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Abstract
We consider the setting of stochastic multiagent systems and
formulate an automated verification framework for quantify-
ing and reasoning about agents’ trust. To capture human trust,
we work with a cognitive notion of trust defined as a subjec-
tive evaluation that agent A makes about agent B’s ability to
complete a task, which in turn may lead to a decision by A
to rely on B. We propose a probabilistic rational temporal
logic PRTL∗, which extends the logic PCTL∗ with reason-
ing about mental attitudes (beliefs, goals and intentions), and
includes novel operators that can express concepts of social
trust such as competence, disposition and dependence. The
logic can express, for example, that “agent A will eventually
trust agent B with probability at least p that B will behave
in a way that ensures the successful completion of a given
task”. We study the complexity of the automated verification
problem and, while the general problem is undecidable, we
identify restrictions on the logic and the system that result in
decidable, or even tractable, subproblems.

Introduction
Mobile autonomous robots are rapidly entering the fabric of
our society, to mention driverless cars and home assistive
robots. Since robots are expected to work with or alongside
humans in our society, they need to form partnerships with
humans, as well as other robots, understand the social con-
text, and behave, and be seen to behave, according to the
norms of that context. Human partnerships such as cooper-
ation are based on trust, which is influenced by a range of
subjective factors that include preferences and experience.
As the degree of autonomy of mobile robots increases and
the nature of partnerships becomes more complex, and in-
cludes also shared autonomy, understanding and reasoning
about social trust and the role it plays in decisions whether
to rely on autonomous systems is of paramount importance.
A pertinent example is the recent Tesla fatal car accident
while on autopilot mode (Lee 2016), which is a result of
over-reliance (“overtrust”) by the driver, likely influenced
through his personal motivation and preferences.

Trust is a complex notion, viewed as a belief, attitude,
intention or behaviour, and is most generally understood
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as a subjective evaluation of a truster on a trustee about
something in particular, e.g., the completion of a task
(Hardin 2002). A classical definition from organisation the-
ory (Mayer, Davis, and Schoorman 1995) defines trust as
the willingness of a party to be vulnerable to the actions of
another party based on the expectation that the other will
perform a particular action important to the trustor, irre-
spective of the ability to monitor or control that party. The
importance of being able to correctly evaluate and calibrate
trust to guide reliance on automation was recognised by Lee
and See (2004). Trust (and trustworthiness) have also been
actively studied in many application contexts such as secu-
rity (Kagal, Finin, and Joshi 2001) and e-commerce (Cor-
bitt, Thanasankit, and Yi 2003). However, in this paper we
are interested in trust that governs social relationships be-
tween humans and autonomous systems, and therefore con-
sider cognitive trust that captures the human notion of trust.

Human trust is influenced by culture and evolves over
time. It is updated similarly to belief, based on social interac-
tions and past experience, and increases in response to posi-
tive experiences but and may be negatively affected by fail-
ures. Trust is also based on opinions, which entails the need
to incorporate subjective judgment that may differ for each
agent depending on their individual experience. By under-
standing how human trust in an autonomous system evolves
and being able to reason about it, we offer guidance for se-
lecting an appropriate level of reliance on autonomy. We can
also provide means to explain trust-based decisions.

We therefore aim to develop foundations for automated
quantitative reasoning about trust between (human and
robotic) agents, which can be employed to support decision
making in dynamic, stochastic environments endowed with
cognitive architecture. We work in the setting of stochas-
tic multiagent systems, where stochasticity can be used to
model, e.g., component failure or environmental uncertainty,
and agents are endowed with individual goals and prefer-
ences. Inspired by the concepts of social trust of Falcone
and Castelfranchi (2001), we formulate a probabilistic ra-
tional temporal logic PRTL∗ as a combination of the proba-
bilistic temporal logic PCTL* (Hansson and Jonsson 1994;
Bianco and de Alfaro 1995) with cognitive attitude opera-
tors (belief, goal, intention and capability) and a collection
of novel trust operators (competence, disposition and depen-
dence). The logic is able to express properties informally de-



fined by Falcone and Castelfranchi (2001) such as “agent A
will eventually trust agent B with probability at least p that B
will behave in a way that ensures the successful completion
of a given task”. The logic is interpreted over a stochastic
multiagent system, where the cognitive reasoning processes
for each agent can be modelled based on a cognitive mech-
anism that describes agent’s mental state (a set of goals and
an intention) and subjective preferences.

Since we wish to model dynamic evolution of beliefs
and trust, the mechanisms are history-dependent, and thus
the underlying semantics is an infinite branching struc-
ture, where we distinguish between agents’ transitioning
along the temporal and cognitive dimensions, as opposed
to the classical accessibility relation employed in logics for
agency. We resolve nondeterminism in the cognitive dimen-
sion by preference functions, given as probability distribu-
tions that model subjective knowledge about other agents.
This is similar to quantification over adversaries (Halpern
and Tuttle 1993) employed for systems exhibiting both non-
determinism and probability that results in fully probabilis-
tic systems. Also, in contrast to defining beliefs in terms of
knowledge and probabilistic knowledge (Halpern and Tuttle
1993) operators, which are based solely on agents’ (partial)
observations, we additionally allow agents’ changes of men-
tal state and subjective preferences to influence their belief.

Motivated by the need to evaluate trust in human-robot
partnerships to support autonomous decision making, we
aim to provide methods and software tools for reasoning
about trust. We therefore study the foundations of the model
checking problem for PRTL∗. Unsurprisingly, we find that
the general problem is undecidable. We then identify restric-
tions on the logic and the system that result in practically rel-
evant yet decidable, and even tractable, subproblems. These
decidable fragments can guide the design of a language to
express cognitive trust and enable practical implementation
and validation of the techniques.

This paper presents a simplified framework for a single
agent that does not support nested beliefs and trust. An
accompanying technical report (Huang and Kwiatkowska
2016) contains a comprehensive treatment of the framework,
including the full logic, a connection with strategic reason-
ing, illustrative examples and full proofs.

Related Work
The notion of trust has been widely studied in management,
psychology, philosophy and economics (see (Lahijanian and
Kwiatkowska 2016) for an overview). Trust in the context
of human-technology relationships can be roughly classified
into three categories: credentials-based, experience-based,
and cognitive trust. Credentials-based trust is used mainly
in security, where a user must supply credentials in or-
der to gain access. Experience-based trust, which includes
reputation-based trust in peer-to-peer and e-commerce ap-
plications, involves online evaluation of a trust value for an
agent informed by experiences of interaction with that agent.
A formal foundation for quantitative reputation-based trust
has been proposed by Krukow, Nielsen, and Sassone (2008).
In contrast, we focus on (quantitative) cognitive trust, which

captures the social (human) notion of trust and, in particular,
trust-based decisions between humans and robots.

The cognitive trust distinguishes itself from the other trust
notions by explicitly accounting for not only the human ex-
perience, but also subjective judgement about preferences
and the mental state of other agents. The cognitive theory
of Falcone and Castelfranchi (2001), itself founded on or-
ganisational trust of Mayer, Davis, and Schoorman (1995),
provides an intuitive definition of complex trust notions but
lacks rigorous semantics. Several papers, e.g., (Jøsang 2001;
Herzig et al. 2010; Herzig, Lorini, and Moisan 2013), have
formalised the theory of Falcone and Castelfranchi (2001)
using modal logic, but none are quantitative and automatic
verification is not considered. Of relevance are recent ap-
proaches (Sweet et al. 2016; Setter, Gasparri, and Egerst-
edt 2016) that model the evolution of trust in human-robot
interactions as a dynamical system; instead, our formalism
supports evolution of trust through events and agent interac-
tions.

A number of logic frameworks have been proposed that
develop the theory of human decisions (Bratman 1987) for
artificial agents, see (Meyer, Broersen, and Herzig 2014) for
a recent overview. The main focus has been on studying
the relationships between modalities with various axiomatic
systems, but their amenability to automatic verification is ar-
guable because of a complex underlying possible world se-
mantics, to mention the sub-tree relation of BDI logic. The
only attempt at model checking such logics (Schild 2000) ig-
nores the internal structure of the possible worlds to enable
a reduction to temporal logic model checking.

The distinctive aspect of our work is thus a quantita-
tive formalisation of cognitive trust in terms of probabilis-
tic temporal logic, based on a Bayesian notion of belief,
together with algorithmic complexity of the corresponding
model checking problem.

Cognitive Theory of Social Trust
In the context of automation, trust is understood as delega-
tion of responsibility for actions to the autonomous system
and willingness to accept risk (possible harm) and uncer-
tainty. The decision to delegate is based on a subjective eval-
uation of the system’s capabilities for a particular task, in-
formed by factors such as past experience, social norms and
individual preferences. Moreover, trust is a dynamic concept
which evolves over time, influenced by events and past expe-
rience. The cognitive processes underpinning trust are cap-
tured in the influential theory of social trust by Falcone and
Castelfranchi (2001), which is particularly appropriate for
human-robot relationships and serves as an inspiration for
this work.

Falcone and Castelfranchi (2001) view trust as a complex
mental attitude that is relative to a set of goals and expressed
in terms of beliefs, which in turn influence decisions about
agent’s future behaviour. They consider agent A’s trust in
agent B for a specific goal ψ (goals may be divided into
tasks), and distinguish the following core concepts: compe-
tence trust, where A believes that B is able to perform ψ,
and disposition trust, where A believes that B is willing to
perform ψ. The decision to delegate or rely on B involves a



complex notion of trust called dependence: A believes that
A needs, depends, or is at least better off to rely on B to
achieve ψ, which has two forms, strong (A needs or depends
on B) and weak (for A, it is better to rely than not to rely
on B). Falcone and Castelfranchi (2001) also identify fulfill-
ment belief arising in the truster’s mental state, which we do
not consider for simplicity.

We therefore work in a stochastic setting (to represent
uncertainty), aiming to quantify belief probabilistically and
express trust as a subjective, belief-weighted expectation,
which is informally understood as a degree of trust.

Autonomous Stochastic Multiagent Systems
We work with the notion of stochastic multiagent systems,
which can express beliefs and goals of individual agents, as
well as random events to capture uncertainty. Before we de-
fine the cognitive aspects, we introduce stochastic games as
the underlying behavioural model. Let D(X) denote the set
of probability distributions on a set X.
Definition 1 A stochastic multiplayer game (SMG) is a tu-
ple M = (Ags, S , sinit, {ActA}A∈Ags,T ), where Ags is a finite
set of agents, S is a finite set of states, sinit ∈ S is an ini-
tial state, ActA is a finite set of actions for agent A, and
T : S × Act → D(S ) is a (partial) transition probability
function such that Act = ×A∈AgsActA.

We refer to players of a game as agents. Let aA be agent
A’s action in the joint action a ∈ Act. We let Act(s) = {a ∈
Act | T (s, a) is defined} and ActA(s) = {aA | a ∈ Act(s)}. For
technical reasons, we assume that Act(s) , ∅ for all s ∈ S ;
this is not a restriction, as any system can be transformed to
one that satisfies this condition.

States S are global, and encode agents’ local states as
well as environment states. In each state s, agents inde-
pendently (and possibly at random) choose a local action
(which may include the silent action ⊥), the environment
performs an update, and the system transitions to a state s′
satisfying T (s, a)(s′) > 0, where a is the joint action. Some-
times we also denote transitions by s−→a

T s′ with the mean-
ing ∃s′.T (s, a)(s′) > 0.

We define a finite, resp. infinite, path ρ as a sequence of
states s0s1s2... such that T (si,−)(si+1) > 0 for all i ≥ 0, and
denote the set of finite and infinite paths of M starting in s,
respectively, by FPathM

T (s) and IPathM
T (s), and sets of paths

starting from any state by FPathM
T and IPathM

T , and omit M
if clear from context. For a finite path ρ we write last(ρ)
to denote the last state. We refer to paths induced from the
transition probability function T as the temporal dimension.

For an agent A we define an action strategy σA as a func-
tion σA : FPathM

T −→ D(ActA) such that for all aA ∈ ActA
and finite path ρ it holds that σA(ρ)(aA) > 0 only if aA ∈

ActA(last(ρ)). An action strategy profile σ is a vector of ac-
tion strategies (σA)A∈Ags. Under a fixed σ, one can define
a probability measure PrM,σ on IPathM

T (sinit) in the standard
way.

Beliefs
Since full knowledge of states of other agents is not a realis-
tic assumption, we introduce partial observations.

Definition 2 A partially observable stochastic multiplayer
game (poSMG) is a tuple M = (Ags, S , sinit, {ActA}A∈Ags,T,
{OA}A∈Ags, {obsA}A∈Ags), where (Ags, S , sinit, {ActA}A∈Ags,T ) is
an SMG, OA is a finite set of observations for agent A, and
obsA : S −→ OA is a labelling of states with observations
for agent A such that, for all A ∈ Ags and s, s′ ∈ S , we have
obsA(s) = obsA(s′) implies ActA(s) = ActA(s′).

Note that each agent is able to remember its past observa-
tions, known as synchronous perfect recall. Also note that
we work with deterministic observations, but emphasise that
stochastic observations, which are more realistic in presence
of environmental uncertainty, can be added without increas-
ing the complexity of the problem (Huang and Kwiatkowska
2016).

The notions of FPathM
T (s), IPathM

T (s), FPathM
T and IPathM

T
generalise to poSMG. However, since states cannot be di-
rectly observed, action strategies are now based on obser-
vations, that is, for any finite paths ρ = s0s1...sm and ρ′ =
s′0s′1...s

′
m satisfying obsA(sk) = obsA(s′k) for all 0 ≤ k ≤ m

we have σA(ρ) = σA(ρ′). As before, a strategy profile σ in-
duces a probability measure PrM,σ on IPathM

T (sinit).
We employ a well known construction (Chatterjee, Chme-

lik, and Tracol 2016) which, for a poSMG M and a fixed
agent A, induces a (possibly infinite state) belief SMG
BelA(M), whose states are distributions over states S of M
called belief states. This construction can be effectively used
to reason about one agent’s understanding of the system,
but does not support nested reasoning about agents’ beliefs.
For the general construction see (Huang and Kwiatkowska
2016).

Formally, a belief SMG for poSMG M and agent A is a
tuple BelA(M) = (Ags,D(S ), βinit, {ActA}A∈Ags,T Bel

A ), where
βinit is an initial Dirac belief distribution over sinit and, for
any β, β′ ∈ D(S ),

T Bel
A (β, a)(β′) =

∑
s∈S

β(s) · (
∑

o∈OA&βa,o=β′

∑
s′∈S &β′(s′)>0

T (s, a)(s′))

(1)
and βa,o is belief reached from β by performing a and ob-
serving o, i.e.,

βa,o(s′) =


∑

s∈S T (s,a)(s′)·β(s)∑
s∈S (
∑

s′′∈S &obsA(s′′ )=o T (s,a)(s′′)·β(s)) if obsA(s′) = o
0 otherwise.

We define a mapping δA from paths of M to paths of BelA(M)
as follows: δA(sinit) = βinit, and δA(ρs) = δA(ρ)β′ such that
β′(s) > 0 and T Bel

A (last(δA(ρ)), a)(β′) > 0 for some a. We
note that T Bel

A satisfies the constraints of a transition proba-
bility function and can be viewed as a Bayesian update. As
before, a strategy profile σ induces a probability measure
PrBelA(M),σ over infinite paths of SMG BelA(M).

Cognitive mechanism
Since we wish to model mental attitudes in order to reason
about trust, we endow agents with a cognitive mechanism
inspired by the BDI framework (beliefs, desires and inten-
tions) in the sense of (Bratman 1987). In addition to beliefs
that we have just defined, we introduce the concepts of goals



and intentions (also called pro-attitudes), as well as subjec-
tive preferences. The existence of (own) goals and intentions
is a key distinction made about autonomy. For an agent A,
the idea is that, while actions ActA represent A’s actions in
the physical space, pro-attitudes represent the cognitive pro-
cesses that lead to decisions about which action to take. We
thus distinguish two dimensions of transitions, temporal (be-
havioural) and cognitive.

Definition 3 An autonomous stochastic multiagent system
(ASMAS) is a tuple M = (Ags, S , sinit, {ActA}A∈Ags,
T, {OA}A∈Ags, {obsA}A∈Ags, {ΩA}A∈Ags), where (Ags, S ,
sinit, {ActA}A∈Ags,T, {OA}A∈Ags, {obsA}A∈Ags) is a poSMG
and ΩA = ({GoalA}A∈Ags, {IntA}A∈Ags, {gpA,B}A,B∈Ags,
{ipA,B}A,B∈Ags) is a cognitive mechanism, where GoalA is a
finite set of goals for agent A; IntA is a finite set of intentions
for agent A; gpA,B : S −→ D(2GoalB ) assigns to each state,
from A’s point of view, a distribution over possible goal
changes of B; and ipA,B : S −→ D(IntB) assigns to each
state, from A’s point of view, a distribution over possible
intentional changes of B.

An agent can have several goals, not necessarily consis-
tent, but only a single intention. Goals and intentions are
abstract entities. We think of goals as abstract attitudes, for
example selflessness or risk-taking, whereas intentions are
concretely implemented in our (simplified) setting as action
strategies, thus identifying the next (possibly random) action
to be taken in the temporal dimension.

We extend the set of temporal transitions s−→a
T s′ with

cognitive transitions for agent A corresponding to a change
of goal (respectively intention) to x, denoted s−→A.g.x

C s′ if x
is the goal set for A in s′ (respectively s−→A.i.x

C s′ if x is the
intention of s′). It is noted that s−→B.g.x

C s′ for some s′ only
when gpA,B(s)(x) > 0, and s−→B.i.x

C s′ for some s′ only when
ipA,B(s)(x) > 0. We extend the transition probability func-
tion T in the obvious way by letting, e.g., T (s, A.g.x)(s′) = 1
when s−→A.g.x

C s′, and T (s, A.g.x)(s′) = 0 otherwise. We de-
note by FPathM(s), IPathM(s), FPathM and IPathM the sets
of paths formed by extending the sets FPathM

T (s), IPathM
T (s),

FPathM
T and IPathM

T of temporal paths with paths thet inter-
leave the cognitive and temporal transitions.

To simplify the presentation, we make a deterministic be-
haviour assumption on ASMAS by requiring that for each
state s there exists a unique joint action a ∈ Act such that a
(non-unique) state s′ is chosen with probability T (s, a)(s′).
The intuition is that mental states determine temporal ac-
tions. We emphasise, though, that our framework can be
generalised (Huang and Kwiatkowska 2016) to allow also
strategic reasoning (quantification over strategies) in the
sense of in the style of (Chen et al. 2013).

The deterministic behaviour assumption resolves the non-
determinism in the temporal dimension and removes the
need to quantify over action strategies. However, potential
changes to pro-attitudes introduce another source of nonde-
terminism, which must be resolved in order to define proba-
bility measure over infinite paths IPathM(sinit). We achieve
this by defining cognitive reasoning strategies gA and iA,
which are history dependent and model subjective prefer-

ences of A. Formally, we define the cognitive goal strategy
as gA : FPath −→ D(2GoalA ), and the intentional strategy as
iA : FPath −→ D(IntA). While we do not discuss how one
arrives at such a strategy, we remark that they may result
from reasoning supported by cognitive architectures, with
the subjective view induced by goal and intentional pref-
erence functions, gpA,B and ipA,B. The key idea behind the
preference functions is that they replace preference order-
ing of BDI reasoning, and instead model probabilistic prior
knowledge of agent A about goals and intentions of B, in-
formed by prior experience (through observations) and as-
pects such as personal preferences and social norms, which
may vary for different cultures. We also need to assume that
goal and intentional strategies are based on observations,
that is, for any finite paths ρ = s0s1...sm and ρ′ = s′0s′1...s

′
m

satisfying obsA(sk) = obsA(s′k) for all 0 ≤ k ≤ m we have
gA(ρ) = gA(ρ′), and similarly for iA.

Formally, given an ASMAS M and an agent A, we work
in the induced belief SMG BelA(M), where the transition
probability function T Bel

A is redefined to take into account
cognitive transitions as follows. Note that the mapping δA
implies that, for each finite path ρ, there exists a unique β
such that β = last(δA(ρ)), and we write βρ for such a belief
state. For any β′ ∈ D(S ), we define

T Bel
A (βρ, A.g.x)(β′) =

∑
s∈S βρ(s)

·(
∑

o∈OA&(βρ)A.g.x,o=β′
∑

s′∈S &β′(s′)>0 gA(ρ)(x) · T (s, A.g.x)(s′))
(2)

and (βρ)A.g.x,o is the belief state reached from βρ by
A performing goal change into x and observing o, i.e.,
(βρ)A.g.x,o(s′) =

∑
s∈S gA(ρ)(x)·βρ(s)·T (s,A.g.x)(s′)∑

s∈S (
∑

x′ gA(ρ)(x′)·βρ(s)·T (s,A.g.x′)(s′)) if obsA(s′) = o
0 otherwise.

The construction is similar for intentional changes
T Bel

A (βρ, A.i.x). Cognitive transitions of agents other than A
can be handled in a similar way by using functions gpA,B and
ipA,B instead of gA and iA in the above expressions. Then,
under the pair of strategies gA and iA, the modified transi-
tion probability function T Bel

A induces a probability measure
PrBelA(M),gA,iA,ΩA over infinite paths of SMG BelA(M). Note
that the construction of T Bel

A considers agent A’s cognitive
reasoning strategies and preference functions, but not other
agents’ cognitive strategies: this is to avoid cyclic reasoning
which can be complicated both conceptually and computa-
tionally. We emphasise that our approach is not limited to a
single agent, see (Huang and Kwiatkowska 2016).

Example 1 We consider a simple trust game from (Kuipers
2016) involving two agents, Alice and Bob. At the beginning,
Alice has $10 and Bob has $5. If Alice does nothing, then
everyone keeps what they have. If Alice invests her money
with Bob, then Bob can turn the $15 into $40 and then de-
cide whether to share the investment yield with Alice. If so,
each will have $20 and, otherwise, Alice will lose her money
and Bob gets $40. The game has Nash equilibria of Alice
withholding her money and Bob keeping the yield. Under
the standard economic assumptions of rational self-interest,
the predicted behaviour for Alice is to withhold the money.



This behaviour is not reproduced in experiments, with most
human players willing to invest, which can be explained by
explicitly considering trust in economic decisions.

Probabilistic Rational Temporal Logic
We introduce a logic PRTL∗ to express properties of agents
in autonomous stochastic multiagent systems. PRTL∗ com-
bines the probabilistic temporal logic PCTL∗ with operators
for reasoning about agents’ beliefs and cognitive trust. As
suggested by Falcone and Castelfranchi (2001), we express
trust in terms of belief, which probabilistically quantifies the
degree of trust as a function of subjective certainty, e.g., “I
am 99% certain that the autonomous taxi service is trustwor-
thy”, or “I trust the autonomous taxi service 99%”. The logic
captures how the value of 99% can be computed based on the
agent’s past experience and (social, economic) preferences.

Definition 4 The syntax of the language PRTL∗ is:

φ ::= p | ¬φ | φ ∨ φ | ∀ψ | P./qψ | GAψ | IAψ | CAψ |
B
./q
A ψ | CT

./q
A,Bψ | DT

./q
A,Bψ

ψ ::= φ | ¬ψ | ψ ∨ ψ | © ψ | ψUψ | �ψ

where p is an atomic proposition, A, B ∈ Ags, ./∈ {<,≤, >,≥
}, and q ∈ [0, 1].

In the above, φ is a PRTL∗ formula and ψ an LTL (path)
formula. The operator ∀ is the path quantifier of CTL∗ and
P./dψ is the probabilistic operator of PCTL (Hansson and
Jonsson 1994), which denotes the probability of those fu-
ture infinite paths that satisfy ψ, evaluated in the temporal
dimension. We omit the description of standard and derived
(φ1 ∧ φ2, ^ψ and ∃φ) operators, and just focus on the added
operators. Although not explicitly defined, we can reason
about rewards by assigning values to state variables and rea-
soning about those values. The model can be extended with
rewards and the reward operator in the style of (Chen et al.
2013) can be added to the logic.

The cognitive operators GAψ, IAψ and CAψ consider the
task expressed as ψ and respectively quantify, in the cogni-
tive dimension, over possible changes of goals, possible in-
tentions and available intentions. Thus, GAψ expresses that
ψ holds in future regardless of agent A changing its goals.
Similarly, IAψ states that ψ holds regardless of A changing
its (not necessarily available) intention, whereas CAψ quan-
tifies over the available intentions, and thus expresses that
agent A can change its intention to achieve ψ.
B
./q
A ψ is the belief operator, which states that agent A be-

lieves ψ with probability in relation ./ with q. In contrast
to BDI logics, we work with quantitative beliefs. We intro-
duce operators for the two core trust concepts of Falcone and
Castelfranchi (2001). CT./qA,Bψ is the competence trust oper-
ator, meaning that agent A trusts agent B with probability
in relation ./ with q on its capability of completing the task
ψ, where capability is understood to be the existence of a
valid intention (in IntB(s) for s being the current state) to
implement the task. DT./dA,Bψ is the disposition trust operator,
which expresses that agent A trusts agent B with probabil-
ity in relation ./ with q on its willingness to do the task ψ,
where the state of willingness is interpreted as that the task

is unavoidable for all intentions in intentional strategy (i.e.,
iB(ρ) for ρ being the path up to the current point in time).

Example 2 For the trust game example, the formula

DT≥0.7
Alice,BobsharingBob

where sharingBob is an atomic proposition, expresses that
Alice’s trust in Bob’s willingness to share the profit is at
least 70%, and

B≥0.8
Bob DT

≥0.7
Alice,BobinvestorBob

states that Bob’s belief that Alice has at least 70% trust in
him being an investor is at least 80%, where investorBob is
an atomic proposition.

Let β ∈ D(S ) be a belief state. For a measurable function
f : S −→ [0, 1], we denote by Eβ[ f ] the belief-weighted
expectation of f , i.e., Eβ[ f ] =

∑
s∈S β(s) · f (s). We also let

Prob(M, ρ, ψ) ≡ Pr{δ ∈ IPathM
T (last(ρ)) | M, ρ, δ |= ψ}

to denote the probability of satisfying ψ in future (note
that the future only concerns the temporal dimension). We
also write B.i(s, x) to denote the (unique) state s′ such that
s−→B.i.x

C s′, and similarly for B.g(s, x).
We now define semantics for PRTL∗ for the simplified set-

ting of formulas without nested belief and trust, where we
omit the cases where standard definitions apply for reasons
of space. The reader is referred to (Huang and Kwiatkowska
2016) for the complete semantics.

Definition 5 Let (M, AP, L) be a labelled ASMAS where M
is an ASMAS satisfying a deterministic behaviour assump-
tion with fixed preference functions and L : S −→ 2AP is a
labelling with atomic propositions. supp( f ) denotes the sup-
port of the distribution f . The semantics of the logic PRTL∗
is defined by a relation M, ρ |= φ for ρ ∈ FPathM , a finite
path of M, inductively over the structure of the formula φ as
follows.
• M, ρ |= P./qψ if Prob(M, ρ, ψ) ./ q
• M, ρs |=GAψ if
∀x ∈ supp(gA(ρs))∃s′ ∈ S : s−→A.g.x

C s′ and M, ρss′ |= ψ

• M, ρs |= IAψ if
∀x ∈ supp(iA(ρs))∃s′ ∈ S : s−→A.i.x

C s′ and M, ρss′ |= ψ

• M, ρs |= CAψ if
∃x ∈ IntA(s)∃s′ ∈ S : s−→A.i.x

C s′ and M, ρss′ |= ψ

• M, ρ |= B./qA ψ if

Elast(δA(ρ))[Satψ] ./ q

where Satψ(s) = 1 if M, s |= ψ and 0 otherwise. Note that
Elast(δA(ρ))[Satψ] is defined because last(δA(ρ)) is a belief
state for which expectation is defined.

• M, ρ |= CT./qA,Bψ for ./∈ {≥, >} if

Elast(δA(ρ))[VCT,B,ψ] ./ q

where

VCT,B,ψ(s) = sup
x∈IntB(s)

Prob(M, B.i(s, x), ψ)

and if ./ is ≤ or < we replace sup with inf in the above.



• M, ρ |= DT./dA,Bψ if for ./∈ {≥, >} if

Elast(δA(ρ))[VDT,B,ψ] ./ q

where

VDT,B,ψ(s) = inf
x∈iB(ρ′)&δA(ρ′)=δA(ρ)&last(ρ′)=s

Prob(M, B.i(s, x), ψ)

and if ./ is ≤ or < we replace inf with sup in the above.

We interpret formulas φ in ASMAS M in a state reached
after executing a path ρ, in history-dependent fashion. Note
that this path ρ may have interleaved cognitive and temporal
transitions, and has a corresponding path δA(ρ) in the belief
ASMAS BelA(M) that ends in the belief state last(δA(ρ)).
The cognitive operators quantify over possible changes of
goals and intentions in M in the cognitive dimension only,
reflecting the cognitive reasoning processes leading to a de-
cision. The probabilistic operator computes the probability
of future paths satisfying ψ (i.e. completing the task ψ) in M
in the temporal dimension as for PCTL∗, reflecting the phys-
ical actions resulting from the cognitive decision, and com-
pares this to the probability bound q. The belief operator is
evaluated in the belief ASMAS, and corresponds to the prob-
ability of satisfying ψ in future in the original ASMAS M
weighted by the belief reached by following δA(ρ); in other
words, it is a belief-weighted expectation of future satisfac-
tion of ψ, which is subjective, as it is influenced by A’s prior
knowledge about B encoded in the preference function. The
competence trust operator reduces to the computation of op-
timal probability of satisfying ψ in M over possible changes
of agent’s intention, which is again weighted by the belief
last(δA(ρ)) and compared to the probability bound q. Dispo-
sitional trust, on the other hand, computes the optimal prob-
ability of satisfying ψ in M over possible states of agent’s
willingness, which is weighted by the belief last(δA(ρ)) and
compared to the probability bound q.

The operators CT and DT cannot be derived in the logic
PRTL∗ but reduce to B when ASMAS M has sure beliefs.
Strong and weak dependence trust notions of Falcone and
Castelfranchi (2001), though, can be modelled.

Definition 6 We can introduce operators ST./qA,B and WT./A,B
to express strong and weak dependence, respectively, with
the semantics:
• M, ρ |= ST./qA,Bψ if M, ρ |= DT./qA,Bψ ∧ ¬B

./q
A ψ

• M,ρ |=WT./A,Bψ if

Elast(δA(ρ))[VDT,B,ψ] ./ Elast(δA(ρ))[VM,ψ]

where VM,ψ(s) = Prob(M, s, ψ).

Strong dependence means that A depends on B to achieve ψ
(i.e. ψ can be implemented through intentional change of B),
which cannot be achieved otherwise (expressed as a belief in
impossibility of ψ in future), and weak dependence that A is
better off relying on B compared to doing nothing (meaning
intentional changes of B can bring about better outcomes).

It is known that Nash equilibria may lead to undesirable
solutions which discourage collaborations. Our framework
can complement this by naturally allowing agents to take
into consideration each other’s trust when taking decisions.

The agent can thus evaluate another agent’s trust in him/her
and then take the action to maintain or increase the other
agent’s trust to pursue long term collaboration, or take the
action only when it believes that the other agent’ trust meets
a specific threshold. We illustrate this with the trust game
example below.

Example 3 Consider again the trust game example. In
(Kuipers 2016), the computation of the payoff is amended to
also include an estimate of trust that an agent has, namely
the payoff is +5 when Bob is sharing and -20 when he keeps
the yield. The new Nash equilibrium is for Alice to invest her
money and Bob to share the investment yield. We can achieve
the same result by modelling the game as an ASMAS, see
(Huang and Kwiatkowska 2016) for the details. More specif-
ically, we model the evolution of trust based on interactions
and prior knowledge, whereby Alice’s trust in Bob increases
if he shares the yield, and decreases if he keeps it without
sharing. Alice guards her decision whether to invest by con-
sidering if she has sufficient level of trust in Bob’s willing-
ness to share, e.g. DT≥0.7

Alice,BobsharingBob. Thus, if Alice has
prior positive experience of Bob’s willingness to share she
will be inclined to invest, and hence our notion of social trust
helps to explain cases where actual human behaviour is at
variance with standard economic and rationality theories.

The precise value of the threshold for trust is context-
dependent. The trust value higher than an appropriately cal-
ibrated level is known as ‘overtrust’.
Example 4 Based on his investment track record, Bob has
been ranked by an agency to have the trust value of q. Then
by model checking the property DT>q

Alice,BobinvestorBob we
can determine whether Alice is overtrusting Bob. On the
other hand, the property P≥1^DT

≥q
Alice,BobinvestorBob states

that almost surely Alice will eventually trust Bob with prob-
ability at least q.

We remark that our framework is more general than trust
games, and can additionally capture personal goals and pref-
erences, and how dynamic changes in these characteristics
influence trust-based decisions.

Model Checking Complexity
Our automated verification framework accepts as inputs an
ASMAS M and a PRTL∗ specification formula φ, and de-
termines whether M, sinit |= φ. Unfortunately, the problem is
undecidable in general.

Theorem 1 Model checking PRTL∗ is undecidable, even for
formulas concerning beliefs of a single agent.

In the following, we present three decidable fragments of
the general problem. The first fragment, named BPRTL∗,
can express events occurring in a bounded number of steps.
It allows formulas which (1) do not contain temporal oper-
ators U and �, (2) all X operators are immediately prefixed
with a probabilistic operator or a branching operator, i.e., in
a combination of P./q©ψ, ∀©ψ, or ∃©ψ, and (3) the nested
depth of belief and trust operators is constant.
Theorem 2 The complexity of verifying the fragment
BPRTL∗ is in EXPTIME and PSPACE-hard.



The second fragment, named PRTL∗1, allows the operators
U and �, and has the full expressiveness of LTL, but is sub-
ject to restrictions on the model and formulas, and specif-
ically (1) works with a single agent’s beliefs and trust, (2)
there are no nested beliefs or trust formulas, (3) beliefs and
trust cannot be in the scope of a probabilistic operator P, and
(4) there is a constant number of belief or trust operators.

Theorem 3 The complexity of verifying the fragment
PRTL∗1 is PSPACE-complete.

We also identify a fragment in which the belief or trust
operators can be in the scope of a probabilistic operator but
need to be qualitative, i.e., almost sure satisfaction. This
fragment, named PQRTL∗1, is, very surprisingly, polyno-
mial time. Specifically, we restrict formulas to be of the
form �(ψ ⇒ P./q^B≥1

A ψ), �(ψ ⇒ P./q^CT≥1
A,Bψ) or �(ψ ⇒

P./q^DT≥1
A,Bψ) such that, in ψ, there are no belief or trust op-

erators and every temporal operator is immediately prefixed
with a branching operator, i.e., in the style of CTL. The sys-
tem M needs to satisfy the formula M |= �(ψ⇒ �ψ), which
means that, once ψ holds, it will hold henceforth.
Theorem 4 The complexity of verifying the fragment
PQRTL∗1 is in PTIME.

Conclusion
The paper proposes an automated verification framework
for autonomous stochastic multiagent systems and specifi-
cations given in probabilistic rational temporal logic PRTL∗,
which includes novel modalities for quantifying and reason-
ing about agents’ cognitive trust. We study computational
complexity of the decision problems and show that, although
the general problem is undecidable, there are decidable, even
tractable, fragments. While preliminary notions of cognitive
trust were proposed by Falcone and Castelfranchi (2001),
the paper provides the first rigorous formalisation and the
corresponding model checking procedure. Future work will
include the definition of a Bellman operator to evaluate trust,
integration with cognitive reasoning frameworks, and a tool
implementation of the techniques.
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