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Abstract. We present a new release of PRISM-games, a tool for veri-
fication and strategy synthesis for stochastic games. PRISM-games 2.0
significantly extends its functionality by supporting, for the first time:
(i) long-run average (mean-payoff) and ratio reward objectives, e.g., to
express energy consumption per time unit; (ii) strategy synthesis and
Pareto set computation for multi-objective properties; and (iii) compo-
sitional strategy synthesis, where strategies for a stochastic game mod-
elled as a composition of subsystems are synthesised from strategies for
individual components using assume-guarantee contracts on component
interfaces. We demonstrate the usefulness of the new tool on four case
studies from autonomous transport and energy management.

1 Introduction

Automatic verification and strategy synthesis are techniques for analysing prob-
abilistic systems. They can be used to produce formal guarantees with respect to
quantitative properties such as safety, reliability and efficiency. For example, they
can be employed to synthesise controllers in applications such as autonomous
vehicles, network protocols and robotic systems. These often operate in uncer-
tain and adverse environments, models of which require both stochasticity, e.g.,
to represent noise, failures or delays, and game-theoretic aspects, to model non-
cooperative agents or uncontrollable events.

PRISM-games is a tool for verification and strategy synthesis for turn-based
stochastic multi-player games. The original version focused on model checking
for the temporal logic rPATL [7], used to express zero-sum properties in which
two opposing sets of players aim to minimise or maximise a single objective:
either the probability of an event or the expected reward accumulated before
it occurs. It has been successfully applied to, for example, autonomous driving,
self-adaptive systems, computer security and user-centric networks [16].

In this paper, we present PRISM-games 2.0, which significantly extends func-
tionality in several directions. First, it supports strategy synthesis for long-run
properties, such as average (mean-payoff) and ratio rewards. This provides the
ability to express properties of systems that run autonomously for long periods
of time, and to specify measures such as energy consumption per time unit.

Secondly, a key new area of functionality is support for multi-objective prop-
erties, which enables the exploration of trade-offs, such as between performance
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and resource requirements. Specifically, we allow Boolean combinations of ob-
jectives expressed as expected total rewards (for stopping games), and expected
mean-payoffs or ratios of expected mean-payoffs (in so-called controllable multi-
chain games), as well as conjunctions of almost sure satisfaction for mean-payoffs
and ratio rewards (in general games). The tool also performs computation and
visualisation of the Pareto sets representing the optimal achievable trade-offs.

Thirdly, PRISM-games 2.0 facilitates compositional system development.
This is done through assume-guarantee strategy synthesis, based on contracts
over component interfaces that ensure cooperation between the components to
achieve a common goal. For example, if one component satisfies the goal B under
an assumption A on its environment (i.e. A — B), while the other component
ensures that the assumption A is satisfied, we can compose strategies for the com-
ponents into a strategy for the full system achieving B. Multi-objective strategy
synthesis, e.g., for an implication A — B, can be conveniently employed to re-
alise such assume-guarantee contracts. Again, Pareto set computation can be
performed to visualise the relationship between properties and across interfaces.

In this paper, we summarise the algorithms and implementation [2/3I89I15]
behind the new functionality in PRISM-games 2.0, describe its usage in the tool,
and illustrate the benefits it brings with results from four case studies drawn from
autonomous systems and energy management.

Related tools. For stochastic games, there is support for qualitative verifi-
cation in GIST [6] and partial support in the general purpose game solver
GAVS+ [10], but there are no tools for multi-objective or compositional analysis.
Multi-objective verification for the simpler model of Markov decision processes
is available in PRISM [I3] (for LTL and expected total reward objectives) and
MultiGain [4] (for mean-payoff objectives), but not for stochastic games. Anal-
ysis of Nash equilibria (which also balance contrasting objectives for different
players) can be performed with EAGLE [I4] or PRALINE [5], but only for
non-stochastic games. Lastly, Uppaal Stratego [I1] performs strategy synthesis
against quantitative properties, but with a focus on real-time systems.

2 DModelling and Property Specification Languages

Compositional modelling. PRISM-games supports action-labelled turn-based
stochastic games (henceforth often simply called games), which are specified in
an extension of the native PRISM modelling language [I3]. Version 2.0 adds a
compositional modelling approach to facilitate assume-guarantee strategy syn-
thesis for 2-player stochastic games. A top-level system consists of several sub-
systems (component games), which are combined using the game composition
operator introduced in [3]. This composition synchronises on shared actions,
and actions controlled by Player 1 in subsystems are controlled by Player 1 in the
composition, thus enabling composition of the synthesised Player 1 strategies.
Each subsystem consists of a set of modules, which are combined using the
original parallel composition of PRISM-games (which ignores player identity).
Transitions of modules are specified using guarded commands, optionally labelled
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smg system “S1” || “S2” endsystem rewards “r1”
[a] true : 1;
system “S1” G1 endsystem system “S2” G2 endsystem endrewards
module G1 module G2 rewards “r2”
s : [0..2] init 1; t : [0..2] init I; d] true : 1;
[@] s=0 — (s’=1); [al] t=0 — 0.5 : (t’=1) bj true : 1
[q1!] s=0 — (s’=1); +0.5 ¢ (£2=2); endrewar:ls .
[a7] s=1 — (s’=2); [q1!] t=0 — (t’=1); rewards 137
b7 s=1 — 05 : ('=1)|| [b7]t=1 — (t'=2); [b] true - 1,
endrewards
+0.5 ¢ (s7=2); b?t=1 — 0.5 : (t’=1) o
- Y (o, rewards “c
[ s=2 — (s’=0); +05 ¢ (27=2); a] true : 1;
[a?] s=2 — (s°=2); [t=2 — (£=0); b] true : 1;
endmodule endmodule endrewards

Fig.1: A PRISM-games 2.0 model of a multi-component multi-objective game.

with action names (but omitted for non-synchronising transitions). Transitions
may be assigned to different players in different subsystems. This is done by
tagging an action name a with ! or ?, where [al] assigns the a-transition to
Player 1 and [a?] to Player 2. No state can have outgoing transitions labelled by
both ! and ? since we work with turn-based games. Figure [I] shows a model for
a system consisting of two subsystems.

Property specifications. PRISM-games focuses on strategy synthesis for stoch-
astic multi-player games, i.e., finding player strategies that satisfy some winning
condition, irrespective of the (finite) strategies of any other players in the game.
PRISM-games 2.0 adds multi-objective queries (MQs): Boolean combinations of
reward-based objectives. Rewards are specified by a reward structure that as-
signs real-valued rewards to transitions of a game (see Figure right-hand side).
We can reason about total reward (indefinitely cumulated rewards), mean payoff
(long-run average reward), or the long-run ratio of two rewards. We also support
ratios of expected mean-payoffs; expected ratios are synthesised soundly, but not
necessarily completely using almost-sure satisfaction of ratio rewards. An objec-
tive sets a target v for a reward value to be exceeded (>) or upper-bounded (<).
Objectives for the expected mean-payoff of r, expected total reward of r, and
ratio of expected rewards of r and c are expressed, respectively, as R{“r” }>,[S],
R{“r”}>y[C], and R{“r” /“c” } »,[8], where we use S and C to denote long-run and
cumulative rewards. Almost-sure satisfaction objectives for mean-payoff and ra-
tio rewards are written P> [R(path){“r” } >y[S]] and P> [R(path){“r”/“c” } >, [S]].
Objectives in an MQ must be of the same type and are combined with the stan-
dard Boolean connectives (A, V, —, =), but almost-sure satisfaction objectives
are only allowed in conjunctions. In the style of rPATL, we use {(coalition)) to
denote synthesis of strategies for the player(s) in coalition. The following are
examples of MQs synthesising strategies for player 1 in a game:

— {1))(R{“packets_in”/“time” } <y, [S] — R{“served”/“time”}>,[S]) — as-
suming the expected rate of incoming network packets is at most vy, the
expected rate of serving submitted requests is guaranteed to be at least vo.”

— ({1))(R{“passengers”}>y,[C] A R{“fuel”}<,[C]) — “the expected number
of passengers transported is at least vi, while simultaneously ensuring that
the expected fuel consumption is at most vs.”
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Fig. 2: Pareto sets for the games in Figure|l| with property specifications beneath the
respective sets. On the right is the compositional Pareto set P’. The global target is
9

(v2,vs) = (2,2), and the local targets can be seen to be consistent with v = 1.

3 Multi-Objective Strategy Synthesis

PRISM-games 2.0 implements the multi-objective strategy synthesis methods
formulated in [2I89], at the heart of which is a fixpoint computation of the sets
of achievable targets for multiple reward objectives. For expected total rewards,
games must be stopping, i.e., terminal states with zero reward must be reached
almost surely under all strategies [8]. For expected long-run objectives, games
must be controllable multichain, i.e., the sets of states that can occur in any
maximal end component are almost surely reachable [I5].

MQs with objectives of all types are converted into a unified fixpoint com-
putation. In particular, Boolean combinations of expectation objectives are con-
verted to conjunctions by selecting appropriate weights for the individual ob-
jectives [§]. Then, at each state of the game we iteratively compute polytopic
sets of achievable vectors, with each dimension corresponding to one objective.
Performance can be improved by computing successive polytopes using in-place
(i.e. Gauss-Seidel) updates, as well as rounding the corners of the polytopes at
every iteration (which comes at the cost of precision) [9]. We then construct
succinct strategies with stochastic memory updates, that win by maintaining the
target below the expected value of the memory elements, which are the extreme
points of the polytopes at the respective states.

The implementation uses the Parma Polyhedra Library [I] for symbolic ma-
nipulation of convex sets. Stochastic games are stored in an explicit-state fashion
and analysed using an extension of PRISM’s Java-based “explicit” engine.

Pareto sets. An MQ is achievable for all targets in the achievable set; its frontier
is the Pareto set, containing the targets that cannot be improved in any direction
without degrading another. The achievable set for Boolean combinations is the
union of the convex achievable sets obtained for the respective weights. The
Pareto sets can be visualised by the user selecting two-dimensional slices.
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Table 1: Performance. The forward slash (/) indicates values for separate components.

Case Study Model Objectives Synthesis
Components States # Type Accuracy  Timels|
UAV 1 6251 2 exp. total, Pareto| 0.1 652
UAV 1 6251 2 exp. total, Pareto| 0.01 871
AD(Charlton) 1 501 3 exp. total 0.001 2603
AD(Islip) 1 1527 3 exp. total 0.001 1968
Power(0) 2 3456/3456 2/2 a.s. ratio 0.001 175/172
Power(1) 2 11400/11400 | 2/2 a.s. ratio 0.001  2261/2298
Power ™ (0) 2 7296/7296 3/3 a.s. ratio 0.01 586/484
Power™ (1) 2 24744/24744 | 3/3 a.s. ratio 0.01  3325/2377
Temp(w) 3 1478/1740/1478 | 3/2/3 _ exp. ratio 0.05  829/69/734
Temp(w) 3 1478/1740/1478|3/2/3 exp. ratio 0.01  860/92/2480
Temp(v) 3 1478/1740/1478 | 3/2/3  exp. ratio 0.05  678/27/621
Temp(v) 3 1478/1740/1478|3/2/3 exp. ratio 0.01  3370/34/8605

4 Compositional Strategy Synthesis

We leverage assume-guarantee verification rules for probabilistic automata (i.e.,
games with only a single player) for assume-guarantee strategy synthesis in two-
player games [3]. Given a system G composed of subsystems Gy, Ga, ..., a de-
signer supplies respective local property specifications @1, s, . . . via the construct
comp(p1, @2, ...). By synthesising local strategies m; for G; satisfying ¢;, a
global strategy m can be constructed for G. Using assume-guarantee rules, one
can then derive a global property ¢ for G that is satisfied by w. The rules require
fairness conditions, and we write G™ =Y ¢ if the Player 1 strategy 7 satisfies ¢
against all unconditionally fair Player 2 strategies. For example, the rule:

UEY et G et e
(G1 || Ga)mlme f=v @
states that Player 1 wins with strategy 7 || 72 for ¢ in the top-level system if

7y in Gy achieves ¢“ under the contract o4 — ¢, and m in G, satisfies 4.
Reward structures in shared objectives may only involve synchronised actions.

(AsyM)

Compositional Pareto sets. We compositionally compute a Pareto set for
the property ¢ of the top-level system, which is an under-approximation of the
Pareto set computed directly on the monolithic system. For a target in the
compositional Pareto set, the targets for the local property specifications ¢; can
be derived, so that the local strategies can be synthesised (see Figure .

5 Case Studies and Tool Availability

We illustrate the new functionality in PRISM-games 2.0 with four case studies,
as follows. “UAV”: we compute Pareto sets for a UAV performing reconnais-
sance of roads, reacting to inputs from a human operator, under a conjunction
of expected total rewards [12]. “AD(V)”: we synthesise a strategy to steer an
autonomous car through a village V', reacting to its environment such as pedestri-
ans, or traffic jams, under a conjunction of expected total rewards [9]. “Power”:
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we maximise uptime of two components in an aircraft electrical power network,
reacting to generator failures and switch delays d; each component has a con-
junction of almost-sure satisfaction of ratio rewards. We use assume-guarantee
strategy synthesis for two model variants, with (resp. without) modelling an in-
terface, denoted Power™ (d) (resp. Power(d)) [2]. “Temp”: we control the temper-
ature in three adjacent rooms, reacting to the outside temperature and whether
windows are opened; and use Boolean combinations of expected ratios. We use
assume-guarantee strategy synthesis for two model variants, denoted Temp(w)
and Temp(v) [15]. Table [I| summarises the tool’s performance on these case
studies on a 2.8GHz PC with 32GB RAM. We observe that scalability mostly
depends on the number of objectives, the state space size and accuracy, but our
compositional approach greatly increases the viable state space sizes.

PRISM-games 2.0 is open source, released under GPL, available from [16].
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