of energy, of a sensor network using a basic gos-
sip protocol for the information exchange among the sensor
nodes. In the PRISM language we define a constant psend,
ranging from 0.6 to 1, and we study the different models that
are generated by the different values assigned to psend.

Each node [Pi]
J
li

is translated into a corresponding module
Pi, which is associated with two variables:



module P8

steps8 : [0 .. 2] init 2;

l8 : [15 .. 20] init 15;

[] (l8 = 15) → 0.8 : (l8′ = 20) + 0.8 : (l8′ = 15);

[] (l8 = 20) → 0.8 : (l8′ = 15) + 0.8 : (l8′ = 20);

//beginning of a new round

[round] no one sending → (steps8′ = 2);

//beginning of a new round

//transmission

//[c8] (steps8 = 1) & (conn38 | conn78 | conn810 | conn813)→ (steps8′ = 0);

//receives

[c3] (steps8 = 2)& (conn38)→ psend : (steps8′ = 1) + (1− psend) : (steps8′ = 0);

[c3] (steps8! = 2) |!(conn38)→ (steps8′ = steps8)

[c7] (steps8 = 2)&(conn78)→ psend : (steps8′ = 1) + (1− psend) : (steps8′ = 0);

[c7] (steps8! = 2) |!(conn78)→ (steps8′ = steps8)

[c10] (steps8 = 2)&(conn810)→ psend : (steps8′ = 1) + (1− psend) : (steps8′ = 0);

[c10] (steps8! = 2) |!(conn810)→ (steps8′ = steps8)

[c13] (steps8 = 2)&(conn813) → psend : (steps8′ = 1) + (1− psend) : (steps8′ = 0);

[c13] (steps8! = 2) |!(conn813) → (steps8′ = steps8)

endmodule

Table 5: The PRISM module for a node

• stepsi: controls the sequentiality of the process exe-
cuted by the sensor node. In particular, stepsi = 2
means that the node is ready to receive, stepsi = 1
means that the node is ready to transmit, and stepsi =
0 means that the node has completed a transmission.

• li: is the variable containing the actual location of the
sensor node.

Table 5 shows the implementation of a single node. Each
transition of the PRISM model corresponds to a transition
of the labelled transition system underlying the PEBUM
network term: the unlabelled commands model the possible
node’s movements, while the labelled commands are used
to model synchronisations. Each action tagged with [ci]
represents a transmission from the source sensor node Pi.

Each node starts its transmission (steps8 = 1) only if
there is at least one of the neighbours ready to receive it
(conn38 | conn78 | conn810 | conn813). This is a standard
strategy for gossip protocols. However, since the neighbour
nodes will forward the message only with a certain proba-
bility, the presence of at least one receiver inside the sender
node’s area does not ensure the completeness of the commu-
nication. A node receives the packet only if it is inside the
transmission area of the sender node, and forwards it with
probability psend:

[c13] (steps8 = 2)&(conn813)→ psend : (steps8′ = 1)
+(1− psend) : (steps8′ = 0);

Property specification. PRISM provides a property speci-
fication language which supports various temporal logics as
well as extensions for rewards (or costs). Rewards can be as-

sociated to states or to transitions. The cumulative rewards
in the PRISM language are expressed as:

rewards ‘‘reward_name’’

[transition] condition : value;

condition : value;

endrewards

In particular, [transition] condition : value associates
a reward value to each transition tagged with [transition]
when the condition condition is true, while condition :
value associates a reward value to each state where the
condition condition is true.

In the PRISM specification language, R = ?[F goal state]
denotes the cumulative expected reward to eventually reach
goal state.

We use PRISM to find the value of psend which minimises
the costs of communications.


