
Symbolic Optimal Expected Time Reachability
Computation and Controller Synthesis for Probabilistic

Timed Automata

Aleksandra Jovanovića, Marta Kwiatkowskaa, Gethin Normanb,
Quentin Peyrasc

aDepartment of Computer Science, University of Oxford, Oxford, UK
bSchool of Computing Science, University of Glasgow, Glasgow, UK

cDépartement Informatique de l’ENS Cachan, Université Paris-Saclay, France

Abstract

In this paper we consider the problem of computing the optimal (minimum or
maximum) expected time to reach a target and the synthesis of an optimal
controller for a probabilistic timed automaton (PTA). Although this problem
admits solutions that employ the digital clocks abstraction or statistical model
checking, symbolic methods based on zones and priced zones fail due to the
difficulty of incorporating probabilistic branching in the context of dense time.
We work in a generalisation of the setting introduced by Asarin and Maler for
the corresponding problem for timed automata, where simple and nice functions
are introduced to ensure finiteness of the dense-time representation. We find
restrictions sufficient for value iteration to converge to the optimal expected
time on the uncountable Markov decision process representing the semantics of
a PTA. We formulate Bellman operators on the backwards zone graph of a PTA
and prove that value iteration using these operators equals that computed over
the PTA’s semantics. This enables us to extract an ε-optimal controller from
value iteration in the standard way.

Keywords: Probabilistic Timed Automata, Controller Synthesis, Probabilistic
Verification, Symbolic Model Checking

1. Introduction

Systems which exhibit real-time, probabilistic and nondeterministic behaviour
are widespread and ubiquitous in many areas such as medicine, telecommu-
nications, robotics and transport. Timing constraints are often vital to the
correctness of embedded devices and stochasticity is needed due to unreliable
channels, randomisations and component failure. Finally, nondeterminism is
an important concept which allows us to model and analyse systems operating
in a distributed environment and/or exhibiting concurrency. A natural model
for such systems, probabilistic timed automata (PTAs), a probabilistic extension

Preprint submitted to Theoretical Computer Science February 12, 2017

of timed automata (TAs) [1], was proposed in [2, 3, 4]. They are finite-state
automata equipped with real-valued clocks which measure the passage of time
and whose transitions are probabilistic. More specifically, transitions are ex-
pressed as discrete probability distributions over the set of edges, each such
edge specifying a successor location and a set of clocks to reset.

An important class of properties on PTAs are probabilistic reachability prop-
erties. They allow us to check statements such as: “with probability 0.05 or less
the system aborts” or “the data packet will be delivered within 1 second with
minimum 0.95 probability”. Model checking algorithms for these properties
are well studied. Forwards reachability [3] yields only approximate probability
values (upper bounds on maximum reachability probabilities). An abstraction
refinement method, based on stochastic games, has subsequently been proposed
in [5] for the computation of exact values and implemented in PRISM [6]. An
alternative method is backward reachability [7], also giving exact values. These
are all symbolic algorithms based on zones, a structure that represents in a
concise way sets of the automaton states with equivalent behaviour.

Another important class of properties, which is the focus of this paper, is
expected reachability. They can express statements such as “the expected num-
ber of packets sent before failure is at least 100” or “the expected time until a
message is delivered is at most 20ms”. These properties turned out to be more
difficult to verify on PTAs and currently no symbolic approach exists. Even
for TAs, the research first concentrated on checking whether there exist system
behaviours that satisfy a certain property (for example, reaching the target set
of states). In many situations this is not sufficient, as we often want to distin-
guish between behaviours that reach target states in 10 or 1,000 seconds. In
[8], a backward fixed-point algorithm was proposed for controller synthesis for
TAs, which generates a controller that reaches the target in minimum time. The
analogous problem for priced timed automata, a model comprising more general
reward (or cost) structures, was also considered. The minimum reward reacha-
bility for this model has been solved using the region graph method [9], and later
extended for more efficient priced zones [10] and implemented in Uppaal [11].

Contributions. We propose the first zone-based algorithms to compute the
optimal expected time to reach a target set in a PTA and synthesise an ε-
optimal controller. The semantics of a PTA is an uncountable Markov decision
process (MDP). Under suitable restrictions, we are able to prove that value
iteration converges to the optimal expected time on this MDP. We formulate
Bellman operators on the backwards zone graph of a PTA and show that value
iteration using these operators yields the same values as those computed on the
MDP. This enables us to extract an ε-optimal controller from value iteration
in the standard way. This problem has been open for several years, with pre-
vious symbolic zone-based methods, including priced zones, being unsuitable
for computing expected values since accumulated rewards are unbounded. In
order to represent the value functions we introduce rational simple and rational
nice functions, a generalisation of Asarin and Maler’s classes of simple and nice
functions [8].

2

Related work. Expected reachability properties of PTAs can be verified using
the digital clocks method [12], which assumes an integral model of time as
opposed to a dense model of time. Although this method suffers from state-
space explosion, it has been shown useful in practice for the analysis of a number
of real-world protocols, see for example [12, 13]. In addition, this approach
has recently been extended to allow the analysis of partially observable PTAs
against expected reachability properties [14]. In [15], the minimum expected
reward for priced timed games has been solved using statistical model checking
and Uppaal-SMC [16]. This is orthogonal to numerical model checking, and
is based on simulation and hypothesis testing, thus giving only approximate
results which are not guaranteed to be correct.

In [17] the authors consider priced probabilistic timed automata and study
reward-bounded probabilistic reachability, which determines whether the max-
imal probability to reach a set of target locations, within given bounds on the
accumulated reward and elapsed time, exceeds a threshold. Although this prob-
lem is shown to be undecidable [18], a semi-decidable backwards algorithm using
priced zones, which terminates if the problem is affirmative, is implemented in
Fortuna [19].

Outline. In Section 2 we define MDPs and give existing results concerning op-
timal reward computation for uncountable MDPs. Section 3 defines PTAs and
introduces the assumptions needed for the adoption of the results of Section 2.
In Section 4, we present our algorithms for computing optimal expected time
reachability and synthesis of an ε-optimal controller using the backwards zone
graph of a PTA. Section 4 also introduces a representation of the value func-
tions that generalise the simple and nice functions of [8] and gives an example
demonstrating the approach. We conclude with Section 5.

A preliminary conference version of this paper was published as [20], where only
minimum expected time was considered.

2. Background

Let R be the set of reals, R+ the set of non-negative reals, N the natural numbers
(including 0), Q the rationals and Q+ the non-negative rationals. A discrete
probability distribution over a (possibly uncountable) set S is a function µ :
S→[0, 1] such that

∑
s∈S µ(s) = 1 and the set {s ∈ S | µ(s)>0} is finite. We

denote by Dist(S) the set of distributions over S. A distribution µ ∈ Dist(S) is
a point distribution if there exists s ∈ S such that µ(s)=1.

Markov Decision Processes (MDPs) is a widely used formalism for modelling
systems which exhibit both nondeterministic and probabilistic behaviour.

Definition 1. An MDP is a tuple M=(S, s0, A,PM,RM), where:

• S is a (possibly uncountable) set of states;

• s0 ∈ S is an initial state;

3

• A is a (possibly uncountable) set of actions;

• PM : (S×A)→ Dist(S) is a (partial) probabilistic transition function;

• RM : (S×A)→ R is a reward function.

A state s of an MDPM has a set of enabled actions, denoted by A(s), given by
the set of actions for which PM(s, ·) is defined. A transition in M from state
s is first made by nondeterministically selecting an available action a ∈ A(s).
After the choice is made, a successor state s′ is selected randomly according to
the probability distribution PM(s, a), i.e. the probability that a transition to s′

occurs is equal to PM(s, a)(s′), and the reward RM(s, a) is accumulated when
making this transition.

An infinite path of an MDPM is a sequence ω = s0
a0−→s1

a1−→s2
a2−→· · · of tran-

sitions such that PM(si, ai)(si+1)>0 for all i ∈ N, and it represents a particular
resolution of both nondeterminism and probability. A finite path is a prefix of
an infinite path ending in a state. The (i+1)th state of a path ω is denoted by
ω(i) and the action associated with the (i+1)th transition by ω[i]. We denote
the set of all infinite (finite) paths of M by IPathsM (FPathsM) and the last
state of a finite path ω by last(ω).

A strategy (also called an adversary or policy) of an MDP M resolves the
choice between available actions in each state, based on the execution so far.

Definition 2. A strategy of an MDP M is a function σ : FPathsM→Dist(A)
such that σ(ω)(a)>0 only if a ∈ A(last(ω)). The set of strategies of M is
denoted by ΣM.

For a fixed strategy σ and state s of an MDP M, we can define a probability
measure Pσs over the set of infinite paths starting in s [21]. A strategy σ is
memoryless if its choices only depend on the current state, and deterministic if
σ(ω) is a point distribution for all ω ∈ FPathsM.

Two fundamental quantitative properties of an MDP are the probability
of reaching a set of target states and the expected reward accumulated before
reaching a target. For a strategy σ, state s and set of target states F of an
MDPM, the probability of reaching F and expected reward accumulated before
reaching F from s under σ are given by:

PσM(s, F)
def
= Pσs {ω ∈ IPathsM | ω(i) ∈ F for some i ∈ N}

EσM(s, F)
def
=
∫
ω∈IPathsM

rew(ω, F) dPσs

where for any infinite path ω:

rew(ω, F)
def
=
∑kF
i=0RM(ω(i), ω[i])

where kF = min{k−1 | ω(k) ∈ F} if there exists k ∈ N such that ω(k) ∈ F and
kF = ∞ otherwise. Note that, this definition of expected reachability deviates
from the standard definition for MDPs, see e.g. [22], where the result is set to
infinity in states for which the probability of reaching the target is less than 1.

4

However, for expected time properties of (time-divergent) PTAs – the focus of
this paper – the two definitions are equivalent.

The standard approach is to analyse the optimal values of these properties,
i.e. the minimum and maximum values over all strategies:

Pmin
M (s, F)

def
= infσ∈ΣM PσM(s, F)

Pmax
M (s, F)

def
= supσ∈ΣM

PσM(s, F)

Emin
M (s, F)

def
= infσ∈ΣM EσM(s, F)

Emax
M (s, F)

def
= supσ∈ΣM

EσM(s, F) .

The optimal values can be computed using Bellman operators [23]. More pre-
cisely, under certain conditions on the MDP and target set under study, using a
Bellman operator an optimal value can be obtained through a number of tech-
niques, including value iteration and policy iteration, see for example [24, 25].
Concerning optimal expected reachability we have the following definition.

Definition 3. Let M be an MDP with state space S and F a set of target
states ofM. The Bellman operators Tmin

M , Tmax
M : (S→R)→ (S→R) for optimal

expected reachability are defined as follows. For any function f : S → R and
state s ∈ S:

Tmin
M (f)(s) =

{
0 if s ∈ F

infa∈A(s)

{
RM(s, a) +

∑
s′∈S PM(s, a)(s′)·f(s′)

}
otherwise

Tmax
M (f)(s) =

{
0 if s ∈ F

supa∈A(s)

{
RM(s, a) +

∑
s′∈S PM(s, a)(s′)·f(s′)

}
otherwise.

Value iteration for these operators corresponds to repeatedly applying an op-
erator when starting from some initial approximation f0 until some conver-
gence criterion is met, e.g. computing (Tmin

M)n+1(f0)=Tmin
M ((Tmin

M)n(f0)) un-
til ‖(Tmin

M)n+1(f0)−(Tmin
M)n(f0)‖ ≤ ε for some threshold ε. Value iteration is

simple to implement, with low memory requirements; however, convergence is
not guaranteed in all cases, see [26] for an extension guaranteeing convergence.
On the other hand, policy iteration starts with an arbitrary, deterministic and
memoryless strategy, and then tries repeatedly to construct an improved (deter-
ministic and memoryless) strategy. This is achieved by computing the expected
reachability values for the current strategy and, if possible, updating the actions
choices so that the expected reachability values decrease.

We now adapt the results of [27] for optimal total expected rewards for pos-
sibly uncountable-state and uncountable-action set MDPs. The conditions im-
posed by [27] correspond, in our setting, to those given below (since the MDPs
constructed from PTAs only contain discrete distributions and non-negative
reward values, the assumptions we require are weaker) except we have strength-
ened Assumption 4(b) over that given in [27] to allow the same assumptions to
be used for both minimum and maximum expected reachability. This strength-
ening is just to simplify the presentation and imposes no further restrictions on
the class of PTAs we can analyse.

5

Assumption 4. For any MDP M=(S, s0, A,PM,RM) and target set F ⊆ S:

(a) A(s) is compact for all s ∈ S;

(b) RM is bounded and a 7→ RM(s, a) is continuous for all s ∈ S;

(c) if σ is a memoryless, deterministic strategy which is not proper, then
EσM(s, F) is unbounded for some s ∈ S;

(d) there exists a proper, memoryless, deterministic strategy;

where a strategy σ is called proper if PσM(s, F)=1 for all s ∈ S.

The relevance of Assumption 4 for PTAs will be discussed after introducing the
semantics of a PTA, which is an infinite-state MDP. In particular, in Assump-
tion 9 we will give the requirements on a PTA that ensure that its semantics
meets Assumption 4. Using Assumption 4 we have the following result for min-
imum expected reachability.

Theorem 5 ([27]). If M and F are an MDP and the corresponding target
set for which Assumption 4 holds and the minimum expected reward values are
bounded below, then:

• there exists a memoryless, deterministic strategy that achieves the mini-
mum expected reward of reaching F ;

• the minimum expected reward values are the unique solutions to Tmin
M ;

• value iteration over Tmin
M converges to the minimum expected reward values

when starting from any bounded function;

• policy iteration converges to the minimum expected reward values when
starting from any proper, memoryless, deterministic strategy.

In the case of maximum expected reachability we can adapt the above theorem
by negating all the reward values in the MDP under study. This leads to the
following corollary.

Corollary 6. If M and F are an MDP and the corresponding target set for
which Assumption 4 holds and the maximum expected reward values are bounded
above, then:

• there exists a memoryless, deterministic strategy that achieves the maxi-
mum expected reward of reaching F ;

• the maximum expected reward values are the unique solutions to Tmax
M ;

• value iteration over Tmax
M converges to the maximum expected reward val-

ues when starting from any bounded function;

• policy iteration converges to the maximum expected reward values when
starting from any proper, memoryless, deterministic strategy.

6

3. Probabilistic Timed Automata

We now introduce PTAs, a modelling framework for systems which incorporate
probabilistic, nondeterministic and real-time behaviour.

3.1. Clocks, Clock Valuations and Zones

Let X be a set of real-valued variables called clocks, which increase at the same,
constant rate. A function v : X→R+ is called clock valuation and the set of all
clock valuations is denoted by RX+ . Let 0 be the clock valuation that assigns
0 to all clocks in X . For any R ⊆ X and clock valuation v, we write v[R] for
the clock valuation such that, for any x ∈ X , we have v[R](x)=0 if x ∈ R and
v[R](x)=v(x) otherwise. For t ∈ R+, v+t denotes the clock valuation such that
(v+t)(x)=v(x)+t for all x ∈ X . A zone over X is an expression of the form:

ζ ::= true | x ≤ d | c ≤ x | x+c ≤ y+d | ¬ζ | ζ ∧ ζ

where x, y ∈ X and c, d ∈ N. The set of zones over X is denoted Zones(X).
A clock valuation v satisfies a zone ζ, denoted v|=ζ, if ζ resolves to true after
substituting each occurrence of a clock x with v(x). The semantics of a zone ζ
is given by the set of clock valuations which satisfy it.

We require a number of classical operations on zones [28, 29]. For any zone
ζ, the zone ↗ζ represents the set of valuations reachable from a valuation in ζ
by letting time pass. Conversely, ↙ζ represents the valuations that can reach
ζ by letting time pass. Furthermore, for a set of clocks R, ζ[R] represents the
valuations obtained from those in ζ by resetting the clocks R and [R]ζ the
valuations which result in a valuation in ζ when the clocks in R are reset.

3.2. Syntax and Semantics of PTAs

We now present the formal syntax and semantics of PTAs.

Definition 7. A PTA P is a tuple (L, l0,X ,Act , enab, prob, inv) where:

• L is a finite set of locations;

• l0 ∈ L is an initial location;

• X is a finite set of clocks;

• Act is a finite set of actions;

• enab : (L×Act)→ Zones(X) is an enabling condition;

• prob : (L×Act)→ Dist(2X×L) is a probabilistic transition function;

• inv : L→ Zones(X) is an invariant condition.

7

A state of PTA P is a pair (l, v) ∈ L×RX+ such that the clock valuation v satisfies
the invariant inv(l). A transition is a time-action pair (t, a) corresponding to
letting time t elapse and then performing the action a. In a state (l, v), time can
elapse as long as the invariant inv(l) remains continuously satisfied and action
a can be performed only if the enabling condition enab(l, a) is then satisfied.
If the transition (t, a) is performed in the state (l, v), then the set of clocks to
reset and successor location are selected randomly according to the probability
distribution prob(l, a).

The semantics of a PTA P is an infinite-state MDP and, in the definition
given below, the values of the reward function of this MDP correspond to the
elapsed time. Alternative reward values can be defined, for example, based on
linearly-priced timed automata [30].

Definition 8. For a PTA P=(L, l0,X ,Act , prob, inv) the semantics of P is
given by the (infinite-state) MDP [[P]]=(S, s0,R+×Act ,P[[P]],R[[P]]) where:

• S={(l, v) ∈ L×RX+ | v |= inv(l)} and s0=(l0,0);

• for any (l, v) ∈ S and (t, a) ∈ R+×Act we have P[[P]]((l, v), (t, a))=µ if
and only if v+t′ |= inv(l) for all 0≤t′≤t, v+t |= enab(l, a) and for any
(l′, v′) ∈ S:

µ(l′, v′) =
∑

R⊆X∧v′=(v+t)[R]

prob(l, a)(R, l′)

• R[[P]]((l, v), (t, a))=t for all (l, v) ∈ S and (t, a) ∈ R+×Act.

For a location-action pair (l, a) ∈ L×Act of a PTA P, an element (R, l′) ∈ 2X×L
such that prob(l, a)(R, l′)>0 is called an edge of (l, a) and the set of edges of
(l, a) is denoted edges(l, a).

As in [31, 5, 32], a transition of a PTA’s semantics corresponds to selecting
a time-action pair. This differs from the standard approach, e.g. see [12, 7],
where in the semantics there are separate “time” and “action” transitions. The
choice of definition we have used here is motivated by the fact that, by taking
this approach, both the presentation and proofs are greatly simplified. We em-
phasise, however, that the semantics presented here does not restrict the class
of systems that can be modelled. In particular, for any PTA P with the cor-
responding MDP M under the standard semantics, we can construct a PTA
in linear time such that its MDP semantics constructed using Definition 8 is
equivalent to M. Essentially, for any location in which the invariant is un-
bounded (meaning time can diverge), we add a transition to a new location in
which time can diverge (by adding a loop which resets all clocks). However, the
reverse is not true since using Definition 8 one can model the requirement that,
in a location, eventually an action is taken without placing a bound on the time
at which the action is taken, while modelling this behaviour is not possible if
using the original semantics.

Example 1. Consider the PTA P1 shown in Figure 1 where the target set equals
{l3}. From the state (l0, v), if action a is chosen, then the minimum expected

8

l0
x≤10

l1
x≤10

l3
x≤10

l2
x≤10

a, x≤5 0.7

x:=0

0.3

x:=0

c, 5≤x≤10

b, 2≤x≤10

d, x≤10

e, 1≤x≤10

x:=0
Figure 1: Example PTA P1

time equals 0.3·5 + 0.7·2 = 2.9. On the other hand, if action d is selected,
then the minimum expected time equals 5−v(x) if v(x)≤5 and 0 otherwise.
Therefore, in the initial state, i.e. when v(x)=0, the minimum expected time
equals min{2.9, 5−0} = 2.9. In this example, the optimal choices are to take
transitions as soon as they become available. However, as we will see, this does
not hold in general since we might need to wait longer in a location in order for
an enabling condition to be satisfied later.

Now consider the maximum expected time to reach the target set {l3}. If
action a is chosen in state (l0, v), then v(x)≤5 and the maximum expected
time is 0.3·(5−v(x)+10) + 0.7·(5−v(x)+10) = 15−v(x). On the other hand, if
action d is chosen in (l0, v), then v(x)≤10 and the maximum expected time is
10−v(x). Therefore, in the initial state, the maximum expected time equals
max{15−0, 10−0} = 15. In this case, we should not choose the action which is
available as late as possible (action d) as it reduces the expected time it takes
to reach the target. Instead, to achieve the maximum expected time in the
initial state, we should wait 5 time units, take action a and then wait as long
as possible in locations l1 and l2 before taking actions b and c respectively. �

3.3. Assumptions on PTAs

For Theorem 5 and Corollary 6 to be applicable to the semantics of a PTA, we
need to ensure Assumption 4 holds and the optimal value function is bounded
(from below in the case of minimum and above in the case of maximum). To
this end, we introduce the following assumptions on the PTAs we consider.

Assumption 9. For any PTA P we have:

(a) all invariants of P are bounded;

(b) only non-strict inequalities are allowed in clock constraints (P is closed);

(c) all invariant and enabling conditions of P are convex;

(d) P is structurally non-zeno [33] (this can be identified syntactically and in
a compositional fashion [34] and guarantees time-divergent behaviour).

Consider any PTA P=(L, l0,X ,Act , prob, inv) which satisfies Assumption 9 with
semantics [[P]]=(S, s0, A,P[[P]],R[[P]]). Assumption 9(a) and Assumption 9(b)

9

are necessary and sufficient to ensure A(s) is compact1 for all states s ∈ S, i.e.
Assumption 4(a) holds. Assumption 9(c) is standard for TAs and PTAs and is a
technical requirement for proving the correctness of our algorithm for maximum
expected reachability (see the proof of Proposition 17).

The fact [[P]] satisfies Assumption 4(b) follows from Definition 8 as, for
any (t, a) ∈ A=(R+×Act), we have R[[P]](s, (t, a))=t for all s ∈ S. Assump-
tion 9(d) (structurally non-zeno) is sufficient for ensuring that [[P]] satisfies
Assumption 4(c). More precisely, if for a strategy σ of [[P]] the probability of
reaching the target is less than 1, then there is a non-negligible set of paths
under σ which never reach the target and, since σ is non-zeno, the elapsed time
(and hence the accumulated reward) must diverge on all the paths in this set.

The remaining requirements of [[P]], Assumption 4(d) and that the optimal
values are bounded (see Theorem 5 and Corollary 6), hold if we restrict atten-
tion to a specific sub-MDP of [[P]]. More precisely, in the case of minimum
expected reachability, we restrict to the sub-MDP which contains the states
s ∈ S for which Pmax

[[P]] (s, F)=1 and, in the case of maximum expected reacha-

bility, to the sub-MDP which contains the states s ∈ S for which Pmin
[[P]] (s, F)=1.

In either case, it follows from the region graph construction [3] that there exists
a memoryless, deterministic strategy that reaches the target with probability
1 from all states of the sub-MDP, and hence this strategy will also be proper,
meaning Assumption 4(d) holds. Regarding the optimal values, clearly the min-
imum values are bounded below as all rewards are non-negative. For maximum
values, using either the digital clocks approach [12] or the region graph con-
struction [3], we can show that the maximum values are less than or equal to
maximum expected reachability reward values on a finite-state MDP, preserving
optimal reachability probabilities. Therefore, as we have restricted to states for
which the target is reached with minimum probability 1, the maximum values
are bounded above [24].

Assumption 9 imposed several restrictions on PTAs we analyse. However,
boundedness is not actually a restriction since bounded TAs are as expressive as
standard TAs [9] and this result carries over to PTAs. Also, the fact that PTAs
must be closed is not a severe restriction, as any PTA can be infinitesimally
approximated by one with closed constraints [35]. However, since it relies on
the region graph construction [36, 1], it can lead to an exponential blow-up, and
therefore has practical implications. Non-zenoness is a standard assumption for
both TAs and PTAs, as it prevents unrealistic behaviours, i.e. executions for
which time does not diverge.

A final assumption on PTAs, which is again standard, is that we assume
that they are well-formed. This means that, for each state (l, v), action a such
that v |= enab(l, a) and edge (R, l′) ∈ edges(l, a), we have v[R] |= inv(l′), i.e. all
transitions lead to valid states.

1Recall a subset of R+ is compact if it is closed and bounded.

10

4. Optimal Expected Time Controller Synthesis for PTAs

In this section we present our algorithms for the optimal expected time compu-
tation and controller synthesis for PTAs based on a backwards exploration of the
state space. We adopt backwards as opposed to forwards search since, although
forwards has proven successful in the context of TAs, for PTAs it yields only
upper bounds for maximum probabilistic reachability [3]. For the remainder of
the section we fix a PTA P=(L, l0,X ,Act , enab, prob, inv), target set of locations
F and suppose [[P]]=(S, s0,R+×Act ,P[[P]],R[[P]]) and SF={(l, v) ∈ L×RX+ | l ∈
F ∧ v |= inv(l)}.

We first define symbolic states and the operations we require on them. Next
we present the backwards reachability algorithm for generation of the zone
graph. Following this we show how value iteration over the zone graph can be
used for optimal expected time reachability computation. We then introduce ra-
tional simple and rational nice functions to represent the functions encountered
during this computation, and finally give our approach for controller synthesis.

4.1. Symbolic States and Operations

A symbolic state z of P is a location-zone pair (l, ζ) ∈ L×Zones(X) representing

the set of PTA states {(l, v) ∈ {l}×RX+ | v |= ζ∧inv(l)}. Let ZF
def
= {(l, inv(l)) |

l ∈ F}, i.e. the symbolic states representing the target set. For any symbolic
states z=(l, ζ) and z′=(l, ζ ′) let z∧z′=(l, ζ∧ζ ′), z ⊆ z′ if and only if ζ ⊆ ζ ′ and
z=∅ if and only if ζ=false. The time and discrete predecessor operations for
a symbolic state z=(l, ζ), locations l′ and l′′, action a and set of clocks R are
defined as follows:

tpre(z)
def
= (l, inv(l)∧ ↙ζ)

dpre(l′, a, (R, l′′))(z)
def
=

{
(l′, false) if l 6= l′′

(l′, enab(l′, a) ∧ [R]ζ) otherwise.

4.2. Backward Reachability Algorithm

We use a slightly modified version of the backward reachability algorithm taken
from [7] (the same operations are performed, we just add action labels to the
edge tuples). The modified version is given in Figure 2.

The backwards algorithm returns a zone graph G=(Z, E) with symbolic states
as vertices. Termination of the algorithm is guaranteed by the fact that only
finitely many zones can be generated. As demonstrated in [7], from this graph
one can build a finite state MDP [[G]] for computing the exact maximum prob-
abilistic reachability values of [[P]]. The MDP [[G]] has state space Z, action set
2E and, if z ∈ Z and E ∈ 2E, then P[[G]](z, E) is defined if and only if there exists
a ∈ Act such that both the following conditions hold:

• (z′′, a′, (R, l′), z′) ∈ E implies z′′=z and a′=a;

• (z, a, (R, l′), z′) 6=(z, a, (R̃, l̃′), z̃′) ∈ E implies (R, l′) 6=(R̃, l̃′);

11

BackwardsReach(P, F)

1 Z := ∅
2 E := ∅
3 Y := {(l, inv(l)) | l ∈ F}
4 while (Y 6= ∅)
5 choose (y ∈ Y)
6 Y := Y\{y}
7 Z := Z ∪ {y}
8 for ((l, a) ∈ (L\F)×Act) and ((R, l′) ∈ edges(l, a))
9 z := dpre(l, a, R, l′)(tpre(y))

10 if (z 6= ∅)
11 if (z 6∈ Z)
12 Y := Y ∪ {z}
13 E := E ∪ {(z, a, (R, l′), y)}
14 for ((z̃, a, (R̃, l̃′), ỹ) ∈ E) such that ((R̃, l̃′) 6= (R, l′))
15 if ((z∧z̃ 6= ∅) ∧ (z∧z̃ 6∈ Z))
16 Y := Y ∪ {z∧z̃}
17 for (z ∈ Z) and ((z′, a, (R, l′), z′′) ∈ E)
18 if (z ⊆ z′)
19 E := {(z, a, (R, l′), z′′)} ∪ E
20 return G := (Z, E)

Figure 2: Backward reachability algorithm

where P[[G]](z, E)(z′)=
∑
{| prob(l, a)(R, l′) | (z, a, (R, l′), z′) ∈ E |} for z′ ∈ Z.

The following theorem shows the correspondence between the maximum
probabilistic reachability values for [[P]] and [[G]].

Theorem 10 ([7]). If G=(Z, E) is the zone graph returned by BackwardsReach(P, F),
then for any state s of [[P]] we have:

• Pmax
[[P]] (s, SF)>0 if and only if there exists z ∈ Z such that s ∈ tpre(z);

• if Pmax
[[P]] (s, SF)>0, then Pmax

[[P]] (s, SF)= max
{
Pmax

[[G]] (z, ZF) | z∈Z∧s∈tpre(z)
}

.

Given a zone graph G=(Z, E), for any (l, ζ) ∈ Z let E(l, ζ) ⊆ 2E represent the
following sets of edges: E ∈ E(l, ζ) if and only if there exists a ∈ Act such that
edges(l, a)={(R1, l1), . . . , (Rn, ln)} and

E={(z, a, (R1, l1), z1), . . . , (z, a, (Rn, ln), zn)}

for some z1, . . . , zn ∈ Z.

Example 2. Consider the PTA P2 given in Figure 3, which is adapted from
an example presented in [7]. For the target set {l2}, after following the back-
wards algorithm, the resulting finite-state MDP [[G]] is presented in Figure 4.
In the figure, the thicker arrows correspond to the edges generated in the main

12

l0
0≤x≤2

l1
0≤x≤3

l2
0≤x≤2

l3
0≤x≤2

a, x≥1

b, x≥2∧y≤6
0.1

x:=0

0.9

x:=0

0.05

x:=0

0.95

x:=0

c, y≥6

x:=0

d, 1≤x≤2x:=0

e, 1≤x≤2x:=0

Figure 3: Example PTA P2 (adapted from [7])

algorithm (see Figure 2), while the remaining arrows correspond to the edges
generated during the MDP construction that follows. Using Theorem 10 it fol-
lows that, from the initial state (l0,0), the maximum probability of reaching the
target {l2} equals 0.99525 and corresponds to the maximum probability of the
symbolic state (l0, 1≤x≤2∧y<3) reaching the target set in the MDP of Figure 4.
This maximum probability is achieved by always taking the actions a and b in
locations l0 and l1 as soon as they become enabled. �

4.3. Minimum Expected Time Computation using the Zone Graph

We now consider the case of computing minimum expected time reachability
values. The first step in the computation is to find those states for which
the minimum expected time to reach the target is finite, i.e. states for which
the maximum probability of reaching the target is 1. For states for which the
maximum reachability probability is less than 1, since we assume P is non-zeno
(Assumption 9(d)) the minimum expected time to reach the target in these
states equals infinity. Using Theorem 10 we can find the states s of [[P]] for which
Pmax

[[P]] (s, SF)=1 by computing the symbolic states z for which Pmax
[[G]] (z, ZF)=1.

Finding these symbolic states does not require numerical computation [37], and
hence we do not need to build [[G]], but can use G directly in the computation.

For the remainder of this section we assume we have computed the states
of [[G]], and hence of [[P]], for which the maximum reachability probability is 1,
and [[P]]min and Gmin=(Zmin, Emin) are the sub-MDP and sub-graph restricted
to these states. Using Theorem 10, s ∈ Smin if and only if there exists z ∈ Zmin

such that s ∈ tpre(z). Since the minimum expected time to reach the target
is infinity for the states not considered, if we compute the minimum expected
time reachability values for the states of the constructed sub-MDP, we will have
found the values for all states of [[P]].

13

(l1, 2≤x≤3∧y≤6)

(l1, 2≤x≤3∧y≤4)

(l1, 2≤x≤3∧y≤2)

(l1, 2≤x≤3∧y≤0)

(l0, 1≤x≤2∧y≤4)

(l0, 1≤x≤2∧y≤2)

(l0, 1≤x≤2∧y≤0)

target (l2, x≤2) (l0, 1≤x≤2)

0.05

0.05

0.05

0.05

0.95

0.95

0.95

0.9

0.1

0.1

0.1

0.9

0.9

0.9

Figure 4: MDP [[G]] generated for the backwards algorithm for the PTA P2 and target {l2}

Following the discussion in Section 3.3, [[P]]min now satisfies Assumption 4
and we can use Theorem 5. In particular, value iteration for the Bellman oper-
ator Tmin

[[P]]min
(see Definition 3) for the target set SF converges to the minimum

expected time when starting from any bounded function. We now present a
value iteration method over Gmin and prove a correspondence with value itera-
tion using Tmin

[[P]]min
.

Definition 11. The operator Tmin
Gmin

: (Zmin→(Smin→R+))→(Zmin→(Smin→R+))
on the zone graph Gmin is such that for g : Zmin→(Smin→R+), z=(l, ζ) ∈ Zmin

and s=(l, v) ∈ Smin where s ∈ tpre(z) we have Tmin
Gmin

(g)(z)(s) equals 0 if l ∈ F
and otherwise equals

inf
t∈R+∧v+t∈ζ

min
E∈E(z)

t+
∑

(z,a,(R,l′),z′)∈E

prob(l, a)(R, l′)·g(z′)(l′, (v+t)[R])

 .

Proposition 12. If f : Smin→R+ and g : Zmin→(Smin→R+) are functions such
that f(s) = g(z)(s) for all s ∈ Smin and z ∈ Zmin such that s ∈ tpre(z), then for
any s ∈ Smin and n ∈ N we have:

(Tmin
[[P]]min

)n(f)(s) = min{ (Tmin
Gmin

)n(g)(z)(s) | z ∈ Zmin ∧ s ∈ tpre(z) } .

14

Proof. Consider any f : Smin→R+ and g : Zmin→(Smin→R+) such that f(s) =
g(z)(s) for all s ∈ Smin and z ∈ Zmin such that s ∈ tpre(z). The proof is by
induction on n ∈ N. If n=0, then the result follows by construction of f and g
and since (Tmin

[[P]]min
)0(f) = f and (Tmin

Gmin
)0(g) = g.

Next we assume the proposition holds for some n ∈ N. For any s=(l, v) ∈
Smin, if l ∈ F , then by the construction of the zone graph (see Figure 2, line 3),
Definition 3 and Definition 11 we have:

(Tmin
[[P]]min

)n+1(f)(s) = 0 = min
{

(Tmin
Gmin

)n+1(g)(z)(s) | z ∈ Zmin ∧ s ∈ tpre(z)
}
.

It therefore remains to consider the case when s=(l, v) ∈ Smin and l 6∈ F . Now
consider any (t′, a′) ∈ A(s). By construction of [[P]]min, for any (R, l′) ∈ E(l, a′)
we have s′ = (l′, (v+t′)[R]) ∈ tpre(z′) for some z′ ∈ Zmin (as otherwise s′ 6∈ Smin,
and hence the minimum expected time to reach F from s′ is infinite).

Now, for any (R, l′) ∈ E(l, a′), by the induction hypothesis there exists
z′(R,l′)=(l′, ζ(R,l′)) ∈ Zmin with (l′, (v+t′)[R]) ∈ tpre(z′(R,l′)) such that:

(Tmin
Gmin

)n(g)(z′(R,l′))(l
′, (v+t′)[R]) = (Tmin

[[P]]min
)n(f)(l′, (v+t′)[R]) . (1)

Since (t′, a′) ∈ A(s) and (l′, (v+t′)[R]) ∈ tpre(l′, ζ(R,l′)), it follows from Defini-
tion 8 that (l, v+t) ∈ dpre(l, a′, (R, l′))(tpre(z′(R,l′))).

Given that the edge (R, l′) ∈ edges(l, a′) was arbitrary, by the construction
of the zone graph (see Figure 2, lines 8–19), there exists z=(l, ζ) ∈ Zmin such
that v+t′ ∈ ζ and edge set:

E′ = {(z, a′, (R, l′), z′(R,l′)) | (R, l
′) ∈ edges(l, a′)} ∈ E(z) . (2)

Furthermore, by definition of tpre we have s ∈ tpre(z). Now, by Definition 11,
(Tmin

Gmin
)n+1(g)(z)(s) equals:

inf
t∈R+∧v+t∈ζ

min
E∈E(z)

t+
∑

(z,a,(R,l′),z′)∈E

prob(l, a)(R, l′)·(Tmin
Gmin

)n(g)(z′)(l′, (v+t)[R])


≤ min

E∈E(z)

t′ + ∑
(z,a′,(R,l′),z′)∈E

prob(l, a′)(R, l′)·(Tmin
Gmin

)n(g)(z′)(l′, (v+t′)[R])


(since v+t′ ∈ ζ)

≤ t′ +
∑

(z,a,(R,l′),z(R,l′)′)∈E′

prob(l, a′)(R, l′)·(Tmin
Gmin

)n(g)(z′(R,l′))(l
′, (v+t′)[R])

(since E′ ∈ E(z))

= t′ +
∑

(R,l′)∈edges(l,a′)

prob(l, a′)(R, l′)·(Tmin
[[P]]min

)n(f)(l′, (v+t′)[R])

(by (1) and (2))

= R[[P]]min
(s, (t′, a′)) +

∑
s′∈Smin

P[[P]]min
(s, (t′, a′))(s′)·(Tmin

[[P]]min
)n(f)(s′)

(by Definition 8)

15

Therefore, since (t′, a′) ∈ A(s) was arbitrary, it follows from Definition 3 that:

(Tmin
[[P]]min

)n+1(f)(s) ≥ min
{

(Tmin
Gmin

)n+1(g)(z)(s) | z ∈ Zmin ∧ s ∈ tpre(z)
}
. (3)

Next we consider any z=(l, ζ) ∈ Zmin such that v+t ∈ ζ for some t ∈ R+ (i.e.
z ∈ Zmin such that s ∈ tpre(z)). For any t′ ∈ R+ such that v+t′ ∈ ζ and
E′ ∈ E(l, ζ) by construction of the zone graph (see Figure 2, lines 8–19) there
exists a′ ∈ Act where:

E′ = {(z, a′, (R, l′), z′(R,l′)) | (R, l
′) ∈ edges(l, a′)} (4)

and (l′, (v+t′)[R]) ∈ tpre(z′(R,l′)) for all (R, l′) ∈ edges(l, a′). We have by the

induction hypothesis for any (R, l′) ∈ edges(l, a′):

(Tmin
[[P]]min

)n(f)(l′, (v+t′)[R]) ≤ (Tmin
Gmin

)n(g)(z′(R,l′))(l
′, (v+t′)[R]) . (5)

Furthermore, by Definition 8 we have (t′, a′) ∈ A(s). Now by Definition 3:

(Tmin
[[P]]min

)n+1(f)(s)

= inf
(t,a)∈A(l,v)

{
R[[P]]min

(s, (t, a)) +
∑

s′∈Smin

P[[P]]min
(s, (t, a))(s′)·(Tmin

[[P]]min
)n(f)(s′)

}
≤ R[[P]]min

(s, (t′, a′)) +
∑

s′∈Smin

P[[P]]min
(s, (t′, a′))(s′)·(Tmin

[[P]]min
)n(f)(s′)

(since (t′, a′) ∈ A(s))

= t′ +
∑

(R,l′)∈edges(l,a′)

prob(l, a′)(R, l′)·(Tmin
[[P]]min

)n(f)(l′, (v+t′)[R])

(by Definition 8)

≤ t′ +
∑

(R,l′)∈edges(l,a′)

prob(l, a′)(R, l′)·(Tmin
Gmin

)n(g)(z′(R,l′))(l
′, (v+t′)[R])

(by (5))

= t′ +
∑

(z,a,(R,l′),z′
(R,l′))∈E

′

prob(l, a′)(R, l′)·(Tmin
Gmin

)n(g)(z′(R,l′))(l
′, (v+t′)[R])

(by (4))

Since z=(l, ζ) ∈ Zmin such that v+t ∈ ζ for some t ∈ R+, t′ ∈ R+ such that
v+t′ ∈ ζ and E′ ∈ E(l, ζ) were arbitrary, by Definition 11 it follows that:

(Tmin
[[P]]min

)n+1(f)(s) ≤ min
{

(Tmin
Gmin

)n+1(g)(z)(s) | z ∈ Zmin ∧ s ∈ tpre(z)
}
. (6)

Combining (3) and (6) we have:

(Tmin
[[P]]min

)n+1(f)(s) = min
{

(Tmin
Gmin

)n+1(g)(z)(s) | z ∈ Zmin ∧ s ∈ tpre(z)
}

and hence, since s ∈ Smin was arbitrary, the proposition holds by induction. �

16

MinProbReach>0(P, F)

1 for (l ∈ L)
2 if (l ∈ F)
3 ζl := inv(l)
4 else
5 ζl := false

6 〈ξl〉l∈L := 〈false〉l∈L
7 while (〈ζl〉l∈L 6= 〈ξl〉l∈L)
8 〈ξl〉l∈L := 〈ζl〉l∈L
9 for (l ∈ L \ F)

10 for (a ∈ Act)
11 if (enab(l, a) 6= false)
12 ζ := enab(l, a)
13 for ((R, l′) ∈ edges(l, a))
14 ζ := ζ ∧ [R](inv(l′) \ ξl′)
15 ζ := inv(l)∧ ↙ζ
16 ζl := ζl \ ζ
17 ζl := ξl ∨ ζl
18 return 〈ζl〉l∈L

Figure 5: Algorithm for minimum probability of reaching the target is greater than 0

4.4. Maximum Expected Time Computation using the Zone Graph

In this section we use the zone graph (see Section 4.2) for computing maximum
expected time reachability values. The first step is to restrict the graph to
those states for which the maximum expected time to reach the target is finite,
that is, those states for which the minimum probability of reaching the target
equals 1. One way to achieve this would be to use the algorithms presented
in [7]. However, as we have restricted attention to structurally non-zeno PTAs
(see Assumption 9(d)), we can instead consider a simpler alternative based on
algorithms developed for MDPs. More precisely, we can extend the algorithm
presented in [37] for finding the states of an MDP for which the minimum
probability of reaching the target equals 1. This algorithm requires as input the
set of states for which the minimum probability of reaching the target is greater
than 0, for which an algorithm is also presented in [37]. Our extensions of these
algorithms to structurally non-zeno PTAs are shown in Figures 5 and 6.

The main difference between the algorithms of [37] for MDPs and the ex-
tension to non-zeno PTAs presented here is in algorithm MinProbReach>0 (see
Figure 5) when finding the states for which, for all available actions of an MDP
or time-action pairs of a PTA, one remains within the currently computed set
of states with probability greater than 0. More precisely, for PTAs we first find
the complement set, i.e. the set of states for which, for at least one available
time-action pair, the probability of leaving the currently computed states is 1.
This is due to the fact that this complement set is straightforward to compute

17

MinProbReach=1(P, F)

1 〈ζl〉 := MinProbReach>0(P, F)
2 〈ξl〉l∈L := 〈inv(l)〉l∈L
3 while (〈ζl〉l∈L 6= 〈ξl〉l∈L)
4 〈ξl〉l∈L := 〈ζl〉l∈L
5 for (l ∈ L \ F)
6 ζ := false

7 for (a ∈ Act)
8 if (enab(l, a) 6= false)
9 for ((R, l′) ∈ edges(l, a))

10 ζ := ζ ∨ (↙(enab(l) ∧ [R](inv(l′) \ ξl′)))
11 ζl := ζl \ ζ
12 return 〈ζl〉l∈L

Figure 6: Algorithm for minimum probability of reaching the target equals 1

using zone operations, and it is not apparent that the original set can be com-
puted directly using zone operations. To compute this complement set, we first
find, for each location l and action a, the clock valuations v such that, when
performing the action a in the state (l, v) all corresponding edges lead one out
of the currently computed set of states (lines 11–14). Second, we take the time
predecessor to find the clock valuations v such that for the state (l, v) there
exists a time-action pair (t, a) for which the probability of leaving the currently
computed set of states equals 1. Since these states are in the complement of
what we require, each time we remove these states from those under consider-
ation (line 16) and, for each location l, once all actions have been considered,
add the remaining set of states to the currently computed set of states (line 17).

The algorithm MinProbReach=1 (see Figure 6) is a more straightforward
extension of the algorithm presented in [37] for MDPs. For this algorithm we
need to find those states for which there exists a time-action pair which leaves
the currently computed set of states with probability greater than 0 and then
remove these states from the currently computed set of states. This can be
achieved straightforwardly using zone operations by considering each location
and enabled action in turn (lines 5–11).

Convergence of the presented algorithms follows from the region graph con-
struction for PTAs [3] and the fact that both algorithms are monotone in the
sense that at, after each iteration of MinProbReach>0(P, F), we have ξl ⊆ ζl for
all l ∈ L and, after each iteration of MinProbReach=1(P, F), we have ξl ⊇ ζl for
all l ∈ L. After demonstrating convergence, the correctness of these algorithms
follows as for the MDP case [37]. Formally, we have the following results.

Proposition 13. If 〈ζl〉l∈L are the zones returned by MinProbReach>0(P, F),
then for any s=(l, v) ∈ S we have Pmin

M (s, SF)>0 if and only if v ∈ ζl.

Proposition 14. If 〈ζl〉l∈L are the zones returned by MinProbReach=1(P, F),
then for any s=(l, v) ∈ S we have Pmin

M (s, SF)=1 if and only if v ∈ ζl.

18

l0
0≤x,y≤2

l1
0≤x,y≤2

l2
0≤x,y≤2

l3
0≤x,y≤2

a1, x≤2

x:=0

a2, y≤2

y:=0

b, 0≤x,y≤1

c, 0≤x,y≤2

d, 1≤x≤2

x,y:=0

d, 1≤x≤2

x,y:=0

Figure 7: Example PTA P3 (see Example 3)

For both of the presented algorithms the operations applied to zones include
disjunction and set difference, and hence non-convex zones can be introduced.
This is unavoidable, even under Assumption 9(c), as the following example
demonstrates.

Example 3. Consider the PTA P3 in Figure 7 where the target set equals {l3}.
The non-convex zone ζ, representing the set of clock valuations v such that the
minimum probability of reaching the target from (l1, v) equals 1, is given in
Figure 8. It is obtained by preventing the choice of action b, i.e. removing the
part of the zone in which the enabling condition of a transition labelled b is
satisfied (or becomes satisfied after letting time pass). �

For the remainder of this section we assume that, using the algorithms presented
in Figures 5 and 6, we have computed the states Smax of [[P]], for which the
minimum reachability probability is 1 and [[P]]max is the sub-MDP restricted to
those states. As discussed in Section 3.3, [[P]]max now satisfies Assumption 4
and we can apply Corollary 6. For states not considered, i.e. states for which
the minimum reachability probability is less than 1, since we assume P is non-
zeno (Assumption 9(d)), the maximum expected time to reach the target equals
infinity for these states. Therefore, if we compute the maximum expected time
reachability values for the states of the constructed sub-MDP, we will have found
the values for all states of [[P]]. Furthermore, we assume we have computed the
zone graph (see Figure 2), restrict the symbolic states of the zone graph to
represent only states of [[P]] for which the minimum probability of reaching the
target equals 1 and the resulting zone graph is given by Gmax=(Zmax, Emax).

Next we introduce a technical lemma concerning [[P]]max that we will require
when proving the correspondence between value iteration over [[P]]max using
Definition 3 and value iteration over Gmax that we will introduce.

Lemma 15. If (l, v) ∈ Smax and t ∈ R+ such that l 6∈ LF and (l, v+t) ∈ S,
then (l, v+t) ∈ Smax. Furthermore if v+t |= enab(l, a) for some a ∈ Act, then
for any (R, l′) ∈ edges(l, a) we have (l′, (v+t)[R]) ∈ Smax.

Proof. Consider any (l, v) ∈ Smax and t ∈ R+ such that l 6∈ LF and (l, v+t) ∈

19

x

y

2

1

0
210

ζ

Figure 8: Non-convex zone ζ (see Example 3)

S. Using Assumption 9(c), for any strategy σ we can construct a strategy σ′

such that:
Pσ

′

[[P]]((l, v), SF) = Pσ[[P]]((l, v+t), SF)

by, under σ′, from (l, v) first letting t time units elapse and then following the
choices of σ when starting from (l, v+t). Therefore, by definition, it follows
that Pmin

[[P]] ((l, v), SF) ≤ Pmin
[[P]] ((l, v+t), SF). Hence, since (l, v) ∈ Smax, we have

Pmin
[[P]] ((l, v+t), SF)≥1 and (l, v+t) ∈ Smax as required.

Now suppose that a ∈ Act such that v+t |= enab(l, a) and (l′, R) ∈ edges(l, a).
Using Corollary 6 we have:

Pmin
[[P]] ((l, v), SF) = inf

a∈A(l,v)

{∑
s′∈S

P[[P]](s, a)(s′)·Pmin
[[P]] ((l

′′, (v+t)[R′]), SF)

}
≥

∑
(R′,l′′)∈edges(l,a)

prob(l, a)(R′, l′′)·Pmin
[[P]] ((l

′′, (v+t)[R′]), SF) (by Definition 8.)

Therefore, since (l, v) ∈ Smax, prob(l, a) is a probability distribution, it follows
that Pmin

[[P]] (l
′, (v+t)[R])=1 as required. �

We are now in a position to present a value iteration operator for Gmax and
demonstrate a correspondence with value iteration over [[P]]max using Tmax

[[P]]max

(see Definition 3).

Definition 16. The operator Tmax
Gmax

: (Zmax→(Smax→R+))→(Zmax→(Smax→R+))
on the zone graph Gmax=(Zmax, Emax) is such that for g : Zmax→(Smax→R+),
z=(l, ζ) ∈ Zmax and s=(l, v) ∈ Smax where s ∈ tpre(z) we have Tmax

Gmax
(g)(z)(s)

equals 0 if l ∈ F and otherwise equals

sup
t∈R+∧v+t∈ζ

max
E∈E(l,ζ)

t+
∑

(z,a,(R,l′),z′)∈E

prob(l, a)(R, l′)·g(z′)(l′, (v+t)[R])

 .

Proposition 17. If f : Smax→R+ and g : Zmax→(Smax→R+) are functions
such that f(s) = g(z)(s) for all s ∈ Smax and z ∈ Zmax such that s ∈ tpre(z),
then for any s ∈ Smax and n ∈ N we have:

(Tmax
[[P]]max

)n(f)(s) = max{ (Tmax
Gmax

)n(g)(z)(s) | z ∈ Zmax ∧ s ∈ tpre(z) } .

20

Proof. Consider any f : Smax→R+ and g : Zmax→(Smax→R+) such that
f(s) = g(z)(s) for all s ∈ Smax and z ∈ Zmax such that s ∈ tpre(z). The
proof is by induction on n ∈ N. If n=0, then the result follows by construction
of f and g and since (Tmax

[[P]]max
)0(f) = f and (Tmax

Gmax
)0(g) = g.

Next we assume the proposition holds for some n ∈ N. For any s=(l, v) ∈
Smax, if l ∈ F , then by the construction of the zone graph (see Figure 2, line 3),
Definition 3 and Definition 16 we have:

(Tmax
[[P]]max

)n+1(f)(s) = 0 = max
{

(Tmax
Gmax

)n+1(g)(z)(s) | z ∈ Zmax ∧ s ∈ tpre(z)
}
.

It therefore remains to consider the case when s=(l, v) ∈ Smax and l 6∈ F .
Consider any (t′, a′) ∈ A(s) and (R, l′) ∈ edges(l, a′). Now, using Lemma 15, we
have (l′, (v+t′)[R]) ∈ Smax. Therefore, by the induction hypothesis there exists
z′(R,l′) ∈ Zmax with (l′, (v+t′)[R]) ∈ tpre(z′(R,l′)) such that:

(Tmax
Gmax

)n(g)(z′(R,l′))(l
′, (v+t′)[R]) = (Tmax

[[P]]max
)n(f)(l′, (v+t′)[R]) . (7)

Now, since (t′, a′) ∈ A(s) and (l′, (v+t′)[R]) ∈ tpre(z′(R,l′)), it follows from

Definition 8 that (l, v+t) ∈ dpre(l, a′, (R, l′))(tpre(z′(R,l′))).

Since the edge (R, l′) ∈ edges(l, a′) was arbitrary, by the construction of the
zone graph (see Figure 2, lines 8–19) and Lemma 15, there exists z=(l, ζ) ∈ Zmax

such that v+t′ ∈ ζ and edge set:

E′ = {(z, a′, (R, l′), z′(R,l′)) | (R, l
′) ∈ edges(l, a′)} ∈ E(z) . (8)

Furthermore, by definition of tpre we have s ∈ tpre(z). Using this result and
following the same arguments as the proof of Proposition 12 it follows that:

(Tmax
[[P]]max

)n+1(f)(s) ≤ max
{

(Tmax
Gmax

)n+1(g)(z)(s) | z ∈ Zmax ∧ s ∈ tpre(z)
}
. (9)

Next we consider any z=(l, ζ) ∈ Zmax such that v+t ∈ ζ for some t ∈ R+ (i.e.
z ∈ Zmax such that s ∈ tpre(z)). For any t′ ∈ R+ such that v+t′ ∈ ζ and
E′ ∈ E(l, ζ), by construction of the zone graph (see Figure 2, lines 8–19) and
Lemma 15 there exists a′ ∈ Act where:

E′ = {(l, ζ), a′, (R, l′), z′(R,l′)) | (R, l
′) ∈ edges(l, a′)} (10)

and (l′, (v+t′)[R]) ∈ tpre(z′(R,l′)) for all (R, l′) ∈ edges(l, a′). Now, again follow-
ing the arguments of the proof of Proposition 12, we have that:

(Tmax
[[P]]max

)n+1(f)(s) ≥ max
{

(Tmax
Gmax

)n+1(g)(z)(s) | z ∈ Zmax∧s ∈ tpre(z)
}
. (11)

Finally, combining (9) and (11) yields:

(Tmax
[[P]]max

)n+1(f)(s) = max
{

(Tmax
Gmax

)n+1(g)(z)(s) | z ∈ Zmax ∧ s ∈ tpre(z)
}

and hence, since s ∈ Smax was arbitrary, the proposition holds by induction. �

21

4.5. Rational Simple Functions and Rational Nice Functions

In [8], the authors introduce simple functions and show that all value func-
tions encountered during the iterative procedure for computing the optimal
time reachability for TAs belong to this special class. For a zone ζ, a function
f : ζ→R+ is simple if and only there exists cj , dl ∈ N, xl ∈ X , Cj and Dl are
zones for 1≤j≤M , 1≤l≤N and some M,N ∈ N such that for any v ∈ ζ:

f(v) =

{
cj if v ∈ Cj
dl−v(xl) if v ∈ Dl

When it comes to PTAs, due to the presence of probabilistic branching, simple
functions are not a sufficient, neither in terms of their domain (i.e. zones) nor
the representation. This is demonstrated by the following example.

Example 4. We return to the PTA P1 of Example 1 (see Figure 1). Expressing
the minimum expected time in the initial location as a function f : RX+→R+ we
have:

f(v) =

 2.9 if x≤2.1
5−v(x) if 2.1≤x≤5

0 if 5≤x≤10

and hence it cannot be represented using simple functions. �

We now introduce rational simple functions to represent the functions encoun-
tered during value iteration. For the remainder of the section suppose X =
{x1, . . . , xn} and k is the maximum constant appearing in P. From Assump-
tion 9(a) we have that P is bounded, and hence all clock values in P are bounded
by k. We first define polyhedra with rational time bounds and then use these
to define rational simple functions.

Definition 18. A (convex) k-polyhedron C ⊆ {v ∈ RX+ | v(x)≤k for x ∈ X} is
defined by finitely many linear inequalities; formally, it is of the form:

C =
{
v ∈ RX+ |

∑n
i=1 qij ·v(xi) ≤ fj for 1≤j≤M

}
where qij , fj ∈ Q and fj≤k for all 1≤i≤n and 1≤j≤M for some M ∈ N.

Definition 19. For zone ζ, a function f : ζ→R+ is rational k-simple if and
only if it can be represented as:

f(v) =

{
cj if v ∈ Cj
dl −

∑n
i=1 pil·v(xi) if v ∈ Dl

where cj , dl, pil ∈ Q+ such that
∑n
i=1 pil≤1 and Cj , Dl are k-polyhedra for all

1≤i≤n, 1≤j≤M and 1≤l≤N for some M,N ∈ N.

Furthermore, a function f : Z→(S→R+) is rational k-simple if the function
f(l, ζ)(l, ·) :↙ζ→R+ is rational k-simple for all (l, ζ) ∈ Z.

22

In the remainder of the section we will prove that all the value functions en-
countered when computing the optimal expected time reachability using value
iteration and either Tmin

Gmin
or Tmax

Gmax
belong to the class of rational simple func-

tions. This is accomplished by considering the different operations performed
by Tmin

Gmin
and Tmax

Gmax
(see Definition 11 and Definition 16) and analysing their

effect on rational simple functions. First, we consider the operation of resetting
the clocks.

Definition 20. If f : ζ→R+ is a rational k-simple function and R ⊆ X , let
f [R] : [R]ζ→R+ be the function where f [R](v) = f(v[R]) for all v ∈ ζ.

The following lemma demonstrates that resetting clocks preserves rational sim-
plicity.

Lemma 21. If f : ζ→R+ is rational k-simple and R ⊆ X , then f [R] : [R]ζ→R+

is rational k-simple.

Proof. For any k-polyhedron C and R ⊆ X , let [R]C be the k-polyhedron
{v ∈ RX+ | v[R] ∈ C ∧ v(x)≤k for x ∈ X}.

Now consider any R ⊆ X and rational k-simple function f : ζ→R+ such
that for any v ∈ ζ:

f(v) =

{
cj if v ∈ Cj
dl−

∑n
i=1 pil·v(xi) if v ∈ Dl

(12)

where cj , dl, pil ∈ Q+ such that
∑n
i=1 pil≤1 and Cj , Dl are k-polyhedra for all

1≤i≤n, 1≤j≤M and 1≤l≤N for some M,N ∈ N. By Definition 20, for any
v ∈ [R]ζ we have:

f [R](v) = f(v[R])

=

{
cj if v[R] ∈ Cj
dl−

∑n
i=1 pil·v[R](xi) if v[R] ∈ Dl

(by (12))

=

{
cj if v ∈ [R]Cj

dl−
∑n
i=1 pil·v[R](xi) if v ∈ [R]Dl

(by definition of [R]C)

=

{
cj if v ∈ [R]Cj

dl−
∑n
i=1 p

′
il·v(xi) if v ∈ [R]Dl

where p′il=0 if xi ∈ R and p′il=pil otherwise. It therefore follows that f [R] is
rational k-simple as required. �

The next operation performed by Tmin
Gmin

and Tmax
Gmax

yields functions of the form
v 7→ t+f(l, ζ)(l, v+t). This motivates the introduction of rational k-nice func-
tions, based on Asarin and Maler’s k-nice functions [8].

23

Definition 22. A k-bipolyhedron is a set of the form {(v, t) | v ∈ C∧v+t ∈ D}
where C and D are k-polyhedra. For a zone ζ, a function g : (ζ×R+)→R+ is
rational k-nice if and only if it can be represented as:

g(v, t) =

{
cj+t if (v, t) ∈ Fj
dl−

∑n
i=1 pil·v(xi)+ (1−

∑n
i=1 pil) ·t if (v, t) ∈ Gl

where cj , dl, pil ∈ Q+ such that
∑n
i=1 pil≤1 and Fj , Gl are rational k-bipolyhedra

for all 1≤i≤n, 1≤j≤M and 1≤l≤N for some M,N ∈ N.

Next we show that rational nicety is perserved under taking convex combinations
of functions of the form v 7→ t+f(l, ζ)(l, v+t).

Lemma 23. A convex combination of rational k-nice functions is rational k-
nice.

Proof. It is sufficient to consider a binary convex combination, as any other
convex combination can be rewritten as a sequence of binary convex combina-
tions. Therefore, consider any zone ζ, rationals r, r′ ∈ Q+ and rational k-nice
functions g, g′ : (ζ×R+)→R+ such that r+r′ = 1 and for any v ∈ ζ:

g(v, t) =

{
cj+t if (v, t) ∈ Fj
dl−

∑n
i=1 pil·v(xi)+ (1−

∑n
i=1 pil) ·t if (v, t) ∈ Gl

g′(v, t) =

{
c′j′+t if (v, t) ∈ F ′j′
d′l′−

∑n
i=1 p

′
il′ ·v(xi)+ (1−

∑n
i=1 p

′
il′) ·t if (v, t) ∈ G′l′

where cj , dl, pil, c
′
j′ , d

′
l′ , p
′
il′ ∈ Q+ such that

∑n
i=1 pil≤1 and

∑n
i=1 p

′
il′≤1, and

Cj , Dl, C
′
j′ , D

′
l′ are k-polyhedra for all 1≤i≤n, 1≤j≤M , 1≤l≤N , 1≤j′≤M ′ and

1≤l′≤N ′ for some M,M ′, N,N ′ ∈ N. Let h : (ζ×R+)→R+ be the function
such that h(v, t) = r·g(v, t) + r′·g′(v, t) for all (v, t) ∈ ζ×R+. Considering any
(v, t) ∈ ζ×R+ we have the following four cases to consider.

• If (v, t) ∈ Fj ∩ F ′j′ for some j and j′, then h(v, t) = r·cj+r′·c′j′ .

• If (v, t) ∈ Fj ∩G′l′ for some j and l′, then

h(v, t) = r·(cj + t)+r′·
(
d′l′−

∑n
i=1p

′
il′ ·v(xi)+(1−

∑n
i=1p

′
il′)·t

)
= (r·cj+r′·d′l′)−

∑n
i=1(r′·p′il′)·v(xi) +

(
r+r′−

∑n
i=1(r′·p′il′)

)
·t

(rearranging)

= (r·cj+r′·d′l′)−
∑n
i=1(r′·p′il′)·v(xi) + (1−

∑n
i=1(r′·p′il′))·t

(since r+r′=1)

and
∑n
i=1 r

′·p′il′ = r′·(
∑n
i=1 p

′
il′) ≤ r′·1 ≤ 1 since g′ is rational k-nice.

24

• If (v, t) ∈ Gl ∩F ′j′ for some l and j′, then similarly to the above using the
fact that r+r′=1:

h(v, t) = r·
(
dl−

∑n
i=1pil·v(xi)+ (1−

∑n
i=1pil) ·t

)
+r′·(c′j′ + t)

= (r·dl+r′·c′j′)−
∑n
i=1(r·pil)·v(xi) + (1−

∑n
i=1(r·pil))·t

and
∑n
i=1 r·p′il ≤ 1 since g is rational k-nice.

• If (v, t) ∈ Gl∩G′l′ for some l and l′, then again using the fact that r+r′=1
we have:

h(v, t) = r·
(
dl−

∑n
i=1pil·v(xi)+ (1−

∑n
i=1pil) ·t

)
+ r′·

(
d′l′−

∑n
i=1p

′
il′ ·v(xi)+ (1−

∑n
i=1p

′
il′) ·t

)
= (r·dl+r′·d′l′)+

∑n
i=1(r·pil+r′·p′il′)·v(xi) + (1−

∑n
i=1(r·pil+r′·p′il′)) ·t

and
∑n
i=1(r·pil+r′·p′il′) = r·(

∑n
i=1 pil) + r′·(

∑n
i=1 p

′
il′) ≤ r·1+r′·1 = 1

since g and g′ are rational k-nice.

As these are all the cases to consider and the intersection of k-polyhedra is a
k-polyhedron, it follows that h is a rational k-nice function as required. �

After the convex combination, Tmin
Gmin

and Tmax
Gmax

take a minimum or maximum
value respectively, and therefore we show that these operations also preserve
k-nicety.

Lemma 24. The minimum and maximum of rational k-nice functions are ra-
tional k-nice.

Proof. We prove the case for the minimum of rational k-nice functions; the
case for maximum follows similarly. Given rational k-nice functions g, g′ :
(ζ×R+)→R+ where for (v, t) ∈ ζ×R+:

g(v, t) =

{
cj+t if (v, t) ∈ Fj
dl−

∑n
i=1 pil·v(xi)+ (1−

∑n
i=1 pil) ·t if (v, t) ∈ Gl

g′(v, t) =

{
cj′+t if (v, t) ∈ F ′j′
d′l′−

∑n
i=1 p

′
il′ ·v(xi)+ (1−

∑n
i=1 p

′
il′) ·t if (v, t) ∈ G′l′

where cj , dl, pil, c
′
j′ , d

′
l′ , p
′
il′ ∈ Q+ such that

∑n
i=1 pil≤1 and

∑n
i=1 p

′
il′≤1, and

Cj , Dl, C
′
j′ , D

′
l′ are k-polyhedra for all 1≤i≤n, 1≤j≤M , 1≤l≤N , 1≤j′≤M ′ and

1≤l′≤N ′ for some M,M ′N,N ′ ∈ N. Letting h = min{g, g′} and considering
h(v, t) for any (v, t) ∈ ζ×R+, we have the following four cases to consider.

• If (v, t) ∈ Fj ∩ F ′j′ for some j and j′, then

h(v, t) =

{
cj+t if (v, t) ∈ Fj ∩H
cj′+t if (v, t) ∈ F ′j′ ∩H ′

where H = {(v, t) ∈ ζ×R+ | cj+t ≤ c′j′+t} = {(v, t) ∈ ζ×R+ | cj ≤ c′j′}
and similarly H ′ = {(v, t) ∈ ζ×R+ | cj′ ≤ cj}.

25

• If (v, t) ∈ Fj ∩G′l′ for some j and l′, then

h(v, t) =

{
cj+t if (v, t) ∈ Fj ∩H
d′l′−

∑n
i=1 p

′
il′ ·v(xi)+ (1−

∑n
i=1 p

′
il′) ·t if (v, t) ∈ G′l′ ∩H ′

where

H = {(v, t) ∈ ζ×R+ | cj+t ≤ d′l′−
∑n
i=1p

′
il′ ·v(xi)+ (1−

∑n
i=1p

′
il′) ·t}

= {(v, t) ∈ ζ×R+ |
∑n
i=1p

′
il′ ·(v(xi)+t) ≤ d′l′−cj} (rearranging)

= {(v, t) ∈ ζ×R+ |
∑n
i=1p

′
il′ ·(v+t)(xi) ≤ d′l′−cj}

(by definition of v+t)

and similarly H ′ = {(v, t) ∈ ζ×R+ |
∑n
i=1−p′il′ ·(v+t)(xi) ≤ cj−d′l′}.

• If (v, t) ∈ Gl ∩ F ′j′ for some l and j′, then

h(v, t) =

{
dl−

∑n
i=1 pil·v(xi)+ (1−

∑n
i=1 pil) ·t if (v, t) ∈ Gl ∩H

cj′+t if (v, t) ∈ F ′j′ ∩H ′

and by a similar reduction to the case above we have:

H = {(v, t) ∈ ζ×R+ |
∑n
i=1−pil·(v+t)(xi) ≤ cj′−dl}

H ′ = {(v, t) ∈ ζ×R+ |
∑n
i=1pil·(v+t)(xi) ≤ dl−cj′} .

• If (v, t) ∈ Gl ∩G′l′ for some l and l′, then

h(v, t) =

{
dl−

∑n
i=1 pil·v(xi)+ (1−

∑n
i=1 pil) ·t if (v, t) ∈ Gl ∩H

d′l′−
∑n
i=1 p

′
il′ ·v(xi)+ (1−

∑n
i=1 p

′
il′) ·t if (v, t) ∈ G′l′ ∩H ′

where

H = {(v, t) ∈ ζ×R+ | dl−
∑n
i=1pil·v(xi)+ (1−

∑n
i=1pil) ·t

≤ d′l′−
∑n
i=1p

′
il′ ·v(xi)+ (1−

∑n
i=1p

′
il′) ·t}

= {(v, t) ∈ ζ×R+ |
∑n
i=1(p′il′−pil)·v(xi)+

∑n
i=1(p′il′−pil)·t ≤ d′l′−dl}

(rearranging)

= {(v, t) ∈ ζ×R+ | −
∑n
i=1(p′il′−pil)·(v(xi)+t) ≤ d′l′−dl}

(rearranging again)

= {(v, t) ∈ ζ×R+ | −
∑n
i=1(p′il′−pil)·(v+t)(xi) ≤ d′l′−dl}

(by definition of v+t)

and similarlyH ′ = {(v, t) ∈ ζ×R+ | −
∑n
i=1(pil−p′il′)·(v+t)(xi) ≤ dl−d′l′}.

Since in each case H and H ′ are k-bipolyhedra, if follows from Definition 22
that the lemma holds. �

26

The final operations performed by Tmin
Gmin

and Tmax
Gmax

concern taking the infimum
or supremum over t of a function of the form v 7→ t+f(l, ζ)(l, v+t). Hence, we
now show that performing either of these operations on a rational nice function
returns a rational simple function.

Lemma 25. For any zone ζ, if g : (ζ×R+)→R+ is rational k-nice, then the
functions f1 : ζ→R+ and f2 : ζ→R+ where f1(v) = inft∈R+

g(v, t) and f2(v) =
supt∈R+

g(v, t) for v ∈ ζ are rational k-simple.

Proof. We consider the case for f1; the case for f2 follows similarly again
using results from [8]. Consider any zone ζ and rational k-nice function g :
(ζ×R+)→R+. By Definition 22, for any (v, t) ∈ ζ×R+, we have:

g(v, t) =

{
cj+t if (v, t) ∈ Fj
dl−

∑n
i=1 pil·v(xi)+ (1−

∑n
i=1 pil) ·t if (v, t) ∈ Gl

where cj , dl, pil ∈ Q+ such that
∑n
i=1 pil≤1,

Fj = {(v, t) | v ∈ Cj ∧ v+t ∈ C ′j} and Gl = {(v, t) | v ∈ Dl ∧ v+t ∈ D′l}

for some k-polyhedra Cj , C
′
j , Dl and D′l for all 1≤i≤n, 1≤j≤M and 1≤l≤N

for some M,N ∈ N.

Now, for any k-polyhedron C, let ∆(v, C)
def
= inf{t | v+t ∈ C}, then similarly

to [8] we have the function ∆(·, C) : ζ→R+ is k-simple over k-polyhedra. If
f1(v) = inft∈R+ g(v, t), since 0≤

∑n
i=1 pil≤1, for any v ∈ ζ:

f1(v) =


cj if v ∈ Cj ∩ C ′j
cj + ∆(v, C ′j) if v ∈ Cj \ C ′j
dl−

∑n
i=1 pil·v(xi) if v ∈ Dl ∩D′l

dl−
∑n
i=1 pil·v(xi)+ (1−

∑n
i=1 pil) ·∆(v,D′l) if v ∈ Dl \D′l .

In all except the final case, since ∆(·, C) : ζ→R+ is k-simple, it follows that f1

is rational k-simple. In this final case, by definition of k-simple functions we
have the following two cases to consider.

• ∆(v,D′l) = d′l if v ∈ Dl \ D′l for some d′l ∈ Q+, and therefore for any
v ∈ Dl \D′l:

f1(v) = dl−
∑n
i=1pil·v(xi)+ (1−

∑n
i=1pil) ·∆(v,D′l)

=
(
dl + (1−

∑n
i=1pil) ·d

′
l

)
−
∑n
i=1pil·v(xi)

which is rational k-simple, since g is rational k-nice.

• ∆(v,D′l) = d′l−v(xi′l) if v ∈ Dl \ D′l for some d′l ∈ Q+ and 1≤i′l≤n, and
hence for any v ∈ Dl \D′l:

f1(v) = dl−
∑n
i=1pil·v(xi)+ (1−

∑n
i=1 pil) ·∆(v,D′l)

= dl−
∑n
i=1pil·v(xi)+ (1−

∑n
i=1 pil) ·(d

′
l−v(xi′l))

=
(
dl + (1−

∑n
i=1pil) ·d

′
l

)
−
∑n
i=1p

′
il·v(xi)

27

where p′il = pil+(1−
∑n
i=1 pil) if i=i′l and p′il=pil otherwise. Now since g

is k-nice we have pil ∈ Q+ for all 1≤i≤n and
∑n
i=1 pil≤1; it follows that

p′il for all 1≤i≤n and that:∑n
i=1 p

′
il =

∑n
i=1 pil + 1−

∑n
i=1 pil = 1 ,

and hence f1 is rational k-simple.

Therefore, we conclude that f1 is rational k-simple as required. �

We now combine the above results and show that that rational simple func-
tions are a suitable representation for value functions when computing optimal
expected time using value iteration and either Tmin

Gmin
or Tmax

Gmax
.

Proposition 26. If f : Zmin→(Smin→R+) is a rational k-simple function, then
Tmin
Gmin

(f) is rational k-simple.

Proof. Consider any rational k-simple function, z ∈ Zmin and E ∈ E(z). For
any v ∈ RX+ and t ∈ R+ we have:

t+
∑

(z,a,(R,l′),z(R,l′))∈E
prob(l, a)(R, l′)·f(z(R,l′))(l

′, (v+t)[R])

= t+
∑

(z,a,(R,l′),z(R,l′))∈E
prob(l, a)(R, l′)·f [R](z(R,l′))(l

′, v+t)

(by Definition 20)

=
∑

(z,a,(R,l′),z(R,l′))∈E
prob(l, a)(R, l′)·

(
t+ f [R](z(R,l′))(l

′, v+t)
)

(13)

since prob(l, a) is a distribution. By construction f is rational k-simple, and
hence for any (z, a, (R, l′), z(R,l′)) ∈ E using Lemma 21 we have f [R] is also
rational k-simple. Therefore, it follows from Definition 22 that:

(v, t) 7→ t+ f [R](z(R,l′))(l
′, v+t)

is rational k-nice. Thus, since (z, a, (R, l′), z(R,l′)) ∈ E was arbitrary, using
Lemma 23 and (13) we have that:

(v, t) 7→ t+
∑

(z,a,(R,l′),z(R,l′))∈E
prob(l, a)(R, l′)·f(z(R,l′))(l

′, (v+t)[R])

is also rational k-nice. Since E ∈ E(z) was arbitrary and E(z) is finite, Lemma 24
tells us:

(v, t) 7→ min
E∈E(z)

{
t+
∑

(z,a,(R,l′),z(R,l′))∈E
prob(l, a)(R, l′)·f(z(R,l′))(l

′, (v+t)[R])
}

is again rational k-nice. Finally, using Definition 11 and Lemma 25, it follows
that TG(f)(z) is rational k-simple as required. �

Proposition 27. If f : Zmax→(Smax→R+) is a rational k-simple function, then
Tmax
Gmax

(f) is rational k-simple.

Proof. The proof follows similarly to Proposition 26. �

28

l0
x≤10

l1
x≤10

l2
x≤10a, 1≤x≤10 x:=0

0.5

y:=0
0.5

b, 9≤x≤10

c, y=5∧x=0

d, 1≤x≤10

x:=0

Figure 9: Example PTA P4

4.6. Controller Synthesis

We now give our approach for computing the optimal expected time of reaching
the target F in the PTA P and synthesising an ε-optimal strategy when starting
from the initial state.

In the case of minimum expected time, we first build the backwards zone
graph G (see Figure 2), then, using Theorem 10 and graph-based algorithms [38],
we can find the states of [[P]] for which the maximum probability of reaching
the target SF equals 1 and remove these from the zone graph. Next, using
Definition 11, we apply value iteration to the resulting zone graph Gmin which, by
Proposition 26, can be performed using rational k-simple functions (and rational
k-nice functions). Convergence to the minimum expected reachability values of
P is guaranteed by Theorem 5 and Proposition 12. An ε-optimal deterministic,
memoryless strategy can be synthesised once value iteration has converged by
starting from the initial state and stepping through the backwards graph, in
each state choosing the time and action that achieve the values returned by
value iteration.

In the case of maximum expected time, we again first build the backwards
zone graph G. However, we now use the algorithms presented in Figure 5 and
Figure 6 to find the states of [[P]] for which the minimum probability of reaching
the target is less than 1 and remove these from the zone graph. Using Defini-
tion 16, we then apply value iteration to the resulting zone graph Gmax which,
by Proposition 27, can be performed using rational k-simple functions (and ra-
tional k-nice functions). Convergence to the maximum expected reachability
values of P is guaranteed by Corollary 6 and Proposition 17. An ε-optimal
deterministic, memoryless strategy can then be synthesised in the same manner
as above.

Example 5. The PTA P4 in Figure 9 presents an example, where waiting
longer than necessary in a location can reduce the time to reach the target. The
target set is {l2} and the zone graph G is given in Figure 10. For this example all
states of the PTA can reach the target with maximum probability 1, and hence
we find that Gmin=G. Starting from the constant 0 function f0 and performing

29

(l0, x≥1)

(l0, y=5∧x≥1)

(l1, x≥9)

(l1, y=5∧x=0)

(l2, x≥1)a, ({x}, l0)

a, ({x}, l0)

a, ({x}, l0)
a, ({x}, l1)

a, ({x}, l1)

a, ({x}, l1)

b, (∅, l2)

c, (∅, l2)

Figure 10: Backwards zone graph for PTA P4 and target set {l2}

value iteration gives for n≥ 2:

(Tmin
Gmin

)n(f0)(z1
0)(l0, v) =

{
(1−v(x)) +

∑n−1
i=1 0.5n·9 if v(x)≤1∑n

i=1 0.5n−1·9 if 1≤v(x)≤10

(Tmin
Gmin

)n(f0)(z2
0)(l0, v) =

{
(5−v(y)) + 0.5·(

∑n
i=1 0.5n−1·9) if v(y)≤5

0.5·(
∑n−1
i=1 0.5n−1·9) if 5≤v(y)≤10

(Tmin
Gmin

)n(f0)(z1
1)(l1, v) =

{
9−v(x) if v(x)≤9

0 if 9≤v(x)≤10

(Tmin
Gmin

)n(f0)(z2
1) = 0

(Tmin
Gmin

)n(f0)(z2) = 0

where z1
0=(l0, x≥1), z2

0=(l0, y=5∧x≥1), z1
1=(l1, x≥9), z2

1=(l1, y=5∧x=0) and
z2=(l2, x≥1). Therefore, value iteration converges to:

fmin(z1
0)(l0, v) =

{
(1−v(x)) + 9 if v(x)≤1

9 if 1≤v(x)≤10

fmin(z2
0)(l0, v) =

{
(5−v(y)) + 0.5·9 if v(y)≤5

0.5·9 if 5≤v(y)≤10

and hence the minimum expected time for the initial state equals the minimum
of (1−0)+9 and (5−0)+0.5·9, yielding 9.5. Performing controller synthesis we
find that this corresponds to waiting until y=5, then performing the action a.
If l1 is reached, we immediately perform the action c and reach the target. On
the other hand, if l0 is reached, we repeatedly immediately perform a and, if l1
is reached, wait until x=9 and then perform the action b reaching the target. �

5. Conclusions

We have proposed symbolic algorithms for PTAs to compute the minimum and
maximum expected time to reach a target and synthesise the corresponding
strategies. The algorithms are formulated as value iteration over the backwards

30

zone graph of the PTA. We also demonstrate that there is an effective repre-
sentation of the value functions in terms of rational simple and rational nice
functions. However, zones are not sufficient and convex polyhedra are required.
Nevertheless, the Parma Polyhedra Library [39] offers efficient ways to manipu-
late convex polyhedra and is commonly used in a variety of real-time verification
problems. For example, methods based on priced zones for TAs and PTAs, such
as [17] and [10], also use convex polyhedra, where similarly zones do not suffice.

An interesting topic for further study is a rigorous comparison with the
digital clocks method [12]. As Example 4 demonstrates, we require rational
bounds on polyhedra. This at first appears to contradict the digital clocks
result, which demonstrates that integer bounds are sufficient for computing
optimal expected time reachability values. However, it can be explained by
the fact that in the digital clocks approach one restricts to the states of the
PTA where all clocks take integer values and then computes expected values
individually, while here we consider all states of the PTA and compute expected
values collectively through rational simple and nice functions. More precisely,
when employing the digital clocks approach, we build an MDP where the states
of the MDP correspond to the states of the PTA where all clocks take integer
values and compute an optimal expected reachability value for each state of the
MDP which equals the optimal expected time value of the corresponding PTA
state. On the other hand, here we build a zone graph where the (symbolic) states
of the graph are location-zone pairs representing (uncountable) sets of states of
the PTA and then compute rational simple (and nice) functions over polyhedra,
which represent the optimal expected time values for all the states of the PTA
(for which the optimal expected value is finite). The fact that we consider all
states introduces rational bounds which may yield inefficiencies, but this can
potentially be outweighed by efficiency gains that may arise from computing
these values collectively. For instance, in Example 5 using the approach of
this paper rational bounds are introduced, but only eight separate location-
polyhedron pairs are required for computing the optimal expected time values
for all states. For comparison, using the digital clocks method, one is required
to compute optimal expected values for 101 individual states. It is therefore
unclear which approach will perform better in practice and a detailed evaluation
of the efficiency of the approach is desirable.

Regarding future work, as well as working on an implementation, we note
that optimisations to the backwards algorithm presented in [19], including first
performing forwards reachability to restrict analysis to the reachable state space,
could be considered here as well. Since policy iteration also converges (see
Theorem 5 and Corollary 6), we plan to investigate this approach and compare
with value iteration. In addition, we intend to consider linearly-priced PTAs
and expected price reachability, which will require an extension of rational nice
functions to encode the accumulation of prices as time passes.

Acknowledgements. This research is supported by ERC AdG-246967 VERI-
WARE and EPSRC Programme Grant on Mobile Autonomy (EP/M019918/1).
Part of this work was completed during a research internship for Quentin Peyras

31

as part of a Master of Research in Computer Science at ENS Cachan. We also
thank the anonymous referees for their helpful comments to improve the paper.

[1] R. Alur, D. Dill, A theory of timed automata, Theoretical Computer Sci-
ence 126 (1994) 183–235.

[2] H. Gregersen, H. Jensen, Formal design of reliable real time systems, Mas-
ter’s thesis, Department of Mathematics and Computer Science, Aalborg
University (1995).

[3] M. Kwiatkowska, G. Norman, R. Segala, J. Sproston, Automatic verifica-
tion of real-time systems with discrete probability distributions, Theoretical
Computer Science 282 (2002) 101–150.

[4] D. Beauquier, On probabilistic timed automata, Theoretical Computer Sci-
ence 292 (1) (2003) 65–84.

[5] M. Kwiatkowska, G. Norman, D. Parker, Stochastic games for verification
of probabilistic timed automata, in: J. Ouaknine, F. Vaandrager (Eds.),
Proc. 7th Int. Conf. Formal Modelling and Analysis of Timed Systems
(FORMATS’09), Vol. 5813 of LNCS, Springer, 2009, pp. 212–227.

[6] M. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: Verification of prob-
abilistic real-time systems, in: G. Gopalakrishnan, S. Qadeer (Eds.), Proc.
23rd Int. Conf. Computer Aided Verification (CAV’11), Vol. 6806 of LNCS,
Springer, 2011, pp. 585–591.

[7] M. Kwiatkowska, G. Norman, J. Sproston, F. Wang, Symbolic model check-
ing for probabilistic timed automata, Information and Computation 205 (7)
(2007) 1027–1077.

[8] E. Asarin, O. Maler, As soon as possible: Time optimal control for timed
automata, in: F. Vaandrager, J. van Schuppen (Eds.), Proc. 2nd Int. Work-
shop Hybrid Systems: Computation and Control (HSCC’99), Vol. 1569 of
LNCS, Springer, 1999, pp. 19–30.

[9] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn,
F. Vaandrager, Minimum-cost reachability for priced timed automata, in:
M. Di Benedetto, A. Sangiovanni-Vincentelli (Eds.), Proc. 4th Int. Work-
shop Hybrid Systems: Computation and Control (HSCC’01), Vol. 2034 of
LNCS, Springer, 2001, pp. 147–161.

[10] K. Larsen, G. Berhmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson,
J. Romijn, As cheap as possible: Efficient cost-optimal reachability for
priced timed automata, in: G. Berry, H. Comon, A. Finkel (Eds.), Proc.
14th Int. Conf. Computer Aided Verification (CAV’02), Vol. 2102 of LNCS,
Springer, 2001, pp. 493–505.

[11] K. Larsen, P. Pettersson, W. Yi, Uppaal in a Nutshell, International Jour-
nal on Software Tools for Technology Transfer 1 (1997) 134–152.

32

[12] M. Kwiatkowska, G. Norman, D. Parker, J. Sproston, Performance analysis
of probabilistic timed automata using digital clocks, Formal Methods in
System Design 29 (2006) 33–78.

[13] M. Duflot, M. Kwiatkowska, G. Norman, D. Parker, A formal analysis of
Bluetooth device discovery, Int. Journal on Software Tools for Technology
Transfer 8 (6) (2006) 621–632.

[14] G. Norman, D. Parker, X. Zou, Verification and control of partially observ-
able probabilistic real-time systems, in: S. Sankaranarayanan, E. Vicario
(Eds.), Proc. 13th Int. Conf. Formal Modelling and Analysis of Timed Sys-
tems (FORMATS’15), Vol. 9268 of LNCS, Springer, 2015, pp. 240–255.

[15] A. David, P. Jensen, K. Larsen, A. Legay, D. Lime, M. Sørensen,
J. Taankvist, On time with minimal expected cost!, in: F. Cassez, J. Raskin
(Eds.), Proc. 12th Int. Symp. Automated Technology for Verification and
Analysis (ATVA’14), Vol. 8837 of LNCS, Springer, 2014, pp. 129–145.

[16] P. Bulychev, A. David, K. Larsen, M. Mikučionis, D. Poulsen, A. Legay,
Z. Wang, UPPAAL-SMC: Statistical model checking for priced timed au-
tomata, in: Proc. 10th Workshop Quantitative Aspects of Programming
Languages (QAPL’12), Vol. 85 of EPTCS, Open Publishing Association,
2012, pp. 1–16.

[17] J. Berendsen, D. Jansen, J.-P. Katoen, Probably on time and within budget
– On reachability in priced probabilistic timed automata, in: Proc. 3rd Int.
Conf. Quantitative Evaluation of Systems (QEST’06), IEEE Press, 2006,
pp. 311–322.

[18] J. Berendsen, T. Chen, D. Jansen, Undecidability of cost-bounded reacha-
bility in priced probabilistic timed automata, in: J. Chen, S. Cooper (Eds.),
Proc. 6th Int. Conf. Theory and Applications of Models of Computation
(TAMC’09), Vol. 5532 of LNCS, Springer, 2009, pp. 128–137.

[19] J. Berendsen, D. Jansen, F. Vaandrager, Fortuna: Model checking priced
probabilistic timed automata, in: Proc. 7th Int. Conf. Quantitative Evalu-
ation of Systems (QEST’10), IEEE Press, 2010, pp. 273–281.

[20] A. Jovanovic, M. Kwiatkowska, G. Norman, Symbolic minimum expected
time controller synthesis for probabilistic timed automata, in: S. Sankara-
narayanan, E. Vicario (Eds.), Proc. 13th Int. Conf. Formal Modeling and
Analysis of Timed Systems (FORMATS’15), Vol. 9268 of LNCS, Springer,
2015, pp. 140–155.

[21] J. Kemeny, J. Snell, A. Knapp, Denumerable Markov Chains, Springer,
1976.

[22] V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, Automated verification
techniques for probabilistic systems, in: M. Bernardo, V. Issarny (Eds.),

33

Formal Methods for Eternal Networked Software Systems (SFM’11), Vol.
6659 of LNCS, Springer, 2011, pp. 53–113.

[23] R. Bellman, Dynamic Programming, Princeton University Press, 1957.

[24] D. Bertsekas, J. Tsitsiklis, An analysis of stochastic shortest path problems,
Mathematics of Operations Research 16 (3) (1991) 580–595.

[25] D. Bertsekas, Dynamic Programming and Optimal Control, Volumes 1 and
2, Athena Scientific, 1995.

[26] S. Haddad, B. Monmege, Reachability in MDPs: Refining convergence of
value iteration, in: J. Ouaknine, I. Potapov, J. Worrell (Eds.), Proc. 8th
Int. Workshop Reachability Problems (RP’14), Vol. 8762, Springer, 2014,
pp. 125–137.

[27] H. James, E. Collins, An analysis of transient Markov decision processes,
Journal of Applied Probability 43 (3) (2006) 603–621.

[28] T. Henzinger, X. Nicollin, J. Sifakis, S. Yovine, Symbolic model checking for
real-time systems, Information and Computation 111 (2) (1994) 193–244.

[29] S. Tripakis, The analysis of timed systems in practice, Ph.D. thesis, Uni-
versité Joseph Fourier, Grenoble (1998).

[30] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn,
F. Vaandrager, Minimum-cost reachability for linearly priced timed au-
tomata, in: M. Di Benedetto, A. Sangiovanni-Vincentelli (Eds.), Proc. 4th
Int. Workshop Hybrid Systems: Computation and Control (HSCC’01), Vol.
2034 of LNCS, Springer, 2001, pp. 147–162.

[31] V. Forejt, M. Kwiatkowska, G. Norman, A. Trivedi, Expected reachability-
time games, Theoretical Computer Science 631 (2016) 139–160.

[32] M. Jurdziński, M. Kwiatkowska, G. Norman, A. Trivedi, Concavely-priced
probabilistic timed automata, in: M. Bravetti, G. Zavattaro (Eds.), Proc.
20th Int. Conf. Concurrency Theory (CONCUR’09), Vol. 5710 of LNCS,
Springer, 2009, pp. 415–430.

[33] S. Tripakis, Verifying progress in timed systems, in: J.-P. Katoen (Ed.),
Proc. 5th Int. AMAST Workshop Real-Time and Probabilistic Systems
(ARTS’99), Vol. 1601 of LNCS, Springer, 1999, pp. 299–314.

[34] S. Tripakis, S. Yovine, A. Bouajjan, Checking timed Büchi automata empti-
ness efficiently, Formal Methods in System Design 26 (3) (2005) 267–292.

[35] J. Ouaknine, J. Worrell, Revisiting digitization, robustness, and decidabil-
ity for timed automata, in: Proc. 18th Annual IEEE Symp. Logic in Com-
puter Science (LICS’03), IEEE Press, 2003, pp. 198–207.

34

[36] R. Alur, C. Courcoubetis, D. Dill, Model checking in dense real time, In-
formation and Computation 104 (1) (1993) 2–34.

[37] A. Bianco, L. de Alfaro, Model checking of probabilistic and nondeter-
ministic systems, in: P. Thiagarajan (Ed.), Proc. 15th Conf. Foundations
of Software Technology and Theoretical Computer Science (FSTTCS’95),
Vol. 1026 of LNCS, Springer, 1995, pp. 499–513.

[38] L. de Alfaro, Computing minimum and maximum reachability times in
probabilistic systems, in: J. Baeten, S. Mauw (Eds.), Proc. 10th Int. Conf.
Concurrency Theory (CONCUR’99), Vol. 1664 of LNCS, Springer, 1999,
pp. 66–81.

[39] R. Bagnara, P. Hill, E. Zaffanella, The Parma Polyhedra Library: Toward
a complete set of numerical abstractions for the analysis and verification of
hardware and software systems, Science of Computer Programming 72 (1–
2) (2008) 3–21.

35

	Introduction
	Background
	Probabilistic Timed Automata
	Clocks, Clock Valuations and Zones
	Syntax and Semantics of PTAs
	Assumptions on PTAs

	Optimal Expected Time Controller Synthesis for PTAs
	Symbolic States and Operations
	Backward Reachability Algorithm
	Minimum Expected Time Computation using the Zone Graph
	Maximum Expected Time Computation using the Zone Graph
	Rational Simple Functions and Rational Nice Functions
	Controller Synthesis

	Conclusions

