
Design and Analysis of DNA
Strand Displacement Devices

using Probabilistic Model
Checking

Matthew R. Lakin ∗†‡ David Parker §†

Luca Cardelli∗ Marta Kwiatkowska ‡

Andrew Phillips∗¶

Abstract

Designing correct, robust DNA devices is difficult be-
cause of the many possibilities for unwanted interference
between molecules in the system. DNA strand displace-
ment has been proposed as a design paradigm for DNA
devices, and the DSD programming language has been
developed as a means of formally programming and ana-
lysing these devices to check for unwanted interference.
We demonstrate, for the first time, the use of prob-
abilistic verification techniques to analyse the correct-
ness, reliability and performance of DNA devices dur-
ing the design phase. We use the probabilistic model
checker PRISM, in combination with the DSD language,
to design and debug DNA strand displacement compon-
ents and to investigate their kinetics. We show how our
techniques can be used to identify design flaws and to
evaluate the merits of contrasting design decisions, even
on devices comprising relatively few inputs. We then
demonstrate the use of these components to construct a
DNA strand displacement device for approximate major-
ity voting. Finally, we discuss some of the challenges and
possible directions for applying these methods to more
complex designs.

∗Microsoft Research, 7 JJ Thomson Avenue, Cambridge, CB3
0FB, UK
†Equal contribution
‡Current address: Department of Computer Science, University

of New Mexico, Albuquerque, NM 87131, USA
§Department of Computer Science, University of Oxford, Wolf-

son Building, Parks Road, Oxford, OX1 3QD, UK
¶Corresponding author

1 Introduction

Molecular computing is a relatively new field that aims
to construct information-processing devices at the mo-
lecular level. In particular, molecular devices construc-
ted using DNA show promise for a wide range of im-
portant application areas, including bio-sensing, biomi-
metic molecular manufacture and drug delivery. How-
ever, designing correct and robust DNA devices is a ma-
jor challenge. This is due, in part, to the possibility
of unwanted interference between molecules in the sys-
tem. The DNA strand displacement programming lan-
guage (DSD) [1, 2] has been developed to facilitate the
design, simulation and analysis of DNA strand displace-
ment devices.

In this paper, we propose the use of formal verifica-
tion techniques to check the correctness of and identify
faulty behaviour in DNA device designs. We focus on
model checking, a fully-automated approach to verific-
ation based on the exhaustive exploration of a finite-
state model. We also employ probabilistic model check-
ing, which generalises these techniques to the analysis of
probabilistic models of systems that exhibit stochastic
behaviour, for example due to the possibility of fail-
ures or uncertainty regarding timing. Whereas conven-
tional (non-probabilistic) model checking techniques can
be used to check correctness properties such as “mo-
lecules 1 and 2 are never simultaneously bound to mo-
lecule 3”, probabilistic model checking allows verification
of quantitative guarantees such as “the probability of a
strand displacement device failing to complete within
20 minutes is at most 10−6”. Furthermore, probabil-
istic model checking can be used to evaluate many other
quantitative properties, such as performance: “what is
the expected time for an input signal to be transduced
to an output signal by a strand displacement circuit?”.
More generally, probabilistic model checking has already
been successfully applied to the analysis of systems from
a wide range of application areas, from communication
protocols like Bluetooth [3] to pin-cracking attacks for
ATMs [4]. In particular, it has also been used in the
domain of systems biology to analyse, for example, cell
signalling pathways [5, 6]. In this paper, we use the
probabilistic model checking tool PRISM [7].

The remainder of the paper is structured as follows.
In Section 2 we present DNA strand displacement and
the DSD programming language, and introduce probab-
ilistic model checking and the PRISM model checker. In
Section 3 we present the results of applying probabilistic
model checking to DNA strand displacement gates and
systems, including a DNA strand displacement device
for approximate majority voting. Additional details of
the methods are presented in Section 4, followed by a
discussion of future work in Section 5.

1

Figure 1: Toehold-mediated DNA branch migration and strand displacement

2 Background

2.1 DNA strand displacement

DNA strand displacement [8] is a mechanism for per-
forming computation with DNA molecules. Once initial
species of DNA are mixed together, strand displacement
systems proceed autonomously [9] as increases in entropy
(from releasing strands) and enthalpy (from forming ad-
ditional base pairs) drive the system forward [10]. These
increases typically result from the conversion of act-
ive gate structures into unreactive waste. Furthermore,
since DNA strand displacement relies solely on hybrid-
ization between complementary nucleotide sequences to
perform computational steps, these systems require no
additional enzymes or transcription machinery, which in
turn allows experiments to be run using simple laborat-
ory equipment.

In most strand displacement schemes, populations of
single strands of DNA are interpreted as signals, while
double-stranded DNA complexes act as gates, mediat-
ing changes in the signal populations. Within the sys-
tem, the computational mechanism is toehold-mediated
branch migration and strand displacement [11]. At the
periphery of the system, signal populations may be con-
nected to fluorophores for human-readable output, or
regulated by custom-designed aptamer molecules which
interface to the biological environment. The latter ex-
ample highlights a key strength of DNA-based compu-
tational devices: the ability to interface directly with
biological systems [12, 13].

Figure 1 presents example branch migration and
strand displacement reactions. Each letter in the fig-
ure represents a distinct domain (a sequence of nucle-

otides) and the asterisk operator (*) denotes the Watson-
Crick (C-G, T-A) complement of a given domain. Short
domains (represented in colour) are known as toeholds,
while long domains (in grey) are often referred to as re-
cognition domains. We assume that toeholds are suf-
ficiently short (4-10 nucleotides) that they hybridize re-
versibly with their complements, whereas recognition do-
mains are sufficiently long (>20 nucleotides) to hybrid-
ize irreversibly [11]. Each single strand is oriented from
the 5’ (left) end to the 3’ (right) end, and each double-
stranded complex consists of hybridized single strands
with opposite orientations. We assume that the under-
lying nucleotide sequences have been chosen such that
distinct domains do not interact at all.

In the first reaction from Figure 1, an incoming strand
binds to a gate because the “t” toehold domain in the
strand hybridizes with its exposed complement in the
gate, producing the intermediate complex on the right-
hand side. Since the incoming strand is only held on by a
toehold, this reaction can be reversed, causing the single
strand to float away into the solution. In the second reac-
tion, the “x” domain in the overhanging strand matches
the next domain along the double-stranded backbone
which means that the branching point between the over-
hanging strand and the backbone can move back and
forth in a random walk called a branch migration. Even-
tually, the random walk may completely detach the short
“x” strand from the gate in a strand displacement. This
reaction is considered irreversible because the invading
strand is now attached to the gate by a long domain as
well as a toehold. Note that if the recognition domain
on the strand did not match the next domain along the
gate then branch migration could not proceed, and the
incoming strand would eventually unbind. We call such

2

binding reactions unproductive. The third reaction is an-
other branch migration, though in this case no strand is
displaced since even after the “y” domain has been dis-
placed, the rightmost strand is still attached by a toe-
hold. The fourth reaction is a (reversible) unbinding re-
action in which the rightmost strand spontaneously un-
binds because of the low binding strength of the toehold.

Binding, migration and unbinding reactions such as
those illustrated in Figure 1 allow signal populations
to be dynamically modified over time, and irreversible
strand displacement reactions such as the second re-
action from Figure 1 provide a thermodynamic bias
towards producing output. Combining these different
kinds of reactions allows us to construct cascades of gates
in which the output strands from one gate serve as the
input strands for another. This technique has enabled
the construction of large, complex logic circuits based on
DNA strand displacement [14].

In this paper we restrict our attention to a class
of gates closely related to Cardelli’s two-domain gate
scheme [15]. Two-domain gates are a restricted class of
systems where every strand consists of two domains (a
toehold and a long recognition domain) and gates have
no structures hanging off the main double-stranded back-
bone of the complex. The initial and final gates shown
in Figure 1 have this property, although the interme-
diate steps do involve transient overhanging structures
during branch migration and strand displacement steps.
These gate structures can be thought of as one con-
tinuous strand hybridized with a complementary strand
which has breaks at certain points. Such restricted gate
structures could be assembled by synthesizing double-
stranded DNA and inserting the breaks using either re-
striction enzymes or site-specific photocleavage to split
the backbone of the DNA strand at the appropriate
point. This technique should allow gates to be construc-
ted with a higher yield than the usual technique of an-
nealing single strands, which has a higher probability of
producing unwanted secondary structures. In this pa-
per, we use a variant of two-domain gates which relaxes
the restrictions on single-stranded DNA molecules but
which retains the simplified gate structure with all its
practical benefits to the experimentalist.

2.2 The DSD programming language

The DSD programming language [2] provides a textual
syntax for expressing the structure of DNA species such
as those portrayed graphically in Figure 1. The se-
mantics of the DSD language defines a formal translation
of a collection of DNA species into a system of chem-
ical reactions which captures the possible interactions
between the species. The language includes syntactic
and graphical abbreviations which allow us to represent

Table 1: Syntax of the DSD language, in terms of strands
A, gates G and systems D. Where present, the graphical
representation below is equivalent to the program code
above.

syntax description

A <S> Upper strand with
sequence S

{S} Lower strand with
sequence S

G {L’}<L>[S]<R>{R’} Double stranded
complex [S] with
overhanging single
strands <L>, <R> and
{L’}, {R’}

G1:G2 Gates joined along a
lower strand

G1::G2 Gates joined along an
upper strand

D A Strand A

G Gate G

D1 | D2 Parallel systems D1, D2

new N D System D with private
domain N

X(ñ) Module X with
parameters ñ

a particular class of DNA molecules in a concise man-
ner. The class of molecules in question is those without
secondary structure – that is, only single-stranded DNA
sequences may hang off the main double-stranded back-
bone of the molecule. This rules out tree-like or pseudo-
knotted structures, which greatly simplifies the defini-
tion of the semantics while still allowing a wide variety
of systems to be designed.

The textual syntax of the DSD programming lan-
guage and the corresponding graphical representation
are presented in Table 1. The syntax is defined in terms
of sequences S, L, R, strand A, gates G and systems D.
A sequence S comprises one or more domains, which
can be long domains N or short domains N^. DNA spe-
cies can be single or double stranded. A single upper
strand <S> denotes a sequence S oriented from left to
right on the page, while a single lower strand {S} de-
notes a sequence S oriented from right to left on the
page. A double strand [S] denotes an upper strand <S>
bound to the complementary lower strand {S*}. A gate

3

G is composed of double-stranded segments of the form
{L’}<L>[S]<R>{R’}, which represents an upper strand
<L S R> bound to a lower strand {L’ S* R’} along the
double-stranded region [S]. The sequences L, R, L’ and
R’ can potentially be empty, in which case we simply
omit them. Gates are built up by concatenating gate
segments G1 and G2 along a common lower strand, writ-
ten G1:G2, or along a common upper strand, written
G1::G2. In the graphical representation we omit the
colons altogether and connect the strands.

An individual DNA species can be an upper strand
<S>, a lower strand {S} or a gate G. We let D range over
systems of such species. Multiple systems D1, D2 can
be present in parallel, written D1|D2. A domain N can
also be restricted to molecules D, written new N D. This
represents the assumption that the domain (or its com-
plement) is not used by any other molecules outside of
D. We also allow module definitions of the form X(ñ)=D,
where ñ are the module parameters and X(m̃) is an in-
stance of the module D with parameters ñ replaced by m̃.
We assume a fixed set of module definitions, which are
declared at the start of the program. The definitions are
assumed to be non-recursive, such that a module can-
not invoke itself, either directly or indirectly via another
module.

All of the models discussed in this paper were created
using the Visual DSD tool1. This is a web-based imple-
mentation of the DSD language which allows networks
of strand displacement reactions to be designed, simu-
lated and analysed. For the purposes of this work, we
have developed additional functionality for Visual DSD
which allows the reaction network to be exported as a
model that can be loaded into the the PRISM prob-
abilistic model checker for verification. Additional de-
tails of how reaction networks are computed in DSD are
provided in Section 4.

2.3 Probabilistic model checking
Model checking is an automated formal verification tech-
nique, based on the exhaustive construction and analysis
of a finite-state model of the system being verified. The
model is usually a labelled state-transition system, in
which each state represents a possible configuration of
the system and each transition between states represents
a possible evolution from one configuration to another.
The desired correctness properties of the system are typ-
ically expressed in temporal logics, such as CTL (Com-
putation Tree Logic) or LTL (Linear-time Temporal Lo-
gic). We omit here a precise description of these logics
(see, for example, [16, 17] for detailed coverage); instead
we give below some typical CTL formulae, along with
their corresponding informal meanings:

1http://lepton.research.microsoft.com/webdna

• A [G !("access1" & "access2") - “processes 1
and 2 never simultaneously access a shared re-
source”;

• A [F "end"] - “the algorithm always eventually
terminates”

• E [!"fail" U "end"] - “it is possible for the al-
gorithm to terminate without any failures occur-
ring”

Once the desired correctness properties of the system
have been formally expressed in this way, they can then
be verified using a model checker. This performs an ex-
haustive analysis of the system model, for each property
either concluding that it is satisfied or, if not, providing
a counterexample illustrating why it is violated.
Probabilistic model checking is a generalisation of

model checking for the verification of systems that ex-
hibit stochastic behaviour. In this case, the models
that are constructed and analysed are augmented with
quantitative information regarding the likelihood that
transitions occur and the times at which they do so.
In practice, these models are typically Markov chains
or Markov decision processes. To model systems of
reactions at a molecular level, the appropriate model
is continuous-time Markov chains (CTMCs), in which
transitions between states are assigned (positive, real-
valued) rates. These values are interpreted as the rates
of negative exponential distributions.

Properties of CTMCs are, like in non-probabilistic
model checking, expressed in temporal logic, but are
now quantitative in nature. For this, we use probabil-
istic temporal logics such as Continuous Stochastic Logic
(CSL) [18, 19] and its extensions for reward-based prop-
erties [20] . For example, rather than verifying that “the
protein always eventually degrades”, using CSL allows
us to ask “what is the probability that the protein even-
tually degrades?” or “what is the probability that the
protein degrades within t hours?”. Reward-based prop-
erties include “what is the expected time that proteins
are bound within the first t time units?” and “what is
the expected number of phosphorylations before reloca-
tion occurs?”. For further details on probabilistic model
checking of CTMCs, see for example [19, 20]. For a de-
scription of the application of these techniques to the
study of biological systems, see [21]. All of the mod-
els discussed in this paper were analysed using PRISM
[7], a probabilistic model checking tool developed at the
Universities of Birmingham and Oxford. Additional de-
tails of probabilistic model checking using PRISM are
provided in Section 4.

4

3 Results

In this section, we present a series of case studies
which demonstrate the application of probabilistic model
checking techniques to the design of DNA strand dis-
placement systems. As mentioned previously, to do so
we have extended the Visual DSD tool [2] with the cap-
ability to generate, from DSD designs, corresponding
model descriptions that can be directly analysed by the
PRISM probabilistic model checker [7]. We will study
our modified two-domain gate designs from Section 2.1,
and present analyses of various correctness, reliability
and performance properties of the gates using PRISM.
Finally, we will construct an approximate majority vot-
ing system using these components and show how ad-
ditional approximation mechanisms can be adopted in
order to verify this system.

3.1 Transducer gates: Correctness

We begin by considering one of the simplest reaction
gates: a transducer which takes an X signal as input and
produces a Y signal as output. The gate can be thought
of as implementing a unary chemical reaction X −→
Y . We will demonstrate the use of (non-probabilistic)
model checking to debug strand displacement systems,
by detecting a bug in a flawed design for a transducer
gate.

Our initial transducer design is specified by the DSD
code of Figure 2. This also includes a definition of single-
stranded signals, where the S(N,x) module denotes a
population of N single-stranded signals carrying the X
domain. We assume that the t^ toehold is defined glob-
ally and shared by all gates and strands. The T(N,x,y)
module represents N parallel copies of the transducer
gate that implements the X −→ Y reaction. The body
of the module definition consists of two populations of N
complexes, and two populations of N strands. The spe-
cies present in the initial state (when N = 1) are shown
on the left-hand side of Figure 3. The first gate accepts
an input signal X and the second gate produces an out-
put signal Y . The single strands are fuel species: the
first ejects an intermediate strand from the input gate
in an irreversible reaction which prevents input signal X
from being rejected (thereby undoing the execution of
the gate so far), whereas the second ejects the output
signal Y from the output gate. This design is closely
related to the two-domain design from [22], with the ad-
dition of a private “c” domain which introduces an ad-
ditional irreversible step into the execution of the gate.
The effect of this modification is limited for the simple
transducer gate but will become more apparent when we
move on to more complicated gate designs. Note, how-

(* Signal strand *)
def S(N, x) = N * <t^ x>

(* Transducer gate *)
def T(N, x, y) = new c

(N * {t^*}:[x t^]:[c]:[a t^]:[a]
| N * [x]:[t^ y]:[c]:[t^ a]:{t^*}
| N * <t^ c a>
| N * <y c t^>)

Figure 2: Initial transducer gate code, with additional
definition for signal strands.

(a) Initial species (b) Expected final species

Figure 3: Initial species and expected final species for
the transducer gate.

ever, that the definition of T(N,x,y) does not include a
similar “new” declaration for the “a” domain. This has
implications for crosstalk between gate populations, as
we shall see below.

The expected final species for the transducer gate
design (when N = 1) are shown on the right-hand side
of Figure 3. The intended effect is to convert an incom-
ing <t^ x> signal into <t^ y>, leaving only unreactive
waste. We say that a strand or gate is reactive if it can
react with some other species present in the system to
cause a strand to be displaced, and unreactive otherwise.
In this example, the unreactive species are those in which
all toeholds occur in double-stranded segments and are
thus sequestered.

Here, we will focus on verifying the correctness of two
transducer gates in series. The first gate should turn
a signal X0 into X1 and then the second should turn
signal X1 into X2. Using the DSD code from Figure 2,
the input signal and pair of transducers are given by:
S(1,x0) | T(1,x0,x1) | T(1,x1,x2).

To formalise a correctness property to be checked by
PRISM, we first need to identify the states of the model
in which the execution of the gates has completed suc-
cessfully. This is done with the following PRISM code,
which is in a generic form designed to be applicable to
various different designs:

5

label "all_done" = strands_reactive=output &
output=N & gates_reactive =0;

Here, strands_reactive and gates_reactive are
pre-defined formulae (automatically generated by Visual
DSD) which, when evaluated in a particular state of a
model, return the number of reactive strands and react-
ive gates in that state, respectively. The variable output
gives the number of output strands (in this example,
<t^ x2>) and N is the number of parallel copies of the
system. So, we say that the execution was successful
when all copies of the gate have produced the required
output and there are no reactive gates or strands (other
than output strands) present.

Notice that, by definition, when the specification
"all_done" given above is true, no further reactions
can occur. Hence, such states of the model are dead-
lock states (those with no outgoing transitions to other
states). We specify the correctness of the system design
by stating that: (i) any possible deadlock state that can
be reached must satisfy "all_done"; and (ii) there is at
least one path through the system that reaches a state
satisfying "all_done". These two properties can be rep-
resented by formulae in the (non-probabilistic) temporal
logic CTL, which can be verified by PRISM:

A [G "deadlock" => "all_done"]
E [F "all_done"]

When we use PRISM to check these two queries, we
find that the second is true but the first is false. In
fact, we find that there are two deadlock states in the
model, one where "all_done" is false and one where it is
true. We can visualise both states using the Visual DSD
tool, as shown in Figure 4. State 2, on the right-hand
side, represents the case where the system has executed
correctly and indeed this is the result that we would an-
ticipate: the state contains the output strand <t^ x2>
along with the inert garbage left over from complete ex-
ecution of the two transducer gates. State 1, however,
is incorrect: even though the output strand <t^ x2> is
produced, we see that some constituent complexes of the
transducers are left in a reactive state, with exposed toe-
hold domains.

When checking that the first query above is false,
PRISM also produces a counterexample in the form of a
path through the model that leads to a deadlock state
where "all_done" is not true (state 1 from Figure 4).
Analysing this path reveals exactly how the system can
fail. The first few reactions proceed as one would expect.

State 1 (error) State 2 (success)

Figure 4: Deadlock states for the two faulty transducers
in series.

The problem arises because the <a t^> strand released
from the input complex of the X0 −→ X1 transducer can
now interact with the output complex of the X1 −→ X2

transducer, causing the following reactions.

There are some subsequent reactions which tidy up
as many as possible of the species with exposed toe-
holds. The output strand X2 is produced, as expected,
but there are still some reactive species left at the end.
The <a t^> strand from the X0 −→ X1 transducer pre-
maturely activates the X1 −→ X2 transducer without
producing the intermediate <t^ x1> signal, thereby leav-
ing parts of the transducers unused. This happens be-
cause of crosstalk : the two transducers share a common
recognition domain “a” which allows them to interfere
with each other. In contrast, the “new c” declaration in
the definition of the T(N,x,y) module from Figure 2 en-
forces that the two transducers use different nucleotide
sequences for their “c” domains. The existence of this
faulty behaviour was pointed out in [15] and illustrated
by manually tracing a path through the system. Such
bugs have, however, proven to be difficult to identify
manually using simulation tools. Here, we demonstrate
that model checking can identify such flaws in an auto-
matic fashion.

We can fix the crosstalk bug in the transducer module

6

(* Fixed transducer gate *)
def T2(N, x, y) = new a new c

(N * {t^*}:[x t^]:[c]:[a t^]:[a]
| N * [x]:[t^ y]:[c]:[t^ a]:{t^*}
| N * <t^ c a>
| N * <y c t^>)

Figure 5: Corrected transducer gate code, with an ad-
ditional “new a” declaration which prevents crosstalk
between different gates.

T Success Error Terminate
0 0.0 0 0 0

1000 0.1 6.04E-08 0.004215004 0.004215065
2000 0.2 3.25E-05 0.042001326 0.042033834
3000 0.3 7.11E-04 0.116206436 0.116917803
4000 0.4 0.004577197 0.201506636 0.206083833
5000 0.5 0.015761274 0.278992548 0.294753822
6000 0.6 0.037536451 0.341388454 0.378924905
7000 0.7 0.070507885 0.388366422 0.458874308
8000 0.8 0.112634127 0.422373965 0.535008092
9000 0.9 0.160352574 0.446420879 0.606773453
10000 1.0 0.209822876 0.463185418 0.673008294
11000 1.1 0.257777666 0.474773408 0.732551074
12000 1.2 0.30190094 0.482742111 0.784643051
13000 1.3 0.340856348 0.488205069 0.829061417
14000 1.4 0.374124967 0.491943345 0.866068311
15000 1.5 0.401777056 0.494498657 0.896275713
16000 1.6 0.424252238 0.496244239 0.920496477
17000 1.7 0.442182012 0.497436235 0.939618247
18000 1.8 0.456262795 0.498250032 0.954512826
19000 1.9 0.467174495 0.498805556 0.96598005
20000 2.0 0.47553459 0.499184747 0.974719337
21000 2.1 0.481877252 0.499443566 0.981320818
22000 2.2 0.486648613 0.49962022 0.986268833
23000 2.3 0.490211459 0.499740792 0.989952251
24000 2.4 0.492854675 0.499823085 0.99267776
25000 2.5 0.494804446 0.499879252 0.994683699
26000 2.6 0.496235429 0.499917587 0.996153016
27000 2.7 0.497280936 0.499943752 0.997224688
28000 2.8 0.498041732 0.49996161 0.998003342
29000 2.9 0.498593351 0.499973798 0.998567149
30000 3.0 0.498992002 0.499982117 0.998974118
31000 3.1 0.499279255 0.499987794 0.999267049
32000 3.2 0.499485684 0.499991669 0.999477354

!"
!#$"
!#%"
!#&"
!#'"
!#("
!#)"
!#*"
!#+"
!#,"
$"

!#!" !#(" $#!" $#(" %#!" %#(" &#!"

!"
#$

%$
&'&
()
*

+*,-.*/0*12345*

-./01234."

5//6/"

7899.::"

Figure 6: Plot showing the probability for each possible
outcome of the faulty transducer pair, after T seconds.

from Figure 2 by adding an additional “new a” declara-
tion within the module definitions, as shown in the defin-
ition of the alternative T2(N,x,y) module in Figure 5.
This suffices to prevent crosstalk between the popula-
tions of gates which implement the different chemical
reactions, because each population of gates uses differ-
ent domains for their private “a” and “c” domains. We
verify this using PRISM by re-running the above quer-
ies against the same model but with occurrences of the
T module replaced by T2 modules. In each case, these
designs are correct: both queries are true.

3.2 Transducer gates: Performance and
reliability

Next, we examine some quantitative properties of the
transducer gate designs from the previous section. Re-
turning first of all to the pair of faulty transducers, we
use PRISM to analyse the kinetics of the system. Re-
call that there are two possible outcomes once the system
eventually terminates, one where the execution has com-
pleted successfully and one where it has not. Using the
following PRISM temporal logic queries:

P=? [F[T,T] "deadlock"]
P=? [F[T,T] "deadlock" & "all_done"]
P=? [F[T,T] "deadlock" & !" all_done"]

we can compute the probability that the transducer pair
has, after exactly T seconds: (i) terminated, (ii) termin-

ated in error, and (iii) terminated successfully.
Figure 6 shows how these probabilities vary for differ-

ent values of T . We see that the erroneous outcome is
more likely to occur in the early stages than the success-
ful outcome. This is to be expected since the error in the
system arises when various intermediate reaction steps
are skipped. By removing the time parameter T from
the queries, we can use PRISM to compute the eventual
probability of each outcome:
P=? [F "deadlock" & "all_done"]
P=? [F "deadlock" & !" all_done"]

As the plot in Figure 6 suggests, there is in fact an equal
probability of 0.5 for each possible outcome. Intuitively,
this can be explained as follows. There is a point in
the execution of the system where, as described in the
previous section, it is possible either for the reaction to
proceed as intended or for interference between gates
to occur. In fact each of these two conflicting reactions
occurs with the same rate, meaning that they are equally
likely. Furthermore, each one is irreversible, so the final
outcome is effectively decided at this point.

Interestingly, although a single copy of the faulty
transducer pair is clearly unreliable (since it fails with
probability 0.5), we can improve the overall reliability
of the design by adding multiple (N) parallel copies of
the gates. Section 4 of [15] suggests that, if large popu-
lations of these gates execute in parallel, the additional
strands available in the system should be able to “un-
block” the partially-completed gates in the erroneous
deadlock state. This hypothesis is supported by evid-
ence from individual stochastic simulations of the sys-
tem. Here, we use PRISM to perform a more exhaustive
analysis: we compute, for different values of N , the ex-
pected percentage of gates in the final state of the system
that are still reactive (recall from the previous section
that a reactive gate in the final state is an indicator that
the transducer did not execute correctly).

The DSD code for N copies of the transducer pair
is: S(N,x0) | T(N,x0,x1) | T(N,x1,x2). There are
several different ways to compute the desired property
using PRISM. One simple way is to use the query:
P=? [F "deadlock" & gates_reactive=i]

which give the probability that there are i reactive gates
in the final state of the system and, from this, compute
the expected final percentage.

Figure 7 plots this value for a range of values of N . We
see that the percentage of reactive gates decreases with
increasing N , indicating, as conjectured, that running
more copies of the faulty gates in parallel (i.e. increasing
N) means that more of the gates in the system will be
utilised correctly.

Lastly in this section, we consider performance prop-
erties of DNA strand displacement systems, as opposed

7

Example 1

K/N 1 2 3 4 5
0 0.499999046 0.496540246 0.49438125 0.492974327 0.492006907
3 0.499999046 0.349990509 0.323478388 0.313295239 0.308138231
6 0 0.153466783 0.141016844 0.136339267 0.134004854
9 0 0 0.041119773 0.047009559 0.049095489

12 0 0 0 0.010378617 0.014216717
18 0 0 0 0 0.002535549
21

0 0 0 0 0
1.499997139 1.049971528 0.970435164 0.939885718 0.924414694

0 0.920800697 0.846101063 0.8180356 0.804029126
0 0 0.370077959 0.423086027 0.441859399
0 0 0 0.12454341 0.170600599
0 0 0 0 0.045639882

0
N 1 2 3 4 5

1.499997139 1.970772225 2.186614186 2.305550754 2.3865437
exp % 37.49992849 24.63465282 18.22178488 14.40969221 11.9327185

0.1 0.499999046 0.496540246 0.49438125 0.492974327 0.492006907
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.499999046 0.496540246 0.49438125 0.492974327 0.492006907

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

$" %" &" '" #" ("

!"
#$

%&
$'

(#
$)
%$
*&
+,
$(

-(.*/01$)(23(%2#4$5(23(&)+*5'/%$)(#+4)6(

Figure 7: Plot showing expected percentage of
leftover reactive gates in the final state of the sys-
tem against the number of parallel buggy trans-
ducers, that is, the parameter N in the system
S(N,x0) | T(N,x0,x1) | T(N,x1,x2). We observe
that the expected number of unreactive (i.e. correctly
executed) gates increases as we add more parallel copies
of the buggy transducer system.

to the reliability properties discussed above. Seelig
and Soloveichik [23] showed that the time for strand
displacement circuits to execute increases linearly with
the depth of the circuit. We can verify such properties
computationally with our model of DNA strand displace-
ment and PRISM. Using the corrected transducer design
from Figure 5 we constructed DSD models of the form
S(1,x0) | T(1,x0,x1) | ... | T(1,x{k-1},xk),
for various values of k , which correspond to transducer
chains of increasing length. Note that we only consider
a single copy of every transducer in the chain. We used
the following PRISM temporal logic query to compute
the expected time to reach a state in which all of the
gates have finished executing:

R{"time "}=? [F "all_done"]

In this query, "time" denotes a simple PRISM reward
structure (see Section 4.2) which assigns a reward of 1
to all states of the model. This indicates the rate at
which reward will be accumulated, i.e. T units of re-
ward for each T seconds spent in a state. The prop-
erty above gives the expected reward accumulated until
"all_done" first becomes true, thus giving the expected
execution time.

The results are shown in Figure 8. We observe that
there is indeed a linear relationship between the time
to complete the circuit and the number of transducers
in the chain, which agrees with [23]. Thus we can use
probabilistic model checking to analytically investigate
the kinetics of strand displacement circuits.

K exp time
1 6749.982838
2 12274.51804
3 17775.47774
4 23275.50787
5 28775.48498
6 34275.46153
7 39775.44272
8

!"!#

!"$#

%"!#

%"$#

&"!#

&"$#

'"!#

'"$#

("!#

("$#

!# %# &# '# (# $#)# *#

!"
#$

%&
$'

()
*
$(
+,
-(.
"(
/0
12
3(

4(+,56$(78(&9:;,'<%$9(%=:5;-(

Figure 8: Plot showing the expected time to ter-
minate for chains of corrected transducer gates,
that is, we vary the parameter k in the system
S(1,x0) | T(1,x0,x1) | ... | T(1,x{k-1},xk).

3.3 Catalyst gates

We now focus on a more complicated reaction gate which
models a chemical reaction X −→ Z catalysed by a third
species Y , i.e. a reaction of the form X + Y −→ Y +
Z. Figure 9 presents DSD code for a catalyst module
C(N,x,y,z) which represents N copies of the reaction
gate implementing the chemical reaction X+Y −→ Y +
Z. This is an extension of the transducer gate, which
takes advantage of the fact that the extra reactant and
product are both of the same species in order to optimise
the gate design. Figure 10 shows the initial and expected
final states of the system for one copy of the catalyst
gate, i.e. the module instantiation C(1,x,y,z). Note
that the catalyst gate C(N,x,y,z) effectively implements
a catalytic reaction X + Y −→ Y + Z by consuming a
strand Y as input and producing a different strand Y as
output. Even though a different strand is produced, the
DNA implementation effectively emulates the function
of a catalyst by producing a strand identical to the one
that is consumed - hence the population of the catalyst
remains constant. This is in line with the general idea of
emulating chemical reactions using DNA [24]: it is not
the exact species and reactions that are implemented,
but equivalent ones.

In this section we will use probabilistic model checking
to investigate the relative performance of two different
catalyst gate designs. In particular, we study the ef-
fect of omitting garbage collection from the design, i.e.
the process of tidying up intermediate species into in-
ert structures. Omitting garbage collection makes the
design simpler and cheaper to implement but, as we will
see, has an effect on its performance.

Figure 9 also presents DSD code for a variant catalyst
module C_NoGC(N,x,y,z) which also implementsN cop-
ies of the chemical reaction X + Y −→ Y + Z, but with
the key difference that intermediate strands displaced

8

(* Catalyst gate *)
def C(N,x,y,z) = new a new c
(N * {t^*}[x t^]:[y t^]:[c]:[a t^]:[a]
| N * [x]:[t^ z]:[c]:[t^ y]:[t^ a]{t^*}
| N * <t^ c a> | N * <z c t^>)

(* Catalyst gate - no garbage collection *)
def C_NoGC(N,x,y,z) = new a new c
(N * {t^*}[x t^]:[y t^]:[c]:[a t^]
| N * [t^ z]:[c]:[t^ y]:[t^ a]{t^*}
| N * <t^ c a> | N * <z c t^>)

Figure 9: Catalyst gate code, presenting two different
gate implementations: one which carries out garbage col-
lection reactions and one which does not.

(a) Initial species (b) Expected final species

Figure 10: Initial species and expected final species for
the catalyst gate C(1,x,y,z). Garbage collection results
in only inert structures being present amongst the final
species.

from the gate during execution are not garbage-collected
by the gate structure. This means that some interme-
diate single-stranded fuels remain in solution after the
gate has finished executing. We will quantify the ef-
fect that this has on the kinetics of subsequent reactions
by using PRISM to compute the expected completion
times of catalyst gates with and without garbage collec-
tion. Intuitively, we would expect that the intermediate
strands which are not garbage-collected will accumulate
over time, gradually slowing the system down by provid-
ing a larger backwards force in the kinetics.

For both variants of the catalyst gate, we adapt the
earlier fragment of PRISM code used to identify the
states of the model in which the gates have executed
successfully:

label "all_done" = output1=N & output2=N &
gates_reactive =0;

This code is as before except that, since there are
now two output species we use output1 and output2
to refer to the two output signals, which are Y and Z in
the case of C(1,x,y,z). We no longer require that the

(a) Initial species (b) Expected final species

Figure 11: Initial species and expected final species for
the alternative catalyst gate C_NoGC(1,x,y,z). Note
that this gate does not perform the additional garbage
collection reactions which produced the completely inert
structures seen in Figure 10.

only reactive strands must be the output strands since
this is not true for the catalyst gate without garbage
collection (the leftover fuel strands are reactive). Fur-
thermore, our definition of gates_reactive must be
carefully designed to ensure a fair comparison between
gates with and without garbage collection. In the case
without garbage collection (C_NoGC(N,X,y,z)), the final
gate structures actually contain exposed toeholds, since
there are no garbage collection reactions to seal off the
final toehold in the gate. Despite the fact that the fi-
nal gate has an exposed toehold, the irreversible steps
introduced by adding an extra domain, which was not
present in the design from [15], mean that execution of
the gate is still irreversible. Since the “a” and “c” do-
mains in the catalyst gate are both private to this gate,
we can guarantee that no other strand in the system will
be able to react with these finished gates in a productive
manner. Thus it is reasonable to adjust our definition
of gates_reactive in this case so that these structures
are not counted as reactive.

In the case with garbage collection (C(N,x,y,z)) the
final gate structures are indeed completely sealed off. In
order to make a fair comparison of the kinetics, how-
ever, we must also designate the penultimate form of
each gate structure as unreactive, that is, the structure
before the final garbage collection reaction. This is es-
sentially saying that, for the purposes of computing the
time to termination, we do not care whether the garbage
collection reactions have actually taken place when we
decide if the system has terminated. Without this, it
would not be possible to make a fair comparison.

We first check that both designs satisfy the cor-
rectness property given earlier for transducers. Hav-
ing established this, we then look at the perform-
ance of the designs, i.e. how quickly they execute.

9

N No GC With GC
1 11999.93714 10599.94398
2 18640.50941 12444.58562
3 26631.00344 13550.92694
4 36602.66225 14551.39593
5 48675.71082 15549.66158
6 62885.53402 16566.01082
7 79245.43278 17602.75238
8
9

10
11
12

!"!#

$"!#

%"!#

&"!#

'"!#

("!#

)"!#

*"!#

+"!#

,"!#

!# %# '#)# +#

!"
#$

%&
$'

()
*
$(
+,
-(.
"(
/0
12
3(

4(+56*7$8(9:(%9#;$,(9:(%<&<=>,&(?<&$-(

-.#/0#

1234#/0#

Figure 12: Plot of expected time to completion for
N parallel copies of catalyst gates with and without
garbage collection.

To quantify the effect of garbage collection on the
kinetics of the system, we compared the behaviour
of the systems S(N,x) | S(N,y) | C(N,x,y,z) and
S(N,x) | S(N,y) | C_NoGC(N,x,y,z) for different val-
ues of N . We vary this parameter because one would ex-
pect that the negative effects of garbage collection will
only begin to accumulate after a number of identical
gates have been executed. Re-using the PRISM tem-
poral logic query from the previous section, we compute
the expected time until termination.

The results of this analysis are presented in Figure 12.
We observe that, as N increases, the expected comple-
tion time for the gates without garbage collection in-
creases faster than for the gates with garbage collec-
tion. This confirms our intuition that accumulating
waste strands from earlier executions of the gate exerts
an additional backward force on subsequent executions
of the gate, gradually slowing the system down.

3.4 Approximate majority
We now use the catalyst gates from Section 3.3 to imple-
ment a larger system—the approximate majority popu-
lation protocol of Angluin et al. [25]—using DNA strand
displacement. The following chemical reactions imple-
ment the approximate majority population protocol.

(a) X + Y −→ Y +B (c) B +X −→ X +X

(b) Y +X −→ X +B (d) B + Y −→ Y + Y

When an X and a Y meet, reactions (a) and (b) con-
vert one of them into an auxiliary species B with equal
probability. Then, when a B meets an X or Y , reactions
(c) and (d) convert the B to match the species that it
encountered. In this second step, the probability of a B
encountering an X as opposed to a Y depends on the

(* Catalyst gate - no garbage collection. *)
(* Using "constant" for fuels and waste *)
def C_NoGC_Constant(N,x,y,z) = new a new c
(* Constant fuels *)
(constant N * {t^*}[x t^]:[y t^]:[c]:[a t^]
| constant N * [t^ z]:[c]:[t^ y]:[t^ a]{t^*}
| constant N * <t^ c a>
| constant N * <z c t^>
(* Constant waste products *)
| constant N * [t^ x]:[t^ y]:[t^ c a]{t^*}
| constant N * {t^*}[z c t^]:[y t^]:[a t^]
| constant N * <x>
| constant N * <c>
(* Constant fuels *)
| constant N * <t^ a>
| constant N * <x t^>)

Figure 13: DSD code for a catalyst gate, which extends
the C_NoGC gate from Figure 9 by using the constant
keyword from the DSD language to abstract away from
population changes due to accumulation of waste and
depletion of fuel.

initial populations of X and Y in the system, and this
fact allows the system to amplify any excess population
of one species over the other to converge on a consensus
in which all of the species are converted either to X or
to Y . Furthermore, it was proved in [25] that the system
converges with high probability to the population which
was initially in the majority, if the original margin is
sufficiently large.

Note that the above reactions all involve catalysts,
like those from Section 3.3. Thus we can use the cata-
lyst gates discussed therein to implement this system of
chemical reactions in the DSD language. In order to re-
duce the number of reactions and to make model check-
ing more tractable, we will use a catalyst gate without
garbage collection. Even with this simplification, how-
ever, the fact that there are cycles in the chemical re-
actions means that the system can potentially use all of
the available fuel, which causes the state space to grow
enormously. To counteract this effect we modify the gate
designs from Section 3.3 further, using the constant
keyword of the DSD language. This keyword declares
that the population of a particular species should be
held constant across all reactions in the system, even
those reactions where it is produced or consumed. This
approximation can be used when the species is in excess,
allowing us to abstract away from depletion of fuels and
accumulation of waste, in cases when these species are in
very high concentrations. This helps to greatly restrict
the size of the state space in the PRISM model, by es-
sentially collapsing any states which differ only by their
populations of fuels and/or waste products.

Since the population protocol is not guaranteed to
form a consensus around the species that was initially

10

Table 2: Probability of reaching a consensus of X, for
various initial populations of X and Y .

Y=1 Y=2 Y=3 Y=4 Y=5

X=1 0.5000 0.2531 0.1290 0.0658 0.0334

X=2 0.7468 0.5000 0.3156 0.1917 0.1131

X=3 0.8709 0.6843 0.5000 0.3462 0.2299

X=4 0.9341 0.8082 0.6537 0.5000 0.3651

X=5 0.9665 0.8869 0.7699 0.6349 0.5000

Figure 14: Surface plot which shows the probability of
reaching a consensus of X, for various initial populations
of X and Y .

in the majority, we use PRISM to compute the probab-
ilities of reaching each consensus state (X or Y) in the
DNA implementation, given different initial populations
of the species. We constructed PRISM models for vari-
ous input populations and computed the probabilities of
ending up with the two possible consensus values. Care
must be taken because, even when a consensus has been
achieved, the resulting signal strands can still speculat-
ively bind to the remaining fuel gates, even though the
gate will never execute fully (since we have reached a
consensus, there are no different input species to bind
and complete the reaction process) and the strand must
therefore eventually unbind again. We use PRISM vari-
ables output_x and output_y, which return the number
of individuals in the two consensus states, taking these
transient structures into account in the definitions. The
required queries in PRISM are then:

P=? [F output_x=N];
P=? [F output_y=N];

As a sanity check, we used the following query:

N (X+Y) X Y Frac X Margin X (rel) Pr choose X (Data copied from other sheet)
2 1 1 0.5 0 0.499999762
2 2 0 1 1 1
3 1 2 0.333333333 -0.33333333 0.249999623
3 2 1 0.666666667 0.333333333 0.749999623
3 3 0 1 1 1
4 1 3 0.25 -0.5 0.124999692
4 2 2 0.5 0 0.499999401
4 3 1 0.75 0.5 0.874999692
4 4 0 1 1 1
5 1 4 0.2 -0.6 0.062499763
5 2 3 0.4 -0.2 0.312499319
5 3 2 0.6 0.2 0.687499319
5 4 1 0.8 0.6 0.937499763
5 5 0 1 1 1
6 1 5 0.166666667 -0.66666667 0.031249856
6 2 4 0.333333333 -0.33333333 0.187499455
6 3 3 0.5 0 0.499999196
6 4 2 0.666666667 0.333333333 0.812499455
6 5 1 0.833333333 0.666666667 0.968749856
6 6 0 1 1 1
7 1 6 0.142857143 -0.71428571 0.015624893
7 2 5 0.285714286 -0.42857143 0.109374497
7 3 4 0.428571429 -0.14285714 0.343749021
7 4 3 0.571428571 0.142857143 0.656249021
7 5 2 0.714285714 0.428571429 0.890624497
7 6 1 0.857142857 0.714285714 0.984374893
7 7 0 1 1 1
8 1 7 0.125 -0.75 0.007812442
8 2 6 0.25 -0.5 0.062499672
8 3 5 0.375 -0.25 0.226561706
8 4 4 0.5 0 0.499998953
8 5 3 0.625 0.25 0.773436706
8 6 2 0.75 0.5 0.937499672

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

-$" -!#(" !" !#(" $"

./
01

21
343
56
"0
7"8
90

0:
3;
<"
="

>3;35=-3;35?@AB"

'"

("

)"

*"

+"

,"

$!"

Figure 15: Probability of reaching a consensus of X,
plotted against (X0 − Y0)/N , which is the difference
between the initial populations of X and Y , relative to
the total initial population N = X0 + Y0. Results are
shown for N = 4..10.

P=? [F output_x=N | output_y=N];

to check that the probability of eventually ending up in
either consensus state is 1 in all cases. Thus it suffices
to study just one of the two outcomes. Figure 14 shows
a plot of the probability of finishing in consensus state
X for initial populations of X and Y ranging between 1
and 5. Table 2 shows the same values. If X or Y equals
zero then no reactions can take place, and for total initial
populations exceeding 10 the model becomes too large
to handle. We observe that, if the initial populations
of X and Y are the same, then the system is equally
likely to form a consensus around either X or Y . This is
illustrated by the contour line at level 0.5 in Figure 14.
However, as the initial excess of one species increases, the
probability of ending up in that consensus state increases
rapidly, so that when all but one of the initial species
are X (say) then the probability of forming a consensus
around X is almost one, as we would expect.

Theoretical results from [25] show that the correct
consensus is achieved with high probability if the mar-
gin between the initial numbers of X and Y is above√
N logN , for large total initial population N . So, in

Figure 15, we also plot the probability of reaching a con-
sensus of X against (X0 − Y0)/N , which is the initial
difference between X and Y relative to the total initial
population N = X0 + Y0, for N varying between 4 and
10. Here, we see more clearly how the probability grows
with the increase in the size of the margin |X0 − Y0|/N .
Figure 15 also illustrates how, for larger population sizes,
we see an increasingly clear threshold above which con-
sensus is achieved with high probability.

Finally, it is worth remarking that an analysis of this
system in terms of ordinary differential equations has a

11

number of limitations. In particular, the simulation of
the ODE model gives us the average behaviour of the
system, but not the probability of computing the major-
ity. Specifically, since the system is inherently stochastic
there is always a chance that the minority wins, whereas
in the ODE model the majority always wins. Further-
more, in cases where both species have equal initial pop-
ulations the ODE model never converges to a majority,
while the stochastic model does converge. Thus, to cor-
rectly analyse the behaviour of the system requires a de-
tailed analysis of the chemical master equation, which is
analytically unsolvable in this case. Another alternative
is to simply run large numbers of stochastic simulations,
though this is also intractable, due to the very low prob-
ability of error as the number of molecules increases.

Thus, probabilistic model checking allows us to ana-
lyse properties that would be considerably more difficult
to obtain using other techniques. Essentially, probab-
ilistic model checking can be viewed as an automated
way to solve the chemical master equation for small but
non-trivial model sizes. In particular, it allows us to de-
termine the distribution of the system, i.e. the individual
possible outcomes of the system and their corresponding
probabilities.

4 Methods

4.1 Model simulation in DSD

The syntax of DSD described in Section 2 interprets sys-
tems as well-mixed solutions: hence we impose a stand-
ard set of structural equivalence rules (see [2] for more
details). In addition, we assume that no long domain and
its complement are simultaneously unbound anywhere
in the system. This well-formedness restriction ensures
that two species can only interact with each other via
complementary toeholds.

The rules in Figure 16 present reduction rules which
formalise DNA interactions in the DSD language. The
arrows are labelled with rates which are used to paramet-
erise an exponential rate distribution. Rules (RB) and
(RU) define reversible toehold-mediated binding and un-
binding reactions between a single strand and a double-
stranded gate complex. Rule (RC) allows complement-
ary toeholds to hybridize if they are present in oppos-
ite overhanging strands of a gate. This situation could
arise when an incoming strand contains multiple toe-
holds that match up to exposed complementary toeholds
in the gate. We do not provide versions of rules (RB),
(RU) and (RC) where the complementary domain is not
a toehold since our well-formedness assumption ensures
that the only complementary domains exposed simul-
taneously are toeholds. Rules (RM) and (RD) present
primitive branch migration and strand displacement re-

actions, respectively. Rule (RD) can be thought of as the
special case of (RM) where there are sufficiently many
matching domains for the branch migration to make it
right to the end of the strand. The additional assump-
tion that fst(R2) 6= fst(S2) in rule (RM) ensures that
we only derive maximal branch migration reactions and
also ensures that rules (RM) and (RD) are mutually ex-
clusive. As an example, the following steps illustrate
the application of the sequence of rules (RB), (RD) and
(RC) on an initial system <t^ x u^>| {t^*}[x]{u^*}

The rules of Figure 16 define the fundamental DNA
reactions that we consider in this paper. We do not
consider reactions which would form chain polymers or
complex secondary structures, or leak reactions. To com-
plete the definition of reduction, however, we must also
provide additional contextual rules which allow these
primitive steps to occur in richer contexts. For example,
rule (RB) allows a strand to bind to the bottom-right
overhanging strand of a segment, whereas in reality it
could bind to any of the overhangs (provided that there
is a complementary toehold available). We also require
that these reactions can take place partway along more
complex molecules. Thus, we require each reduction rule
to be closed under rotation and mirroring of individual
DNA species about the axis of the double-stranded back-
bone, and under concatenation of additional segments
onto either end of the gate complex involved in a partic-
ular reaction. We also lift the rules to transform systems
involving parallel compositions and name restrictions in
the standard way. We refer the reader to [2] for further
details.

The reduction rules in Figure 16 provide a detailed
model of DNA strand displacement reactions between
single strands and gate complexes. In fact, for our pur-
poses a simpler model would suffice. Hence, we use a
merged reduction semantics for the DSD language, in
which we model toehold binding reactions as having a fi-
nite rate and all other reactions as instantaneous. In par-
ticular, we consider gates to be equivalent up to branch
migration, so if two gates differ only by applications of
rule (RM) we treat them as if they were the same gate.
These simplifications are based on the assumption that
toehold binding steps are sufficiently slow to be rate-
limiting, which is valid in the limit of low concentration.

We write D N+
=⇒ D’ to denote a merged reduction from

D to D’. Formally, D N+
=⇒ D’ means that D RB,N+−→ D” and

D”
RX1,r1−→ · · · RXk,rk−→ D’ both hold, for some D”, and

where none of the (RXi) rules are repeat occurrences of

12

{L1’}<L1>[S1]<R1>{L’ N^* R’}
| <L N^ R>

RB,N+−→
RU,N-←−

{L1’}<L1>[S1]<R1>:{L’}<L>[N^]<R>{R’}

{L’}<L>[S]<N^ R>{N^* R’}
RC,N~−→ {L’}<L>[S N^]<R>{R’}

{L’}<L>[S1]<S R2>:<L1>[S S2]<R>{R’}
RM,S~−→
RM,S~←−

{L’}<L>[S1 S]<R2>:<L1 S>[S2]<R>{R’}

{L’}<L>[S1]<S R>:<L2>[S]<R2>{R’}
RD,S~−→ {L’}<L>[S1 S]<R>{R’} | <L2 S R2>

Figure 16: Elementary reduction rules of the DSD programming language. We let S~ denote the migration rate of a
domain sequence S and fst(S) denote its first domain. We also let N+ and N- denote the binding and unbinding rates,
respectively, of a toehold N^. We assume that fst(R2) 6= fst(S2) for rule (RM). This ensures that branch migration is
maximal along a given sequence and that rules (RM) and (RD) are mutually exclusive.

(RB). Furthermore, since we are assuming that branch
migration is included in the structural equivalence re-
lation, there should be no occurrences of (RM) either.
In order to improve efficiency and reduce the size of the
resulting model we ignore unproductive reactions where
a strand binds onto a gate but cannot perform any sub-
sequent reaction other than an unbinding. This corres-
ponds to merged reductions of the form D N+

=⇒ D.

The merged reduction relation defined above is the In-
finite semantics from [2]. This is the most abstract model
of DNA strand displacement interactions defined in that
paper, and allows us to produce more compact models
for verification. In this paper we phrase all models in
terms of these merged rules, which allow us to translate
a collection of DNA molecules into a system of chemical
reactions for analysis. Under this condensed semantics,
the four reactions from Figure 1 are combined into the
following single reaction.

Where possible (i.e. where models do not become too
large for verification), we have also re-run the experi-
ments in this paper using models obtained with DSD’s
Default semantics, observing an overall slow-down in re-
action time, but otherwise identical patterns in beha-
viour. For all simulations and analysis, the kinetic rates
of toehold binding, toehold unbinding and branch mi-
gration were based on the experimental measurements
of [26]. These rates were in turn used to derive the cor-
responding simulation and analysis times, in seconds.

4.2 Probabilistic model checking in
PRISM

PRISM [7] is a probabilistic model checking tool de-
veloped at the Universities of Birmingham and Oxford.

13

It provides support for several types of probabilistic
models, including CTMCs, which we use here. Models
are specified in a simple, state-based language based on
guarded commands. Support for several other high-level
model description languages has also been made avail-
able through language-level translations to the PRISM
modelling language. For example, PRISM has the ability
to import SBML [27] specifications, which have an un-
derlying CTMC semantics. Translations from stochastic
process algebra such as PEPA and the stochastic π-
calculus [28] have also been developed.

Formally, letting R≥0 denote the set of non-negative
reals and AP denote a fixed, finite set of atomic propos-
itions used to label states with properties of interest, a
CTMC is a tuple (S,R, L) where:

• S is a finite set of states;

• R : (S × S)→ R≥0 is a transition rate matrix ;

• L : S → 2AP is a labelling function which associates
each state with a set of atomic propositions.

The transition rate matrixR assigns rates to each pair of
states, which are used as parameters of the exponential
distribution. A transition can only occur between states
s and s′ if R(s, s′)>0 and, in this case, the probabil-
ity of the transition being triggered within t time-units
is 1 − e−R(s,s′)·t. Typically, in a state s, there is more
than one state s′ for which R(s, s′)>0; this is known as
a race condition and the first transition to be triggered
determines the next state. The time spent in state s
before any such transition occurs is exponentially dis-
tributed with the rate E(s) =

∑
s′∈S R(s, s′), called the

exit rate. The probability of moving to state s’ is given
by R(s, s′)/E(s).

A CTMC can be augmented with rewards, attached
to states and/or transitions of the model. Formally, a
reward structure for a CTMC is a pair (c, C) where:

• c : S → R≥0 is a state reward function;

• C : (S × S)→ R≥0 is a transition reward function.

State rewards can represent either a quantitative meas-
ure of interest at a particular time instant (e.g. the num-
ber of phosphorylated proteins in the system) or the rate
at which some measure accumulates over time (e.g. en-
ergy dissipation). Transition rewards are accumulated
each time a transition occurs and can be used to com-
pute, e.g. the number of protein bindings over a partic-
ular time period.

PRISM can then be used to specify and verify a range
of properties of CTMCs, including those expressed in
the logic CSL and the reward-based extension of [20].
The underlying computation performed to apply prob-
abilistic model checking involves a combination of graph-
theoretical algorithms (e.g. to construct and explore

models) and numerical computation methods (e.g. to
calculate probabilities or reward values). For the latter
PRISM typically solves linear equation systems or per-
forms transient analysis. Due to the size of the models
that need to be handled, it uses iterative methods rather
than direct methods. For solutions of linear equation
systems, it supports a range of well-known techniques
including the Jacobi, Gauss-Seidel and SOR (successive
over-relaxation) methods; for transient analysis of CT-
MCs, it employs uniformisation.

The PRISM tool also offers a graphical user interface
with a range of functionality. First, it facilitates con-
struction and editing of PRISM models and property
specifications. In addition, it includes a graph-plotting
component for visualisation of numerical results from
probabilistic model checking. It also provides a tool to
perform manual execution and debugging of probabil-
istic models, based on an underlying discrete-event sim-
ulation engine. Another use of this engine is to generate
approximate solutions for the numerical computations
that underlie the model checking process, by applying
Monte Carlo methods and sampling. These techniques
offer increased scalability, at the expense of numerical
accuracy. The main strength of PRISM, though, and
the probabilistic model checking techniques that it im-
plements, is the ability to compute quantitative proper-
ties exactly, based on exhaustive model exploration and
numerical solution.

5 Discussion

We have introduced a modified version of Cardelli’s two-
domain gate designs [22], which is amenable to verifica-
tion yet retains the key simplification of the two-domain
design: initial species contain no overhangs and can thus
be constructed by inserting breaks into one strand of
a simple double-stranded DNA complex. This should
give higher yields compared to simple annealing of single
strands in a test tube.

We have demonstrated that probabilistic (and non-
probabilistic) model checking can be used to verify a
wide range of properties of individual circuit compon-
ents constructing using this design. We showed that the
PRISM model checker can detect bugs due to crosstalk
between gates, analyse quantitative properties such as
reliability and performance, and compute the probab-
ility of different possible outcomes of the gates’ execu-
tion. These techniques can be particularly useful during
the initial stages of gate design. Even model checking
a single gate executing in isolation, as in Section 3.2,
can help to identify errors in the design which would be
difficult to quantify using simulation-based methods. Al-
though multiple simulation runs can be used to approx-

14

Table 3: Model checking statistics: Model sizes and run-
times

Example Param.s States Time (s)

Buggy transducers

(Section 3.2)

N=4 57,188 4

N=5 284,641 26

N=6 1,160,292 145

Approx. majority

(Section 3.4)

X=3,Y=5 240,286 266

X=4,Y=5 674,066 860

X=5,Y=5 1,785,250 2,602

imate the probability of a given error, performing large
numbers of simulations can be time-consuming, particu-
larly in cases such as Figure 7 where the error probabil-
ity is low for large number of gates. More importantly,
model checking can be used to identify the source of an
error, by providing a specific execution trace of the beha-
viour that leads to its occurrence. As illustrated in Sec-
tion 3.3, we can also use model checking to investigate
the potential of different system designs, even when ana-
lysed using relatively small numbers of inputs. Finally,
we have shown how applying additional abstractions to
the populations of fuel and waste species can allow us to
scale up to verifying more complicated systems, such as
the approximate majority population protocol [25].

Nonetheless, model checking has its limitations. As
the species populations grow, the number of reaction in-
terleavings explodes, which causes problems for naively
scaling up to larger systems. Table 3 shows statistics
for a selection of the largest models that we used to
generate the results in Section 3 (model checking was
run on a 2.80GHz Dell PowerEdge R410 with 32GB
of RAM). The table shows the size of each model and
the time required to check a single property. As ex-
pected, model sizes grow rapidly as population sizes are
increased, meaning that larger models than those shown
in the table could not be analysed. In Section 3.4, we
had to approximate the populations of fuel and waste
species in the model as constant in order to prevent the
state space from becoming too large to generate. This
effect can be mitigated to an extent, for example by care-
ful gate design: our modified two-domain gates were de-
liberately constructed to minimise the number of asyn-
chronous steps requires for garbage collection and seal-
ing off used gates, which greatly expand the state space.
We also used a high level of abstraction (the Infinite se-
mantics of DSD [2]) to reduce the number of reactions
in the model as far as possible. However, even with the
cleverest gate design the sheer number of interleavings

will eventually become too great.
One key challenge is to extrapolate the results from

model checking relatively small systems to systems with
higher numbers of molecules. Being able to identify
design flaws in individual system components, such as
the buggy transducer gate in Section 3.1, is already valu-
able since the flaws are still likely to occur when the
component is present in larger numbers or is part of a
more complex design. On the other hand, our full-system
model checking does not verify interactions with an ar-
bitrary environment. For example, the buggy transducer
gate would appear to work correctly when model checked
in isolation—the unwanted crosstalk only becomes ap-
parent when two gates are model checked together. To
help address this, we can selectively model check a given
gate design with all of the remaining gates in the system,
in order to identify possible interferences.

For quantitative properties, such as performance or
reliability, we showed in Section 3.2 that it is already
possible to make comparisons between gate designs us-
ing relatively small numbers of molecules. Furthermore,
for certain categories of circuits, such as those involving
localised strands tethered to the surface of DNA origami
[29], the internal behaviour of each origami circuit can
be analysed independently, and then used to accurately
predict the behaviour of potentially millions of circuits
in solution. This is because localisation significantly re-
duces cross-talk between circuits, allowing them to be
accurately analysed in modular and scalable ways. We
also note that, in the context of cell signalling pathways,
PRISM has been used successfully to evaluate regulation
mechanisms for the fibroblast growth factor (FGF) path-
way [6]: behavioural predictions from a PRISM model
over small population numbers were later validated ex-
perimentally [30]. In this paper, we were able to repro-
duce behavioural trends previously analysed in a theor-
etical setting [23, 25]. In the future, we plan to invest-
igate experimental validation of our analysis techniques
for DNA strand displacement circuit designs.

Other important areas for research include developing
techniques to further improve the scalability of prob-
abilistic model checking on DNA designs, for example
through the construction of abstractions or by analys-
ing systems in a compositional manner. Promising dir-
ections for the former include sliding window abstrac-
tions [31], which optimise the analysis of temporal sys-
tem properties by restricting analysis to a particular sub-
set of the state space for each phase of its evolution,
and the stochastic hybrid model of [32] for analysing
systems in which some populations are present in small
numbers and others in large numbers. Abstractions will
also become essential when modelling Turing-powerful
computation with DNA strand displacement, since the
corresponding reaction network is of potentially unboun-

15

ded size. In this case, a notion of dynamically generated
reactions is needed, as discussed in [2].

Regarding compositional techniques, it may be bene-
ficial to consider stochastic Petri nets [33], which are an
alternative means of representing the behaviour of strand
displacement systems, and have already been applied to
systems and synthetic biology [34]. In this approach,
places correspond to DNA species and transitions to the
chemical reactions between them. Previous work has ex-
plored compositional model checking of (non-stochastic)
modular Petri nets [35] composed by transition shar-
ing. In fact, in the context of Petri net-based models
for strand displacement systems, it would be advantage-
ous to consider compositions based on both sharing of
transitions and of places.

We believe that advances in abstraction techniques
and compositional model checking will be vital in or-
der to apply model checking to larger DNA strand dis-
placement systems. In fact, the two-domain scheme is
an excellent framework for research into compositional
verification of strand displacement circuits because the
restricted syntax makes it straightforward to compute,
for any gate complex, the set of all single-stranded spe-
cies that could interact with the complex. This is a much
more challenging problem for more general strand dis-
placement schemes where strands can contain arbitrary
domains. This insight could allow us to relate every
gate complex with a finite-state automaton describing
its possible interactions with the environment, which
could form the basis for a compositional verification tech-
nique. Just as we used generic temporal logic formulae
to characterise correct final states of the reaction gates
examined in Section 3, for compositional model checking
we would need to identify temporal logic formulae which
characterise valid sequences of interactions between the
gate and its environment. We would hope to prove that,
if a particular set of gates all satisfy those formulae, then
any cascade comprising just those gates would be correct
in some sense. Such techniques will become increasingly
important as larger and more complex strand displace-
ment systems are constructed, such as Qian and Win-
free’s four-bit square root circuit [14].

Acknowledgements

Authors Parker and Kwiatkowska are partially suppor-
ted by ERC Advanced Grant VERIWARE.We are grate-
ful to the anonymous referees for their helpful comments.

References

[1] Andrew Phillips and Luca Cardelli. A programming
language for composable DNA circuits. J R Soc

Interface, 6 Suppl 4:S419–S436, Aug 2009.
[2] Matthew R. Lakin and Andrew Phillips. Modelling,

simulating and verifying turing-powerful strand dis-
placement systems. In Cardelli and Shih [36], pages
130–144.

[3] M. Duflot, M. Kwiatkowska, G. Norman, and
D. Parker. A formal analysis of Bluetooth device
discovery. Int. Journal on Software Tools for Tech-
nology Transfer, 8(6):621–632, 2006.

[4] G. Steel. Formal analysis of pin block attacks. The-
oretical Computer Science, 367(1-2):257–270, 2006.

[5] Muffy Calder, Stephen Gilmore, and Jane Hillston.
Modelling the influence of RKIP on the ERK sig-
nalling pathway using the stochastic process algebra
PEPA. In C. Priami, A. Ingólfsdóttir, B. Mishra,
and H. R. Nielson, editors, Transactions on Compu-
tational Systems Biology VII, volume 4230 of LNBI,
pages 1–23. Springer-Verlag, 2006.

[6] John Heath, Marta Kwiatkowska, Gethin Norman,
David Parker, and Oksana Tymchyshyn. Probab-
ilistic model checking of complex biological path-
ways. Theoretical Computer Science, 319(3):239–
257, 2008.

[7] Marta Kwiatkowska, Gethin Norman, and David
Parker. PRISM 4.0: Verification of probabilistic
real-time systems. In Proc. 23rd International Con-
ference on Computer Aided Verification (CAV’11),
LNCS. Springer, 2011.

[8] G. Seelig, D. Soloveichik, D. Y. Zhang, and E. Win-
free. Enzyme-free nucleic acid logic circuits. Sci-
ence, 314(8), 2006.

[9] S. J. Green, D. Lubrich, and A. J. Turberfield. DNA
hairpins: fuel for autonomous DNA devices. Bio-
physical Journal, 91, 2006.

[10] David Yu Zhang and Georg Seelig. Dynamic
DNA nanotechnology using strand-displacement re-
actions. Nat Chem, 3(2):103–113, Feb 2011.

[11] B. Yurke and A. P. Mills Jr. Using DNA to
power nanostructures. Genetic Programming and
Evolvable Machines Archive, 4(2):111–122, 2006.

[12] Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan,
Z. Livneh, and E. Shapiro. Programmable and
autonomous computing machine made of bio-
molecules. Nature, 414(22), 2001.

[13] S. Venkataraman, R. M. Dirks, C. T. Ueda, and
N. A. Pierce. Selective cell death mediated by small
conditional RNAs. Proc Natl Acad Sci U S A,
107(39):16777–16782, 2010.

[14] Lulu Qian and Erik Winfree. Scaling up digital
circuit computation with DNA strand displacement
cascades. Science, 332(6034):1196–1201, 2011.

16

[15] Luca Cardelli. Two-domain DNA strand dis-
placement. In S. B. Cooper, E. Kashefi, and
P.Panangaden, editors, Developments in Computa-
tional Models (DCM 2010), volume 26 of Electronic
Proceedings in Theoretical Computer Science, pages
47–61, 2010.

[16] Edmund Clarke, Orna Grumberg, and Doron Peled.
Model Checking. MIT Press, 1999.

[17] Christel Baier and Joost.-Pieter. Katoen. Principles
of Model Checking. MIT Press, 2008.

[18] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton.
Model-checking continuous time Markov chains.
ACM Transactions on Computational Logic,
1(1):162–170, 2000.

[19] Christel Baier, Boudewijn Haverkort, Holger
Hermanns, and Joost-Pieter Katoen. Model-
checking algorithms for continuous-time Markov
chains. IEEE Transactions on Software Engineer-
ing, 29(6):524–541, 2003.

[20] Marta Kwiatkowska, Gethin Norman, and David
Parker. Stochastic model checking. In M. Bern-
ardo and J. Hillston, editors, Formal Methods for
the Design of Computer, Communication and Soft-
ware Systems: Performance Evaluation (SFM’07),
volume 4486 of LNCS (Tutorial Volume), pages
220–270. Springer, 2007.

[21] Marta Kwiatkowska, Gethin Norman, and David
Parker. Symbolic Systems Biology, chapter Probab-
ilistic Model Checking for Systems Biology, pages
31–59. Jones and Bartlett, 2010.

[22] Luca Cardelli. Two-domain DNA strand displace-
ment. Mathematical Structures in Computer Sci-
ence, In press, 2011.

[23] Georg Seelig and David Soloveichik. Time-
complexity of multilayered DNA strand displace-
ment circuits. In R. Deaton and A. Suyama, editors,
DNA Computing and Molecular Programming: 15th
International Conference, DNA 15, Fayetteville,
AR, USA, June 8-11, 2009, Revised Selected Pa-
pers, volume 5877 of Lect Notes Comput Sci, pages
144–153. Springer-Verlag, 2009.

[24] David Soloveichik, Georg Seelig, and Erik Winfree.
DNA as a universal substrate for chemical kinetics.
Proc Natl Acad Sci U S A, 107(12):5393–5398, Mar
2010.

[25] Dana Angluin, James Aspnes, and David Eisenstat.
A simple population protocol for fast robust approx-
imate majority. Distributed Computing, 21(2):87–
102, 2008.

[26] D. Y. Zhang and E. Winfree. Control of DNA
strand displacement kinetics using toehold ex-
change. Journal of the American Chemical Society,
131:17303–17314, 2009.

[27] Michael Hucka et al. The Systems Biology
Markup Language (SBML): a medium for represent-
ation and exchange of biochemical network models.
Bioinformatics, 9(4):524–531, 2003.

[28] Corrado Priami, Aviv Regev, Ehud Shapiro, and
William Silverman. Application of a stochastic
name-passing calculus to represetnation and simula-
tion of molecular processes. Information Processing
Letters, 80(1):25–31, 2001.

[29] Harish Chandran, Nikhil Gopalkrishnan, Andrew
Phillips, and John H. Reif. Localized hybridization
circuits. In Cardelli and Shih [36], pages 64–83.

[30] E. Sandilands, S. Akbarzadeh, A. Vecchione, D. G.
McEwan, M. C. Frame, and J. K. Heath. Src
kinase modulates the activation, transport and sig-
nalling dynamics of fibroblast growth factor recept-
ors. EMBO Rep, 8:1162–1169, 2007.

[31] V. Wolf, R. Goel, M. Mateescu, and T. Henzinger.
Solving the chemical master equation using sliding
windows. BMC Systems Biology Journal, 4(42),
2010.

[32] T. Henzinger, M. Mateescu, L. Mikeev, and V. Wolf.
Hybrid numerical solution of the chemical mas-
ter equation. In Proc. 8th International Confer-
ence on Computational Methods in Systems Biology
(CMSB’10), pages 55–65. ACM, 2010.

[33] Peter J. E. Goss and Jean Peccoud. Quantitative
modeling of stochastic systems in molecular biology
by using stochastic Petri nets. Proc Natl Acad Sci
U S A, 95:6750–6755, 1998.

[34] Monika Heiner, David Gilbert, and Robin Donald-
son. Petri nets for systems and synthetic biology.
In M. Bernardo, P. Degano, and G. Zavattaro, edit-
ors, Proc. SFM 2008, volume 5016 of LNCS, pages
215–264. Springer-Verlag, 2008.

[35] Søren Christensen and Laure Petrucci. Modular
analysis of Petri nets. The Computer Journal,
43(3):224–242, 2000.

[36] Luca Cardelli and William M. Shih, editors.
DNA Computing and Molecular Programming -
17th International Conference, DNA 17, Pasadena,
CA, USA, September 19-23, 2011. Proceedings,
volume 6937 of Lecture Notes in Computer Science.
Springer, 2011.

17

	Introduction
	Background
	DNA strand displacement
	The DSD programming language
	Probabilistic model checking

	Results
	Transducer gates: Correctness
	Transducer gates: Performance and reliability
	Catalyst gates
	Approximate majority

	Methods
	Model simulation in DSD
	Probabilistic model checking in PRISM

	Discussion

