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Abstract. We study Markov decision processes (MDPs) with multiple limit-average (or
mean-payoff) functions. We consider two different objectives, namely, expectation and
satisfaction objectives. Given an MDP with kkk limit-average functions, in the expectation
objective the goal is to maximize the expected limit-average value, and in the satisfaction
objective the goal is to maximize the probability of runs such that the limit-average value
stays above a given vector. We show that under the expectation objective, in contrast to
the case of one limit-average function, both randomization and memory are necessary for
strategies even for εεε-approximation, and that finite-memory randomized strategies are suf-
ficient for achieving Pareto optimal values. Under the satisfaction objective, in contrast to
the case of one limit-average function, infinite memory is necessary for strategies achieving
a specific value (i.e. randomized finite-memory strategies are not sufficient), whereas mem-
oryless randomized strategies are sufficient for εεε-approximation, for all ε > 0ε > 0ε > 0. We further
prove that the decision problems for both expectation and satisfaction objectives can be
solved in polynomial time and the trade-off curve (Pareto curve) can be εεε-approximated
in time polynomial in the size of the MDP and 1
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ε
, and exponential in the number of limit-

average functions, for all ε > 0ε > 0ε > 0. Our analysis also reveals flaws in previous work for MDPs
with multiple mean-payoff functions under the expectation objective, corrects the flaws,
and allows us to obtain improved results.
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2 T. BRÁZDIL, V. BROŽEK, K. CHATTERJEE, V. FOREJT, AND A. KUČERA

1. Introduction

Markov decision processes (MDPs) are the standard models for probabilistic dynamic sys-
tems that exhibit both probabilistic and nondeterministic behaviors [18, 11]. In each state
of an MDP, a controller chooses one of several actions (the nondeterministic choices), and
the system stochastically evolves to a new state based on the current state and the chosen
action. A reward (or cost) is associated with each transition and the central question is to
find a strategy of choosing the actions that optimizes the rewards obtained over the run
of the system. One classical way to combine the rewards over the run of the system is
the limit-average (or mean-payoff) function that assigns to every run the average of the
rewards over the run. MDPs with single mean-payoff functions have been widely studied in
literature (see, e.g., [18, 11]). In many modeling domains, however, there is not a single goal
to be optimized, but multiple, potentially dependent and conflicting goals. For example, in
designing a computer system, the goal is to maximize average performance while minimizing
average power consumption. Similarly, in an inventory management system, the goal is to
optimize several potentially dependent costs for maintaining each kind of product. These
motivate the study of MDPs with multiple mean-payoff functions.

Traditionally, MDPs with mean-payoff functions have been studied with only the ex-
pectation objective, where the goal is to maximize (or minimize) the expectation of the
mean-payoff function. There are numerous applications of MDPs with expectation objec-
tives in inventory control, planning, and performance evaluation [18, 11]. In this work we
consider both the expectation objective and also the satisfaction objective for a given MDP.
In both cases we are given an MDP with k reward functions, and the goal is to maximize
(or minimize) either the k-tuple of expectations, or the probability of runs such that the
mean-payoff value stays above a given vector.

To get some intuition about the difference between the expectation/satisfaction objec-
tives and to show that in some scenarios the satisfaction objective is preferable, consider a
filehosting system where the users can download files at various speed, depending on the
current setup and the number of connected customers. For simplicity, let us assume that a
user has 20% chance to get a 2000kB/sec connection, and 80% chance to get a slow 20kB/sec
connection. Then, the overall performance of the server can be reasonably measured by the
expected amount of transferred data per user and second (i.e., the expected mean payoff)
which is 416kB/sec. However, a single user is more interested in her chance of downloading
the files quickly, which can be measured by the probability of establishing and maintaining
a reasonably fast connection (say, ≥ 1500kB/sec). Hence, the system administrator may
want to maximize the expected mean payoff (by changing the internal setup of the system),
while a single user aims at maximizing the probability of satisfying her preferences (she can
achieve that, e.g., by buying a priority access, waiting till 3 a.m., or simply connecting to a
different server; obviously, she might also wish to minimize other mean payoffs such as the
price per transferred bit). In other words, the expectation objective is relevant in situations
when we are interested in the “average” behaviour of many instances of a given system,
while the satisfaction objective is useful for analyzing and optimizing particular executions.

In MDPs with multiple mean-payoff functions, various strategies may produce incom-
parable solutions, and consequently there is no “best” solution in general. Informally, the
set of achievable solutions

(i) under the expectation objective is the set of all vectors ~v such that there is a strategy
to ensure that the expected mean-payoff value vector under the strategy is at least ~v;
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(ii) under the satisfaction objective is the set of tuples (ν,~v) where ν ∈ [0, 1] and ~v is
a vector such that there is a strategy under which with probability at least ν the
mean-payoff value vector of a run is at least ~v.

The “trade-offs” among the goals represented by the individual mean-payoff functions are
formally captured by the Pareto curve, which consists of all minimal tuples (wrt. compo-
nentwise ordering) that are not strictly dominated by any achievable solution. Intuitively,
the Pareto curve consists of “limits” of achievable solutions, and in principle it may contain
tuples that are not achievable solutions (see Section 3). Pareto optimality has been studied
in cooperative game theory [16] and in multi-criterion optimization and decision making in
both economics and engineering [14, 21, 20].

Our study of MDPs with multiple mean-payoff functions is motivated by the following
fundamental questions, which concern both basic properties and algorithmic aspects of the
expectation/satisfaction objectives:

Q.1 What type of strategies is sufficient (and necessary) for achievable solutions?
Q.2 Are the elements of the Pareto curve achievable solutions?
Q.3 Is it decidable whether a given vector represents an achievable solution?
Q.4 Given an achievable solution, is it possible to compute a strategy which achieves this

solution?
Q.5 Is it decidable whether a given vector belongs to the Pareto curve?
Q.6 Is it possible to compute a finite representation/approximation of the Pareto curve?

We provide comprehensive answers to the above questions, both for the expectation and the
satisfaction objective. We also analyze the complexity of the problems given in Q.3–Q.6.
From a practical point of view, it is particularly encouraging that most of the considered
problems turn out to be solvable efficiently, i.e., in polynomial time. More concretely, our
answers to Q.1–Q.6 are the following:

1.a For the expectation objectives, finite-memory randomized strategies are sufficient and
necessary for all achievable solutions. Memory and randomization may also be needed
to approximate an achievable solution up to ε for a given ε > 0.

1.b For the satisfaction objectives, achievable solutions require infinite memory in general,
but memoryless randomized strategies are sufficient to approximate any achievable so-
lution up to an arbitrarily small ε > 0.

2. All elements of the Pareto curve are achievable solutions.
3. The problem whether a given vector represents an achievable solution is solvable in

polynomial time.
4.a For the expectation objectives, a strategy which achieves a given solution is computable

in polynomial time.
4.b For the satisfaction objectives, a strategy which ε-approximates a given solution is

computable in polynomial time.
5. The problem whether a given vector belongs to the Pareto curve is solvable in polyno-

mial time.
6. A finite description of the Pareto curve is computable in exponential time. Further, an

ε-approximate Pareto curve is computable in time which is polynomial in 1/ε, the size
of a given MDP and the maximal absolute value of a reward assigned, and exponential
in the number of mean-payoff functions.

A more detailed and precise explanation of our results is postponed to Section 3.
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Let us note that MDPs with multiple mean-payoff functions under the expectation
objective were also studied in [7], and it was claimed that memoryless randomized strategies
are sufficient for ε-approximation of the Pareto curve, for all ε > 0, and an NP algorithm
was presented to find a memoryless randomized strategy achieving a given vector. We
show with an example that under the expectation objective there exists ε > 0 such that
randomized strategies do require memory for ε-approximation, and thus reveal a flaw in the
earlier paper.

Similarly to the related papers [8, 10, 12] (see Related Work), we obtain our results by
a characterization of the set of achievable solutions by a set of linear constraints, and from
the linear constraints we construct witness strategies for any achievable solution. However,
our approach differs significantly from the previous work. In all the previous works, the
linear constraints are used to encode a memoryless strategy either directly for the MDP [8],
or (if memoryless strategies do not suffice in general) for a finite “product” of the MDP
and the specification function expressed as automata, from which the memoryless strategy
is then transferred to a finite-memory strategy for the original MDP [10, 12, 9]. In our
setting new problems arise. Under the expectation objective with mean-payoff function,
neither is there any immediate notion of “product” of MDP and mean-payoff function and
nor do memoryless strategies suffice. Moreover, even for memoryless strategies the linear
constraint characterization is not straightforward for mean-payoff functions, as in the case
of discounted [8], reachability [10] and total reward functions [12]: for example, in [7] even
for memoryless strategies there was no linear constraint characterization for mean-payoff
function and only an NP algorithm was given. Our result, obtained by a characterization of
linear constraints directly on the original MDP, requires involved and intricate construction
of witness strategies. Moreover, our results are significant and non-trivial generalizations
of the classical results for MDPs with a single mean-payoff function, where memoryless
pure optimal strategies exist, while for multiple functions both randomization and memory
is necessary. Under the satisfaction objective, any finite product on which a memoryless
strategy would exist is not feasible as in general witness strategies for achievable solutions
may need an infinite amount of memory. We establish a correspondence between the set of
achievable solutions under both types of objectives for strongly connected MDPs. Finally,
we use this correspondence to obtain our result for satisfaction objectives.

A conference version of this work was published at the conference LICS 2011 [3].

Related Work. The study of Markov decision processes with multiple expectation ob-
jectives has been initiated in the area of applied probability theory, where it is known as
constrained MDPs [18, 1]. The attention in the study of constrained MDPs has been fo-
cused mainly to restricted classes of MDPs, such as unichain MDPs where all states are
visited infinitely often under any strategy. Such restriction both guarantees the existence
of memoryless optimal strategies as well as simpler linear programming based algorithm for
the problem, than the general case studied in this paper.

For general finite-state MDPs, [8] studied MDPs with multiple discounted reward func-
tions. It was shown that memoryless strategies suffice for Pareto optimization, and a
polynomial-time algorithm was given to approximate (up to a given relative error) the
Pareto curve by reduction to multi-objective linear programming and using the results
of [17]. MDPs with multiple qualitative ω-regular specifications were studied in [10]. It
was shown that the Pareto curve can be approximated in polynomial time; the algorithm
reduces the problem to MDPs with multiple reachability specifications, which can be solved
by multi-objective linear programming. In [12], the results of [10] were extended to combine
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ω-regular and expected total reward objectives. MDPs with multiple mean-payoff functions
under expectation objectives were considered in [7], and our analysis reveals flaws in the
earlier paper, correct the flaws, and allows us to present significantly improved results (a
polynomial-time algorithm for finding a strategy achieving a given vector as compared to
the previously suggested incorrect NP algorithm). Moreover, the satisfaction objective has
not been considered in multi-objective setting before, and even in single objective case it
has been considered only in a very specific setting [4].

2. Preliminaries

We use N, Z, Q, and R to denote the sets of positive integers, integers, rational numbers,
and real numbers, respectively. Given two vectors ~v, ~u ∈ Rk, where k ∈ N, we write ~v ≤ ~u
iff ~vi ≤ ~ui for all 1 ≤ i ≤ k, and ~v < ~u iff ~v ≤ ~u and ~vi < ~ui for some 1 ≤ i ≤ k.

We assume familiarity with basic notions of probability theory, e.g., probability space,
random variable, or expected value. As usual, a probability distribution over a finite or
countably infinite set X is a function f : X → [0, 1] such that

∑

x∈X f(x) = 1. We call f
positive if f(x) > 0 for every x ∈ X, rational if f(x) ∈ Q for every x ∈ X, and Dirac if
f(x) = 1 for some x ∈ X. The set of all distributions over X is denoted by dist(X).

Markov chains. A Markov chain is a tuple M = (L,→, µ) where L is a finite or countably
infinite set of locations, → ⊆ L× (0, 1] × L is a transition relation such that for each fixed
ℓ ∈ L,

∑

ℓ
x
→ℓ′

x = 1, and µ is the initial probability distribution on L.

A run in M is an infinite sequence ω = ℓ1ℓ2 . . . of locations such that ℓi
x
→ ℓi+1 for every

i ∈ N. A finite path in M is a finite prefix of a run. Each finite path w in M determines
the set Cone(w) consisting of all runs that start with w. To M we associate the probability
space (RunsM ,F ,P), where RunsM is the set of all runs in M , F is the σ-field generated
by all Cone(w), and P is the unique probability measure such that P(Cone(ℓ1, . . . , ℓk)) =

µ(ℓ1) ·
∏k−1

i=1 xi, where ℓi
xi→ ℓi+1 for all 1 ≤ i < k (the empty product is equal to 1).

Markov decision processes. A Markov decision process (MDP) is a tuple of the form
G = (S,A,Act , δ) where S is a finite set of states, A is a finite set of actions, Act : S →
2A \ {∅} is an action enabledness function that assigns to each state s the set Act(s) of
actions enabled at s, and δ : S × A → dist(S) is a probabilistic transition function that
given a state s and an action a ∈ Act(s) enabled at s gives a probability distribution over the
successor states. For simplicity, we assume that every action is enabled in exactly one state,
and we denote this state Src(a). Thus, henceforth we will assume that δ : A → dist(S).

A run in G is an infinite alternating sequence of states and actions ω = s1a1s2a2 . . .
such that for all i ≥ 1, Src(ai) = si and δ(ai)(si+1) > 0. We denote by RunsG the set of all
runs in G. A finite path of length k in G is a finite prefix w = s1a1 . . . ak−1sk of a run in G.
For a finite path w we denote by last(w) the last state of w.

A pair (T,B) with ∅ 6= T ⊆ S and B ⊆
⋃

t∈T Act(t) is an end component of G if (1)
for all a ∈ B, whenever δ(a)(s′) > 0 then s′ ∈ T ; and (2) for all s, t ∈ T there is a finite
path ω = s1a1 . . . ak−1sk such that s1 = s, sk = t, and all states and actions that appear in
ω belong to T and B, respectively. An end component (T,B) is a maximal end component
(MEC) if it is maximal wrt. pointwise subset ordering. Given an end component C = (T,B),
we sometimes abuse notation by using C instead of T or B, e.g., by writing a ∈ C instead
of a ∈ B for a ∈ A.
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Strategies and plays. Intuitively, a strategy in an MDP G is a “recipe” to choose actions.
Usually, a strategy is formally defined as a function σ : (SA)∗S → dist(A) that given a finite
path w, representing the history of a play, gives a probability distribution over the actions
enabled in last(w). In this paper, we adopt a somewhat different (though equivalent – see
Section 6) definition, which allows a more natural classification of various strategy types.
Let M be a finite or countably infinite set of memory elements. A strategy is a triple
σ = (σu, σn, α), where σu : A × S ×M → dist(M) and σn : S ×M → dist(A) are memory
update and next move functions, respectively, and α is an initial distribution on memory
elements. We require that for all (s,m) ∈ S×M, the distribution σn(s,m) assigns a positive
value only to actions enabled at s. The set of all strategies is denoted by Σ (the underlying
MDP G will be always clear from the context).

Let s ∈ S be an initial state. A play of G determined by s and a strategy σ is a
Markov chain Gσ

s (or just Gσ if s is clear from the context) where the set of locations is
S × M × A, the initial distribution µ is positive only on (some) elements of {s} × M × A

where µ(s,m, a) = α(m) · σn(s,m)(a), and (t,m, a)
x
→ (t′,m′, a′) iff

x = δ(a)(t′) · σu(a, t
′,m)(m′) · σn(t

′,m′)(a′) > 0 .

Hence, Gσ
s starts in a location chosen randomly according to α and σn. In a current

location (t,m, a), the next action to be performed is a, hence the probability of entering
t′ is δ(a)(t′). The probability of updating the memory to m′ is σu(a, t

′,m)(m′), and the
probability of selecting a′ as the next action is σn(t

′,m′)(a′). We assume that these choices
are independent, and thus obtain the product above.

In this paper, we consider various functions over RunsG that become random variables
over RunsGσ

s
after fixing some σ and s. For example, for F ⊆ S we denote by Reach(F ) ⊆

RunsG the set of all runs reaching F . Then Reach(F ) naturally determines Reachσ
s (F ) ⊆

RunsGσ
s
by simply “ignoring” the visited memory elements. To simplify and unify our

notation, we write, e.g., Pσ
s [Reach(F )] instead of Pσ

s [Reach
σ
s (F )], where Pσ

s is the probability
measure of the probability space associated to Gσ

s . We also adopt this notation for other
events and functions, such as lrinf(~r) or lrsup(~r) defined in the next section, and write, e.g.,
Eσ
s [lrinf(~r)] instead of E[lrinf(~r)

σ
s ].

Strategy types. In general, a strategy may use infinite memory, and both σu and σn may
randomize. According to the use of randomization, a strategy, σ, can be classified as

• pure (or deterministic), if α is Dirac and both the memory update and the next move
function give a Dirac distribution for every argument;

• deterministic-update, if α is Dirac and the memory update function gives a Dirac distri-
bution for every argument;

• stochastic-update, if α, σu, and σn are unrestricted.

Note that every pure strategy is deterministic-update, and every deterministic-update strat-
egy is stochastic-update. A randomized strategy is a strategy which is not necessarily pure.
We also classify the strategies according to the size of memory they use. Important sub-
classes are memoryless strategies, in which M is a singleton, n-memory strategies, in which
M has exactly n elements, and finite-memory strategies, in which M is finite. By ΣM

we denote the set of all memoryless strategies. Memoryless strategies can be specified as
σ : S→dist(A). Memoryless pure strategies, i.e., those which are both pure and memoryless,
can be specified as σ : S→A.
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Figure 1. Running example MDP (left) and its play (right)

For a finite-memory strategy σ, a bottom strongly connected component (BSCC) of
Gσ

s is a subset of locations W ⊆ S ×M×A such that for all ℓ1 ∈ W and ℓ2 ∈ S ×M×A
we have that (i) if ℓ2 is reachable from ℓ1, then ℓ2 ∈ W , and (ii) for all ℓ1, ℓ2 ∈ W we
have that ℓ2 is reachable from ℓ1. Every BSCC W determines a unique end component
({s | (s,m, a) ∈ W}, {a | (s,m, a) ∈ W}) of G, and we sometimes do not strictly distinguish
between W and its associated end component.

As we already noted, stochastic-update strategies can be easily translated into “ordi-
nary” strategies of the form σ : (SA)∗S → dist(A), and vice versa (see Section 6). Note
that a finite-memory stochastic-update strategy σ can be easily implemented by a stochastic
finite-state automaton that scans the history of a play “on the fly” (in fact, Gσ

s simulates
this automaton). Hence, finite-memory stochastic-update strategies can be seen as nat-
ural extensions of ordinary (i.e., deterministic-update) finite-memory strategies that are
implemented by deterministic finite-state automata.

A running example (I). As an example, consider the MDP G = (S,A,Act , δ) of Fig-
ure 1 (left). Here, S = {s1, . . . , s4}, A = {a1, . . . , a6}, Act is denoted using the labels
on lines going from actions, e.g., Act(s1) = {a1, a2}, and δ is given by the arrows, e.g.,
δ(a4)(s4) = 0.3. Note that G has four end components (one on {s2}, another on {s3}, and
two on {s3, s4}) and two MECs.

Let s1 be the initial state and M = {m1,m2}. Consider a stochastic-update finite-
memory strategy σ = (σu, σn, α) where α chooses m1 deterministically, and σn(m1, s1) =
[a1 7→ 0.5, a2 7→ 0.5], σn(m2, s3) = [a4 7→ 1] and otherwise σn chooses self-loops. The
memory update function σu leaves the memory intact except for the case σu(m1, s3) where
bothm1 andm2 are chosen with probability 0.5. The play Gσ

s1
is depicted in Figure 1 (right).

3. Main Results

In this paper we establish basic results about Markov decision processes with expectation
and satisfaction objectives specified by multiple limit-average (or mean-payoff ) functions.
We adopt the variant where rewards are assigned to edges (i.e., actions) rather than states
of a given MDP.

Let G = (S,A,Act , δ) be a MDP, and r : A → Q a reward function. Note that r
may also take negative values. For every j ∈ N, let Aj : RunsG → A be a function which
to every run ω ∈ RunsG assigns the j-th action of ω. Since the limit-average function
lr(r) : RunsG → R given by

lr(r)(ω) = lim
T→∞

1

T

T
∑

t=1

r(At(ω))
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may be undefined for some runs, we consider its lower and upper approximation lrinf(r) and
lrsup(r) that are defined for all ω ∈ Runs as follows:

lrinf(r)(ω) = lim inf
T→∞

1

T

T
∑

t=1

r(At(ω)),

lrsup(r)(ω) = lim sup
T→∞

1

T

T
∑

t=1

r(At(ω)).

For a vector ~r = (r1, . . . , rk) of reward functions, we similarly define the Rk-valued functions

lr(~r) = (lr(r1), . . . , lr(rk)),

lrinf(~r) = (lrinf(r1), . . . , lrinf(rk)),

lrsup(~r) = (lrsup(r1), . . . , lrsup(rk)).

We sometimes refer to “runs satisfying lr(~r) ≥ ~v” instead of “runs ω satisfying lr(~r)(ω) ≥ ~v”.
Now we introduce the expectation and satisfaction objectives determined by ~r.

• The expectation objective amounts to maximizing or minimizing the expected value of
lr(~r). Since lr(~r) may be undefined for some runs, we actually aim at maximizing the
expected value of lrinf(~r) or minimizing the expected value of lrsup(~r) (wrt. componentwise
ordering ≤).

• The satisfaction objective means maximizing the probability of all runs where lr(~r) stays
above or below a given vector ~v. Technically, we aim at maximizing the probability of all
runs where lrinf(~r) ≥ ~v, or at maximizing the probability of all runs where lrsup(~r) ≤ ~v.

The expectation objective is relevant in situations when we are interested in the average
or aggregate behaviour of many instances of a system, and in contrast, the satisfaction
objective is relevant when we are interested in particular executions of a system and wish
to optimize the probability of generating the desired executions. Since lrinf(~r) = −lrsup(−~r),
the problems of maximizing and minimizing the expected value of lrinf(~r) and lrsup(~r) are
dual. Therefore, we consider just the problem of maximizing the expected value of lrinf(~r).
For the same reason, we consider only the problem of maximizing the probability of all runs
where lrinf(~r) ≥ ~v.

If k (the dimension of ~r) is at least two, there might be several incomparable solutions to
the expectation objective; and if ~v is slightly changed, the achievable probability of all runs
satisfying lrinf(~r) ≥ ~v may change considerably. Therefore, we aim not only at constructing
a particular solution, but on characterizing and approximating the whole space of achievable
solutions for the expectation/satisfaction objective. Let s ∈ S be some (initial) state of G.
We define the sets AcEx(lrinf(~r)) and AcSt(lrinf(~r)) of achievable vectors for the expectation
and satisfaction objectives as follows:

AcEx(lrinf(~r))={~v | ∃σ ∈ Σ : Eσ
s [lrinf(~r)] ≥ ~v},

AcSt(lrinf(~r))={(ν,~v) | ∃σ ∈ Σ : Pσ
s [lrinf(~r) ≥ ~v] ≥ ν}.

Intuitively, if ~v, ~u are achievable vectors such that ~v > ~u, then ~v represents a “strictly better”
solution than ~u. The set of “optimal” solutions defines the Pareto curve for AcEx(lrinf(~r))
and AcSt(lrinf(~r)). In general, the Pareto curve for a given set Q ⊆ Rk is the set P of all
minimal vectors ~v ∈ Rk such ~v 6< ~u for all ~u ∈ Q. Note that P may contain vectors that
are not in Q (for example, if Q = {x ∈ R | x < 2}, then P = {2}). However, every vector
~v ∈ P is “almost” in Q in the sense that for every ε > 0 there is ~u ∈ Q with ~v ≤ ~u + ~ε,
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s1 s2a

b1 b2

Figure 2. Example of insufficiency of memoryless strategies

where ~ε = (ε, . . . , ε). This naturally leads to the notion of an ε-approximate Pareto curve,
Pε, which is a subset of Q such that for all vectors ~v ∈ P of the Pareto curve there is a
vector ~u ∈ Pε such that ~v ≤ ~u+ ~ε. Note that Pε is not unique.

A running example (II). Consider again the MDP G of Figure 1 (left), and the strategy
σ constructed in our running example (I). Let ~r = (r1, r2), where r1(a6) = 1, r2(a3) = 2,
r2(a4) = 1, and otherwise the rewards are zero. Let

ω = (s1,m1, a2)(s3,m1, a5)
(

(s3,m2, a4)(s4,m2, a6)
)ω

Then lr(~r)(ω) = (0.5, 0.5). Considering the expectation objective, we have that Eσ
s1
[lrinf(~r)] =

( 3
52 ,

22
13). Considering the satisfaction objective, we have that (0.5, 0, 2) ∈ AcSt(~r) be-

cause Pσ
s1
[lrinf(~r) ≥ (0, 2)] = 0.5. The Pareto curve for AcEx(lrinf(~r)) consists of the points

{( 3
13x,

10
13x+ 2(1−x)) | 0 ≤ x ≤ 0.5}, and the Pareto curve for AcSt(lrinf(~r)) is {(1, 0, 2)} ∪

{(0.5, x, 1 − x) | 0 < x1 ≤
10
13}.

Now we are equipped with all the notions needed for understanding the main results of
this paper. Our work is motivated by the six fundamental questions given in Section 1. In
the next subsections we give detailed answers to these questions.

3.1. Expectation objectives. The answers to Q.1-Q.6 for the expectation objectives are
the following:

A.1 For all achievable solutions, 2-memory stochastic-update strategies are sufficient, i.e.,
for all ~v ∈ AcEx(lrinf(~r)) there is a 2-memory stochastic-update strategy σ satisfying
Eσ
s [lrinf(~r)] ≥ ~v.

A.2 The Pareto curve P for AcEx(lrinf(~r)) is a subset of AcEx(lrinf(~r)), i.e., all optimal
solutions are achievable.

A.3 There is a polynomial-time algorithm which, given any ~v ∈ Qk, decides whether ~v ∈
AcEx(lrinf(~r)).

A.4 If ~v ∈ AcEx(lrinf(~r)), then there is a 2-memory stochastic-update strategy σ con-
structible in polynomial time satisfying Eσ

s [lrinf(~r)] ≥ ~v.
A.5 There is a polynomial-time algorithm which, given ~v ∈ Rk, decides whether ~v belongs

to the Pareto curve for AcEx(lrinf(~r)).
A.6 There is a convex hull Z of finitely many vectors such that: AcEx(lrinf(~r)) is a downward

closure of Z (i.e. AcEx(lrinf(~r)) = {~v | ∃~u ∈ Z : ~v ≤ ~u}); The Pareto curve for
AcEx(lrinf(~r)) is a union of all facets of Z whose vectors are not strictly dominated by
vectors of Z. Further, an ε-approximate Pareto curve for AcEx(lrinf(~r)) is computable
in time polynomial in 1

ε
, |G|, and maxa∈Amax1≤i≤k |~ri(a)|, and exponential in k.

Let us note that A.1 is tight in the sense that neither memoryless randomized nor pure
strategies are sufficient for achievable solutions. This is witnessed by the MDP of Figure 2
with reward functions r1, r2 such that ri(bi) = 1 and ri(bj) = 0 for i 6= j. Consider a strategy
σ which initially selects between the actions b1 and a randomly (with probability 0.5) and
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then keeps selecting b1 or b2, whichever is available. Hence, Eσ
s1
[lrinf((r1, r2))] = (0.5, 0.5).

However, the vector (0.5, 0.5) is not achievable by a strategy σ′ which is memoryless or pure,

because then we inevitably have that Eσ′

s1
[lrinf((r1, r2))] is equal either to (0, 1) or (1, 0).

The example also shows that memory and randomization is needed for ε-approximation.
Considering e.g. ε = 0.1, a history-dependent randomized strategy is needed to achieve the
value (0.5 − 0.1, 0.5 − 0.1) or better.

The 2-memory stochastic-update strategy from A.1 and A.4 operates in two modes.
Starting in the first mode, it reaches the MECs of the MDP with appropriate probabilities;
once a MEC is reached, the strategy stochastically switches to a second mode, never leaving
the current MEC and ensuring certain “frequencies” of taking the actions of the MEC. Since
both modes can be implemented by memoryless strategies, we get that we only require two
memory elements to remember which mode is currently being executed. We also show
that the 2-memory stochastic-update strategy constructed can be efficiently transformed
into a finite-memory deterministic-update randomized strategy, and hence the answers A.1
and A.4 are also valid for finite-memory deterministic-update randomized strategies (see
Section 4.1). Observe that A.2 can be seen as a generalization of the well-known result for
single payoff functions which says that finite-state MDPs with mean-payoff objectives have
optimal strategies (in this case, the Pareto curve consists of a single number known as the
“value”). Also observe that A.2 does not hold for infinite-state MDPs (a counterexample is
simple to construct even for a single reachability objective, see e.g. [5, Example 6]).

Finally, note that if σ is a finite-memory stochastic-update strategy, then Gσ
s is a finite-

state Markov chain. Hence, for almost all runs ω in Gσ
s we have that lr(~r)(ω) exists and it

is equal to lrinf(~r)(ω). This means that there is actually no difference between maximizing
the expected value of lrinf(~r) and maximizing the expected value of lr(~r) over all strategies
for which lr(~r) exists.

3.2. Satisfaction objectives. The answers to Q.1-Q.6 for the satisfaction objectives are
presented below.

B.1 Achievable vectors require strategies with infinite memory in general. However, mem-
oryless randomized strategies are sufficient for ε-approximate achievable vectors; in
fact, a stronger claim holds and for every ε > 0 and (ν,~v) ∈ AcSt(lrinf(~r)), there is a
memoryless randomized strategy σ with

Pσ
s [lrinf(~r) ≥ ~v − ~ε] ≥ ν.

Here ~ε = (ε, . . . , ε).
B.2 The Pareto curve P for AcSt(lrinf(~r)) is a subset of AcSt(lrinf(~r)), i.e., all optimal

solutions are achievable.
B.3 There is a polynomial-time algorithm which, given ν ∈ [0, 1] and ~v ∈ Qk, decides

whether (ν,~v) ∈ AcSt(lrinf(~r)).
B.4 If (ν,~v) ∈ AcSt(lrinf(~r)), then for every ε > 0 there is a memoryless randomized strategy

σ constructible in polynomial time such that Pσ
s [lrinf(~r) ≥ ~v − ~ε] ≥ ν − ε.

B.5 There is a polynomial-time algorithm which, given ν ∈ [0, 1] and ~v ∈ Rk, decides
whether (ν,~v) belongs to the Pareto curve for AcSt(lrinf(~r)).

B.6 The Pareto curve P for AcSt(lrinf(~r)) may be neither connected, nor closed. However,
P is a union of finitely many sets whose closures are convex polytopes, and, perhaps
surprisingly, the set {ν | (ν,~v) ∈ P} is always finite. The sets in the union that
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1s0(s) +
∑

a∈A

ya · δ(a)(s) =
∑

a∈Act(s)

ya + ys for all s ∈ S (4.1)

∑

s∈SMEC

ys = 1 (4.2)

∑

s∈C

ys =
∑

a∈A∩C

xa for all MEC C of G (4.3)

∑

a∈A

xa · δ(a)(s) =
∑

a∈Act(s)

xa for all s ∈ S (4.4)

∑

a∈A

xa · ~ri(a) ≥ ~vi for all 1 ≤ i ≤ k (4.5)

Figure 3. System L of linear inequalities for Theorem 4.1. (We define
SMEC ⊆ S to be the states contained in some MEC of G, 1s0(s) = 1 if
s = s0, and 1s0(s) = 0 otherwise.)

gives P (resp. the inequalities that define them) can be computed. Further, an ε-
approximate Pareto curve for AcSt(lrinf(~r)) is computable in time polynomial in 1

ε
, |G|,

and maxa∈Amax1≤i≤k |~ri(a)|, and exponential in k.

The algorithms of B.3 and B.4 are polynomial in the size of G and the size of binary
representations of ~v and 1

ε
.

The result B.1 is again tight. In Lemma 5.2 we show that memoryless pure strategies
are insufficient for ε-approximate achievable vectors, i.e., there are ε > 0 and (ν,~v) ∈
AcSt(lrinf(~r)) such that for every memoryless pure strategy σ we have Pσ

s [lrinf(~r) ≥ ~v − ~ε] <
ν − ε.

As noted in B.1, a strategy σ achieving a given vector (ν,~v) ∈ AcSt(lrinf(~r)) may require
infinite memory. Still, our proof of B.1 reveals a “recipe” for constructing such a σ by
simulating the memoryless randomized strategies σε which ε-approximate (ν,~v) (intuitively,
for smaller and smaller ε, the strategy σ simulates σε longer and longer; the details are
discussed in Section 5). Hence, for almost all runs ω in Gσ

s we again have that lr(~r)(ω)
exists and it is equal to lrinf(~r)(ω).

4. Solution for Expectation Objectives

The technical core of our results for expectation objectives is the following:

Theorem 4.1. Let G = (S,A,Act , δ) be an MDP, s0 ∈ S an initial state, ~r = (r1, . . . , rk)
a tuple of reward functions, and ~v ∈ Rk. The system of linear inequalities L from Figure 3
is constructible in polynomial time and satisfies:

• every nonnegative solution of L induces a 2-memory stochastic-update strategy σ satisfying
Eσ
s0
[lrinf(~r)] ≥ ~v;

• if ~v ∈ AcEx(lrinf(~r)), then L has a nonnegative solution.

As we already noted in Section 1, the proof of Theorem 4.1 is non-trivial and it is
based on novel techniques and observations. Our results about expectation objectives are
corollaries to Theorem 4.1 and the arguments developed in its proof. For the rest of this
section, we fix an MDP G, a vector of rewards, ~r = (r1, . . . , rk), and an initial state s0 (in
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the considered plays of G, the initial state is not written explicitly, unless it is different from
s0).

Obviously, L is constructible in polynomial time. Let us briefly explain the intuition
behind L. As mentioned earlier, a 2-memory stochastic-update strategy witnessing that
~v ∈ AcEx(lrinf(~r)) works in two modes. In the first mode it ensures that each MEC is
reached and never left with certain probability, and in the second mode actions are taken
with required frequencies. In L, the probability of reaching a MEC C is encoded as the
value

∑

s∈C ys, and Equations (4.1) are used to ensure that the numbers obtained are indeed
realisable under some strategy. The meaning of these equations is similar as the meaning
of similar equations in [10], essentially the equations encode that the expected number of
times a state is entered (left-hand side of the equations) is equal to the expected number of
times a state is left together with probability of switching to the second mode (right-hand
side of the equations). A more formal explanation of these equations is given at the end
of the proof of Proposition 4.5. The frequency of taking an action a is then encoded as xa,
and realisability of the solution by some strategy is ensured using Equations (4.4). Here
the meaning of the equations is that the frequency with which a state is entered must be
equal to the frequency with which it is left; this is formalised in Lemma 4.3.

As both directions of Theorem 4.1 are technically involved, we prove them separately
as Propositions 4.2 and 4.5.

Proposition 4.2. Every nonnegative solution of the system L of Figure 3 induces a 2-
memory stochastic-update strategy σ satisfying Eσ

s0
[lrinf(~r)] ≥ ~v.

Proof of Proposition 4.2. First, let us consider Equations (4.4) of L. Intuitively, this equa-
tion is solved by an “invariant” distribution on actions, i.e., each solution gives frequencies
of actions (up to a multiplicative constant) defined for all a ∈ A, s ∈ S, and σ ∈ Σ by

freq(σ, s, a) := lim
T→∞

1

T

T
∑

t=1

Pσ
s [At = a] ,

assuming that the defining limit exists (which might not be the case—cf. the proof of
Proposition 4.5). We prove the following:

Lemma 4.3. Assume that assigning (nonnegative) values x̄a to xa solves Equations (4.4).
Then there is a memoryless strategy ξ such that for every BSCCs D of Gξ, every s ∈ D∩S,
and every a ∈ D ∩ A, we have that freq(ξ, s, a) equals a common value freq(ξ,D, a) :=
x̄a/

∑

a′∈D∩A x̄a′ .

Proof. For all s ∈ S we set x̄s =
∑

b∈Act(s) x̄b and define ξ by ξ(s)(a) := x̄a

x̄s
if x̄s > 0, and

arbitrarily otherwise. We claim that the vector of values x̄s forms an invariant measure
of Gξ. Indeed, noting that

∑

a∈Act(s) ξ(s)(a) · δ(a)(s
′) is the probability of the transition
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s → s′ in Gξ :
∑

s∈S

x̄s ·
∑

a∈Act(s)

ξ(s)(a) · δ(a)(s′) =
∑

s∈S

∑

a∈Act(s)

x̄s ·
x̄a
x̄s

· δ(a)(s′)

=
∑

a∈A

x̄a · δ(a)(s
′)

=
∑

a∈Act(s′)

x̄a (By Equation 4.4)

= x̄s′ .

As a consequence, x̄s > 0 iff s lies in some BSCC of Gξ . Choose some BSCC D, and denote
by x̄D the number

∑

a∈D∩A x̄a =
∑

s∈D∩S x̄s. Also denote by Iat the indicator of At = a,
given by Iat = 1 if At = a and 0 otherwise. By the Ergodic theorem for finite Markov chains
(see, e.g. [15, Theorem 1.10.2]), for all s ∈ D ∩ S and a ∈ D ∩A we have

Eξ
s

[

lim
T→∞

1

T

T
∑

t=1

Iat

]

=
∑

s′∈D∩S

x̄s′

x̄D
· ξ(s′)(a) =

x̄s′

x̄D
·
x̄a
x̄s′

=
x̄a
x̄D

.

Because |Iat | ≤ 1, Lebesgue Dominated convergence theorem (see, e.g. [19, Chapter 4, Sec-

tion 4]) yields E
ξ
s

[

limT→∞
1
T

∑T
t=1 I

a
t

]

= limT→∞
1
T

∑T
t=1 E

ξ
s[Iat ] and thus freq(ξ, s, a) =

x̄a

x̄D
= freq(ξ,D, a). This finishes the proof of Lemma 4.3.

Assume that the system L is solved by assigning nonnegative values x̄a to xa and ȳχ
to yχ where χ ∈ A ∪ S. W.l.o.g. assume that ȳs = 0 for all states s not contained in any
MEC. Let ξ be the strategy of Lemma 4.3. Using Equations (4.1), (4.2), and (4.3), we will
define a 2-memory stochastic update strategy σ as follows. The strategy σ has two memory
elements, m1 andm2. A run of Gσ starts in s0 with a given distribution on memory elements
(see below). Then σ plays according to a suitable memoryless strategy (constructed below)
until the memory changes to m2, and then it starts behaving as ξ forever. Given a BSCC
D of Gξ, we denote by Pσ

s0
[switch to ξ in D] the probability that σ switches from m1 to m2

while in D. We construct σ so that

Pσ
s0
[switch to ξ in D] =

∑

a∈D∩A

x̄a . (4.6)

Then for all a ∈ D ∩ A we have freq(σ, s0, a) = Pσ
s0
[switch to ξ in D] · freq(ξ,D, a) = x̄a.

Finally, we obtain the following:

Eσ
s0
[lrinf(~ri)] =

∑

a∈A

~ri(a) · x̄a . (4.7)
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The equation can be derived as follows:

Eσ
s0
[lrinf(ri)] = Eσ

s0

[

lim inf
T→∞

1

T

T
∑

t=1

ri(At)

]

(definition)

= Eσ
s0

[

lim
T→∞

1

T

T
∑

t=1

ri(At)

]

(see below)

= lim
T→∞

1

T

T
∑

t=1

Eσ
s0
[ri(At)] (see below)

= lim
T→∞

1

T

T
∑

t=1

∑

a∈A

ri(a) · P
σ
s0
[At = a] (definition of expectation)

=
∑

a∈A

ri(a) · lim
T→∞

1

T

T
∑

t=1

Pσ
s0
[At = a] (linearity of the limit)

=
∑

a∈A

ri(a) · freq(σ, s0, a) (definition of freq(σ, s0, a))

=
∑

a∈A

ri(a) · x̄a. (freq(σ, s0, a) = x̄a)

The second equality follows from the fact that the limit is almost surely defined, fol-
lowing from the Ergodic theorem applied to the BSCCs of the finite Markov chain Gσ.
The third equality holds by Lebesgue Dominated convergence theorem, because |ri(At)| ≤
maxa∈A |ri(a)|.

Note that the right-hand side of Equation (4.7) is greater than or equal to ~vi by In-
equality (4.5) of L.

So, it remains to construct the strategy σ with the desired “switching” property ex-
pressed by Equations (4.6). Roughly speaking, we proceed in two steps.

1. We construct a finite-memory stochastic update strategy σ̄ satisfying Equations (4.6).
The strategy σ̄ is constructed so that it initially behaves as a certain finite-memory
stochastic update strategy, but eventually this mode is “switched” to the strategy ξ
which is followed forever.

2. The only problem with σ̄ is that it may use more than two memory elements in general.
This is solved by applying the results of [10] and reducing the “initial part” of σ̄ (i.e.,
the part before the switch) into a memoryless strategy. Thus, we transform σ̄ into an
“equivalent” strategy σ which is 2-memory stochastic update.

Now we elaborate the two steps.
Step 1. For every MEC C of G, we denote by yC the number

∑

s∈C ȳs =
∑

a∈A∩C x̄a.
By combining the solution of L with the results of Sections 3 and 5 of [10] one can construct
a finite-memory stochastic-update strategy ζ which stays eventually in each MEC C with
probability yC . Formally, the construction is captured in the following lemma.

Lemma 4.4. Consider numbers ȳχ for all χ ∈ S ∪ A such that the assignment yχ := ȳχ
is a part of some nonnegative solution to L. Then there is a finite-memory stochastic
update strategy ζ which, starting from s0, stays eventually in each MEC C with probability
yC :=

∑

s∈C ȳs.
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Proof. In order to be able to use results of [10, Section 3] we modify the MDP G and obtain
a new MDP G′ as follows: For each state s we add a new absorbing state, ds. The only
available action for ds leads to a loop transition back to ds with probability 1. We also add
a new action, ads , to every s ∈ S. The distribution associated with ads assigns probability 1
to ds.

Let us call K the set of constraints of the LP on Figure 3 in [10]. From the values ȳχ
we now construct a solution to K: for every state s ∈ S and every action a ∈ Act(s) we set
y(s,a) := ȳa, and y(s,ads) := ȳs. The values of the rest of variables in K are determined by the
second set of equations in K. The nonnegative constraints in K are satisfied since ȳχ are
nonnegative. Finally, the equations (4.1) from L imply that the first set of equations in K
are satisfied, because ȳχ are part of a solution to L.

By Theorem 3.2 of [10] we thus have a memoryless strategy ̺ for G′ which satisfies
Ps0
̺ [Reach(ds)] ≥ ys for all s ∈ S. The strategy ζ then mimics the behavior of ̺ until the

moment when ̺ chooses an action to enter some of the new absorbing states. From that
point on, ζ may choose some arbitrary fixed behavior to stay in the current MEC (note that
if the current state s is not included in any MEC, then ȳs = 0 and so the strategy ̺ would not
choose to enter the new absorbing state). As a consequence: Ps0

ζ [stay eventually in C] ≥ yC ,

and in fact, we get equality here, because of the equations (4.2) from L. Note that ζ only
needs a finite constant amount of memory.

The strategy σ̄ works as follows. For a run initiated in s0, the strategy σ̄ plays according
to ζ until a BSCC of Gζ is reached. This means that every possible continuation of the
path stays in the current MEC C of G. Assume that C has states s1, . . . , sk. We denote
by x̄s the sum

∑

a∈Act(s) x̄a. At this point, the strategy σ̄ changes its behavior as follows:

First, the strategy σ̄ strives to reach s1 with probability one. Upon reaching s1, it chooses

(randomly, with probability
x̄s1

yC
) either to behave as ξ forever, or to follow on to s2. If the

strategy σ̄ chooses to go on to s2, it strives to reach s2 with probability one. Upon reaching

s2, the strategy σ̄ chooses (randomly, with probability
x̄s2

yC−x̄s1
) either to behave as ξ forever,

or to follow on to s3, and so, till sk. That is, the probability of switching to ξ in si is
x̄si

yC−
∑i−1

j=1
x̄sj

.

Since ζ stays in a MEC C with probability yC , the probability that the strategy σ̄
switches to ξ in si is equal to x̄si . However, then for every BSCC D of Gξ satisfying
D∩C 6= ∅ (and thus D ⊆ C) we have that the strategy σ̄ switches to ξ in a state of D with
probability

∑

s∈D∩S x̄s =
∑

a∈D∩A x̄a. Hence, σ̄ satisfies Equations (4.6).
Step 2. Now we show how to reduce the first phase of σ̄ (before the switch to ξ) into

a memoryless strategy, using the results of [10, Section 3]. Unfortunately, these results are
not applicable directly. We need to modify the MDP G into a new MDP G′, same as we
did above: For each state s we add a new absorbing state, ds. The only available action for
ds leads to a loop transition back to ds with probability 1. We also add a new action, ads,
to every s ∈ S. The distribution associated with ads assigns probability 1 to ds.

Let us consider a finite-memory stochastic-update strategy, σ′, for G′ defined as follows.
The strategy σ′ behaves as σ̄ before the switch to ξ. Once σ̄ switches to ξ, say in a state
s of G with probability ps, the strategy σ′ chooses the action ads with probability ps. It
follows that the probability of σ̄ switching in s is equal to the probability of reaching ds in
G′ under σ′. By [10, Theorem 3.2], there is a memoryless strategy, σ′′, for G′ that reaches
ds with probability ps. We define σ in G to behave as σ′′ with the exception that, in every
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state s, instead of choosing an action ads with probability ps it switches to behave as ξ with
probability ps (which also means that the initial distribution on memory elements assigns
ps0 to m2). Then, clearly, σ satisfies Equations (4.6) because

Pσ
s0
[switch in D] =

∑

s∈D

Pσ′′

s0

[

fire ads

]

=
∑

s∈D

Pσ′

s0

[

fire ads

]

= Pσ̄
s0
[switch in D] =

∑

a∈D∩A

x̄a.

This concludes the proof of Proposition 4.2. �

Proposition 4.5. If ~v ∈ AcEx(lrinf(~r)), then L has a nonnegative solution.

Proof. Let ̺ ∈ Σ be a strategy such that E
̺
s0 [lrinf(~r)] ≥ ~v. In general, the frequencies

freq(̺, s0, a) of the actions may not be well defined, because the defining limits may not
exist. A crucial trick to overcome this difficulty is to pick suitable “related” values, f(a),

lying between lim infT→∞
1
T

∑T
t=1 P

̺
s0 [At = a] and lim supT→∞

1
T

∑T
t=1 P

̺
s0 [At = a], which

can be safely substituted for xa in L. Since every infinite sequence contains an infinite
convergent subsequence, there is an increasing sequence of indices, T0, T1, . . ., such that the
following limit exists for each action a ∈ A

f(a) := lim
ℓ→∞

1

Tℓ

Tℓ
∑

t=1

P̺
s0
[At = a] .

Setting xa := f(a) for all a ∈ A satisfies Inequalities (4.5) and Equations (4.4) of L. Indeed,
the former follows from E

̺
s0 [lrinf(~r)] ≥ ~v and the following inequality, which holds for all

1 ≤ i ≤ k:
∑

a∈A

~ri(a) · f(a) ≥ E̺
s0
[lrinf(~ri)] . (4.8)

The inequality follows from the following derivation:

∑

a∈A

ri(a) · f(a) =
∑

a∈A

ri(a) · lim
ℓ→∞

1

Tℓ

Tℓ
∑

t=1

P̺
s0
[At = a] (definition of f(a))

= lim
ℓ→∞

1

Tℓ

Tℓ
∑

t=1

∑

a∈A

ri(a) · P
̺
s0
[At = a] (linearity of the limit)

≥ lim inf
T→∞

1

T

T
∑

t=1

∑

a∈A

ri(a) · P
̺
s0
[At = a] (definition of lim inf)

≥ lim inf
T→∞

1

T

T
∑

t=1

E̺
s0
[ri(At)] (linearity of the expectation)

≥ E̺
s0
[lrinf(ri)] . (see below)

The last inequality is a consequence of Fatou’s lemma (see, e.g. [19, Chapter 4, Section 3]) –
although the function ri(At) may not be nonnegative, we can replace it with the nonnegative
function ri(At)−mina∈A ri(a) and add the subtracted constant afterwards.

To prove that Equations (4.4) are satisfied, it suffices to show that for all s ∈ S we have
∑

a∈A

f(a) · δ(a)(s) =
∑

a∈Act(s)

f(a). (4.9)
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This holds, because

∑

a∈A

f(a) · δ(a)(s) =
∑

a∈A

lim
ℓ→∞

1

Tℓ

Tℓ
∑

t=1

P̺
s0
[At = a] · δ(a)(s) (definition of f)

= lim
ℓ→∞

1

Tℓ

Tℓ
∑

t=1

∑

a∈A

P̺
s0
[At = a] · δ(a)(s) (linearity of the limit)

= lim
ℓ→∞

1

Tℓ

Tℓ
∑

t=1

P̺
s0
[St+1 = s] (definition of δ)

= lim
ℓ→∞

1

Tℓ

Tℓ
∑

t=1

P̺
s0
[St = s] (see below)

= lim
ℓ→∞

1

Tℓ

Tℓ
∑

t=1

∑

a∈Act(s)

P̺
s0
[At = a] (s must be followed by a ∈ Act(s))

=
∑

a∈Act(s)

lim
ℓ→∞

1

Tℓ

Tℓ
∑

t=1

P̺
s0
[At = a] (linearity of the limit)

=
∑

a∈Act(s)

f(a) . (definition of f)

The fourth equality follows from the following:

lim
ℓ→∞

1

Tℓ

Tℓ
∑

t=1

P̺
s0
[St+1 = s]− lim

ℓ→∞

1

Tℓ

Tℓ
∑

t=1

P̺
s0
[St = s] = lim

ℓ→∞

1

Tℓ

Tℓ
∑

t=1

(P̺
s0
[St+1 = s]− P̺

s0
[St = s])

= lim
ℓ→∞

1

Tℓ

(P̺
s0
[STℓ+1 = s]− P̺

s0
[S1 = s])

= 0.

Now we have to set the values for yχ, χ ∈ A ∪ S, and prove that they satisfy the rest
of L when the values f(a) are assigned to xa. Note that almost every run of G̺ eventually
stays in some MEC of G (cf., e.g., [9, Proposition 3.1]). For every MEC C of G, let yC be
the probability of all runs in G̺ that eventually stay in C. Note that

∑

a∈A∩C

f(a) =
∑

a∈A∩C

lim
ℓ→∞

1

Tℓ

Tℓ
∑

t=1

P̺
s0
[At = a]

= lim
ℓ→∞

1

Tℓ

Tℓ
∑

t=1

∑

a∈A∩C

P̺
s0
[At = a]

= lim
ℓ→∞

1

Tℓ

Tℓ
∑

t=1

P̺
s0
[At ∈ C] = yC .

(4.10)

Here the last equality follows from the fact that limℓ→∞ P
̺
s0 [ATℓ

∈ C] is equal to the proba-
bility of all runs in G̺ that eventually stay in C (recall that almost every run stays eventually
in a MEC of G) and the fact that the Cesàro sum of a convergent sequence is equal to the
limit of the sequence.
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To obtain ya and ys, we need to simplify the behavior of ̺ before reaching a MEC for
which we use the results of [10]. As in the proof of Proposition 4.2, we first need to modify
the MDP G into another MDP G′ as follows: For each state s we add a new absorbing state,
ds. The only available action for ds leads to a loop transition back to ds with probability 1.
We also add a new action, ads, to every s ∈ S. The distribution associated with ads assigns
probability 1 to ds. Using the results of [10], we prove the following lemma.

Lemma 4.6. The existence of a strategy ̺ satisfying E
̺
s0 [lrinf(~r)] ≥ ~v implies the existence

of a (possibly randomized) memoryless strategy ζ for G′ such that
∑

s∈C

Pζ
s0
[Reach(ds)] = yC . (4.11)

Proof. We give a proof by contradiction. Note that the proof structure is similar to the
proof of direction 3⇒1 of Theorem 3.2 in [10]. Let C1, . . . Cn be all MECs of G, and
let X ⊆ Rn be the set of all vectors (x1, . . . , xn) for which there is a strategy σ̄ in G′

such that Pσ̄
s0

[
⋃

s∈Ci
Reach(ds)

]

≥ xi for all 1 ≤ i ≤ n. For a contradiction, suppose
(yC1

, . . . , yCn) 6∈ X. By [10, Theorem 3.2] the set X can be described as a set of solutions of
a linear program, and hence it is convex. By the separating hyperplane theorem [2] there
are weights w1, . . . , wn such that

∑n
i=1 yCi

· wi >
∑n

i=1 xi · wi for every (x1, . . . , xn) ∈ X.
We define a reward function r by r(a) = wi for an action a from Ci, where 1 ≤ i ≤ n,

and r(a) = 0 for actions not in any MEC. Observe that the mean payoff of any run that
eventually stays in a MEC Ci is wi, and so the expected mean payoff w.r.t. r under ̺
is

∑n
i=1 yCi

· wi. Because memoryless deterministic strategies suffice for maximising the
(single-objective) expected mean payoff, there is also a memoryless deterministic strategy σ̂
for G that yields expected mean payoff w.r.t. r equal to z ≥

∑n
i=1 yCi

· wi. We now define
a strategy σ̄ for G′ to mimic σ̂ until a BSCC is reached, and when a BSCC is reached, say
along a path w, the strategy σ̄ takes the action ad

last(w). Let xi = Pσ̄
s0

[
⋃

s∈Ci
Reach(ds)

]

.

Due to the construction of σ̄ we have xi is equal to the probability of runs that eventually
stay in Ci under σ̂: this follows because once a BSCC is reached on a path w, every run
ω extending w has an infinite suffix containing only states from the MEC containing the
state last(w). Hence

∑n
i=1 xi ·wi = z. However, by the choice of the weights wi we get that

(x1, . . . , xn) 6∈ X, and hence a contradiction, because σ̄ witnesses that (x1, . . . , xn) ∈ X.
Hence, we have obtained that there is some (possibly memory-dependent) strategy ζ,

and using [10, Theorem 3.2] we get that there also is a memoryless strategy ζ with the
required properties. This completes the proof of Lemma 4.6.

We now proceed with the proof of Proposition 4.5. Let Ua be a function over the runs
in G′ returning the (possibly infinite) number of times the action a is used. We are now
ready to define the assignment for the variables yχ of L.

ya := Eζ
s0
[Ua] for all a ∈ A

ys := Eζ
s0

[

Uads

]

= Pζ
s0
[Reach(ds)] for all s ∈ S.

Note that [10, Lemma 3.3] ensures that all ya and ys are indeed well-defined finite values,
and satisfy Equations (4.1) of L. Equations (4.3) of L are satisfied due to Equations (4.11)
and (4.10). Equations (4.11) together with

∑

a∈A∩C f(a)=1 imply Equations (4.2) of L.
This completes the proof of Proposition 4.5.
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The item A.1 in Section 3.1 follows directly from Theorem 4.1. Let us analyze A.2.
Suppose ~v is a point of the Pareto curve. Consider the system L′ of linear inequalities
obtained from L by replacing constants ~vi in Inequalities (4.5) with new variables zi. Let
Q ⊆ Rn be the projection of the set of solutions of L′ to z1, . . . , zn. From Theorem 4.1 and
the definition of Pareto curve, the (Euclidean) distance of ~v to Q is 0. Because the set of
solutions of L′ is a closed set, Q is also closed and thus ~v ∈ Q. This gives us a solution to L
with variables zi having values ~vi, and we can use Theorem 4.1 to get a strategy witnessing
that ~v ∈ AcEx(lrinf(~r)).

Now consider the items A.3 and A.4. The system L is linear, and hence the problem
whether ~v ∈ AcEx(lrinf(~r)) is decidable in polynomial time by employing polynomial-time
algorithms for linear programming. A 2-memory stochastic-update strategy σ satisfying
Eσ
s [lrinf(~r)] ≥ ~v can be computed as follows (note that the proof of Proposition 4.2 is not fully

constructive, so we cannot apply this proposition immediately). First, we find a solution of
the system L, and we denote by x̄a the value assigned to xa. Let (T1, B1), . . . , (Tn, Bn) be
the end components such that a ∈

⋃n
i=1 Bi iff x̄a > 0, and T1, . . . , Tn are pairwise disjoint.

We construct another system of linear inequalities consisting of Equations (1) of L and the
equations

∑

s∈Ti
ys =

∑

s∈Ti

∑

a∈Act(s) x̄a for all 1 ≤ i ≤ n. Due to [10], there is a solution

to this system iff in the MDP G′ from the proof of Proposition 4.2 there is a strategy that
for every i reaches ds for s ∈ Ti with probability

∑

s∈Ti

∑

a∈Act(s) x̄a. Such a strategy indeed

exists (consider, e.g., the strategy σ′ from the proof of Proposition 4.2). Thus, there is a
solution to the above system and we can denote by ŷs and ŷa the values assigned to ys and
ya. We define σ by

σn(s,m1)(a) = ȳa/
∑

a′∈Act(s) ȳa′

σn(s,m2)(a) = x̄a/
∑

a′∈Act(s) x̄a′

and further σu(a, s,m1)(m2)=ys, σu(a, s,m2)(m2)=1, and the initial memory distribution
assigns (1− ys0) and ys0 to m1 and m2, respectively. Due to [10] we have

Pσ
s0
[change memory to m2 in s] = ŷs,

and the rest follows similarly as in the proof of Proposition 4.2.
The item A.5 can be proved as follows: To test that ~v ∈ AcEx(lrinf(~r)) lies in the Pareto

curve we turn the system L into a linear program LP by adding the objective to maximize
∑

1≤i≤k

∑

a∈A xa · ~ri(a). Then we check that there is no better solution than
∑

1≤i≤k ~vi.

Finally, the item A.6 is obtained by considering the system L′ above and computing all
exponentially many vertices of the polytope of all solutions. Then we compute projections of
these vertices onto the dimensions z1, . . . , zn and retrieve all the maximal vertices. Moreover,
if for every ~v ∈ {ℓ · ε | ℓ ∈ Z∧−Mr ≤ ℓ · ε ≤ Mr}

k where Mr = maxa∈Amax1≤i≤k |~ri(a)| we
decide whether ~v ∈ AcEx(lrinf(~r)), we can easily construct an ε-approximate Pareto curve.

4.1. Deterministic-update Strategies for Expectation Objectives. We now show
that for expectation objectives, finite-memory deterministic update strategies suffice. This
is captured in the following proposition.

Proposition 4.7. Every nonnegative solution of the system L induces a finite-memory
deterministic-update strategy σ satisfying Eσ

s0
[lrinf(~r)] ≥ ~v.

Proof. The proof proceeds almost identically to the proof of Proposition 4.2. Let us recall
the important steps from that proof first. There we worked with the numbers x̄a, a ∈ A,
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which, assigned to the variables xa, formed a part of the solution to L. We also worked
with two important strategies. The first one, a finite-memory deterministic-update strategy
ζ, made sure that, starting in s0, a run stays in a MEC C forever with probability yC =
∑

a∈A∩C x̄a. The second one, a memoryless strategy σ′, had the property that when the

starting distribution was α(s) := x̄s =
∑

a∈Act(s) x̄a then Eσ′

α [lrinf(~r)] ≥ ~v. 1 To produce

the promised finite-memory deterministic-update strategy σ we now have to combine the
strategies ζ and σ′ using only deterministic memory updates.

We now define the strategy σ. It works in three phases. First, it reaches every MEC C
and stays in it with the probability yC . Second, it prepares the distribution α, and finally
third, it switches to σ′. It is clear how the strategy is defined in the third phase. As for the
first phase, this is also identical to what we did in the proof of Proposition 4.2 for σ̄: The
strategy σ follows the strategy ζ from beginning until in the associated finite state Markov
chain Gζ a bottom strongly connected component (BSCC) is reached. At that point the run
has already entered its final MEC C to stay in it forever, which happens with probability
yC .

The last thing to solve is thus the second phase. Two cases may occur. Either there
is a state s ∈ C such that |Act(s) ∩ C| > 1, i.e., there are at least two actions the strategy
can take from s without leaving C. Let us denote these actions a and b. Consider an
enumeration C = {s1, . . . , sk} of vertices of C. Now we define the second phase of σ when
in C. We start with defining the memory used in the second phase. We symbolically
represent the possible contents of the memory as {Wait1, . . . ,Waitk,Switch1, . . . ,Switchk}.
The second phase then starts with the memory set to Wait1. Generally, if the memory is
set to Waiti then σ aims at reaching s with probability 1. This is possible (since s is in
the same MEC) and it is a well known fact that it can be done without using memory. On

visiting s, the strategy chooses the action a with probability x̄si/(yC −
∑i−1

j=1 x̄sj ) and the
action b with the remaining probability. In the next step the deterministic update function
sets the memory either to Switchi or Waiti+1, depending on whether the last action seen
is a or b, respectively. (Observe that if i = k then the probability of taking b is 0.) The
memory set to Switchi means that the strategy aims at reaching si almost surely, and upon
doing so, the strategy switches to the third phase, following σ′. It is easy to observe that on
the condition of staying in C the probability of switching to the third phase in some si ∈ C
is x̄si/yC , thus the unconditioned probability of doing so is x̄si , as desired.

The remaining case to solve is when |Act(s)∩C| = 1 for all s ∈ C. But then switching
to the third phase is solved trivially with the right probabilities, because staying in C
inevitably already means mimicking σ′.

5. Solution for Satisfaction Objectives

In this section we prove the items B.1–B.6 of Section 3.2. Let us fix an MDP G, a vector
of rewards, ~r = (r1, . . . , rk), and an initial state s0. We start by assuming that the MDP G
is strongly connected (i.e., (S,A) is an end component).

Proposition 5.1. Assume that G is strongly connected and that there is a strategy π such
that Pπ

s0
[lrinf(~r) ≥ ~v] > 0. Then the following is true.

1Here we extend the notation in a straightforward way from a single initial state to a general initial
distribution, α.
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1. There is a strategy ξ satisfying P
ξ
s[lrinf(~r) ≥ ~v] = 1 for all s ∈ S.

2. For each ε>0 there is a memoryless randomized strategy ξε that for all s ∈ S satisfies

P
ξε
s [lrinf(~r) ≥ ~v − ~ε] = 1.

Moreover, the problem whether there is some π such that Pπ
s0
[lrinf(~r) ≥ ~v] > 0 is decidable

in polynomial time. Strategies ξε are computable in time polynomial in the size of G, the
size of the binary representation of ~r, and 1

ε
.

Proof. By [6, 13] we get that Pπ
s0
[lrinf(~r) ≥ ~v] > 0 implies that there is a strategy ξ such

that P
ξ
s0 [lrinf(~r) ≥ ~v] = 1: Since lrinf(~r) ≥ ~v is a tail or prefix-independent function, it

follows from the results of [6] that if Pπ
s0
[lrinf(~r) ≥ ~v] > 0, then there exists a state s in the

MDP with value 1, i.e., there exists s such that supπ P
π
s [lrinf(~r) ≥ ~v] = 1. It follows from

the results of [13] that in MDPs with tail functions, optimal strategies exist and thus it
follows that there exist a strategy π1 from s such that Pπ1

s [lrinf(~r) ≥ ~v] = 1. Since the MDP
is strongly connected, the state s can be reached with probability 1 from s0 by a strategy π2.
Hence the strategy π2, followed by the strategy π1 after reaching s, is the witness strategy
π′ such that Pπ′

s0
[lrinf(~r) ≥ ~v] = 1.

This gives us item 1. of Proposition 5.1 and also immediately implies ~v ∈ AcEx(lrinf(~r)).
It follows that there are nonnegative values x̄a for all a ∈ A such that assigning x̄a to xa
solves Equations (4.4) and (4.5) of the system L (see Figure 3). Let us assume, w.l.o.g.,
that

∑

a∈A x̄a = 1.
Lemma 4.3 gives us a memoryless randomized strategy ζ such that for all BSCCs D of

Gζ , all s ∈ D ∩ S and all a ∈ D ∩A we have that freq(ζ, s, a) = x̄a∑
a∈D∩A x̄a

. We denote by

freq(ζ,D, a) the value x̄a∑
a∈D∩A x̄a

.

Now we are ready to prove the item 2 of Proposition 5.1. Let us fix ε > 0. We
obtain ξε by a suitable perturbation of the strategy ζ in such a way that all actions get
positive probabilities and the frequencies of actions change only slightly. There exists an
arbitrarily small (strictly) positive solution x′a of Equations (4.4) of the system L (it suffices
to consider a strategy τ which always takes the uniform distribution over the actions in
every state and then assign freq(τ, s0, a)/N to xa for sufficiently large N). As the system
of Equations (4.4) is linear and homogeneous, assigning x̄a + x′a to xa also solves this
system and Lemma 4.3 gives us a strategy ξε satisfying freq(ξε, s0, a) = (x̄a + x′a)/X where
X =

∑

a′∈A x̄a′ + x′a′ = 1+
∑

a′∈A x′a′ . We may safely assume that
∑

a′∈A x′a′ ≤
ε

2·Mr
where

Mr = maxa∈Amax1≤i≤k |~ri(a)|. Thus, we obtain
∑

a∈A

freq(ξε, s0, a) · ~ri(a) ≥ ~vi − ε (5.1)
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by the following sequence of (in)equalities.
∑

a∈A

freq(ξε, s0, a) · ~ri(a)

=
∑

a∈A

x̄a + x′

a

X
· ~ri(a) (def)

=
1

X
·
∑

a∈A

x̄a · ~ri(a) +
1

X
·
∑

a∈A

x′

a · ~ri(a) (rearranging)

=
(

∑

a∈A

x̄a · ~ri(a) +
1−X

X
·
∑

a∈A

x̄a · ~ri(a)
)

+
1

X
·
∑

a∈A

x′

a · ~ri(a) (rearranging)

≥
∑

a∈A

x̄a · ~ri(a)−
∣

∣

∣

1−X

X
·
∑

a∈A

x̄a · ~ri(a)
∣

∣

∣
−
∣

∣

∣

1

X
·
∑

a∈A

x′

a · ~ri(a)
∣

∣

∣
(property of abs. value)

≥
∑

a∈A

x̄a · ~ri(a)−
(
∣

∣

∣
(1−X) ·

∑

a∈A

x̄a · ~ri(a)
∣

∣

∣
+
∣

∣

∣

∑

a∈A

x′

a · ~ri(a)
∣

∣

∣

)

(from X > 1)

≥
∑

a∈A

x̄a · ~ri(a)−
(

(1−X) ·
∑

a∈A

x̄a · |~ri(a)|+
∑

a∈A

x′

a · |~ri(a)|
)

(prop. of |·| and X > 1)

≥
∑

a∈A

x̄a · ~ri(a)−
(

(1−X) ·Mr +
∑

a∈A

x′

a ·Mr

)

(property of Mr)

≥
∑

a∈A

x̄a · ~ri(a)−

(

(

∑

a∈A

x′

a

)

·Mr +
(

∑

a∈A

x′

a

)

·Mr

)

(property of X and rearranging)

=
∑

a∈A

x̄a · ~ri(a)− 2 ·
(

∑

a∈A

x′

a

)

·Mr (rearranging)

≥ ~vi − 2 ·
(

∑

a∈A

x′

a

)

·Mr (property of ~v)

≥ ~vi − ε (property of ε)

As Gξε is strongly connected, almost all runs ω of Gξε initiated in s0 satisfy

lrinf(~r)(ω) =
∑

a∈A

freq(ξε, s0, a) · ~r(a) ≥ ~v − ~ε.

This finishes the proof of item 2.
Concerning the complexity of computing ξε, note that the binary representation of every

coefficient in L has only polynomial length. As x̄a’s are obtained as a solution of (a part of)
L, standard results from linear programming imply that each x̄a has a binary representation
computable in polynomial time. The numbers x′a are also obtained by solving a part of L
and restricted by

∣

∣

∑

a′∈A x′a′
∣

∣ ≤ ε
2·Mr

which allows to compute a binary representation of

x′a in polynomial time. The strategy ξε, defined in the proof of Proposition 5.1, assigns to
each action only small arithmetic expressions over x̄a and x′a. Hence, ξε is computable in
polynomial time.

To prove that the problem whether there is some ξ such that P
ξ
s0 [lrinf(~r) ≥ ~v] > 0 is

decidable in polynomial time, we show that whenever ~v ∈ AcEx(lrinf(~r)), then (1, ~v) ∈
AcSt(lrinf(~r)). This gives us a polynomial-time algorithm by applying Theorem 4.1. Let

~v ∈ AcEx(lrinf(~r)). We show that there is a strategy ξ such that Pξ
s[lrinf(~r) ≥ ~v] = 1.
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Since ~v ∈ AcEx(lrinf(~r)), there are nonnegative rational values x̄a for all a ∈ A such
that assigning x̄a to xa solves Equations (4.4) and (4.5) of the system L. Assume, without
loss of generality, that

∑

a∈A x̄a = 1.
Given a ∈ A, let Ia : A → {0, 1} be a function given by Ia(a) = 1 and Ia(b) = 0 for

all b 6= a. For every i ∈ N, we denote by ξi a memoryless randomized strategy satisfying

P
ξi
s

[

lrinf(Ia) ≥ x̄a − 2−i−1
]

= 1. Note that for every i ∈ N there is κi ∈ N such that for all
a ∈ A and s ∈ S we get

Pξi
s

[

inf
T≥κi

1

T

T
∑

t=0

Ia(At) ≥ x̄a − 2−i

]

≥ 1− 2−i.

Now let us consider a sequence n0, n1, . . . of numbers where ni ≥ κi and
∑

j<i nj

ni
≤ 2−i and

κi+1

ni
≤ 2−i. We define ξ to behave as ξ1 for the first n1 steps, then as ξ2 for the next n2

steps, then as ξ3 for the next n3 steps, etc. In general, denoting by Ni the sum
∑

j<i nj, the

strategy ξ behaves as ξi between the Ni’th step (inclusive) and Ni+1’th step (non-inclusive).
Let us give some intuition behind ξ. The numbers in the sequence n0, n1, . . . grow

rapidly so that after ξi is simulated for ni steps, the part of the history when ξj for j < i
were simulated becomes relatively small and has only minor impact on the current average

reward (this is ensured by the condition
∑

j<i nj

ni
≤ 2−i). This gives us that almost every

run has infinitely many prefixes on which the average reward w.r.t. Ia is arbitrarily close
to x̄a infinitely often. To get that x̄a is also the limit-average reward, one only needs to be
careful when the strategy ξ ends behaving as ξi and starts behaving as ξi+1, because then
up to the κi+1 steps we have no guarantee that the average reward is close to x̄a. This
part is taken care of by picking ni so large that the contribution (to the average reward)
of the ni steps according to ξi prevails over fluctuations introduced by the first κi+1 steps
according to ξi+1 (this is ensured by the condition

κi+1

ni
≤ 2−i).

Let us now prove the correctness of the definition of ξ formally. We prove that almost
all runs ω of Gξ satisfy

lim inf
T→∞

1

T

T
∑

t=0

Ia(At(ω)) ≥ x̄a.

Denote by Ei the set of all runs ω = s0a0s1a1 . . . of G
ξ such that for some κi ≤ d ≤ ni we

have

1

d

Ni+d
∑

j=Ni

Ia(aj) < x̄a − 2−i.

We have P
ξ
s0 [Ei] ≤ 2−i and thus

∑∞
i=1 P

ξ
s0 [Ei] =

1
2 < ∞. By Borel-Cantelli lemma [19],

almost surely only finitely many of Ei take place. Thus, almost every run ω = s0a0s1a1 . . .
of Gξ satisfies the following: there is ℓ such that for all i ≥ ℓ and all κi ≤ d ≤ ni we have
that

1

d

Ni+d
∑

j=Ni

Ia(aj) ≥ x̄a − 2−i.

Consider T ∈ N such that Ni ≤ T < Ni+1 where i > ℓ. We need the following inequality

1

T

T
∑

t=0

Ia(at) ≥ (x̄a − 2−i)(1 − 21−i) (5.2)
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which can be proved as follows. First, note that

1

T

T
∑

t=0

Ia(at) ≥
1

T

Ni−1
∑

t=Ni−1

Ia(at) +
1

T

T
∑

t=Ni

Ia(at)

and that

1

T

Ni−1
∑

t=Ni−1

Ia(at) =
1

ni

Ni−1
∑

t=Ni−1

Ia(at) ·
ni

T
≥ (x̄a − 2−i)

ni

T

which gives

1

T

T
∑

t=0

Ia(at) ≥ (x̄a − 2−i)
ni

T
+

1

T

T
∑

t=Ni

Ia(at). (5.3)

Now, we distinguish two cases. First, if T −Ni ≤ κi+1, then

ni

T
≥

ni

Ni−1 + ni + κi+1
= 1−

Ni−1 + κi+1

Ni−1 + ni + κi+1
≥ (1− 21−i)

and thus, by Equation (5.3),

1

T

T
∑

t=0

Ia(at) ≥ (x̄a − 2−i)(1− 21−i).

Second, if T −Ni ≥ κi+1, then

1

T

T
∑

t=Ni+1

Ia(at) =
1

T −Ni

T
∑

t=Ni+1

Ia(at) ·
T −Ni

T

≥ (x̄a − 2−i−1)

(

1−
Ni−1 + ni

T

)

≥ (x̄a − 2−i−1)
(

1− 2−i −
ni

T

)

and thus, by Equation (5.3),

1

T

T
∑

t=0

Ia(at) ≥ (x̄a − 2−i)
ni

T
+ (x̄a − 2−i−1)

(

1− 2−i −
ni

T

)

≥ (x̄a − 2−i)
(ni

T
+

(

1− 2−i −
ni

T

))

≥ (x̄a − 2−i)(1− 2−i)

which finishes the proof of Equation (5.2).
Since the sum in Equation (5.2) converges to x̄a as i (and thus also T ) goes to ∞, we

obtain

lim inf
T→∞

1

T

T
∑

t=0

Ia(at) ≥ x̄a.
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s1 s2
a1

a2b1 b2

Figure 4. MDP showing the need of infinite memory.

The strategy ξ from the proof of Proposition 5.1 required infinite memory. We show
that this may indeed be necessary, i.e. it can be the case that (ν,~v) ∈ AcSt(lrinf(~r)) although
there is no finite-memory strategy σ satisfying Pσ

s [lrinf(~r) ≥ ~v] > ν (and in fact not even
finite-memory strategy satisfying Pσ

s [lrinf(~r) ≥ ~v] > 0). Consider the MDP from Figure 4,
where the reward function ri (for i ∈ {1, 2}) returns 1 for bi and 0 for all other actions.
Let s1 be the initial vertex. It is easy to see that (0.5, 0.5) ∈ AcEx(lrinf(~r)): consider for
example a strategy that first chooses both available actions in s1 with uniform probabilities,
and in subsequent steps chooses self-loops on s1 or s2 deterministically. From the results
presented above we subsequently get that (1, 0.5, 0.5) ∈ AcSt(lrinf(~r)).

On the other hand, let σ be arbitrary finite-memory strategy. The Markov chain it
induces is by definition finite and for each of its BSCC C we have the following. One of the
following then takes place:

• C contains both s1 and s2. Then by Ergodic theorem for almost every run ω we have
lrinf(Ia1)(ω) + lrinf(Ia2)(ω) > 0, which means that lrinf(Ib1)(ω) + lrinf(Ib2)(ω) < 1, and
thus necessarily lrinf(~r)(ω) 6≥ (0.5, 0.5).

• C contains only the state s1 (resp. s2), in which case all runs that enter it satisfy
lrinf(~r)(ω) = (1, 0) (resp. lrinf(~r)(ω) = (0, 1)).

From the basic results of the theory of Markov chains we get Pσ
s1
[lrinf(~r) ≥ (0.5, 0.5)] = 0.

It is also easy to prove that ε-optimal strategies are not necessarily memoryless pure,
as the following lemma shows.

Lemma 5.2. There is an MDP G a vector of reward functions ~r = (r1, r2), a number
ε > 0 and a vector (ν,~v) ∈ AcSt(lrinf(~r)) such that there is no memoryless-pure strategy σ
satisfying Pσ

s [lrinf(~r) ≥ ~v − ~ε] > ν − ~ε.

Proof. We can reuse G and ~r showing the need of infinite memory for optimal strategies. We
let ν = 1 and ~v = (0.5, 0.5). We have shown that (ν,~v) ∈ AcSt(lrinf(~r)). Taking e.g. ε = 0.1,
it is a trivial observation that no memoryless pure strategy satisfies Pσ

s [lrinf(~r) ≥ ~v − ~ε] >
ν − ~ε.

We are now ready to prove the items B.1, B.3 and B.4. Let C1, . . . , Cℓ be all MECs of
G. We say that a MEC Ci is good for ~v if there is a state s of Ci and a strategy π satisfying
Pπ
s [lrinf(~r) ≥ ~v] > 0 that never leaves Ci when starting in s. Using Proposition 5.1, we can

decide in polynomial time whether a given MEC is good for a given ~v. Let C be the union of
all MECs good for ~v. Then, by Proposition 5.1, there is a strategy ξ such that for all s ∈ C

we have P
ξ
s[lrinf(~r) ≥ ~v] = 1 and for each ε > 0 there is a memoryless randomized strategy

ξε, computable in polynomial time, such that for all s ∈ C we have P
ξε
s0 [lrinf(~r) ≥ ~v − ~ε] = 1.

Consider a strategy τ , computable in polynomial time, which maximizes the probability
of reaching C. Denote by σ a strategy which behaves as τ before reaching C and as ξ
afterwards. Similarly, denote by σε a strategy which behaves as τ before reaching C and as
ξε afterwards. Note that σε is computable in polynomial time.
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Clearly, (ν,~v) ∈ AcSt(lrinf(~r)) iff Pτ
s0
[Reach(C)] ≥ ν because σ achieves ~v with probabil-

ity Pτ
s0
[Reach(C)]. Thus, we obtain that ν ≤ Pτ

s0
[Reach(C)] ≤ P

ξε
s0 [lrinf(~r) ≥ ~v − ~ε].

Finally, in order to decide whether (ν,~v) ∈ AcSt(lrinf(~r)), it suffices to decide whether
Pτ
s0
[Reach(C)] ≥ ν in polynomial time.
Now we prove item B.2. Suppose (ν,~v) is a vector of the Pareto curve. We let C be

the union of all MECs good for ~v. Recall that the Pareto curve constructed for expectation
objectives is achievable (item A.2). Due to the correspondence between AcSt and AcEx

in strongly connected MDPs we obtain the following. There is λ > 0 such that for every
MEC D not contained in C, every s ∈ D, and every strategy σ that does not leave D, it is
possible to have Pσ

s [lrinf(~r) ≥ ~u] > 0 only if there is i such that ~vi − ~ui ≥ λ, i.e., when ~v is
greater than ~u by λ in some component. Thus, for every ε < λ and every strategy σ such
that Pσ

s0
[lrinf(~r) ≥ ~v − ~ε] ≥ ν − ε it must be the case that Pσ

s0
[Reach(C)] ≥ ν − ε. Because

for single objective reachability the optimal strategies exist, we get that there is a strategy
τ satisfying Pτ

s0
[Reach(C)] ≥ ν, and by using methods similar to the ones of the previous

paragraphs we obtain (ν,~v) ∈ AcSt(lrinf(~r)).
The polynomial-time algorithm mentioned in item B.5 works as follows. First check

whether (ν,~v) ∈ AcSt(lrinf(~r)) and if not, return “no”. Otherwise, find all MECs good
for ~v and compute the maximal probability of reaching them from the initial state. If the
probability is strictly greater than ν, return “no”. Otherwise, continue by performing the
following procedure for every 1 ≤ i ≤ k, where k is the dimension of ~v: Find all MECs C
for which there is ε > 0 such that C is good for ~u, where ~u is obtained from ~v by increasing
the i-th component by ε (this can be done in polynomial time using linear programming).
Compute the maximal probability of reaching these MECs. If for any i the probability is
at least ν, return “no”, otherwise return “yes”.

The first claim of B.6 follows from Running example (II). We prove that the set N :=
{ν | (ν,~v) ∈ P}, where P is the Pareto curve for AcSt(lrinf(~r)), is indeed finite. As we already
showed, for every fixed ~v there is a union C of MECs good for ~v, and (ν,~v) ∈ AcSt(lrinf(~r))

iff the C can be reached with probability at least ν. Hence |N | ≤ 2|G|, because the latter is
an upper bound on a number of unions of MECs in G.

To prove the other claims, let N be the set {ν | (ν,~v) ∈ P} where P is the Pareto curve
for AcSt(lrinf(~r)).

Let us consider a fixed ν ∈ N . This gives us a collection R(ν) of all unions C of MECs
which can be reached with probability at least ν. For a MEC C let Sol(C) be the set
AcEx(lrinf(~r)) of the MDP given by restricting G to C. Further, for every C ∈ R(ν) we set
Sol(C) :=

⋂

C∈C Sol(C). Finally, Sol(R(ν)) :=
⋃

C∈R(ν) Sol(C). From the analysis above we

already know that Sol(R(ν)) = {~v | (ν,~v) ∈ AcSt(lrinf(~r)}. As a consequence, (ν,~v) ∈ P iff
ν ∈ N and ~v is maximal in Sol(R(ν)) and ~v /∈ Sol(R(ν ′)) for any ν ′ ∈ N, ν ′ > ν. In other
words, P is also the Pareto curve of the set Q := {(ν,~v) | ν ∈ N,~v ∈ Sol(R(ν))}. Observe
that Q is a finite union of downward closures of bounded convex polytopes, because every
Sol(C) is a bounded convex polytope. Finally, observe that N can be computed using the
algorithms for optimizing single-objective reachability. Further, the inequalities defining
Sol(C) can also be computed using our results on AcEx. By a generalised convex polytope
we denote a set of points described by a finite conjunction of linear inequalities, which may
be both strict and non-strict.
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Claim 5.3. Let X be a generalised convex polytope. The smallest convex polytope con-
taining X is its closure, cl(X). Moreover, the set cl(X) \X is a union of some of the facets
of cl(X).

Proof. Let I by the set of inequalities defining X, and denote by I ′ the modification of this
set where all the inequalities are transformed to non-strict ones. The closure cl(X) indeed
is a convex polytope, as it is described by I ′. Since every convex polytope is closed, if it
contains X then it must contain also its closure. Thus cl(X) is the smallest one containing
X. Let α < β be a strict inequality from I. By I ′(α = β) we denote the set I ′ ∪ {α = β}.
The points of cl(X)\X form a union of convex polytopes, each one given by the set I ′(α = β)
for some α < β ∈ I. Thus, it is a union of facets of cl(X).

The following lemma now finishes the proof of B.6:

Lemma 5.4. Let Q be a finite union of bounded convex polytopes, Q1, . . . , Qm. Then
its Pareto curve P is a finite union of bounded generalised convex polytopes, P1, . . . , Pn.
Moreover, if the inequalities describing Qi are given, then the inequalities describing Pi can
be computed.

Proof. We proceed by induction on the number m of components of Q. If m = 0 then
P = ∅ is clearly a bounded convex polytope easily described by arbitrary two incompatible
inequalities. For m ≥ 1 we denote set Q′ :=

⋃m−1
i=1 Qi. By the induction hypothesis,

the Pareto curve of Q′ is some P ′ :=
⋃n′

i=1 Pi where every Pi, 1 ≤ i ≤ n′ is a bounded
generalised convex polytope, described by some set of linear inequalities. Denote by dom(X)
the (downward closed) set of all points dominated by some point of X. Observe that P ,
the Pareto curve of Q, is the union of all points which either are maximal in Qm and do
not belong to dom(P ′) (observe that dom(P ′) = dom(Q′)), or are in P ′ and do not belong
to dom(Qm). In symbols:

P = (maximal from Qm \ dom(P ′)) ∪ (P ′ \ dom(Qm)).

The set dom(P ′) of all ~x for which there is some ~y ∈ P ′ such that ~y ≥ ~x is a union of projec-
tions of generalised convex polytopes – just add the inequalities from the definition of each Pi

instantiated with ~y to the inequality ~y ≥ ~x, and remove ~x by projecting. Thus, dom(P ′) is a
union of generalised convex polytopes itself. A difference of two generalised convex polytopes
is a union of generalised convex polytopes. Thus the set “maximal from Qm \dom(P ′)” is a
union of generalised bounded convex polytopes, and for the same reasons so is P ′\dom(Qm).

Finally, let us show how to compute P . This amounts to computing the projection,
and the set difference. For convex polytopes, efficient computing of projections is a problem
studied since the 19th century. One of possible approaches, non-optimal from the complexity
point of view, but easy to explain, is by traversing the vertices of the convex polytope and
projecting them individually, and then taking the convex hull of those vertices. To compute
a projection of a generalised convex polytope X, we first take its closure cl(X), and project
the closure. Then we traverse all the facets of the projection and mark every facet to which
at least one point of X projected. This can be verified by testing whether the inequalities
defining the facet in conjunction with the inequalities defining X have a solution. Finally,
we remove from the projection all facets which are not marked. Due to Claim 5.3, the
difference of the projection of cl(X) and the projection of X is a union of facets. Every
facet from the difference has the property that no point from X is projected to it. Thus we
obtained the projection of X.
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Computing the set difference of two bounded generalised convex polytopes is easier:
Consider we have two polytopes, given by sets I1 and I2 of inequalities. Then subtracting
the second generalised convex polytope from the first is the union of generalised polytopes
given by the inequalities I1 ∪ {α ⊀ β}, where α ≺ β ranges over all inequalities (strict or
non-strict) in I2.

6. A Note on Equivalence of Definitions of Strategies

In this section we argue that the definitions of strategies as functions (SA)∗S → dist(A)
and as triples (σu, σn, α) are interchangeable.

Note that formally a strategy π : (SA)∗S → dist(A) gives rise to a Markov chain

Gπ with states (SA)∗S and transitions w
σ(w)(a)·δ(a)(s)

→ was for all w ∈ (SA)∗S, a ∈ A
and s ∈ S. Given σ = (σu, σn, α) and a run w = (s0,m0, a0)(s1,m1, a1) . . . of G

σ denote
w[i] = s0a0s1a1 . . . si−1ai−1si. We define f(w) = w[0]w[1]w[2] . . ..

We need to show that for every strategy σ = (σu, σn, α) there is a strategy π : (SA)∗S →
dist(A) (and vice versa) such that for every set of runs W of Gπ we have Pσ

s0

[

f−1(W )
]

=
Pπ
s0
[W ]. We only present the construction of strategies and basic arguments, the technical

part of the proof is straightforward.
Given π : (SA)∗S → dist(A), one can easily define a deterministic-update strategy

σ = (σu, σn, α) which uses memory (SA)∗S. The initial memory element is the initial state
s0, the next move function is defined by σ(s,w) = π(w), and the memory update function
σu is defined by σu(a, s, w) = was. Reader can observe that there is a naturally defined
bijection between runs in Gπ and in Gσ, and that this bijection preserves probabilities of
sets of runs.

In the opposite direction, given σ = (σu, σn, α), we define π : (SA)∗S → dist(A) as
follows. Given w = s0a0 . . . sn−1an−1sn ∈ (SA)∗S and a ∈ A, we denote by Uw

a the set of
all paths in Gσ that have the form

(s0,m0, a0)(s1,m1, a1) . . . (sn−1,mn−1, an1
)(sn,mn, a)

for some m1, . . . mn. We put π(w)(a) =
Pσ
s0
[Uw

a ]
∑

a′∈A Pσ
s0
[Uw

a′
]
. The key observation for the proof of

correctness of this construction is that the probability of Uw
a in Gσ is equal to probability

of taking a path w and then an action a in Gπ.

7. Conclusions

In this paper we have studied the problem of determining whether for a given MDP there
exists a strategy achieving a certain value in each of multiple given limit-average objective
functions. We have concentrated on two different interpretations of the functions, namely
the expectation objectives and satisfaction objectives, and provided algorithms solving the
problem.

The next step in this line of research is to implement and evaluate the algorithms. On
the theoretical side, one could further study the problem of existence of a strategy that
simultaneously satisfies several expectation objective and satisfaction objectives, or even
combine the limit-average functions with different kinds of functions, such as ω-regular
objectives or cumulative reward objectives.
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