
Parameter Synthesis for Probabilistic Timed Automata
Using Stochastic Game Abstractions

Aleksandra Jovanović, Marta Kwiatkowska

Department of Computer Science, University of Oxford, Oxford, UK

Abstract

We propose a symbolic method to synthesise optimal values of timing parame-
ters for probabilistic timed automata, in the sense that the probability of reach-
ing some set of states is either maximised or minimised. Our first algorithm,
based on forward exploration of the symbolic states, can only guarantee param-
eter values that correspond to upper (resp. lower) bounds on maximum (resp.
minimum) reachability probability. To ensure precise reachability probabilities,
we adapt the game-based abstraction refinement method. In the parametric
setting, our method is able to determine all the possible maximum or minimum
reachability probabilities that arise for different values of timing parameters,
and yields optimal valuations represented as a set of symbolic constraints be-
tween parameters. We report on a prototype implementation of the algorithm
in the Prism model checker and its evaluation on a case study.

Keywords: Model checking, parameter synthesis, probabilistic reachability,
probabilistic timed automata, Markov decision processes, stochastic games

1. Introduction

Stochastic aspects are very important for modelling numerous classes of sys-
tems, including communication, network and security protocols, due to com-
ponent failures, unreliable channels or randomisation. The correctness of such
systems can be guaranteed only with some probability. Many of them also
operate under certain timing constraints. In such cases, the probability of a
property being true depends on the timing aspects in the system: for example,
increasing a certain delay might increase the maximum or minimum probability
of reaching an error state.

Automatic synthesis of timing constraints to ensure the satisfaction of a
given property has received a lot of attention lately. Its aim is to overcome
the disadvantage of model checking, which requires complete knowledge of the
system. This is often difficult to obtain, especially in the early design stages,
when the whole environment is not yet known. The use of parameters instead of
concrete values gives more freedom to the designers. A parametric timed model
can specify that a transition is enabled for a time units, or that a system can

Preprint submitted to Elsevier May 9, 2017

stay in a location for b time units, where a and b are parameters. The goal is
then to automatically synthesise the values of model’s parameters such that its
behaviour is guaranteed to satisfy the specification. Parameterisation, however,
makes verification more difficult, as most problems become undecidable.

In this paper, we consider the synthesis of timing parameters for probabilis-
tic real-time systems modelled as probabilistic timed automata (PTA) [1]. PTA
have been introduced as an extension of timed automata (TA) [2] for modelling
and analysing systems which exhibit real-time, nondeterminism and probabilis-
tic behaviour. They are finite-state automata extended with clocks, real-valued
variables which increase at the same, constant rate. The edge relation of a PTA
differs from that of a TA, in the sense that purely nondeterministic choice over
the set of edges is replaced by a set of discrete probability distributions, each of
which is defined over a finite set of edges. A fundamental property of PTA is the
maximum/minimum probability of reaching a certain set of states in the model
(i.e. the reachability probabilities). These probabilities allow one to express a
broad range of properties, from quality of service to reliability, for example, the
deadline properties: “the maximum probability of an airbag failing to deploy
within 0.02 seconds” or “the minimum probability that a packet is correctly de-
livered within 1 s”. As shown in [1], model checking of more complex properties
can be reduced to probabilistic reachability.

PTA arise naturally in distributed coordination and wireless communica-
tion protocols, and have been successfully used to analyse several protocols,
including IEEE 1394 FireWire, Bluetooth and IEEE 802.11 WiFi, that rely on
the use of randomisation and timing delays. The analyses were performed us-
ing the probabilistic model checker Prism, which provides native support for
PTA through a variety of techniques, including symbolic zone-based methods.
Since these protocols are embedded in a networked environment, their proper-
ties are almost always expressed parametrically, as concrete values make sense
only when the network environment is known. Further, the choice of values of
timing parameters may affect the probability of certain properties to be sat-
isfied, as has been demonstrated for IEEE 1394 FireWire in [3] using Prism.
The process of enumerating all the possible values of parameters, assuming a
restriction to bounded integers/rationals, and performing verification for each
instantiation is time consuming and error-prone. It is thus desirable to be able
to automatically derive the constraints on parameters for probabilistic real-time
systems, so that their correctness is ensured with optimal probability.

Contributions We propose an algorithm for parameter synthesis for PTA
based on the symbolic zone-based exploration of the underlying probabilistic
reachability graph. As the forward approach gives only upper (resp. lower)
bounds on maximum (resp. minimum) reachability probability, we adapt the
game-based abstraction refinement method. This method has been introduced
in [4] for Markov decision processes, and extended in [5] for PTA, for the compu-
tation of exact maximum/minimum reachability probabilities. As we consider
parametric models, these probabilities are not unique and depend on particu-
lar parameter valuations. In the case of a negative specification, such as “the
maximum probability of a message being lost”, we are typically interested in

2

the maximum probabilities, which we want to minimise, while in the case of
a positive specification, such as “the minimum probability of message being
received”, we are interested in the minimum probabilities, which we want to
maximise. Our algorithm derives a finite set of symbolic constraints on param-
eters for which the probability is either maximised or minimised, thus allowing
us to choose optimal parameter valuations. We implement the algorithm as
an extension of the Prism model checker [6], where a PTA can be input as a
parametric model and the analysis proceeds through exploration of the under-
lying parametric zone graph. To the best of our knowledge, this is the first
paper dealing with optimal timing parameter synthesis for probabilistic timed
automata.

A preliminary version of this paper appeared as [7]. This paper extends [7]
with full proofs, as well as an implementation and integration of the algorithm
within Prism, and its evaluation on a case study.

Related work Parameter synthesis for untimed probabilistic models in-
cludes [8], now implemented in Prism [9], where transition probabilities are
considered as parameters for Markov chains. Given a property specified in
some probabilistic logic, the goal is to find the values of parameters such that
the formula holds in the model. Our work is orthogonal to this framework.
We consider fixed probabilities and aim to synthesise timing constraints which
maximise or minimise some reachability probability in the system.

Concerning non-probabilistic timed systems, parametric timed automata
have been introduced in [10] as a means to specify parametric timing constraints.
The reachability-emptiness problem, which asks whether there exists a param-
eter valuation such that the automaton has an accepting run, is undecidable.
In [11], the undecidability proof is extended for parametric timed automata
that use only strict inequalities. Subsequent research has thus concentrated on
finding subclasses for which certain problems are decidable by restricting the
use of parameters [12, 13] or by restricting the parameter domain [14]. In [15],
the authors deal with deterministic networks of timed automata with priorities
and parametric guards and develop an algorithm based on constraint solving
and Monte Carlo sampling to synthesise timing delays for MTL extended with
counting formulas. In [16], optimal synthesis of timing parameters is considered
for systems modelled as (deterministic) networks of timed I/O automata and
quantitative objectives, such as energy consumption, formulated as a bilevel
optimisation problem. An approach for the verification of Parametric TCTL
(PTCTL) formulae has been developed in [17], where the problem has been
proved decidable. A more general problem is studied in [18], where parameters
are allowed both in the model and the desired PTCTL property. The authors
show that the model checking problem is decidable and the parameter synthesis
problem is solvable, in discrete time, over a PTA with one parametric clock, if
equality is not allowed in the formulae. In [19], it is shown how bounded model
checking can be applied to parameter synthesis for timed automata to synthesise
part of the set of all the parameter valuations under which the given property
holds in a model. A construction that enables the synthesis of an implemen-
tation of a specification for real-timed systems based on timed I/O automata,

3

which is robust under a given timed perturbation, is presented in [20].
There is little work, however, on timing parameter synthesis for probabilistic

real-time systems. In [21] the authors presented an approach based on the de-
composition of the parametric space into behavioural tiles, i.e., sets of parameter
valuations for which the behaviour of the system is uniform. The method is also
extended for probabilistic systems. In [22], a technique is proposed to approx-
imate parametric rate values for continuous-time Markov chains for bounded
reachability probabilities, implemented in a GPU-based tool Prism-Psy [23].
In [24], the authors apply their Inverse method for parameter synthesis for TA
to PTA. The method starts from reference parameter values of a TA, and derives
the constraints on parameters such that the obtained models are time-abstract
equivalent. Time-abstract equivalence preserves untimed properties, and thus
the parameter values derived on the non-probabilistic version of the model pre-
serve reachability probabilities. Termination is not guaranteed and the derived
constraints are not weakest in general. In [25], the authors consider a fully
deterministic parametric model, where the remaining time in a node is unique
and given as a parameter, and provide a method to compute the expected time
to reach some node as a function of model’s parameters. Our approach is the
first zone-based method that can handle fully nondeterministic PTA for general
probabilistic reachability properties.

Probabilistic timed automata are supported by the Prism model checker [6],
where models are specified in a guarded command language and properties in
PCTL, a probabilistic extension of CTL. PTA model checking is supported by
several engines in Prism. The zone-based stochastic games engine [5] and the
backwards reachability engine [26] allow time-bounded or unbounded probabilis-
tic reachability properties, where the former currently only handles maximum
probabilities. In order to use these engines, the model must satisfy the following
restrictions. It should be well-formed, non-Zeno and should not exhibit time-
locks, i.e., the possibility of reaching a state where no transitions are possible
and time cannot elapse beyond a certain point [3]. The model must also have
a single initial state. The digital clocks engine [27] implements a time-abstract
approach which allows unbounded properties and clock variables, but does not
yet support time-bounded reachability properties. For the digital clocks engine,
clock constraints cannot use strict comparison operators, and diagonal clock
constraints are not allowed, i.e. those containing references to two clocks. We
have enabled parameter synthesis for PTA for the stochastic games engine, and
our implementation is described in Section 5.

2. Preliminaries

A discrete probability distribution over a set S is a function µ : S ÞÑ r0, 1s,
such that

ř

sPS µpsq “ 1 and the set ts | s P S ^ µpsq ą 0u is finite. By DistpSq
we denote the set of such distributions. µp is a point distribution if µppsq “ 1 for
some s P S. We now define Markov decision processes, a formalism for modelling
systems which exhibit both nondeterministic and probabilistic behaviour.

4

Definition 1 (Markov decision processes). An MDP is a tupleM “ pS, s0,Σ,
StepsMq, where S is a set of states, s0 is a set of initial states, Σ is a set of
actions and StepsM : S ˆ Σ ÞÑ DistpSq is a probabilistic transition function.

A transition in M from state s is first made by nondeterministically se-
lecting an action δ P Σ and then the successor state s1 is chosen randomly
according to the probability distribution StepsMps, δq. A path is a sequence of
such transitions and represents a particular resolution of both nondeterminism
and probability. A state s is reachable in M if there exists a path from the
initial state of M to s. A strategy A is a function from finite paths to distri-
butions which resolves nondeterminism in an MDP. For a fixed strategy A, the
behaviour of an MDP is purely probabilistic, and we can define the probability
pAs pF q of reaching a target set F Ď S from s under A. By quantifying over
all strategies in M, we can define the minimum and maximum probability of
reaching F :

pmin
M pF q “ infsPs0 infA pAs pF q and pmax

M pF q “ supsPs0supA p
A
s pF q

These values can be computed efficiently together with the corresponding strate-
gies using, e.g., value iteration method, which approximates the probability
value.

Stochastic 2-player games [28] are turn-based games involving two players
and probability. They generalise MDPs by allowing two types of nondetermin-
istic choice, each controlled by a separate player.

Definition 2 (Stochastic games). A stochastic game is a tuple G “ pS, pS1, S2q,
s0,Σ,StepsGq, where S is a set of states partitioned into sets S1 and S2, s0 is a

set of initial states, Σ is a set of actions and StepsG : S1 ˆ Σ ˆ S2 ÞÑ 2DistpSq is
a probabilistic transition function.

S1 and S2 represent the sets of states controlled by player 1 and player 2, respec-
tively. The behaviour of a game is as follows. First, player 1, in state s P S1,
selects an available action δ P Σ, which takes the game into a state s1 P S2.
Player 2 then selects a probability distribution µ from the set StepsGps, δ, s

1q.
Finally, the successor state s2 is chosen according to µ. A resolution of nondeter-
minism in G is a pair of strategies σ1, σ2 for player 1 and player 2, respectively,
under which we can define the probability pσ1,σ2

s pF q of reaching a subset F Ď S
from state s. A pair of strategies induces a probability measure over the set of
paths [4].

Let R, Rě0 and Z be the sets of reals, non-negative reals and integers,
respectively. Let X be a finite set. A linear expression on X is an expression of
the form λ :“ k | k ¨ x | λ` λ, where k P Z and x P X.

Now let X “ tx1, ..., xnu be a finite set of clock variables. A clock valuation
u : X ÞÑ Rě0 is a function assigning a non-negative real number to each x P X.
Let ~0 be a valuation that assigns 0 to all clocks in X. For any R Ď X and any
valuation u on X, we write urRs for the valuation on X such that urRspxq “ 0
if x P R and urRspxq “ upxq otherwise. For t ě 0, u ` t denotes the valuation

5

which assigns pu ` tqpxq “ upxq ` t to all x P X. Let P “ tp1, ..., pmu be
a finite set of parameters. A (linear parametric) constraint on X Y P is an
expression of the form γ :“ xi „ c | xi ´ xj „ c | γ ^ γ where 1 ď i ‰ j ď n,
xi, xj P X, „P tă,ďu and c is a linear expression on P . By CpX,P q we denote
the set of such parametric constraints and by C1pX,P q we denote the set of
(non-diagonal) constraints of the form: γ1 :“ xi „ c | γ1^ γ1. For any valuation
v on P and any linear constraint γ on XYP , vpγq is the linear constraint on X
obtained by replacing each parameter p P P by the (concrete) value vppq. Given
some arbitrary order on X Y P , a valuation can be viewed as a real-valued
vector of size |X Y P |. The set of valuations satisfying some linear constraints
is then a convex polyhedron of R|XYP |. A zone is a polyhedron defined only by
conjunctions of the constraints of the form x ´ y „ c or x „ c with x, y P X,
c P Z and „P tă,ďu. If v is a valuation on both clocks and parameters X Y P
(as v is used throughout the paper, unless specified otherwise) then by v|P (resp.
v|X) we denote the projection of v onto P (resp. X). We now give a formal
definition of parametric probabilistic timed automata (PPTA), which are PTA
extended with timing parameters.

Definition 3 (PPTA). A PPTA is a tuple P “ pL, l0, X, P,Σ, prob, Invq where
L is a finite set of locations, l0 P L is the initial location, X is a finite set of clocks,
P is a finite set of parameters, Σ is a finite set of actions, prob : LˆΣˆCpX,P q ÞÑ
Distp2X ˆ Lq is a probabilistic transition function, and Inv : L ÞÑ C1pX,P q is a
function that assigns an invariant to each location.

For any rational valuation v on P , the structure vpPq obtained from P by
replacing every constraint γ by vpγq is a PTA. The behaviour of a PPTA P is
described by the behaviour of all PTA vpPq obtained by considering all possible
parameter valuations. A (concrete) state of vpPq is a pair pl, uq P L ˆ RXě0

such that the clock valuation u satisfies the invariant (notation u |ù vpInvplqq).
A transition in the semantics of vpPq is a timed-action pair pt, δq. In a state
certain amount of time t P Rě0 can elapse as long as u ` t |ù vpInvplqq. Time
elapse is followed by the choice of an action δ P Σ, for which the set of clocks
R to reset and successor locations l1 are selected randomly according to the
probability distribution probpl, δ, γq. The action δ can only be taken once its
constraint vpγq (called guard) is satisfied by the current clock valuation. Each
element pR, l1q P 2X ˆ L, such that probpl, δ, γqpR, l1q ą 0, is called an edge and
the set of all such edges, denoted edgespl, δ, γq, is assumed to be an ordered list
xe1, ..., eny. We now formally define the semantics of a PPTA under a parameter
valuation v.

Definition 4 (Semantics of a PPTA). Let P “ pL, l0, X, P,Σ, prob, Invq be
a PPTA and v be a R-valuation on P (v : P ÞÑ R). The semantics of vpPq is
given by the infinite-state MDP MvpPq “ pQ, q0,Rě0 ˆ Σ,StepsMvpPq

q where:

• Q “ tpl, uq P LˆX ÞÑ Rě0 | u |ù vpInvplqqu, q0 “ pl0,~0q

• StepsMvpPq
ppl, uq, pt, δqq “ µ iff DpR, l1q P edgespl, δ, γq such that u ` t |ù

vpγq ^ u` t1 |ù Invplq for all 0 ď t1 ď t, and for any pl1, u1q P Q:

6

µpl1, u1q “
ÿ

t| probpl, δ, γqpR, l1q |R P 2X ^ u1 “ pu` tqrRs |u

Note that the definition of µ involves summation over the cases in which multiple
clock resets result in the same target state pl1, u1q, expressed as a multiset, since
some of the probabilities might be the same.

We study the optimal timing parameter synthesis problem for PPTA, i.e.,
automatically finding values of parameters such that the probability (either
maximum or minimum) of reaching a certain set of locations is optimised. For
example, in the case of property “the maximum probability of an airbag failing
to deploy”, we would want to choose the timing parameters that minimise this
probability value. On the other hand, we would want to maximise “the minimum
probability that the protocol successfully terminates”.

3. Synthesis with Forward Reachability

A naive approach to parameter synthesis for PTA is to restrict parameter val-
ues to bounded intervals of integers (or rationals that can be scaled to integers)
and perform verification for each such (non-parametric) model - basically swap-
ping the parameters for each verification, using a probabilistic model checker,
e.g. Prism [6]. However, this approach is already experimentally shown to be
inefficient for (non-probabilistic) TA compared to symbolic techniques, espe-
cially when the sets of possible parameter values are large, in [14]. This is why
we aim to formulate a symbolic algorithm for deriving constraints on parameters
that ensure the optimisation of some reachability probability in the model. For
the symbolic exploration of the state-space, we use the notion of a parametric
symbolic state and symbolic operations on valuation sets given below, defined
in [14].

Definition 5 (Parametric symbolic state). A (parametric) symbolic state
of a PPTA P, with the set of clocks X and the set of parameters P , is a pair
S “ pl, ζq where l is a location of P and ζ is a set of valuations v on X Y P .
Sometimes, when it is clear from the context, we refer to ζ as a symbolic state.

For the computation of the set of symbolic states of a PPTA we need several
operations defined below.

• future (time successors): ζÕ “ tv1 | v P ζ ^ v1pxq “ vpxq ` d, d ě 0 if x P
X; v1pxq “ vpxq if x P P u

• reset of clocks in R Ď X: ζrRs “ tvrRs | v P ζu

• successor by edge e “ pR, l1q in the distribution probpl, δ, γq: Succppl, ζq, eq “
pl1, pζ X γqrRsÕ X Invpl1qq

• initial symbolic state: InitpPq “ pl0, tv P RXYP | v|X P t~0Xu
Õ ^

vpInvpl0qquq.

7

The sets of valuations ζ of all reachable symbolic states of a PPTA are
convex polyhedra [12], since the set of valuations of the initial symbolic state is
a convex polyhedron and all the operations preserve convexity.

3.1. Forward reachability exploration

The forward exploration, which builds an MDP-based abstraction of a given
PTA [1], is an extension of the well-known zone-based forward reachability al-
gorithm, ubiquitous for model-checking TA and implemented in tools such as
Uppaal [29] and Kronos [30]. This algorithm performs the exploration of the
state-space by successively computing symbolic states using Succ, starting from
the initial symbolic state. For probabilistic models, this algorithm exhaustively
explores the reachability graph and on-the-fly techniques are not used, as the
goal is to compute the probability of reaching a state, instead of just checking
the existence of a path.

In Figure 1 we present our extension of the forward reachability algorithm
from [1] to parametric probabilistic timed automata. It takes a PPTA P and
some target subset of its locations F as input, and returns the reachability graph
pSym,Transq. Sym is the set of all reachable parametric symbolic states S of
the model and Trans is the set of symbolic transitions. Waiting is the set of
those symbolic states which have not yet been explored. As long as there are
symbolic states unexplored (Waiting ‰ ∅), successor states are computed for
each possible edge using Succ operator. Each symbolic transition T P Trans is

of the form T “

´

pl, ζq, δ,
@

pl1, ζ1q, ..., pln, ζnq
D

¯

, where n “ |edgespl, δ, γq|. A

symbolic transition T induces probability distribution µT over symbolic states
Sym. For any pl1, ζ 1q P Sym: µT pl

1, ζ 1q “
ř

t| probpl, δ, γqei | ei P edgespl, δ, γq ^
ζi “ ζ 1 |u.

Using these distributions, the algorithm BuildMDPpSym,Transq constructs
an MDP similarly to that of [1] for PTA, which can then be analysed to compute
the reachability probabilities. For PTA, and therefore for PPTA, this approach
only gives upper (resp. lower) bounds on maximum (resp. minimum) reachabil-
ity probability in the model. This is because the reachability graph is too coarse
to preserve the precise time when the actions can be taken, and thus constructs
an over-approximation of the possible strategies.

Let us highlight the differences between our algorithm and its non-parametric
counterpart from [1]. In the non-parametric case, all symbolic states pl, ζq con-
taining some location l P F are collected into a set Reached . Then, in the con-
structed MDP, the maximum (or minimum) probability of ending up in Reached
is calculated. In our setting, we are interested in finding the optimal parameter
valuations (that maximise or minimise the reachability probability of interest).
We thus need to keep separate those symbolic states containing different param-
eter valuations and calculate the maximum/minimum reachability probability
for each one. We divide the set Reached into subsets Reached i, each of which
contains the symbolic states pli, ζiq with equivalent constraints on parameters
(obtained by projection of the set of valuations ζi onto parameters: ζi|P). An-
other difference arises when building symbolic transitions Trans. This follows

8

ParReach(P, F)

Sym :“ ∅; Trans :“ ∅; Reached :“ ∅; Waiting :“ tInitpPqu; n :“ 0; Reached0 :“ ∅
while Waiting ‰ ∅

choose and remove pl, ζq from Waiting
Sym :“ Sym Y tpl, ζqu
for δ P Σ such that edgespl, δ, γq ‰ ∅

for each ei P edgespl, δ, γq “ xe1, ..., eny
pl1i, ζ

1
iq :“ Succppl, ζq, eiq

if pl1i, ζ
1
iq R Sym ^ ζ 1

i ‰ ∅^ l1i R F then Waiting :“ Waiting Ytpl1i, ζ
1
iqu

else if pl1i, ζ
1
iq R Sym ^ ζ 1

i ‰ ∅ then Reached :“ Reached Y tpl1i, ζ
1
iqu

Trans :“ Trans Y tppl, ζq, δ, xpl1, ζ1q, ..., pln, ζnqqyu
//Additional transitions from a state to its subsets
for each pl, ζq P Sym

if Dpl1, ζ 1
q P Sym such that l “ l1 ^ ζ|X Ď ζ 1

|X ^ ζ|P Ď ζ 1
|P then

Trans :“ Trans Y tpl1, ζ 1
q,∅, xpl, ζqyu

//Divide Reached into subsets Reached i according to different parameter valuations
for each pl, ζq P Reached

if (ζ|P “ tReached iu|P for some Reached i where i P r0..ns) then
Reached i :“ Reached i Y tpl, ζqu

else Reachedn :“ Reachedn Y tpl, ζqu; n``;
return pSym,Transq

BuildMDPpSym,Transq

sym0 “ tpl, ζq P Sym | l “ l0u
for pl, ζq P Sym and T P Transpl, ζq

StepsMppl, ζq, T q :“ µT

returnM “ pSym, sym0,Trans, StepsMq

Figure 1: Parametric forward reachability and construction of the corresponding MDP

from the property of TA (and therefore PTA) proven in [12], which states that
weakening (resp. strengthening) the guards in any TA T , e.g decreasing lower
and increasing upper (resp. increasing lower and decreasing upper) bounds on
clocks, yields an automaton whose reachable states include (resp. are subset of)
those of T . We therefore add, for any two symbolic states pli, ζiq, plj , ζjq P Sym
which satisfy ζi|X Ď ζj |X^ζi|P Ď ζj |P ^ li “ lj , a transition (point distribution)

from plj , ζjq to pli, ζiq, in order to obtain the correct probabilities in the MDP.
By tReached iu|P in Figure 1 we denote the parameter values contained in the
set Reached i.

Example 1. Let us consider a PPTA shown in Figure 2, which represents a
communication protocol operating over a lossy channel. We have simplified the
model from [1] and added a parameter a to the guard of the first transition. The
protocol starts with the delivery of new data which resets both clocks x and y
(represented as the initial location l0). The data are retained for at least a time

9

l0 l1

x ď 3^ y ď 7

l2 l3

send

release x ě a

tx :“ 0u

t
x
, y

:“
0
u

0.
65

x ě 2
tx :“ 0u

0.35

tx :“ 0u

ty :“ 0u

y “ 7

abort

Figure 2: Example of a parametric probabilistic timed automaton

units before being sent to the medium, which resets clock x to zero (represented
as a transition between l0 and l1, labelled with release). The medium then sends
the data to the receiver, and the attempt is successful (location l2 is reached)
with probability 0.65. Otherwise, the medium re-sends the data after a delay
varying between 3 and 7 time units. If exactly 7 time units have elapsed since
the delivery of the data, the system aborts. We are interested in the values
of the parameter a which maximise the probability of the medium successfully
send-ing the data (which is equivalent to reaching location l2).

The MDP constructed from the reachability graph is shown in Figure 3.
Simplified constraints are shown in the figure, while full constraints, obtained
using our prototype implementation, are listed in AppendixA.

There are three symbolic states with goal location l2 and different parame-
ter valuations: Reached1 “ tpl2, x “ y ^ b ď 5qu,Reached2 “ tpl2, x “ y ^ b ď
3qu and Reached3 “ tpl2, x “ y ^ b ď 1qu. Using the MDP model checking
engine in Prism, we calculated the maximum probabilities of reaching the
following states: pmax p♦Reached1q “ 0.65, pmax p♦Reached2q “ 0.8775, and
pmax p♦Reached3q “ 0.957125, where ♦φ means that φ must hold eventually. If
we want to maximise the probability of reaching l2, it is clear that we should
choose parameter values corresponding to s8, which is a ď 1.

�

The forward reachability algorithm provides only upper (resp. lower) bounds
on the maximum (resp. minimum) reachability probability. In Example 1, this
method actually gives the correct values, but consider now the automaton of
Figure 4, inspired by [1]. The probability of reaching l3 obtained using the
forward approach (the resulting MDP is shown in Figure 5) is 1, regardless of
the value of a. By careful inspection, we observe that the maximum probability
is 1 only if a “ 0 (which results from taking a transition from l0 at x “ y “ 0,
and then, from either l1 or l2, immediately proceeding to l3). Otherwise this
probability is at most 0.5.

The following theorem, a modification from [5] for the parametric setting,
establishes that, for PPTA, the reachability graph yields lower bounds on min-

10

l1, x ď 3^ b` x ď
y ď 7 ^ b ď 7

l0, x “ y

l1, x ď 3^ b` x`
2 ď y ď 7^ b ď 5

l2, x “ y ^ b ď 5

l3, x “ y ^ b ď 7

l1, x ď 3^ b` x`
4 ď y ď 7^ b ď 3

l2, x “ y ^ b ď 3

l3, x “ y ^ b ď 5

l1, x ď 3^ b` x`
6 ď y ď 7^ b ď 1

l2, x “ y ^ b ď 1

l3, x “ y ^ b ď 3

l3, x “ y ^ b ď 1

0.35

0.35

0.35

0.65

0.65

0.65

Figure 3: Markov decision process for the PPTA of Figure 2

l0

l3

l2l1
0.5

tx :“ 0u

0.5

x “ 0^ y “ 0
ty :“ 0u

x “ 0^ y “ a

Figure 4: A PPTA

l0, x “ y

l3, x “ y

l2, x “ yl1, x ď y 0.50.5

Figure 5: MDP for the PPTA of Figure 4

11

imum reachability probabilities and upper bounds on maximum reachability
probabilities and that the corresponding parameter valuations can be obtained
from the symbolic states. In order to prove this theorem, we need to present
Lemma 1 and Lemma 2, proven in [5], and Lemma 3 with a proof given in
AppendixA.

Let us first introduce the notation needed for proofs. We fix PPTA P “
pL, l0, X, P,Σ, prob, Invq. pSym,Transq is the reachability graph of P and M “

pSym, sym0,Trans,StepsMq the MDP obtained with BuildMDPpSym,Transq.
Reached is the set of all symbolic states pl, ζq from Sym such that l P F . For
any parameter valuation v, we obtain a (non-parametric) PTA which we denote
vpPq. The semantics of vpPq is given by an (infinite state) MDP MvpPq “

pQ, q0,Rě0 ˆ Σ,StepsMvpPq
q.

By vpSymq we denote the set of all reachable (non-parametric) symbolic
states obtained using the forward reachability algorithm applied to vpPq, and
by vpMq the corresponding MDP. In a similar way, we define vpSq P vpSymq
as pl, vpζqq, a (non-parametric) symbolic state, and vpReachedq is the set of all
symbolic states pl, vpζqq such that l P F . For the sake of simplicity, we redefine
an edge e “ pR, l1q in the distribution probpl, δ, γq as e “ pl, δ, γ, R, l1q and
vpeq “ pl, δ, vpγq, R, l1q.

Lemma 1. For any strategy A of MvpPq and q P Q, there exists a strategy BA
of vpMq where pAq pQ

F q “ pBA
vpSqpvpReachedqq, for all vpSq P vpSymq such that

q P vpSq, where QF is a set of states pl, uq P Q such that l P F .

We also define a run as a finite sequence ρ “ q1a1q2a2...an´1qn such that
for all i, qi P Q, ai P ΣYRě0 and qi

ai
ÝÑ qi`1. A sequence of symbolic successor by

edges e1, ..., en: SuccpS, e1, ...enq is defined as Succp...SuccpSuccppl, ζq, e1q, e2q..., enq.

Lemma 2. For any symbolic state pl, ζq, for all edges e and valuations v,
vpSuccppl, ζq, eqq “ Succppl, vpζqq, vpeqq.

We can safely use Lemma 2 as the Succ operator is not impacted by proba-
bilities. The corollary of Lemma 2 is that for any sequence of edges e1, ..., en:
vpSuccpS, e1, ..., enqq “ SuccpvpSq, vpe1q, ..., vpenqq. Let us assume that the set
Reached is divided into subsets Reached i for i P r1..ns. According to our forward
reachability algorithm, @pl, ζq, pl1, ζ 1q P Reached i, for any i P r1..ns, ζ|P “ ζ 1

|P .

Let us also assume that some Reachedk “ tplk, ζkqu, lk P F has the optimum
reachability probability among all Reached i P Reached in the MDP M.

Lemma 3. Let n be a node of T , labeled by some symbolic state S, and such
that the subtree rooted at n has depth N . We have that a parameter valuation
v P ζk|P is the solution to the reachability synthesis problem, starting the forward
reachability algorithm from S, iff there exists a state q in vpSq and a run ρ in
vpPq, with fewer then N discrete steps, that starts in q and reaches lk.

Theorem 1. For a PPTA P and a subset of its locations F , if pSym,Transq “
ParReachpP, F q and M “ BuildMDPpSym,Transq, then:

12

1. pminM pReachedq ď pminP pF q and pmaxM pReachedq ě pmaxP pF q;

2. if M gives the precise reachability probabilities in P and if some plk, ζkq P
Reached has the optimum (maximum or minimum) reachability probabil-
ity, among all plj , ζjq P Reached, then tζk|P u is the solution to the optimal
parameter synthesis problem.

Proof. We consider the two parts of the theorem separately.

(1) For vpPq, obtained from PPTA P and any parameter valuation v, the
statement is a direct consequence of Lemma 1.

(2) First we need to prove that ζk|P is a solution to the reachability synthesis
problem, i.e., for any parameter valuation v P ζk|P , lk is reachable in vpPq.
Let us consider the possibly infinite directed labeled tree, whose root is
labeled by InitpPq and, for every node n, if n is labeled by a symbolic
state S, then, for all edges e of the PPTA, there exists a child n1 labeled
by SuccpS, eq iff SuccpS, eq is not empty. For easier reference, we also label
the arc from n to n1 by e.
Now, consider that the forward reachability algorithm has terminated.
Then only a finite prefix (a subset closed under the parent relation) T of
the infinite tree has been visited and each leaf must correspond to one of
the leaf conditions of the algorithm or to the absence of children. This
means that all leaves n of the tree are labeled by symbolic states S such
that:
- either S “ pl, ζq and l “ lk;
- or S P Sym;
- or S has no successor.
With Lemma 3, we immediately have that if ζk|P is a solution to the
reachability synthesis problem, then there exists a run in vpPq that starts
in the initial state and reaches lk.
In the other direction, suppose there exists such a run ρ. Then ρ is finite
and its last state has a location belonging to lk. Let e1, ..., ep be the edges
taken in ρ and consider the branch in the tree T obtained by following this
edge sequence on the labels of the arcs in the tree as long as possible. If
the whole edge sequence is feasible in T , then the tree T has depth greater
or equal to the size of the sequence and we can apply Lemma 1 to obtain
that v is the solution to the reachability synthesis problem.
Otherwise, let S “ pl, ζq be the symbolic state labelling the last node
of the branch, ek be the first edge in e1, ..., ep that is not present in the
branch and q be the state of ρ just before taking ek. Using Lemma 2,
vpSuccpS, ekqq is not empty so SuccpS, ekq is not empty. Since the node
labeled by S has no children in T , it follows that either l “ lk or there
exists another node on the branch that is labeled by S. In the former case,
we can apply Lemma 3 to the prefix of ρ ending in q and we obtain that
v is the solution to the reachability synthesis problem.
In the latter case, by the corollary of Lemma 2, there exists a run along
edges e1, ..., em, with m ă k, that reaches q in vpPq. From that run we

13

can construct another run ρ1 by merging with the suffix of ρ that starts
from q. ρ1 has strictly fewer discrete actions than ρ and also reaches lk
and we can repeat the same reasoning as we have just done. We can do
this only a finite number of times (because the length of the considered
run is strictly decreasing) so at some point we have to be in some of the
other cases and we obtain the expected result.
We have proven that ζk|P is a solution for the reachability synthesis prob-
lem. The same stands for any ζj|P , such that plj , ζjq P Reached . If we were
interested in the reachability synthesis problem, we would take

Ť

j ζj|P , for
all plj , ζjq P Reached , as a solution. As we are interested in the optimum
parameter synthesis problem we must exclude the parameter valuations
contained in the other symbolic states of Reached . We therefore take
tζk|P zp

Ť

@j‰k,ljPF
ζj|P qu.

l

To resolve the limitation of the forward approach, namely, that it can only
compute bounds on the reachability probabilities, in Section 4 we adapt the
game-based abstraction refinement method from [5] to synthesise the optimal
timing parameter values for PPTA. We choose this approach as it can compute
precise minimum and maximum probabilities and is shown to perform better
then the digital clocks approach [27], an alternative model checking technique
for PTA.

3.2. Decidability and termination

The reachability-emptiness problem for parametric timed automata is un-
decidable in general [10]. The subclass for which this problem is decidable is
L/U automata [12]. For both of those classes, however, the forward reachability
exploration is not guaranteed to terminate. This is due to the fact that the
classic k-normalisation operator [31], which is used to ensure the termination
for (non-parametric) timed automata, based on the greatest constant appearing
in the model, cannot be used in the parametric case. Since our algorithm for
PPTA can be viewed as an extension of forward reachability, termination can-
not be guaranteed either. Nevertheless, in order to overcome this problem and
ensure both decidability and termination, we could restrict parameter values
to bounded integers, as done in [14] for timed automata. This is not a severe
restriction, as most tools actually only accept integers in guards and invariants.
In the rest of the paper we do not assume this restriction, but, as it is a special
case, all the results apply.

4. Synthesis with Game-based Abstraction Refinement

In [32], stochastic two-player games are used as abstractions for MDPs. In
such games, the two players represent nondeterminism introduced by the ab-
straction (player 1) and nondeterminism from the original model (player 2). By

14

quantifying over all possible strategies for players 1 and 2, we can obtain both
the lower bound (lb) and the upper bound (ub) on either the maximum or min-
imum reachability probability in the original MDP. If a game G is constructed
from an MDPM using the approach from [32], where F is a subset of states of
M, we have:

plb,min
G pF q ď pmin

M pF q ď pub,min
G pF q and plb,max

G pF q ď pmax
M pF q ď pub,max

G pF q

where for maximum probabilities:

plb,max
G pF q

def
“ supsPs0 infσ1

supσ2
pσ1,σ2
s pF q

pub,max
G pF q

def
“ supsPs0supσ1

supσ2
pσ1,σ2
s pF q

Using similar techniques to value iteration for MDPs [28], these probabilities
can be efficiently approximated, together with the corresponding strategy pairs
which achieve them.

In [5], the concept of game-based abstractions is used for PTA in order to
compute the maximum and minimum reachability probabilities. The method
starts from the MDP obtained via forward reachability algorithm, and subse-
quently builds and refines the stochastic game abstraction. In this section, we
generalise this method by taking into account timing parameters.

4.1. Game-based abstraction for PPTA

The game-based abstraction is constructed by analysing transitions outgoing
from each location in a PPTA. The transitions are divided into subsets according
to the part of the symbolic state in which they are enabled (sets of transitions
with the same source, meaning the same location and subset of ζ). This partition
analysis is based on the validity operator introduced in [5].

In the non-parametric case, this operator takes the symbolic transition T “
´

pl, ζq, δ,
@

pl1, ζ1q, ..., pln, ζnq
D

¯

and checks whether the part of symbolic state

ζ, from which it is possible to let time pass and then perform action δ, such
that taking the ith edge pRi, liq results in reaching some state pli, vq P pli, ζiq,
is empty. Such analysis requires several backward operators, defined for the
parametric domain in [33]:

• past (time predecessors): ζÖ “ tv1 | v P ζ^v1pxq ě 0, v1pxq`d “ vpxq, d ě
0 if x P X; v1pxq “ vpxq if x P P u

• inverse reset of clocks in set R Ď X: ζrRs´1 “ tv1 | Dv P ζ s.t. v1pxq “
0 if x P R^ v1pxq “ vpxq otherwiseu

We extended the validity operator to the parametric domain. In the non-
parametric case, it suffices to know whether it is possible to perform a transition
or not. In the parametric setting, however, we want to obtain the valuations
on X Y P from which it is possible to perform the transition T . The operator
validpT q gives precisely the set of clock and parameter valuations satisfying ζ

15

from which it is possible to let time pass and perform an action, such that taking
the ith edge gives a state in pli, ζiq:

validpT q “ ζ X

ˆ

´

γ X
`

Xni“1 pζirRs
´1q

˘

¯Ö
˙

The transition T is therefore valid if the set of valuations (a polyhedron) validpT q
is non-empty. The projection of these valuations onto parameters gives the
corresponding values of parameters. In order to construct a stochastic game,
the notion of validity is extended to sets of symbolic transitions with the same
source:

validpTq “
`

XTPT validpT q
˘

X
`

XTPTranspl,ζqzT validpT q
˘

Here validpTq defines the set of valuations v |ù ζ on X Y P , such that from
pl, vq it is possible to perform any symbolic transition T P T, but it is not
possible to perform any other transition of Transpl, ζq. In a symbolic state pl, ζq
of a stochastic game abstraction of a PPTA, player 1 first picks a subset T
of symbolic transitions (in other words, a part of the symbolic state in which
these transitions are enabled), and player 2 then picks a transition T P T.
Figure 6 shows the algorithm for the construction of a stochastic game from
a given reachability graph. This game, as the following theorem states, yields
(by quantifying over all possible strategies for player 1 and player 2) upper and
lower bounds on the maximum/minimum reachability probabilities in a PPTA.

Before presenting Theorem 2, we first recall the following lemmas, whose
proofs can be found in [5]. vpSq, vpReachedq and vpSymq are defined as in the
proof of Theorem 1, and vpGq is the stochastic game obtained from vpPq.

Lemma 4. For any strategy A of MvpPq and q P Q, there exists a strategy pair

pσ1, σ2q of vpGq where pAq pQ
F q “ pσ1,σ2

vpSq pvpReachedqq for all vpSq P vpSymq such

that q P vpSq.

Lemma 5. For any symbolic state vpSq P vpSymq and player 2 strategy σ2 of
vpGq, there exists a strategy A of MvpPq where:

infσ1
pσ1,σ2

vpSq pvpReachedqq ď pAq pQ
F q and supσ1

pσ1,σ2

vpSq pvpReachedqq ě pAq pQ
F q.

Theorem 2. If pSym,Transq “ ParReachpP, F q, G “ BuildGamepSym,Transq

and ˚ P tmin,maxu then: plb,˚G pReachedq ď p˚
PpF q ď pub,˚G pReachedq.

Proof. From Lemma 4 we have:

infσ1,σ2p
σ1,σ2

vpSq pvpReachedqq ď infA pAq pQ
F q

supσ1,σ2
pσ1,σ2

vpSq pvpReachedqq ě supA pAq pQ
F q

for all vpSq P vpSymq such that q P vpSq, and therefore:

pminvpPqpF q ě plb,minvpGq pvpReachedqq and pmaxvpPqpF q ď pub,maxvpGq pvpReachedqq

16

BuildGamepSym,Transq

sym0 “ tpl, ζu P S | l “ l0u
for pl, ζq P S

for T Ď Transpl, ζq s.t. T ‰ ∅ and validpTq ‰ ∅
StepsGppl, ζq,Tq :“ tµT | T P Tu

return G “ pSym, sym0, 2
Trans , StepsGq

Figure 6: Algorithm for stochastic game abstraction

RefinepSym,Trans, pl, ζq,Tlb ,Tubq

ζlb :“ validpTlbq; ζub :“ validpTubq

Symnew :“ tpl, ζlbq, pl, ζubq, pl, ζ ^ pζlb _ ζubqquzt∅u
Symref :“ pSymztpl, ζquq Z Snew ; Transref :“ ∅
for each T “ pS0, δ, xS1, ..., Snyq P Trans

if pl, ζq R tS0, S1, ..., Snu then
Transref :“ Transref

Y tT u
else Tnew :“ tpS1

0, δ, xS
1
1, ..., S

1
nyq | S

1
i P Symnew if Si “ pl, ζq ^ S

1
i “ Si otherwiseu

for T new
P Tnew such that validpT new

q ‰ ∅
Transref :“ Transref

Y tT new
u

return pSymref ,Transref
q

Figure 7: Algorithm for parametric abstraction refinement

Using Lemma 5, we have that for any q P Q and vpSq P vpSymq such that
q P vpSq:

infA pAq pQ
F q ď infσ2

supσ1
pσ1,σ2

vpSq pvpReachedqq “ supσ1
infσ2

pσ1,σ2

vpSq pvpReachedqq

The last equality follows from properties of stochastic games [28]. In a similar
way, we have:

supA pAq pQ
F q ě infσ1

supσ2
pσ1,σ2

vpSq pvpReachedqq

It follows that:

pminvpPqpF q ď pub,minvpGq pvpReachedqq and pmaxvpPqpF q ě plb,maxvpGq pvpReachedqq

As the behaviour of P is described by the behaviour of all vpPq, obtained
by considering all possible parameter valuations v, we can complete the proof
with:

pminP pF q ď pub,minG pReachedq and pmaxP pF q ě plb,maxG pReachedq

pminP pF q ě plb,minG pReachedq and pmaxP pF q ď pub,maxG pReachedq

l

17

l0, x “ y

l3, x “ y

l2, x “ yl1, x ď y 0.50.5

Figure 8: Game-based abstraction

l0, x “ y

l3, x “ y

l2, x “ y

l1, x ě 0 ^
y ´ x ‰ a

l1, x “ 0^ y “ a

0.5

0.5

0.5 0.5

Figure 9: Refinement of a symbolic state pl1, x ď yq

18

Example 2. A game constructed from the forward reachability graph of the
PPTA in Figure 2 is shown in Figure 8. We represent player 1 states by ellipses
containing symbolic states pl, ζq, and player 2 states by black dots. In two of its
states (pl1, x ď yq and pl2, x “ yq), player 1 can choose between the part of the
state where both transitions are valid and the part where only one transition is
valid (a self-loop). The analysis of this game, however, gives values 0 and 1 for
lower and upper bound, respectively, on the maximum probability of reaching
l3. We address this issue below by applying a method to refine the abstraction.
�

4.2. Parametric abstraction refinement

Stochastic game abstractions might be too imprecise for reachability prob-
abilities, as shown in Example 2. The abstraction refinement method proceeds
by iteratively computing refined abstractions of the reachability graph (MDP)
until suitable precision is obtained. The game-based abstraction refinement
for MDPs from [4] uses the difference between lower and upper bounds on the
maximum/minimum reachability probability computed thus far as a quantita-
tive measure of precision. This method has been subsequently generalised in
[5] to enable abstraction refinement for PTA. We now explain our extension
for the parametric case, which will allow the identification of parameter values
corresponding to precise probabilities in the model.

After the construction and analysis of a stochastic game, the refinement
algorithm, presented in Figure 7, takes the reachability graph pSym,Transq,
splits one symbolic state per iteration and modifies symbolic transitions ac-
cordingly. The split of a symbolic state pl, ζq is done with respect to player 1
strategy choices in pl, ζq, Tub and Tlb , which achieve lower and upper bounds
respectively (such choices must exist in a state where these bounds differ, [32]).
The symbolic state pl, ζq is therefore split into pl, validpTlbqq, pl, validpTubqq,
and pl, ζ ^ pvalidpTlbq _ validpTubqqq. By construction, both validpTlbq and
validpTubq are non-empty and validpTlbq ‰ validpTubq, and thus the split pro-
duces strict refinement. The MDP of Figure 5, after a refinement of one symbolic
state, is shown in Figure 9.

The complete game-based abstraction refinement scheme, shown in Figure
10, provides a method to compute the precise values for maximum/minimum
reachability probabilities (unlike the forward approach, which computes only
upper/lower bounds), each corresponding to a particular parameter valuation.
We can then choose those valuations that optimise (either maximise or minimise)
these probabilities. Algorithm Synth uses function AnalyzeGame of [28] to
compute bounds on the maximum/minimum probability of reaching some set of
locations in a stochastic game and the corresponding strategies. The choice Ti
of player 1, in some pl, ζq, is a set of symbolic transitions T , and also represents
the part of ζ in which these transitions are valid (enabled).

To find the parameter valuations corresponding to some plk, ζkq P Reached,
which has the optimal precise reachability probability in the final MDP, it suf-

19

fices to compute the projection on the parameters from the target symbolic state
tζk|P u.

Theorem 3 states that the refinement algorithm yields a new reachability
graph, for which the corresponding stochastic game is a refined abstraction of
the PPTA, satisfying the following properties. We need the following lemmas,
from [5], modified for the parametric case.

Lemma 6. If Sref P Symref , pSref , δ, xSref
1 , ..., Sref

n yq P TranspSref q and S P
Sym such that Sref Ď S, then there exists pS, δ, xS1, ..., Snyq P Trans such that

Sref
i Ď Si for all 1 ď i ď n.

Lemma 7. For any strategy pair pσref
1 , σref

2 q of vpGref q and vpSref q P vpSymref q

there exists a strategy pair pσ1, σ2q of vpGq where:

pσ1,σ2

vpSq pvpReachedqq “ p
σref
1 ,σref

2

vpSref q
pvpReachedqq

for all vpSq P vpSymq such that vpSref q Ď vpSq.

Lemma 8. For any vpSq P vpSymq and player 2 strategy σ2 of vpGq there exist

a strategy pair pσref
1 , σref

2 q of vpGref q where:

infσ1 p
σ1,σ2

vpSq pvpReachedqq ď p
σref
1 ,σref

2

vpSref q
pvpReachedqq

supσ1
pσ1,σ2

vpSq pvpReachedqq ě p
σref
1 ,σref

2

vpSref q
pvpReachedqq

for all vpSref q such that vpSref q Ď vpSq.

Theorem 3. For a PPTA P, a subset of its location F and ˚ P tmin,maxu, let
pSym,Transq “ ParReachpP, F q. If pSymref ,Transref q is the result returned
by applying Refine to pSym,Transq, G by BuildGamepSym,Transq and Gref
by BuildGamepSymref ,Transref q then:

1. pSymref ,Transref q is a reachability graph for pP, F q;
2. plb,˚G pReachedq ď plb,˚Gref pReachedq and pub,˚G pReachedq ě pub,˚Gref pReachedq;

3. If p˚ “ plb,˚Gref plk, ζkq “ pub,˚Gref plk, ζkq, for some plk, ζkq P Reached, is the
optimum ˚ reachability probability, among all plj , ζjq P Reached, then
the solution to the optimal parameter synthesis can be extracted from the
strategy σ1 of Player 1, (that corresponds to p˚), and ζk.

Proof. We consider the three parts of the theorem separately.

(1) Let us consider any Sref P Symref , pSref , δ, xSref
1 , ..., Sref

n yq P TranspSref q

and S P Sym such that Sref P S. The proof is split into two cases:

20

• If Sref P Sym, then by construction Sref “ S, and therefore we
have that either pSref , δ, xSref

1 , ..., Sref
n yq P TranspSq, in which case

Lemma 6 holds, or there exists pS, δ, xS1, ...Snyq P TranspSq from

which pSref , δ, xSref
1 , ...Sref

n yq was constructed. In the second case, it

follows from Refine in Figure 7, that Sref
i P Si, for all 1 ď i ď n, as

required.

• If Sref R Sym, then for Sref Ď S it follows that Sref was formed by
splitting S. Thus, there exists a symbolic transition pS, δ, xS1, ..., Snyq P

Trans which was used to construct pSref , δ, xSref
1 , ..., Sref

n yq. It follows

from this construction that Sref
i P Si for all 1 ď i ď n, as required.

The fact that pSymref ,Transref q is the reachability graph for P follows
from the fact that we split only symbolic states and remove transitions
which are not valid.

(2) We consider vpPq for any parameter valuation v. vpSymq, vpSq, vpReachedq
and vpGq are defined as in proofs of Theorem 1 and Theorem 2. The proof
of this statement then follows similarly to the proof of Theorem 2, using
Lemma 7 and Lemma 8 instead of Lemma 4 and Lemma 5. We refer to
[5] for the complete proof.

(3) Combining Theorem 1 and Theorem 3(1), we obtain that ζk|P is a solution
to the reachability synthesis problem.
Upon the termination of the iterative procedure of the algorithm Synth,
we are sure that no state pl, ζq P Reached has been divided, therefore
parameter valuations ζ|P of any pl, ζq P Reached stay unchanged. On
the other hand, some of the symbolic states from Sym are divided and
therefore their parameter valuations are refined. Optimum strategy σ1 of
player 1 (a strategy to reach plk, ζkq which has the optimum reachability
probability) consists of choices T in symbolic states of the final set of
symbolic states Symref .
For each such T, validpTq gives the set of valuations on X Y P , in which
T is valid. validpTq|P then gives the corresponding parameter values.
To allow all choices Ti in the optimum strategy σ1, we need to take
Ş

i validpTiq|P . Finally, the optimal solution is obtained as t
Ş

i validpTiq|PX
pζk|P zp

Ť

@j‰k,ljPF
ζj|P qqu.

l

The algorithm is designed to terminate when the difference between the
upper and lower bound falls below some threshold ε for reasons of computational
efficiency. We show that this is, however, not necessary. If the initial forward
reachability exploration terminates (ParReach), then our algorithm, similarly
to its non-parametric counterpart from [5], is guaranteed to terminate in a finite
number of steps with a precise answer.

Theorem 4 (Termination). Let ˚ P tmin,maxu. If the forward reachability
algorithm (ParReach) terminates, then the algorithm for parameter synthesis
Synth terminates after a finite number of steps and returns p˚ “ plb,˚ “ pub,˚.

21

SynthpP, F,˚, ε, ‹q

pSym,Transq “ ParReachpP, F q; G “ BuildGamepSym,Transq; p˚ :“ 0; σp˚ :“ ∅
for each Reached i P Reached

pplb,˚G , pub,˚G , σlb
1 , σ

ub
1 q :“ AnalyseGamepG,Reached i,˚q

while pub,˚G ´ plb,˚G ą ε
choose pl, ζq P Sym

pSymref ,Transref
q “ RefinepSym,Trans, pl, ζq, σlb

1 pl, ζq, σ
ub
1 pl, ζqq

G “ BuildGamepSymref ,Transref
q

pplb,˚G , pub,˚G , σlb
1 , σ

ub
1 q :“ AnalyseGamepG,Reached i,˚q

if p˚
„ plb,˚G then // put ă (resp. ą) instead of „ when ‹ is maximisation

p˚ :“ plb,˚G ; σp˚ :“ σlb
1 (resp. minimisation)

return rp˚, σp˚ s

Figure 10: Parameter synthesis using game-based abstraction refinement loop

Proof. As stated in Section 3, for stochastic game G “ pS, pS1, S2q, s0,Σ, StepsGq
and maximum reachability probabilities, for some F Ď S we have:

plb,maxG pF q
def
“ supsPs0 infσ1

supσ2
pσ1,σ2
s pF q

pub,maxG pF q
def
“ supsPs0supσ1

supσ2
pσ1,σ2
s pF q

For the minimum reachability probabilities, similar equations hold:

plb,minG pF q
def
“ infsPs0 infσ1

infσ2
pσ1,σ2
s pF q

pub,minG pF q
def
“ infsPs0supσ1

infσ2p
σ1,σ2
s pF q

At each iteration, a split of a symbolic state provides a strict refinement. At
the point where each symbolic states pl, ζq in a game Gref has only one out-
going subset of edges T (thus, only one possible choice for player 1), we have

plb,˚Gref pReachedq “ pub,˚Gref pReachedq, because the upper and the lower bounds, for
either maximum or minimum reachability probability, are obtained for the dif-
ferent strategy choice of player 1 (player 2 plays either its best or its worst choice,
depending on whether we are considering maximum or minimum reachability
probabilities, respectively). The algorithm then terminates with the precise an-

swer, as, according to Theorem 3, plb,˚Gref pReachedq ď p˚
PpF q ď pub,˚Gref pReachedq.

l

Example 3. We return to the PPTA from Figure 4. The final stochastic game,
shown in Figure 11, after two refinement iterations contains six symbolic states.
The validity of each new symbolic transition Ti, obtained in the refinement
process, gives the following parameter valuations:

• T1 “ ppl0, x “ yq,∅, xpl1, x “ 0^ y “ aq, pl2, x “ y “ 0qyq ‰ ∅ if a “ 0

22

• T2 “ ppl0, x “ yq,∅, xpl1, x “ 0^ y “ aq, pl2, x “ y ą 0qyq ‰ ∅ if a ‰ 0

• T3 “ ppl0, x “ yq,∅, xpl1, x ě 0^ y ‰ aq, pl2, x “ y “ 0qyq ‰ ∅ if a ‰ 0

• T4 “ ppl0, x “ yq,∅, xpl1, x ě 0^y ‰ aq, pl2, x “ y ą 0qyq ‰ ∅ for a P Rě0.

The set of transitions T1 “ tT2, T3, T4u is valid if a ‰ 0, in which case the
maximum probability of reaching l3 is 0.5, and T2 “ tT1, T4u is valid if a “ 0,
in which case the maximum probability of reaching l3 is 1. If we wish to, for
example, maximise this probability, the algorithm obtains the constraint a “ 0.

l1, x ě 0^ y ´ x ‰ a l1, x “ 0^ y “ a

l3, x “ y

l2, x “ y “ 0

l2, x “ y ą 0

l0, x “ y

Figure 11: Final stochastic game for PPTA of Figure 4 (probability 0.5 is left out for each
edge of probabilistic (thick line) transitions outgoing from l0)

�

5. Implementation

In this section we report on our prototype implementation of a paramet-
ric extension for PTA model checking in Prism, which is invoked through the
command line interface. PTA models can be specified in Prism’s modelling
language, where we allow the use of parameters (with possible initial conditions
on their values) in guards and invariants in the definition of a PTA. The output
is provided in the form of constraints on parameters such that the precise prob-
ability of reaching a certain location in the model is maximised or minimised.

A PTA model in Prism’s language is supplied as a composition of reactive
modules. For the PPTA in Fig. 2, the model in Prism is shown below, where
the model type is indicated by keyword pta:

23

pta

const int a;

module M

s : [0..3] init 0;

x : clock;

y : clock;

invariant

(s=1 => x<=3 & y<=7)

endinvariant

[release] s=0 & x>=a->(s’=1)&(x’=0);

[send] s=1 & x>=2->0.65:(s’=2)&(x’=0)&(y’=0)+0.35:(s’=1)&(x’=0);

[abort] s=1 & y>=7->(s’=3)&(x’=0)&(y’=0);

endmodule

The first three lines of declarations following the keyword module specify
the variables of the model, where s represents the locations of a PPTA and x,
y represent clocks. The following three lines specify the invariants and the last
three lines define the transitions. To model PPTA, we allow the possibility that
the initial values of constants remain unspecified (const int a with no init),
which serves as a means to specify the parameters. This is indicated by listing
the parameters (unspecified constants) as the last argument of the command
line. The output is produced as a reachability graph (set of parametric sym-
bolic states and transitions) obtained in the first phase of the algorithm before
the refinement, together with the probability value (maximum or minimum)
and the corresponding parameter valuations as a set of symbolic constraints on
parameters.

Our prototype implementation is integrated within the current support for
PTA in Prism that employs the stochastic games engine. We give below a brief
description of the main data structures and algorithms that were extended.

5.1. Data structures and algorithms for parametric constraints

A DBM (difference bound matrix) [31] is a data structure used to store and
manipulate zones used in symbolic verification of TA and PTA in Prism, as well
as in tools such as Uppaal and Kronos. It enables the necessary operations
to be performed efficiently, as they are based on the comparison of entries in
the matrices. A DBM is an pn` 1q ˆ pn` 1q matrix representing a zone, where
n is a number of clocks in the model tx1, ..., xnu, and x0 is an additional clock
with constant value 0. It encodes the differences between each two clocks in
an element of the matrix. The row is used for storing lower bounds on the

24

difference between the clock and all other clocks (the corresponding column is
used for upper bounds). DBM D of zone Z is computed in the following steps:

• dpi, jq “ pc,„q for bound xi ´ xj „ c in Z

• dpi, jq “ 8 if the clock difference xi ´ xj is unbounded in Z

• dpi, iq “ p0,ďq for each clock

• dp0, iq “ p0,ďq implicit constraint that all the clocks are positive.

A PDBM is a parametric extension of DBM, introduced in [12], which we
implemented to provide support for PPTA. A PDBM consists of a matrix, where
each entry is a linear expression coming from the corresponding guard and a set
of constraints on parameters (a polyhedron over its valuations). The following
operations on PDBMs are required for the forwards reachability graph construc-
tion, described more in detail in [12], where to manipulate sets of valuations on
parameters (polyhedra) we used the Parma Polyhedra Library [34]:

• adding constraints The operation of adding a constraint in a DBM
is done by taking the pointwise minimum of the entries of a DBM and a
guard, which is also viewed as a DBM. In the parametric case, we compare
linear expressions to find the minimum. In general, the result might be
ambiguous. In this case, a zone split is performed and two PDBMs are
returned, each with an updated set of constraints on parameters.

• canonicalisation This algorithm compares the difference between two
clocks to the difference obtained when an intermediate clock is taken into
account. For PDBM, as in the case of adding a constraint, we compare two
linear expressions, and therefore the operation generally results in a set
of new PDBMs rather than a single PDBM. The cost of canonicalisation
might be Op2n3

q and the operation is obtained as a modification of the
Floyd-Warshall algorithm for computing all-pairs shortest paths [35].

• reset As in the case of DBM, the row and column for the reset clock is
replaced with the row and column for the clock x0, except for the diagonal
element dpi, iq which stays equal to 0. The reset operation preserves the
canonical form of a PDBM.

• future (time successors) Removing upper bounds on clocks, as for
DBM, corresponds to setting the bounds in the first column to p8,ăq for
each i ‰ 0. This operation preserves the canonical form.

Additional operations required for the abstraction refinement of the reacha-
bility graph are as follows:

• past (time predecessors) Time predecessors are computed by replacing
bounds in the first row by p0,ďq. The PDBM obtained after this operation
must be canonicalised.

25

• inverse reset of clocks This operation requires intersection, canonicali-
sation and, finally, replacing the bounds in the row of inverse reset clock
with p8,ăq.

• intersection Intersection of two PDBMs D1 and D2 computes the mini-
mum between d1pi, jq and d2pi, jq for every i, j. For each comparison one
or two PDBMs may be obtained. Thus, the result of the intersection will
be a set of PDBMs.

5.2. Case study: The Root Contention Protocol (IEEE 1394 FireWire)

We consider the abstract probabilistic timed automaton model for the IEEE
1394 FireWire root contention protocol given in [3], also available with the
Prism distribution. This protocol concerns the election of a leader between two
contending nodes of a network. The protocol consists of a number of rounds in
which each of the contending nodes flips a coin; given the result of the coin flip, a
node may decide to wait for a short (rc fast min and rc fast max constants)
or a long (rc slow min and rc slow max constants) amount of time. After
this amount of time has elapsed, a node then checks to see if the other node has
already deferred, and declares itself to be the leader if this is the case; otherwise,
this node defers. Intuitively, in the case in which the result of the two nodes’
coin flips are different, the ’faster’ node defers to the ’slower’ node, the latter of
which then becomes leader, signalling the end of protocol execution. However,
if the results of the coin flips are the same, the communication delay (delay
constant) between the two nodes means that it is possible that both nodes
attempt to defer to the other, requiring another round of the protocol. Each
decision of a node to wait for a short (resp. long) period of time is modelled as
a probabilistic transition between the maximum or minimum short (resp. long)
period of time to wait.

We parameterised the model from [3] by replacing constants used in guards
and invariants in the initial PTA, respectively representing the communication
delay delay “ 360, the minimum and maximum short period of time to wait
rc fast min “ 760 and rc fast max “ 850, and the minimum and maximum
long period of time to wait rc slow min “ 1590 and rc slow max “ 1670, by six
parameters a, b, c, d and e. We added the initial constraint that each parameter
must be greater that 0, as it would be unrealistic to expect a realisable non-zero
delay or time to wait.

We ran the algorithm for the deadline property, i.e., the maximum probabil-
ity of reaching the location representing a state of the system where the leader is
elected (l “ 9 in the model from [3]), written in Prism as Pmax “?rF l “ 9s. The
reachability graph gives 52 parametric symbolic states, while the non-parametric
model checking for the initial PTA gives 10 symbolic states using the fixed val-
ues for parameters given above. This is due to the splitting of parametric
symbolic states as a result of comparing linear expressions during intersection
with guards, canonicalisation, inverse reset, etc.

The algorithm returns 1 as the probability under the constraints c ´ b ě 0
and e ´ d ě 0, which indicates that the minimum short time to wait must be

26

less than the maximum short time to wait (c ´ b ě 0) and that the minimum
long time to wait must be less than the maximum long time to wait (e´d ě 0).
It is interesting to note that the communication delay can be arbitrarily large
and does not not influence the probability of the leader election in the protocol.

6. Conclusion

We presented a technique for PPTA which derives constraints on param-
eters of the model, such that the maximum/minimum probability of reaching
some set of locations is optimised. We focused on probabilistic reachability,
but we can easily consider more expressive target sets that refer to locations
and clocks by syntactically modifying the model as in [1]. Termination of our
algorithm depends on whether the forward reachability exploration terminates.
Unlike for TA/PTA, where the k-normalisation operator on zones can be used
to ensure termination, in the parametric case we need to impose restrictions on
parameters, as explained in Section 3.

As future work we plan to optimise our implementation and extend it for
more involved properties. This is straightforward for PTCTL based on the re-
duction of [1] to probabilistic reachability, but expected time/reward properties
are more challenging. In [36, 37], algorithms are provided to compute minimum
and maximum expected time as value iteration over the backwards zone graph
of a PTA. It is also shown that zones are not sufficient and convex polyhedra are
required. There is, therefore, little hope that the stochastic games abstraction
could be employed for expected time/reward properties for PTA.

Acknowledgments This research is supported by ERC AdG VERIWARE.

References

[1] M. Kwiatkowska, G. Norman, R. Segala, J. Sproston, Automatic verifica-
tion of real-time systems with discrete probability distributions, TCS 282
(2002) 101–150.

[2] R. Alur, D. L. Dill, A theory of timed automata, TCS 126 (1994) 183–235.

[3] M. Kwiatkowska, G. Norman, J. Sproston, F. Wang, Symbolic model check-
ing for probabilistic timed automata, Information and Computation 205 (7)
(2007) 1027–1077.

[4] M. Kattenbelt, M. Kwiatkowska, G. Norman, D. Parker, A game-based
abstraction-refinement framework for Markov decision processes, FMSD
36 (3) (2010) 246–280.

[5] M. Kwiatkowska, G. Norman, D. Parker, Stochastic games for verification
of probabilistic timed automata, in: FORMATS’09, Vol. 5813 of LNCS,
Springer, 2009, pp. 212–227.

27

[6] M. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: Verification of prob-
abilistic real-time systems, in: CAV’11, Vol. 6806 of LNCS, Springer, 2011,
pp. 585–591.

[7] A. Jovanović, M. Kwiatkowska, Parameter synthesis for probabilistic
timed automata using stochastic game abstractions, in: RP 2014, LNCS,
Springer, 2014.

[8] E. M. Hahn, H. Hermanns, L. Zhang, Probabilistic reachability for para-
metric markov models, in: SPIN, 2009, pp. 88–106.

[9] T. Chen, E. M. Hahn, T. Han, M. Kwiatkowska, H. Qu, L. Zhang, Model
repair for markov decision processes, in: Proc. 7th International Sympo-
sium on Theoretical Aspects of Software Engineering (TASE), IEEE CS
Press, 2013, pp. 85–92.

[10] R. Alur, T. A. Henzinger, M. Y. Vardi, Parametric real-time reasoning, in:
STOC’93, ACM Press, 1993, pp. 592–601.

[11] L. Doyen, Robust parametric reachability for timed automata., Information
Processing Letters 102 (5) (2007) 208–213.

[12] T. Hune, J. Romijn, M. Stoelinga, F. W. Vaandrager, Linear parametric
model checking of timed automata, Journal of Logic and Algebraic Pro-
gramming 52-53 (2002) 183–220.

[13] L. Bozzelli, S. L. Torre, Decision problems for lower/upper bound para-
metric timed automata, FMSD 35 (2) (2009) 121–151.

[14] A. Jovanović, D. Lime, O. H. Roux, Integer parameter synthesis for timed
automata, in: TACAS 2013, Vol. 7795 of LNCS, Springer, 2013, pp. 401–
415.

[15] M. Diciolla, C. H. P. Kim, M. Kwiatkowska, A. Mereacre, Synthesising
optimal timing delays for timed i/o automata, in: EMSOFT’14, ACM,
2014.

[16] M. Ceska, P. Pilar, N. Paoletti, L. Brim, M. Kwiatkowska, Prism-psy: Pre-
cise gpu-accelerated parameter synthesis for stochastic systems, in: 22nd
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), to appear, LNCS, Springer, 2016.

[17] F. Wang, Parametric timing analysis for real-time systems, Information
and Computation 130 (2) (1996) 131 – 150.

[18] V. Bruyère, J.-F. Raskin, Real-time model-checking: Parameters every-
where, Logical Methods in Computer Science 3 (1).

[19] M. Knapik, W. Penczek, Transactions on Petri Nets and Other Models
of Concurrency V, Springer Berlin Heidelberg, 2012, Ch. Bounded Model
Checking for Parametric Timed Automata, pp. 141–159.

28

[20] L.-M. Traonouez, A parametric counterexample refinement approach for ro-
bust timed specifications, in: S. S. Bauer, J.-B. Raclet (Eds.), FIT, Vol. 87
of EPTCS, 2012, pp. 17–33.

[21] É. André, L. Fribourg, Behavioral cartography of timed automata, in:
A. Kučera, I. Potapov (Eds.), Proceedings of the 4th Workshop on Reach-
ability Problems in Computational Models (RP’10), Vol. 6227 of Lecture
Notes in Computer Science, Springer, 2010, pp. 76–90.

[22] T. Han, J.-P. Katoen, A. Mereacre, Approximate parameter synthesis for
probabilistic time-bounded reachability, in: RTSS, IEEE Computer Soci-
ety, 2008, pp. 173–182.

[23] M. Kwiatkowska, A. Mereacre, N. Paoletti, A. Patanè, Synthesising ro-
bust and optimal parameters for cardiac pacemakers using symbolic and
evolutionary computation techniques, in: Proceedings of the 4th Interna-
tional Workshop on Hybrid Systems and Biology (HSB 2015), Vol. 9271 of
LNCS/LNBI, Springer, 2015, pp. 119–140.

[24] É. André, L. Fribourg, J. Sproston, An extension of the inverse method to
probabilistic timed automata, FMSD 42 (2013) 119–145.

[25] N. Chamseddine, M. Duflot, L. Fribourg, C. Picaronny, J. Sproston, Com-
puting expected absorption times for parametric determinate probabilistic
timed automata, in: QEST’08, IEEE CS Press, 2008, pp. 254–263.

[26] M. Kwiatkowska, G. Norman, J. Sproston, Symbolic computation of maxi-
mal probabilistic reachability, in: K. Larsen, M. Nielsen (Eds.), Proc. 13th
International Conference on Concurrency Theory (CONCUR’01), Vol. 2154
of LNCS, Springer, 2001, pp. 169–183.

[27] M. Kwiatkowska, G. Norman, D. Parker, J. Sproston, Performance analysis
of probabilistic timed automata using digital clocks, FMSD 29 (2006) 33–
78.

[28] A. Condon, The complexity of stochastic games, Information and Compu-
tation 96 (1992) 203–224.

[29] K. G. Larsen, P. Pettersson, W. Yi, Uppaal in a Nutshell, Int. Journal on
Software Tools for Technology Transfer 1 (1997) 134–152.

[30] C. Daws, A. Olivero, S. Tripakis, S. Yovine, The tool kronos, in: In Proc.
of Hybrid Systems III, LNCS 1066, Springer Verlag, 1996, pp. 208–219.

[31] J. Bengtsson, W. Yi, Timed automata: Semantics, algorithms and tools,
in: In Lecture Notes on Concurrency and Petri Nets, Springer-Verlag, 2004,
pp. 87–124.

[32] M. Kwiatkowska, G. Norman, D. Parker, Game-based abstraction for
Markov decision processes, in: QEST’06, IEEE CS Press, 2006, pp. 157–
166.

29

[33] A. Jovanović, D. Lime, O. H. Roux, Synthesis of bounded integer parame-
ters for parametric timed reachability games, in: ATVA 2013, Vol. 8172 of
LNCS, Springer, 2013, pp. 87–101.

[34] R. Bagnara, P. M. Hill, E. Zaffanella, The parma polyhedra library: Toward
a complete set of numerical abstractions for the analysis and verification
of hardware and software systems, Sci. Comput. Program. 72 (1-2) (2008)
3–21.

[35] T. H. Cormen, C. Stein, R. L. Rivest, C. E. Leiserson, Introduction to
Algorithms, 2nd Edition, McGraw-Hill Higher Education, 2001.

[36] A. Jovanovic, M. Kwiatkowska, G. Norman, Symbolic minimum expected
time controller synthesis for probabilistic timed automata, in: Proc. 13th
International Conference on Formal Modeling and Analysis of Timed Sys-
tems (FORMATS), to appear, LNCS, Springer, 2015.

[37] A. Jovanovic, M. Kwiatkowska, G. Norman, Q. Peyras, Symbolic optimal
expected time reachability computation and controller synthesis for prob-
abilistic timed automata, Theor. Comput. Sci. 669 (2017) 1–21.

30

AppendixA.

Example 1.
We give here the symbolic states for the MDP of Figure 3. A symbolic state

consist of a location and a (list of) PDBM(s). Each PDBM obtained with our
prototype implementation (given in curly brackets) consists of a matrix and a
polyhedron over parameters. A matrix is given in square brackets and each
element of the matrix is represented in the following form „ c, where „P tă,ďu
and c is a linear expression over parameters. Different rows are separated by
a comma. In this example, matrices have dimension 3 ˆ 3. The corresponding
constraints on parameters are given after the closing square bracket.

• S0 “ pl0, tră“ 0 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0s ´ a ą ´8, a ą
0uq

• S1 “ pl1, tră“ 0 ă“ 0 ă“ ´a,ă“ 3 ă“ 0 ă“ ´a,ă“ 7 ă“ 7 ă“ 0s ´ a ą“
´7, a ą 4u, tră“ 0 ă“ 0 ă“ ´a,ă“ 3 ă“ 0 ă“ ´a,ă“ 7 ă“ 7 ă“ 0s´a ą“
´4, a ą 0uq

• S2 “ pl2, tră“ 0 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0s´a ą“ ´5, a ą
4u.tră“ 0 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0s ´ a ą“ ´4, a ą 0uq

• S3 “ pl1, tră“ 0 ă“ 0 ă“ ´a ´ 2,ă“ 3 ă“ 0 ă“ ´a ´ 2,ă“ 7 ă“ 7 ă“
0s ´ a ą“ ´5, a ą 4u, tră“ 0 ă“ 0 ă“ ´a ´ 2,ă“ 3 ă“ 0 ă“ ´a ´ 2,ă“
7 ă“ 7 ă“ 0s ´ a ą“ ´4, a ą 2u, tră“ 0 ă“ 0 ă“ ´a ´ 2,ă“ 3 ă“ 0 ă“
´a´ 2,ă“ 7 ă“ 7 ă“ 0s ´ a ą“ ´2, a ą 0uq

• S4 “ pl3, tră“ 0 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0sa “ 7u, tră“
0 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0s ´ a ą ´4, a ą 0u, tră“ 0 ă“
0 ă“ 0,ă 8 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0sa “ 4uq

• S5 “ pl2, tră“ 0 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0s´a ą“ ´3, a ą
2u, tră“ 0 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0s ´ a ą“ ´2, a ą 0uq

• S6 “ pl1, tră“ 0 ă“ 0 ă“ ´a ´ 4,ă“ 3 ă“ 0 ă“ ´a ´ 4,ă“ 7 ă“ 7 ă“
0s ´ a ą“ ´3, a ą 2u, tră“ 0 ă“ 0 ă“ ´a ´ 4,ă“ 3 ă“ 0 ă“ ´a ´ 4,ă“
7 ă“ 7 ă“ 0s ´ a ą“ ´2, a ą 0uq

• S7 “ pl3, tră“ 0 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0sa “ 5u, tră“
0 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0s ´ a ą“ ´4, a ą 2u, tră“
0 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0s ´ a ą ´2, a ą 0u, tră“ 0 ă“
0 ă“ 0,ă 8 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0sa “ 2uq

• S8 “ pl2, tră“ 0 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0s ´ a ą“
´1, a ą 0uq

• S9 “ pl1, tră“ 0 ă“ 0 ă“ ´a ´ 6,ă“ 3 ă“ 0 ă“ ´a ´ 6,ă“ 7 ă“ 7 ă“
0s ´ a ą“ ´1, a ą 0uq

• S10 “ pl3, tră“ 0 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0sa “ 3u, tră“
0 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0s ´ a ą“ ´2, a ą 0uq

31

• S11 “ pl3, tră“ 0 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0,ă 8 ă“ 0 ă“ 0sa “ 1uq

�

Lemma 3. Let n be a node of T , labeled by some symbolic state S, and such
that the subtree rooted at n has depth N . We have that a parameter valuation
v P ζk|P is the solution to the reachability synthesis problem, starting the forward
reachability algorithm from S, iff there exists a state q in vpSq and a run ρ in
vpPq, with fewer then N discrete steps, that starts in q and reaches lk.

Proof. We prove this by induction on N . Note that the tree T is always
non-empty (it contains at least the root which is labeled by InitpPq).

• Case of a leaf n labeled by S: the subtree rooted at n has depth 1.

– If v is the solution to the reachability synthesis problem then the only
leaf condition of the algorithm that can be verified is S “ plk, ζkq, so,
for all states q “ plk, uq in vpSq, there is a run with no discrete steps
that starts in q and reaches lk.

– If there exists a state q P vpSq and a run with no discrete steps that
starts in q and reaches lk, then if l is the location of q, we have l “ lk,
and therefore v is the solution to the reachability synthesis problem.

• Case of a non-leaf node n labeled by S: suppose the subtree rooted at n
has depth k ą 1 and that, for all nodes n1 with subtree rooted at n1 of
depth k1 ă k, the property holds.

– If v is the solution to the reachability synthesis problem then, since
n is not a leaf, the following condition must be true:

There exists a successor n1 of n, labeled by S1 “ SuccpS, eq for some
edge e such that v is the solution to the reachability synthesis prob-
lem, starting the forward reachability algorithm from S1. Since it is a
successor of n, n1 has depth less than k. So we can use the induction
hypothesis: there exists a run with less than k ´ 1 discrete steps,
starting in some state q1 P vpS1q and reaching lk in vpPq. By Lemma
2, q1 P SuccpvpSq, vpeqq so q1 has a predecessor q by e in vpSq and we
get the expected result.

– If there exists a run ρ starting in some state q P vpSq and reaching
lk, with fewer than k discrete steps, then this run has at least 1
discrete step, as otherwise n would be a leaf of T . So we can write it

q
d
ÝÑ qd

a
ÝÑ ρ1 where a is the action of some edge e. Then ρ1 is a run

starting from some state q1 P SuccpvpSq, vpeqq, reaching lk and with
less than k´1 discrete steps. Moreover q1 P vpS1q with S1 “ SuccpS, eq
(by Lemma 2). So we can apply the induction hypothesis and v is the
solution to the reachability synthesis problem, starting the forward
reachability algorithm from S1.

32

l

33

	Introduction
	Preliminaries
	Synthesis with Forward Reachability
	Forward reachability exploration
	Decidability and termination

	Synthesis with Game-based Abstraction Refinement
	Game-based abstraction for PPTA
	Parametric abstraction refinement

	Implementation
	Data structures and algorithms for parametric constraints
	Case study: The Root Contention Protocol (IEEE 1394 FireWire)

	Conclusion
	

