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ABSTRACT
Stochastic modeling and algorithmic verification techniques
have been proved useful in analyzing and detecting unusual
trends in performance and energy usage of systems such as
power management controllers and wireless sensor devices.
Many important properties are dependent on the cumulated
time that the device spends in certain states, possibly inter-
mittently. We study the problem of verifying continuous-
time Markov chains (CTMCs) against linear duration prop-
erties (LDP), i.e. properties stated as conjunctions of linear
constraints over the total duration of time spent in states
that satisfy a given property. We identify two classes of
LDP properties, eventuality duration properties (EDP) and
invariance duration properties (IDP), respectively referring
to the reachability of a set of goal states, within a time
bound; and the continuous satisfaction of a duration prop-
erty over an execution path. The central question that we
address is how to compute the probability of the set of infi-
nite timed paths of the CTMC that satisfy a given LDP. We
present algorithms to approximate these probabilities up to
a given precision, stating their complexity and error bounds.
The algorithms mainly employ an adaptation of uniformiza-
tion and the computation of volumes of multi-dimensional
integrals under systems of linear constraints, together with
different mechanisms to bound the errors.

1. INTRODUCTION
Stochastic modeling and verification [23] have become es-

tablished as a means to analyze properties of system exe-
cution paths, for example dependability, performance and
energy usage. Tools such as the probabilistic model checker
PRISM [24] have been applied to model and verify many
systems, ranging from embedded controllers and nanotech-
nology designs to wireless sensor devices and cloud com-
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puting, in some cases identifying flaws or unusual quanti-
tative trends in system performance. The verification pro-
ceeds by subjecting a system model to algorithmic analysis
against properties, typically expressed in probabilistic tem-
poral logic, such as the probability of the vehicle hitting an
obstacle is less than 10−4, or the probability of an alarm
bell ringing within 10 seconds is at least 95%. Many impor-
tant properties, however, are dependent on the cumulated
time that the system spends in certain states, possibly in-
termittently. Such duration properties, following the termi-
nology of Duration Calculus (DC) [33], have been studied
in the context of timed automata [1, 6, 22], but are not
currently supported by existing probabilistic model check-
ing tools. They can express, e.g., that the probability of an
alarm bell ringing whenever the button has been pressed,
possibly intermittently, for at least 2 seconds in total is at
least 95%.

In this paper, we consider Continuous-Time Markov Chain
(CTMC) models and study algorithmic verification for linear
duration properties (LDP), i.e. properties involving linear
constraints over cumulated residence time in certain states.
CTMCs are widely used for performance and dependability
analysis. CTMCs allow the modelling of real-time passage in
conjunction with stochastic evolution governed by exponen-
tial distributions. They can be thought of as state transition
systems, in which the system resides in a state on average
for 1/r time units, where r is the exit rate, and transitions
between the states are determined by a discrete probability
distribution. As a concrete example of a system and prop-
erty studied here, consider the dynamic power management
system (DPMS) from [30], analysed in [29] against properties
such as average power consumption. The DPMS includes a
queue of requests, which have an exponentially distributed
inter-arrival time, a power management controller and a ser-
vice provider. The power management controller issues com-
mands to the service provider depending on the power man-
agement policy, which involves switching between different
power-saving modes. Fig. 1 depicts a CTMC model of the
service provider for a Fujitsu disk drive. It consists of four
states: Busy, Idle, Standby and Sleep. In this paper we are
interested in computing the probability of, for instance, that
in 10 hours, the energy spent in Standby state is less than
the energy spent in the Sleep state and the energy spent in
the Idle state is less than one third of the energy spent in the
Busy state. We remark that the restriction to exponential
distributions is not critical, since one can approximate any



distribution by phase-type distributions, resulting in series-
parallel combinations of exponential distributions [27].
The focus of CTMC model checking has primarily been on

algorithms for specifications expressed in stochastic tempo-
ral logics, including branching-time variants, such as CSL [3],
as well as linear-time temporal logic (LTL), whose verifi-
cation reduces to the same problem for embedded discrete-
time Markov chains (DTMCs). Model checking determinis-
tic TA properties can be achieved by a reduction to comput-
ing the reachability probability in a piecewise-deterministic
Markov process (PDP, [13]), based on the product construc-
tion between the CTMC and the DTA [10, 11, 4]. In [8],
time-bounded verification of properties expressed by MTL
or general TAs, which allow nondeterminism, is formulated.
Approximation algorithms are proposed, based on path ex-
ploration of the CTMC, constraints generation and reduc-
tion to volume computation. There, “time-bounded” refers
to the fact that only timed paths over a time interval of
fixed, bounded length are considered, e.g. the probability of
an alarm bell ringing whenever the button has been pressed
for at least 2 seconds continuously. However, as pointed
out in [1], the expressiveness of (D)TA/MTL is limited and
cannot express duration-bounded causality properties which
constrain the accumulated satisfaction times of state pred-
icates along an execution path, visited possibly intermit-
tently.
Contributions. We consider linear duration formulas (LDF)
expressed as finite conjunctions of linear constraints on the
cumulated time spent in certain states of the CTMC, see
Eq. (1) for the precise formulation. Since we work with
CTMCs, we interpret these formulas over finite and infinite
timed paths. We distinguish two classes of linear duration
properties. The difference lies in how to interpret LDF over
infinite timed paths.

• Eventuality Duration Property (EDP). Similarly to [1,
22], given a set of goal states G, an infinite path is
said to satisfy LDF if its prefix until G is reached satis-
fies EDP. We identify two variants, the timed-bounded
case (T <∞) and unbounded case (T =∞).

• Invariance Duration Property (IDP). Similarly to [6],
we require that each prefix of the infinite path satis-
fies LDF, again distinguishing the timed-bounded case
(T < ∞) and the unbounded case (T = ∞). We re-
mark that, in duration calculus, a stronger requirement
is imposed, i.e., any fragment (not only the prefix, but
also starting from an arbitrary state) of the infinite
path must satisfy LDF. We do not adopt this view, as
we work in the traditional setting of temporal logics,
rather than an interval temporal logic.

The central questions we consider is how to compute the
probability of the set of timed paths of the CTMC which
satisfy linear-time properties expressed as LDF. To the best
of our knowledge, this is the first paper that considers du-
ration properties for CTMCs. We now give a brief account
of the techniques introduced in this paper.
We propose two approaches to verify the timed-bounded

variant of EDP. First, we define a system of partial differ-
ential equations (PDEs) and a system of integral equations
whose solutions capture the probability that an EDP is sat-
isfied on a given CTMC. Second, we leverage the uniformiza-
tion method [21], which reduces the problem to computing

the probability of a set of finite timed paths under a system
of linear constraints. This can be solved through the com-
putation of volumes of convex polytopes in the general case,
while, in the case that the LDF only involves one conjunct,
it can be reduced to the computation of order statistics,
which is more efficient. In the unbounded case, by exploiting
Markov inequality, we show how to approximate the proba-
bility by choosing a sufficiently large time-bound. This is of
independent interest, and can be used to improve our previ-
ous results [11, 8]. To verify an IDP, in the unbounded case
we perform a graph analysis of the CTMC according to the
LDF, and thus obtain a variant of EDP, which can be solved
by extending the approaches developed in the previous case.
In the time-bounded case, transient analysis of the CTMC
is needed.

We remark that linear duration properties are closely re-
lated to Markovian Reward Models (MRM, [2]), which are
CTMCs augmented with multiple reward structures assign-
ing real-valued rewards to each state in the model. Prop-
erties of MRMs can be expressed in continuous stochastic
reward logic (CSRL, [2]). CSRL model checking for MRMs
[17, 12] involves timed-bounded and/or reward-bounded reach-
ability problems, which can be formulated in terms of model
checking of LDP, over CTMCs, by treating the rewards in
MRM as coefficients of linear duration formulas. (This will
be made clearer in Sect. 2.3.) We emphasise that, in con-
trast to [12], as the coefficients in LDF might be negative, we
can deal with CSRL in MRMs with arbitrary rewards. The
link to MRM (with arbitrary rewards) is beneficial, as en-
ergy constraints [7] studied in TA can be naturally adapted
to stochastic models (like CTMCs), and can be solved by
approaches presented in the current paper.
Related Work. Algorithmic verification of duration prop-
erties has primarily been studied in the setting of TA, for
instance [1, 6, 22]. Similarly to our setting, TA also admit
the unfolding of the system into timed execution paths, ex-
cept that we have to calculate the probability of the set of
paths satisfying a given property, rather than quantifying
over their existence. The “duration bounded reachability”
problem of [1] can be viewed as a subclass of EDP, in view of
the requirement that all coefficients appearing in the linear
constraints are nonnegative. Reachability for integral graphs
[22] can be reduced to verification of EDP for TA, which is
solved by mixed linear-integer programming. [6] extended
branching real-time logic TCTL with duration constraints
and studied response/persistence properties. For DC, which
is based on interval temporal logic that differs from our set-
ting, the focus has been on so called linear durational invari-
ants (LDI, [34]). Again, TA (and their subclasses or exten-
sions) are considered, and different techniques are proposed,
for instance, reduction to linear programming or CTL, dis-
cretization, etc. We mention, e.g., [26, 31, 32], which are
specific to TA and cannot be adapted to CTMCs.

There is only scant work addressing probabilistic/stochastic
extensions of DC. Simple Probabilistic Duration Calculus,
interpreted over (finite-state) continuous semi-Markov pro-
cesses, is introduced in [20], together with the associated ax-
iomatic system, and applied to QoS contracts in [16]. How-
ever, algorithmic verification is not addressed. [19] studied
verification problems of (subclasses of) LDI in the setting of
probabilistic TA which only involves discrete probabilities.
The technique is an adaption of discretization for TA.

We also mention [5], which considers CTL and LTL ex-
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Figure 1: An example CTMC

tended with prefix-accumulation assertions for a quantita-
tive extension of Kripke structure. (Un)decidability results
are obtained. The prefix-accumulation assertions are simi-
lar to our linear constraints modulo the difference between
models under consideration (CTMCs are a continuous model
with randomization, whereas Kripke structures are a dis-
crete model without randomization.) For further discussion,
we refer the reader to the full version of the paper [9].

2. PRELIMINARIES

2.1 Continuous-time Markov chains
Given a set H, let Pr: F(H) → [0, 1] be a probability

measure on the measurable space (H,F(H)), where F(H)
is a σ-algebra over H.

Definition 1 [CTMC] A (labeled) continuous-time Markov
chain (CTMC) is a tuple C = (S,AP, L, α,P, E) where: S
is a finite set of states; AP is a finite set of atomic propo-
sitions; L : S → 2AP is the labeling function; α is the initial
distribution over S; P : S×S → [0, 1] is a stochastic matrix;
and E : S → R≥0 is the exit rate function.

Example 1 An example CTMC is illustrated in Fig. 1,
where AP = {Busy , Idle,Sleep,Standby} and α(s0) = 1 is
the initial distribution. The exit rates are indicated at the
states, whereas the transition probabilities are attached to the
transitions. The CTMC is a model of the service provider
of the DPMS system described in Sect. 1.

In a CTMC C, state residence times are exponentially dis-
tributed. More precisely, the residence time of the state
s ∈ S is a random variable governed by an exponential
distribution with parameter E(s). Hence, the probability
to exit state s in t time units (t.u. for short) is given by∫ t
0
E(s) · e−E(s)τdτ ; and the probability to take the transi-

tion from s to s′ in t t.u. equals P(s, s′) ·
∫ t
0
E(s) ·e−E(s)τdτ .

A state s is absorbing if P(s, s′) = 1. We also define the
infinitesimal generator Q of C as Q = E · P − E, where
E is the diagonal matrix with exit rates on diagonal. Oc-
casionally we use X(t) to denote the underlying stochastic
process of C. We write π(t) for the transient probability dis-
tribution, where, for each s ∈ S, πs(t) = Pr{X(t) = s} is
the probability to be in state s at time t. It is well-known
that π(t) completely depends on the initial distribution α

and the infinitesimal generator Q, i.e., it is the solution
of the Chapman-Komogorov equation dπ(t)

dt = π(t)Q and
π(0) = α. Note that efficient algorithms (e.g. uniformiza-
tion approach, cf. Sect. 3.1.2, Eq. (3)) exist to compute
π(t).

An infinite timed path in C is an infinite sequence ρ =

s0
t0−→ s1

t1−→ s2 · · ·
tn−1−→ sn . . .; and a finite timed path is

a finite sequence σ = s0
t0−→ · · ·

tn−1−→ sn. In both cases we
assume that ti ∈ R>0 for each i ≥ 0; moreover, we write
ρ[0..n] for σ. Below we usually follow the convention to
let ρ (resp. σ) range over infinite (resp. finite) timed paths,
unless otherwise stated. We define |σ| := n to be the length
of a finite timed path σ. For a finite or infinite path θ,
θ[n] := sn is the (n + 1)-th state of θ and θ〈n〉 := tn is the
time spent in state sn; let θ@t be the state occupied in θ at
time t ∈ R≥0, i.e. θ@t := θ[n], where n is the smallest index

such that
n∑

i=0
θ〈i〉 ≥ t. Let PathsC denote the set of infinite

timed paths in C, with abbreviation Paths when C is clear
from the context. Intuitively, a timed path ρ suggests that
the CTMC C starts in state s0 and stays in this state for
t0 t.u., and then jumps to state s1, staying there for t1 t.u.,
and then jumps to s2 and so on. An example timed path is

ρ = s0
3−→ s1

2−→ s0
1.5−→ s1

3.4−→ s2 . . . with ρ[2] = s0 and
ρ@4 = ρ[1] = s1.

Sometimes we refer to discrete time Markov chains (DTMCs),
denoted D = (S,AP, α, L,P), where the components of the
tuple have the same meaning as those of CTMCs defined
in Def. 1. In particular, we say such D is the embedded
DTMC of the CTMC C. Similarly, a (finite) discrete path
ς = s0 → s1 → . . . is a (finite) sequence of states; ς[n]
denotes the state si, ς[0..n] denotes the prefix of length
n of ς, and |ς| denotes the length of ς (in case that ς is
finite). We also define PathsD to be the set of all infi-
nite paths of the DTMC D. Given a finite discrete path
ς = s0 → · · · → sn of length n and x0, . . . , xn−1 ∈ R>0, we
define ς[x0, . . . , xn−1] to be the finite timed path σ such that
σ[i] := si and σ〈i〉 := xi for each 0 ≤ i < n. Let Γ ⊆ Rn

>0,
then ς[Γ] = {ς[x0, . . . , xn−1] | (x0, . . . , xn−1) ∈ Γ}.

The definition of a Borel space on timed paths of CTMCs
follows [3]. A CTMC C yields a probability measure PrCα on
PathsC as follows. Let s0, . . . , sk ∈ S with P(si, si+1) >
0 for 0 ≤ i < k and I0, . . . , Ik−1 be nonempty intervals
in R≥0. Let C(s0, I0, . . . , Ik−1, sk) denote the cylinder set
consisting of all ρ ∈ Paths such that ρ[i] = si (0 ≤ i ≤ k)
and ρ〈i〉 ∈ Ii (0 ≤ i < k). F(Paths) is the smallest σ-algebra
on Paths which contains all sets C(s0, I0, . . . , Ik−1, sk) for
all state sequences (s0, . . . , sk) ∈ Sk+1 with P(si, si+1) > 0
for (0 ≤ i < k) and I0, . . . , Ik−1 ranging over all sequences
of nonempty intervals in R≥0. The probability measure PrCα
on F(Paths) is the unique measure defined by induction on
k by PrCα(C(s0)) = α(s0) and for k > 0:

PrCα(C(s0, I0, . . . , Ik−1, sk)) = PrCα(C(s0, I0, . . . , Ik−2, sk−1))

×
∫

Ik−1

P(sk−1, sk)E(sk−1) · e−E(sk−1)τdτ.

Sometimes we write Pr instead of PrCα when C and α are
clear from the context. Elements of the σ-algebra denote
events in the probability space. We now define two such
events that will be needed later.



Definition 2 Given a CTMC C and B ⊆ S, we define:

• ♦≤TB = {ρ ∈ PathsC | ∃n.ρ[n] ∈ B and
∑n

i=0 ρ〈i〉 ≤
T}, i.e., ♦≤TB denotes the set of timed paths which
reach B in time interval [0, T ]. Note that PrC(♦≤TB)
can be computed by a reduction to the computation of
the transient probability distribution; see [3].

• ♦B = {ρ ∈ PathsC | ∃n.ρ[n] ∈ B}, i.e., ♦B de-
notes the set of timed paths which reach B. (It is
the unbounded variant of ♦≤TB.) Note that PrC(♦B)
is essentially the reachability probability of B in the
embedded DTMC of C; see [3]. Moreover, we write
Prob(s,♦B) for the reachability probability of B when
starting from the state s.

2.2 Duration Properties
We first introduce a language which includes the propo-

sitional calculus augmented with the duration function
∫

and linear inequalities. In the remainder of this section, we
assume a CTMC C = (S,AP, L, α,P, E).
State formulas, defined in the usual way over the proposi-

tions inAP and the boolean operators, can be evaluated over
single states of CTMCs using the interpretation assigned to
them by the labeling function L (see Def. 1). The duration
function

∫
is interpreted over a finite timed path. Let ap

be a state formula and σ = s0
t0−→ . . .

tn−1−→ sn. The value
of
∫
ap for σ, denoted !ap"σ, is defined as

∑
0≤i<n,σ[i]|=ap

ti.

That is, the value of
∫
ap equals the sum of durations spent

in states satisfying ap.
A linear duration formula (LDF) is of the form

ϕ =
∧

j∈J




∑

k∈Kj

cjk

∫
apjk ≤Mj



 , (1)

where cjk,Mj ∈ R, apjk are state formulas, and J,Kj for
j ∈ J are finite index sets. Below we usually assume that
J = {0, · · · ,m}.

Remark 1 We did not introduce the disjunction or (more
general) boolean operators in Eq. (1) for simplicity. All our
results can be generalized to these cases by the exclusion-
inclusion principle [28], paying the price of higher complex-
ity.

Definition 3 Given a finite timed path σ = s0
t0−→ s1

t1−→
. . .

tn−1−→ sn and an LDF ϕ of the form defined in Eq. (1), we
write σ |= ϕ if for each j ∈ J ,

∑
k∈Kj

cjk · !apjk"σ ≤Mj .

Example 2 For the CTMC in Fig. 1, the LDF ϕ =
∫
Idle−

1
3

∫
Busy ≤ 0 expresses the constraint that during the evolu-

tion of the CTMC the accumulated time spent in the Idle
state must be less than or equal to one third of the accumu-
lated time spent in the Busy state.

Inspired by the notation of [34], we shall also work on a
slight extension of LDF, i.e., formulas of the form:1

Φ :=

∫
1 ≤ T → ϕ,

1Note that 1 denotes “true”, → denotes “imply” and
∫
1 ≤

T → ϕ is a single formula.

where T ∈ R≥0 ∪{∞}. According to Def. 3,
∫
1 denotes the

total time spent on a finite timed path σ. Hence σ |= Φ if ϕ
holds whenever the total time of σ is less or equal than T .
Note that, if T =∞, Φ simply degenerates to ϕ.

In general, given a CTMC and a duration property spec-
ified by an LDF, we are interested in computing the prob-
ability of infinite timed paths satisfying the LDF. We now
generalize the satisfaction relation on finite paths, as de-
fined in Def. 3, to infinite paths. Here we have two options,
i.e., the finitary and infinitary conditions. The former is
motivated by standard automata theory, while the latter is
natural when one thinks of “globally” (e.g., the ! operator
in LTL).

Definition 4 Let ρ = s0
t0−→ s1

t1−→ . . . be an infinite timed
path and ϕ (or Φ) be an LDF.

1. Finitary satisfaction condition. Given a set of goal
states G ⊆ S, we write ρ |=G ϕ if there exists the
first i ∈ N such that (1) ρ[i] ∈ G, and (2) ρ[0..i] |= ϕ
(cf. Def. 3). Furthermore, we write ρ |=G

T ϕ for a
given T ∈ R≥0, and if, in addition to (1) and (2),
i−1∑
j=0
ρ〈j〉 ≤ T holds.

2. Infinitary satisfaction condition. We write ρ |=% ϕ if
for any n ≥ 0, ρ[0..n] |= ϕ (cf. Def. 3).

Problem Statements. Corresponding to Def. 4, we focus
on algorithmic verification problems for two classes of LDP,
i.e., Eventuality Duration Property (EDP) and Invariance
Duration Property (IDP), as follows.

• Verification of EDP. Formally, given a CTMC C, a
set of goal states G ⊆ S, and an LDF Φ =

∫
1 ≤ T →

ϕ, compute the probability of the set of infinite timed
paths of C satisfying Φ under the finitary satisfaction
condition. Depending on T , we distinguish two cases:

– Time-bounded case: T <∞, for which we denote

the desired probability by Prob(C |=G Φ) .

– Unbounded case: T =∞, for which we denote the

desired probability by Prob(C |=G ϕ) . Note that

this is valid as, in this case, Φ is simply equivalent
to ϕ.

The algorithms for these two cases are given in Sect. 3.1
and Sect. 3.2, respectively.

• Verification of IDP. Formally, given a CTMC C and
an LDF Φ =

∫
1 ≤ T → ϕ, compute the probabil-

ity of the set of infinite timed paths of C satisfying
Φ under the infinitary satisfaction condition. We also
have two cases, i.e., the time-bounded case and un-

bounded case, which we denote by Prob(C |=% Φ) and

Prob(C |=% ϕ) , respectively. The algorithms for these

two cases are given in Sect. 4.2 and Sect. 4.1, respec-
tively.

2.3 Relationship to MRMs



Definition 5 [MRM] A (labeled) MRM M is a pair (C, r)
where C is CTMC, and r : S → Rd is a reward struc-
ture which assigns to each state s ∈ S a vector of rewards
(r1(s), · · · , rd(s)).

Remark 2 The MRM defined in Def. 5 is more general
than the one in [2], in the sense that we have multiple re-
ward structures, and, more importantly, we allow arbitrary
(instead of nonnegative) rewards associated with the states.

For a CTMC C and LDF ϕ, we show how to construct
an MRM C[ϕ]. For every state si ∈ S, we define rji =∑
t∈Kj ,si|=apjt

cjt for all j ∈ J . This yields a multiple re-

ward structure r with r(si) = (r0i, · · · , r(|J|−1)i). Hence
C[ϕ] = (C, r). It is straightforward to see that the con-
straint expressed by LDF can be alternatively formulated as
the “reward-bounded” constraint for MRMs, since

∑
k∈Kj

cjk
∫
apjk essentially denotes the accumulated rewards along a

finite timed path, and hence Mj can be regarded as the
bound of the reward.
On the other hand, given an MRM and a vector of reward

bounds Mj for each reward structure, we construct an LDF
ϕ as
∧
j∈J

∑
s∈S

rj(s)
∫
@s ≤Mj , where @s is an atomic propo-

sition which holds exactly at state s. Hence, the reward-
bounded verification problem for MRMs can be encoded into
verification of linear duration properties in CTMCs.
It is easy to see that this correspondence, stated in the

unbounded case, can be adapted to the time-bounded case
without any difficulties.

3. VERIFICATION OF EDP
Throughout this section, we fix aCTMC C = (S,AP, L, α,P,

E) and an LDF Φ =
∫
1 ≤ T →

∧
j∈J

(
∑

k∈Kj

cjk
∫
apjk ≤Mj).

3.1 Time-bounded Verification of EDP
Our task is to compute Prob(C |=G Φ). First observe that

Proposition 1 Given a CTMC C and an LDF Φ, we have:

Prob(C |=G Φ) = Pr(♦G)− Pr(♦≤TG) + Prob(C |=G
T ϕ).

Recall that Pr(♦G) and Pr(♦≤TG) can be easily computed
(cf. Def. 2). Hence, the remaining of this section is devoted
to computing Prob(C |=G

T ϕ) := Pr({ρ | ρ |=G
T ϕ}), i.e. the

probability of the set of paths of the CTMC C, which reach
G in time interval [0, T ] and satisfy the LDF ϕ before that
happens; see Def. 4(1).

3.1.1 PDE and Integral Formulations
In order to compute Prob(C |=G

T ϕ), we shall use the link
to MRMs established in Sect. 2.3. Recall that C[ϕ] is the
MRM obtained from C and ϕ. We need an extra trans-
formation over C[ϕ], namely, making each state s ∈ G ab-
sorbing, and set r(s) = (0, · · · , 0) (i.e., the rewards associ-
ated with s are all 0). We denote the resulting MRM by
C[ϕ,G]. Recall that X(t) is the underlying stochastic pro-
cess of the CTMC C. We denote by Y(T ) the vector of
accumulated rewards in the MRM C[ϕ] (see Sect. 2.3) up to
time T , i.e. Y(T ) = (Y0(T ), . . . , Y|J|−1(T )) and each Yj(T )

(j ∈ J) corresponds to a reward structure in CTMC C. The
vector of stochastic processes Y(T ) is fully determined by
X(T ) and the vector of reward structures of the state s is
r(si) = (r0i, . . . , r(|J|−1)i), because Y(t) =

∫ t
0
r(X(τ))dτ .

Define F(T,y) to be the matrix of the joint probability
distribution of state and rewards with entries F(T,y)[s, s′] =

F s′
s (T,y) for s, s′ ∈ S and

F s′
s (T,y) = Pr

{
X(T ) = s′,

∧

j∈J

Yj(T ) ≤ yj | X(0) = s

}
,

where y = (y0, · · · , y|J|−1). Note that, we define F(T,y)
over the induced MRM C[ϕ,G].

Theorem 1 Given a CTMC C, an LDP formula ϕ, a vec-
tor M = (M0, . . . ,M|J|−1), where Mj ’s are defined as in
ϕ (cf. Eq. (1)) and a set of goal states G, we obtain the
induced MRM C[ϕ,G], and we have:

Prob(C |=G
T ϕ) =

∑

s∈S

∑

s′∈G

α(s)F s′
s (T,M).

Thm. 1 suggests a reduction to F(t,y), which we now char-
acterize in terms of a system of PDEs.

Theorem 2 For an MRM C[ϕ,G], the function F(t,y) is
given by the following system of PDEs:

∂F(t,y)
∂t

+
∑

j∈J

Dj ·
∂F(t,y)
∂yj

= Q · F(t,y), (2)

where Dj is a diagonal matrix such that Dj(s, s) = rj(s).

The system of PDEs from Theorem 2 is a special case of the
system of PDEs derived from Petri net specifications [18]
and PDP models [13].

Example 3 For the CTMC depicted in Fig.1, with r(s0) =
1 and r(s1) = −1, we can derive the following system of
PDEs:

∂F s1
s0 (t, y)

∂t
+
∂F s1

s0 (t, y)

∂y
= 10F s1

s1 (t, y)− 10F s1
s0 (t, y),

∂F s0
s1 (t, y)

∂t
−
∂F s0

s1 (t, y)

∂y
= −6F s0

s1 (t, y) + 3F s0
s0 (t, y),

+1.2F s0
s2 (t, y) + 1.8F s0

s3 (t, y).

We next provide an alternative characterization in terms of
a system of integral equations, as follows.

Theorem 3 The solution of the system of PDEs in Eq. (2)
is the least fixpoint of the following system of integral equa-
tions:

F s′
s (t,y) = eQ(s,s)tF s′

s (0,y−r(s)t) +
∫ t

0

∑

z '=s

eQ(s,s)xQ(s, z)F s′
z (t−x,y−r(s)x)dx.

Thm. 2 and Thm. 3 imply that, to solve the bounded-
time EDP verification problem, we need to solve (first-order)
PDEs or integral equations. However, this is usually costly
and numerically unstable [15]. We present solutions in the
next section, based on uniformization.



3.1.2 Uniformization algorithm
In this section we present a uniformization algorithm to

compute F s′
s (t,y). The uniformization method [21] consists

in transforming the CTMC C into a behaviorally equivalent
DTMC D. (NB. this is not the embedded DTMC of C.)
The state space and initial distribution of D are the same
as for C. The probability matrix P̂ of D is constructed by
P̂ = I− Q

Λ , where Λ is the maximal exit rate of C. We obtain

π(t) = e(P̂−I)Λt =
∞∑

n=0

P̂n (Λt)
n

n!
e−Λt. (3)

We can apply the uniformization technique to efficiently
compute F s′

s (t,y). First, we note that the infinite sum in

Eq. (3) represents the probability (Λt)n

n! e−Λt that exactly n
Poisson arrivals occur in an interval of time [0, t) multiplied

with the probability P̂n to take the state transitions corre-
sponding to the arrivals. Then using Eq. (3) we obtain

F s′
s (t,y) =

∞∑

n=0

e−Λt (Λt)
n

n!
·
(
∑

ς∈PathsD
|ς|=n

Pr{ς | X(0) = s} ·

Pr{X(n) = s′,Y(t) ≤ y | ς}
)
,

where, for a given path ς = s → s1 → · · · → sn−1 →
s′, Pr{ς | X(0) = s} = P̂(s, s1) × · · · × P̂(sn−1, s

′) and
Pr{X(n) = s′,Y(t) ≤ y | ς} denotes the conditional proba-
bility that given the path ς at step n the state is s′ and the
total accumulated reward until time t is less than y. The
above equation can also be written as

F s′
s (t,y)=

∞∑

n=0

e−Λt (Λt)
n

n!

∑

ς∈PathsD
|ς|=n
ς[0]=s
ς[n]=s′

Prob(ς) · Pr{Y(t) ≤ y | ς}.

(4)
Now the task is to compute Pr{Y(t) ≤ y | ς}. We first

present a general approach based on linear constraints.

Approach based on linear constraints.
We can calculate Pr{Y(t) ≤ y | ς} by reducing it to the

computation of the volume of a convex polytope. The basic
idea is to generate timed constraints over variables determin-
ing the residence time of each state along ς to makeY(t) ≤ y
hold (which is equivalent to the LDF ϕ). The desired proba-
bility can thus be formulated as a multidimensional integral,
which can be computed by the efficient algorithm given in
[25].
Given a discrete finite path ς of length k, an LDF ϕ, and

a time-bound T , we define the set of linear constraints S
generated in Alg. 1. In Alg. 1 line 3 generates the set of
constraints from each conjunct in formula ϕ. In line 5 we
add one more constraint to ensure that in the interval of
time [0, T ] we will reach the last state of ς.

Example 4 Let ϕ =
∫
Idle − 1

3

∫
Busy ≤ 0 ∧

∫
Idle −

1
4

∫
Sleep ≤ 0 be an LDF, ς = s0 → s1 → s2 → s1 → s3

and the time-bound t = 6. The set of linear constraints S

Algorithm 1 Generate a set of linear constraints S induced
by ϕ, ς and T

Require: LDF ϕ, a path ς of length k and a time-bound T
Ensure: S = set of linear constraints
1: S = {∅}
2: for j ∈ J do

3: S = S
⋃




∑

i∈Kj

cji ·
∑

0≤'<k
ς[']|=apji

x' ≤Mj






4: end for

5: S = S
⋃{k−1∑

i=0
xi ≤ T

}

6: S = S
⋃
{xi > 0} for all xi

7: return S

induced by ς, ϕ and t is:

S =






− 1
3 · x0 + x1 + 0 · x2 + x3 ≤ 0

0 · x0 + x1 − 1
4 · x2 + x3 ≤ 0

x0 + x1 + x2 + x3 < 6
x0, x1, x2, x3 > 0

Lemma 1 Let ς be a finite path of the CTMC C, ϕ be an
LDF and T a time-bound. Moreover, let S be the set of
linear constraints obtained by Alg. 1. Then

ς[x0, . . . , xn−1] |= ϕ ∧
∫

1 ≤ T iff (x0, . . . , xn−1) ∈ S.

We define Prob(ς[S]) := PrC({ρ ∈ PathsC | ∃ (x0, . . . ,
xn−1) ∈ S. ρ[0..n] ∈ ς[x0, . . . , xn−1] ∧ ρ[0..n] |= ϕ}).

Theorem 4 Let ς be a discrete path of the CTMC C, C[ϕ,G]
be the MRM induced by C and LDF ϕ, and S the set of lin-
ear constraints generated by ς, ϕ and time-bound t. Then

PrC[ϕ,G]{Y(t) ≤ y | ς} = Prob(ς[S]).

For future use, declare the function V olume int(ς,S) which,
given a finite discrete path ς = s0 → · · · → sk of length k
and a set of linear constraints S over x0, · · · , xk−1, returns

k−1∏

i=0

E(si) · P (si, si+1) ·
∫

· · ·
∫

︸ ︷︷ ︸
k

S

k−1∏

i=0

e−E(si)τidxi. (5)

Prob(ς[S]) equals V olume int(ς,S) when S is generated from
Alg. 1.

Approach based on order statistics.
The problem of computing Pr{Y (t) ≤ y | ς} is reduced

to the computation of the distribution of a linear combina-
tion of order statistics uniformly distributed in [0, 1] in case
|J | = 1, i.e., we have a single conjuct in LDF ϕ. This distri-
bution is calculated through the numerically stable method
described in [14]. The state rewards of the CTMC will be-
come the coefficients of the order statistics.

Let [0, t] be an interval of time, and n be the number of
transitions in [0, t]. Given n transitions, we can divide the
interval [0, t] to n+1 intervals I1, . . . , In+1, and we assign an
index i to each interval. Thus, if we stay in state s1 in the
first interval I1 and state s1 has reward r1, we assign index 1
to the first interval. We can divide the CTMC into * distinct



reward classes. Without loss of generality, the reward classes
are ordered such that r1 > . . . > r'. We declare a vector
k = (k1, . . . , k'), where ki records the number of times a
state with reward ri has been visited (when index i is not
used, ki = 0). Let Ui be the sum of the lengths of intervals
of index i defined as follows:

U1 = I1 + · · ·+ Ik1 ,

U2 = Ik1+1 + · · ·+ Ik1+k2 ,

...

U' = Ik1+···+k!−1+1 + · · ·+ Ik1+···+k! .

Note that
'∑

i=1
ki = n + 1. Then, for n transitions, the total

accumulated reward yields: Y (t) =
'∑

i=1
riUi.

Now the task is to find the probability Pr{Y (t) ≤ y | ς}.
We introduce a renumbering that enables us to disregard
all indices that have not been used. Let z1 be the in-
dex of the first nonzero ki, z2 be the index of the sec-
ond nonzero ki, and so on. Let M be the total number

of nonzero ki’s. Then we get Y (t) =
M∑
i=1

rziUzi . Let Vj

be the j-th order statistic of a set of n independent and
identicaly distributed random variables uniform on [0, t].
Note that defining V' = I1 + · · · + I' we can re-express
each Ui in terms of Vj . More specifically U1 = Vk1 , U2 =
Vk1+k2 − Vk1 , . . . , U' = t − Vk1+···+k!−1 . Rearranging the

terms and defining nj =
j∑

i=1
ki for j = 1, . . . , * − 1, we

obtain Y (t) =
'−1∑
j=1

(rj − rj+1)Vnj + r't. Finally, we get

Pr{Y (t) ≤ y | ς} = Pr

{
l−1∑
j=1

(rj − rj+1)Vnj ≤ y − r't

}
.

We can use the algorithm described in [14] to compute
the distribution of order statistics uniformly distributed on
[0, 1], by normalizing with respect to t.

Example 5 Let C be the CTMC in Fig. 1 with reward
structure r = (1,−1, 0, 0) corresponding to the LDP for-
mula ϕ =

∫
Busy −

∫
Idle ≤ 0 and ς be the discrete path

ς = s0 → s1 → s0 → s1 → s3. In order to calculate
Pr{Y (t) ≤ 0 | ς} we define Ii as the time spent in ς[i] for
i ∈ {1, . . . , 5}. Let Y (t) be the accumulated reward at time t.
The task is to compute Pr{Y (t) ≤ 0 | ς}. The accumulated
reward is given by Y (t) = −1 · (I2+ I4)+0 · I5+1 · (I1+ I3).
For every i ∈ {1, . . . , 5} we introduce a new variable I ′i such

that I
′
1 = I2, I

′
2 = I4, I

′
3 = I5, I

′
4 = I1 and I

′
5 = I3. We ob-

tain a decreasing order for vector r as follows: 1 > 0 > −1.
It is clear that we get three reward classes, i.e. * = 3. We
define the vector r′ = (−1, 0, 1), which is the vector of the
reward classes. Let the vector k = (2, 1, 2) record the num-
ber of times a state with reward class r′i (i ∈ {1, 2, 3}) is

visited. Let Vj =
∑j

k=1 I
′
k for 1 ≤ j ≤ 5. Each Vj is an

uniformly distributed variable in [0, t]. We can express the
accumulated reward in terms of order statistics as follows:
Y (t) = r′3 · V2 + r′2 · (V3 − V2) + r′1 · (V5 − V3).

3.1.3 Algorithm
In order to compute F s′

s (t,y) we must pick a finite set

P of paths from PathsD. Following [12], we introduce a
threshold w ∈ (0, 1) such that if Prob(ς) > w then ς ∈ P.
We also fix a maximum length N for the paths in P. Now we
define P(s, s′, w, n) := {ς ∈ PathsD | |ς| = n, ς[0] = s, ς[n] =

s′,Prob(ς) > w}. We can approximate F s′
s (t,y) as

F̃w
N

s′

s (t,y) =
N∑

n=0

e−Λt (Λt)
n

n!

∑

ς∈P(s,s′,w,n)

Prob(ς) Pr{Y(t) ≤ y | ς},

where w and N must be chosen as stated in Thm 5.
The approximation algorithm to compute Prob = F s′

s (t,y)
is given in Alg. 2.

Algorithm 2 Compute F̃w
N

s′

s (t,y)

1: Prob = 0
2: Paths = {s}
3: while Paths /= ∅ do
4: choose ς ∈ Paths
5: Paths = Paths \ {ς}
6: if Prob(ς) > w and |ς| ≤ N then
7: if ς[|ς|] = s′ then

8: Prob+ =e−Λt (Λt)|ς|

|ς|! Prob(ς) Pr{Y(t)≤y | ς}
9: end if
10: for all s′′ ∈ S do
11: insert (ς ◦ s′′) into Paths
12: end for
13: end if
14: end while
15: return Prob

Note that ◦ represents the concatenation operator; ς[|ς|]
is the last state of ς.

Error Bound.
We give a bound for the truncation of the infinite sum

to a finite one, considering only the discrete paths whose
probability is greater than w.

Theorem 5 Given ε > 0, for N > Λte2 + ln
(
1
ε

)
, and w <

ε
N∑

n=0
e−Λt (Λt)n

n!

, we have

∣∣∣∣F
s′
s (t,y)− F̃w

N

s′

s (t,y)

∣∣∣∣ ≤ 2ε.

Complexity.
We analyze the complexity of Alg. 2. Recall that |S| the

number of states of C. Alg. 2 is composed of two main steps:
(1) find all paths of length at most N ; and (2) for each of
those paths ς, compute Pr{Y(t) ≤ y | ς}.

Theorem 6 The complexity of Alg. 2 is O(|S|N · N |J|−1)
using the linear constraint based approach, and O(|S|N ·N2)
using the order statistics based approach.

3.2 Unbounded Verification of EDP
In this section we show how to compute Prob(C |=G ϕ).

The main idea is that we approximate Prob(C |=G ϕ) by
Prob(C |=G

T ϕ) for a sufficiently large T ∈ R≥0. Hence, we
reduce the problem to time-bounded verification of EDP,
which has been solved in Sect. 3.1. We shall exploit the



celebrated Markov inequality. Hence, we first show how to
compute the expected time to reach G in C.

Definition 6 We define a random variable TG : PathsC →
R≥0 that will denote the first entrance time in a state s ∈ G.
More specifically, given a path ρ:

TG(ρ) =






0 ∀j ∈ N. ρ[j] /∈ G
k−1∑
j=0
ρ〈j〉 o/w, where k = min{l | ρ[l] ∈ G}.

Lemma 2 The expected first entrance time Es[TG] from any
state s ∈ G to reach G can be characterized by the fol-
lowing system of linear equations: Es[TG] = Prob(s,♦G)

E(s) +∑
s′∈S

P(s, s′)Es′ [TG] if s /∈ G, 0 otherwise, where Prob(s,♦G)

is defined in Def. 2.

Now we can state the main result of this section.

Theorem 7 Prob(C |=G ϕ)−Prob(C |=G
T ϕ) ≤

∑
s∈S
α(s) Es[TG]

T .

Thanks to this theorem, given an error bound ε and a set
of goal states G, we can pick a time bound T such that
T ≥
∑

s∈S α(s)
Es[TG]

ε and compute Prob(C |=G
T ϕ).

Remark 3 Here we use Markov inequality. Alternatively
one could use the Chebyshev’s inequality, which would sharpen
Thm. 7 and hence allow a relatively smaller T , at a cost of
computing the variance of TG (instead of the expectation).
We choose the current formulation for simplicity.

4. VERIFICATION OF IDP
In this section, we tackle IDP w.r.t. Φ =

∫
1 ≤ T →∧

j∈J
(
∑

k∈Kj

cjk
∫
apjk ≤ Mj). As highlighted in Sect. 2, we

shall distinguish two cases according to whether T is finite
or infinite. First, we give some definitions and algorithms
that are common to both cases.
Given an LDF ϕ, a discrete finite path ς of length k and a

time-bound T , we define the set of linear constraints S as in
Alg. 3. Note that here S is different from the one obtained
from Alg. 1.

Algorithm 3 Generate a set of linear constraints S induced
by ϕ, ς and T

Require: LDF ϕ, a path ς of length k and a time-bound T
Ensure: S = set of linear constraints
1: S = {∅}
2: for z = 0; z < k; z++ do
3: for j ∈ J do

4: S = S
⋃




∑

i∈Kj

cji ·
∑

0≤'≤z
ς[']|=apji

x' ≤Mj






5: end for
6: end for

7: S = S
⋃{k−1∑

i=0
xi ≤ T

}

8: S = S
⋃
{xi > 0} for all xi

9: return S

Lemma 3 Let ς be a finite path of the CTMC C, ϕ be an
LDF and t a time-bound. Moreover, let S be the set of linear
constraints obtained by Alg. 3. Then

ς[x0, . . . , xn−1] |=% ϕ ∧
∫

1 ≤ T iff (x0, . . . , xn−1) ∈ S.

We define Prob%(ς[S]) := PrC({ρ ∈ PathsC | ∃ (x0, . . . ,
xn−1) ∈ S. ρ[0..n] ∈ ς[x0, . . . , xn−1] ∧ ρ[0..n] |=% ϕ}), which
can be computed by the function V olume int(ς,S) (cf. Eq. (5)),
where S is the set of constraints generated from Alg. 3.

Given an infinite timed path ρ, we write ρ |=%
G,T ϕ if there

is some n ∈ N such that (1) ρ[n] ∈ G and
∑n

i=0 ρ〈i〉 ≤ T , and

(2) for each 0 ≤ i ≤ n,
∑i

j=0 ρ〈j〉 ≤ T , ρ[0..i] |= ϕ. Our task

now is to approximate the probability Prob(C |=%
G,T ϕ) .

For this purpose, we define Alg. 4 that computes an approx-

imation P̃robN (C |=%
G,T ϕ) of Prob(C |=%

G,T ϕ).

Algorithm 4 Compute P̃robN (C |=%
G,T ϕ)

Require: A CTMC C, an LDF formula ϕ, set of goal states
G, time-bound T , and N

1: for all ς ∈ PathsD s.t. ∃i. ς[i] ∈ G and |ς| ≤ N do
2: Generate S from ϕ, ς, and T , by Alg. 3
3: Prob+ = V olume int(ς,S)
4: end for
5: return Prob

4.1 Unbounded Verification of IDP
We are interested in computing Prob(C |=% ϕ).

Definition 7 [BSCC] Assume a CTMC C. A set of states
B ⊆ S is a strongly connected component (SCC) of C if,
for any two states s, s′ ∈ B, there exists a path ς = s0 →
s1 → . . . → sn such that si ∈ B for 0 ≤ i ≤ n, s0 = s
and sn = s′. An SCC B is a bottom strongly connected
component (BSCC) if no state outside B is reachable from
any state in B.

Definition 8 Given a BSCC B of the CTMC C and an
LDF ϕ, we say B is bad w.r.t. j-th conjunct in ϕ, ϕj, if
∃s ∈ B. ∃i ∈ Kj . apji ∈ L(s)∧cji > 0; otherwise B is good.
We say B is good w.r.t. ϕ (written B |= ϕ) if B is good for
each conjunct of ϕ; otherwise B is bad (written B /|= ϕ).

Lemma 4 Given a CTMC C = (S,AP, L, α,P, E), an LDF
ϕ and a BSCC B we have that, if B is good, then PrC{{ρ |
ρ |=% ϕ} | ♦B} = 1; and, if B is bad, then PrC{{ρ | ρ |=%

ϕ} | ♦B} = 0.

Definition 9 Given a CTMC C = (S,AP, L, α,P, E) and
an LDF ϕ, we define a new CTMC Ca = (S,APa, La, α,Pa,
E) as follows: APa = AP∪{⊥}, where ⊥ is fresh; for every
good BSCC B ⊆ S and s ∈ B make s absorbing and let
La(s) = L(s)∪{⊥}; for all other states s ∈ S\B and s′ ∈ S,
Pa(s, s′) = P(s, s′), La(s) = L(s).

Example 6 As an example consider the CTMC C from
Fig. 2 (left), in which there are two BSCCs B1 = {s4, s5}
and B2 = {s1, s2, s3}. Moreover, assume that B1 /|= ϕ and
B2 |= ϕ for a given LDF ϕ. After applying Def. 9 to C we



get Ca shown on the right, where the labels of the states s1,
s2 and s3 are augmented with the label {⊥} and all the other
labels are left unchanged.

s4

s5

s0

s1 s2 s3

s4

s5

s0

s1 s2 s3

Figure 2: Example BSCC.

We write ρ |=%
G ϕ if there exists some n ∈ N such that (1)

ρ[n] ∈ G, and (2) for each 0 ≤ i ≤ n, ρ[0..i] |= ϕ.

Proposition 2 Given a CTMC C = (S,AP, L, α,P, E)
and an LDF ϕ, we have that Prob(C |=% ϕ) = PrC

a
({ρ |

ρ |=%
G ϕ}), where G = {s ∈ S |⊥∈ L(s)}.

4.1.1 Algorithm

Algorithm 5 Compute P̃rob(C |=% ϕ)

Require: A CTMC C, an LDF formula ϕ, ε1 and ε2
1: Identify all BSCCs B in C
2: G = {∅}
3: Prob = 0
4: for each BSCC B do
5: if B |= ϕ then
6: Make every state in B absorbing
7: G = G ∪B
8: end if
9: end for
10: Compute

∑
s∈S
α(s)Es[TG]

11: Choose T >
∑
s∈S
α(s) Es[TG]

ε1
and N ≥ ΛTe2 + ln( 1

ε2
)

12: Prob = P̃robN (C |=%
G,T ϕ)

13: return Prob

Alg. 5 computes P̃rob(C |=% ϕ) which is an approximation
of Prob(C |=% ϕ). Lines 4-9 obtain Ca and the goal states
G, according to Def. 9, then the algorithm calls the function

P̃robN (C |=%
G,T ϕ), by choosing T and N , according to the

specified error bounds ε1 and ε2 respectively.

Error Bound.
Intuitively, there are two factors that contribute to the

error introduced by Alg. 5:

• the error introduced by approximating PrC
a
({ρ | ρ |=%

G

ϕ}) by Prob(Ca |=%
G,T ϕ), which can be obtained in a

similar way to Thm. 7. We denote it by ε1;

• the error introduced through approximating Prob(Ca |=%
G,T

ϕ) by P̃robN (Ca |=%
G,T ϕ). We denote it by ε2.

Theorem 8 Given ε1 and ε2, we have that

Prob(C |=% ϕ)− P̃rob(C |=% ϕ) ≤ ε1 + ε2.

where P̃rob(C |=% ϕ) is given in Alg. 5.

Remark 4 Given ε a priori, one practical way is to let
ε1 = ε2 = ε

2 , and hence T = 2
∑
s∈S
α(s) Es[TG]

ε and N =

2
∑
s∈S
α(s)Es[TG]Λe2

ε + ln( 4ε ) suffice.

4.2 Time-bounded Verification of IDP
In this section we show how to deal with the time-bounded

variant of IDP. Given an infinite timed path ρ, we write
ρ |=%,G

T ϕ if ρ |=% ϕ and ρ@T ∈ G. The following theorem
plays a pivotal role.

Theorem 9 Given a CTMC C and an LDF Φ we have

Prob(C |=% Φ) =
∑

s∈S

Prob(C |=%,{s}
T ϕ).

The solution boils down to the computation of Prob(C |=%,{s}
T

ϕ) for each state s. It follows that we compute the approxi-

mation P̃rob(C |=% Φ) by bounding the lenghts of the paths,
as shown in Alg. 6. We have the following error bound.

Algorithm 6 Compute P̃rob(C |=% Φ)

Require: A CTMC C, an LDF Φ and ε
1: Prob = 0
2: Chose N ≥ ΛTe2 + ln( |S|

ε )
3: for all s ∈ S do
4: for all ς ∈ PathsD s.t. ∃n. ς[n] = s and |ς| ≤ N do
5: S = {∅}
6: for z = 0; z < |ς|; z++ do
7: for j ∈ J do

8: S = S
⋃




∑

i∈Kj

cji ·
∑

0≤'≤z
ς[']|=apji

x' ≤Mj






9: end for
10: end for

11: S = S
⋃{ n∑

i=0
xi = T

}

12: S = S
⋃
{xi > 0} for all xi

13: Prob+ = V olume int(ς,S)
14: end for
15: end for
16: return Prob

Theorem 10 Given ε and N ∈ N, it holds that:

Prob(C |=% Φ)− P̃rob(C |=% Φ) < ε.

5. CONCLUSION
We have studied the problem of verifying CTMCs against

linear durational properties. We focused on two classes of
LDPs, namely, eventuality duration properties and invari-
ance duration properties. The central question we solved is,
what is the probability of the set of infinite timed paths of
the CTMC which satisfy the given LDP? We presented dif-
ferent algorithms to approximate these probabilities up to a
given precision, stating their complexity and error bounds.
The implementation of algorithms presented in this paper
in PRISM is in progress.

As future work, we plan to study algorithmic verification
of more complex duration properties, for instance response



and persistence, as in [6]. It is also interesting to study
specifications combining duration properties and temporal
properties (in traditional real-time logics, e.g., MTL). The
verification of these specifications would be challenging. Ex-
tending the current work to CTMDPs is another possible
direction.
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