
CCMC: A Conditional CSL Model Checker for
Continuous-Time Markov Chains

Yang Gao1, Ernst Moritz Hahn1,2, Naijun Zhan1, and Lijun Zhang1,3,4

1 State Key Lab. of Comp. Sci., Institute of Software, Chinese Academy of Sciences, China
2 University of Oxford, United Kingdom

3 Technical University of Denmark, DTU Compute, Denmark
4 Saarland University — Computer Science, Germany

Abstract. We present CCMC (Conditional CSL Model Checker), a model checker
for continuous-time Markov chains (CTMCs) with respect to properties specified in
continuous-time stochastic logic (CSL). Existing CTMC model checkers such as PRISM
or MRMC handle only binary CSL until path formulas. CCMC is the first tool that sup-
ports algorithms for analyzing multiple until path formulas. Moreover, CCMC supports a
recent extension of CSL – conditional CSL – which makes it possible to verify a larger
class of properties on CTMC models. Our tool is based on our recent algorithmic advances
for CSL, that construct a stratified CTMC before performing transient probability analy-
ses. The stratified CTMC is a product obtained from the original CTMC and an automaton
extracted from a given formula, aiming to filter out the irrelevant paths and make the com-
putation more efficient.

1 Introduction
Continuous-time Markov chains (CTMCs) play an important role in performance evaluation of
networked, distributed and biological systems. The concept of formal verification for CTMCs
was introduced by Aziz et al. [1]. In their seminal work, continuous-time stochastic logic (CSL)
was defined to specify properties of CTMCs. They showed that the model checking problem
of CSL over CTMCs, i.e., whether a CTMC satisfies a given CSL property, is decidable. The
approach has not yet been implemented, due to the high theoretical complexity. Later, efficient
approximation algorithms have been studied by Baier et al. [2]. Based on this, several tools have
been developed to support CSL model checking, such as PRISM [3] and MRMC [4]. Both of
them can only deal with CSL properties with binary until path formulas.

Recently, we have extended the approximation algorithm in [2] to deal with multiple until
path formulas [5]. The main idea is to exploit the notion of stratified CTMCs, which is a subclass
of CTMCs that has the nice feature of allowing one to obtain the desired probability using
a sequence of transient probability analyses. First, a deterministic finite automaton (DFA) is
constructed for the formula being considered. Then, the product of the CTMC and the DFA
is constructed, which is stratified by construction. This product CTMC can then be analyzed
efficiently, using standard numerical methods for CTMCs.

Moreover, we have proposed an extension of CSL with conditional probabilistic opera-
tors [6], and in addition, we allow disjunction and conjunction of path formulas. With condi-
tional CSL, one can for instance formulate the following property: ”The probability is at least
0.1 that in the interval [10, 20) the number of proteins becomes more than 5 and the gene be-
comes inactive, under the condition that the proteins have increasingly accumulated from 0 to k
within the same time interval”, as P≥0.1(true U[10,20) f ∧ g | f1 U[10,20) f2 U[10,20) · · · fk)
where f, g, f1, . . . , fk are appropriate atomic propositions.

In this paper, we present the probabilistic model checker CCMC, which is based on the
recent work in [5,6,7], and supports the multiple until and conditional probabilistic formulas.
These formulas allow one to express a richer class of properties for CTMCs, and thus we con-
sider our tool an important complementation of PRISM [3] and MRMC [4].

2 Logic and Tool Architecture
The syntax of Conditional CSL (CCSL) is given by the following grammar:

Φ := f | ¬Φ | Φ∧Φ | P./p(ϕ) | P./p(ϕ | ϕ), ϕ := ϕ∧ϕ | ϕ∨ϕ | Φ1UI1Φ2UI2 · · ·UIK−1
ΦK

where f is an atomic proposition, Ii are non-empty left-closed and right-open intervals on R≥0,
./ ∈ {<,≤,≥, >}, 0 ≤ p ≤ 1, K > 1. Φ is called a state formula, while ϕ is called a
path formula. In particular, CCMC supports multiple until path formulas, in contrast to existing
model checkers (e.g. [3,4]) which are restricted to binary ones, i.e., K = 2.

For the sake of efficiency, CCMC was implemented in C/C++ and consists of approximately
5000 lines of code. It has been applied on a number of relevant case studies from diverse areas
(performance evaluation, biological models, etc.). CCMC is available for Linux with libc6 and
GNU Scientific Library 1.15, and is distributed under the GNU General Public License (GPL)
Version 3. The binary code, source code and case studies can be downloaded from:

http://lcs.ios.ac.cn/~gaoy/CCMC/homepage.xhtml.

Probability
Computation

Indicator
Filter

Forward
Computation

Model Analysis

Product Construction Parameterized Product
Construction

PreprocessingCSL CCSL

Model Storage Parser

Front End

Model Property

Results or Exported Files

Fig. 1. CCMC Architecture.

The architecture and components of CCMC are
depicted in Fig. 1. The inputs of CCMC include
the model description files and the property file. The
model description files can be written manually or
generated by PRISM, including a state file and a
transition matrix file. They will be loaded, where we
use explicit sparse matrix representations. The prop-
erty file keeps the CCSL properties of interest.

The preprocessing component constructs the
stratified CTMC, which is a product obtained from
the original CTMC and an automaton extracted from
the given formula [5]. For CCSL conjunctive path
formulas, we need an extended product construction
which also takes sub path formulas into account [6].

By the preprocessing procedure, the paths which
are irrelevant to the given properties are filtered out
and the model analysis component will carry out a
forward transient probability computation. The verification results and other information can be
visualized or exported into a file.

3 Experiments
In this section, we conduct experiments on some CTMC benchmarks from the PRISM webpage
(http://www.prismmodelchecker.org/) and other publications [8]. All experiments
were performed on a Linux (Ubuntu 12.10) machine with an Intel(R) Core(TM) i7-2600 pro-
cessor at 3.40GHz equipped with 3 GB of RAM. Due to space constraints, detailed information
about the cases and comparison with MRMC are provided on the CCMC webpage.

PRISM Benchmark Suite. Firstly, we compare our model checker CCMC with PRISM
(sparse matrix engine) on verifying benchmark CTMC models. Here we use three models which
can be found on the PRISM homepage. The first one is a cyclic server polling system [9], the

second one is a workstation cluster [10], and the third one is an embedded control system [11].
We consider binary CSL until formulas, which can also be handled by PRISM. Results and ex-
ecuting time (in seconds) are listed in Table 1. The meaning of parameterN is as on the PRISM
homepage. Execution times of CCMC and PRISM for the analyses considered are almost equal.

Polling Cluster Embedded
N states PRISM CCMC N states PRISM CCMC MAX states PRISM CCMC
8 3,073 0.016 0.01 2 276 0.006 <0.01 5 6,013 0.319 0.16
9 6,913 0.047 0.03 4 820 0.011 <0.01 8 8,548 0.437 0.22

10 15,361 0.077 0.06 8 2,772 0.014 0.01 10 10,238 0.53 0.29
11 33,793 0.161 0.14 16 10,132 0.051 0.03 20 18,688 0.925 0.50
12 73,729 0.341 0.41 32 38,676 0.166 0.11 50 44,038 2.715 1.14
13 159,745 0.804 1.04 64 151,060 0.639 0.45 100 86,288 4.285 2.73
14 344,065 1.853 2.43 128 597,012 2.871 3.09 200 170,788 8.535 6.00
15 737,281 4.069 5.73 256 2,373,652 12.345 19.53 500 424,288 21.649 20.46

Table 1. Comparism with PRISM. N and MAX are model parameters influencing the number of states.

Random Robot. We use this case study (revised from [8]) to show the ability of CCMC to ver-
ify conditional formula, which describe a robot on a grid withN×N cells of different land types.
We focus on computing the probability that the robot goes across the flatlands, cementlands and
grasslands under the condition that it will get stuck within time t. This property can easily be ex-
pressed by a CCSL formula, that is, P=?(ϕ | ψ) where ϕ = flat U[a1,b1) cement U[a2,b2) grass
and ψ = true U[0,t) trap. We generate the grid randomly and the experimental results are listed
in the left part of Table 2, where a1 = 1, a2 = 1.5, b1 = 2, b2 = 3 and t = 10.

Cyclic Server Polling System. We reconsider the Cyclic Server Polling System (CSP) [9]
and the CSL property: what is the probability of finding all the queues full in the whole round
when the server serves them within T seconds, which can be expressed using a multiple until
formula: P=?(s = 1 ∧ s1 U[0,T) s = 2 ∧ s2 U[0,T) · · · U[0,T) s = k ∧ sk), where s = 1, · · · , k
means the server is at the i-th station, and sk = 1 shows that the k-th station is full. The right
part of Table 2 shows the results by fixing T = 10.

Random Robot Cyclic Server Polling System

N Before Product After Product time(s) result N Before Product After Product time(s) resultstates transitions states transitions states transitions states transitions
70 4900 14463 4869 14373 0.07 0.02602991 7 1345 6273 993 3456 <0.01 0.01779250

100 10000 29513 9941 29399 0.14 0.00213756 8 3073 15873 2305 8960 0.02 0.00908245
120 14400 43094 14288 42761 0.22 0.00210038 9 6913 39169 5249 22528 0.03 0.00462759
150 22500 67288 22301 66707 0.39 0.00106487 10 15361 94721 11777 55296 0.11 0.00235415
200 40000 119397 39748 118656 0.98 0.00107120 11 33793 225281 26113 133120 0.33 0.00119605
300 90000 268560 89330 266591 2.42 0.00077518 12 73729 528385 57345 315392 1.22 0.00060700
350 122500 366852 121695 364570 3.36 0.01079894 13 159745 1224750 124929 737280 5.06 0.00030786

Table 2. Experimental results.

Table 2 gives the number of states and transitions of original CTMC and product CTMC for
each model. From this table, we can conclude that the product construction decreases the size of
CTMCs to be analyzed since it filters out the irrelevant paths w.r.t. the properties to be verified.
For Random Robot, the size of product CTMC does not decrease so much, as this depends on
the CCSL formula. However, the product construction makes the original CTMC stratified and
we need just perform the transient probability analyses at each endpoint of the intervals which
occur in the CCSL formula. Thus, the execution time only depends on the size of product CTMC
and the number of endpoints.

Remark 1. More recently, Donatelli et al. [12] have extended CSL such that path properties can
be expressed via a deterministic timed automaton (DTA) with a single clock. Chen et al. [8,13]
take this approach further and consider DTA specifications with multiple clocks as well. In
the Cyclic Server Polling System case study, we compare our approach with the DTA based
approach. In [8], a DTA is used to specify the property: What is the probability that after con-
sulting all queues for one round, the server serves each queue one after the other within T time
units? This property can be separated into two phases and formulated by multiple until formulas.
(We remark that DTAs are in general more expressive than CSL specifications.) At each phase,
we construct the corresponding product CTMC which reduces the computation work a lot. As a
result, we can handle larger models, and the running time is considerably improved.

4 Concluding Remarks
In this work, we have introduced CCMC, a probabilistic model checker for CTMC models. Its
effectiveness and efficiency have been demonstrated through the successful analysis of several
case studies. As future work, we will extend this work to Continuous-Time Markov Decision
Process (CTMDP) models which can model and analyze the systems with both probabilistic
and nondeterministic behaviors. We also want to explore the possibility to use symbolic data
structures, such as MTBDDs or the one of the PRISM hybrid engine.

Acknowledgement The authors are supported by NSFC-91118007, NSFC-61061130541 and
2012ZX03039-004. Ernst Moritz Hahn is supported by Chinese Academy of Sciences fellow-
ship for young international scientists, by ERC Advanced Grant VERIWARE. Lijun Zhang
is supported IDEA4CPS, the VKR Center of Excellence MT-LAB, the EU FP7-ICT projects
MEALS (295261), and the DFG Sonderforschungsbereich AVACS.

References
1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continous-time Markov chains. ACM

TCL 1(1) (2000) 162–170
2. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model-checking algorithms for continuous-time

Markov chains. IEEE TSE 29(6) (2003) 524–541
3. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a tool for automatic verification of

probabilistic systems. In: TACAS. Volume 3920 of LNCS., Springer (2006) 441–444
4. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the proba-

bilistic model checker MRMC. PEVA 68(2) (2011) 90–104
5. Zhang, L., Jansen, D.N., Nielson, F., Hermanns, H.: Efficient CSL model checking using stratification.

LMCS 8(2:17) (2012) 1–18
6. Gao, Y., Xu, M., Zhan, N., Zhang, L.: Model checking conditional CSL for continuous-time Markov

chains. IPL (2012) 44–50
7. Zhang, L., Jansen, D.N., Nielson, F., Hermanns, H.: Automata-based CSL model checking. In: ICALP.

LNCS 6756, Springer (2011) 271–282
8. Barbot, B., Chen, T., Han, T., Katoen, J., Mereacre, A.: Efficient CTMC model checking of linear

real-time objectives. TACAS (2011) 128–142
9. Ibe, O., Trivedi, K.: Stochastic Petri net models of polling systems. IEEE JSAC 8(9) (1990) 1649–1657

10. Haverkort, B., Hermanns, H., Katoen, J.P.: On the use of model checking techniques for dependability
evaluation. In: SRDS. (October 2000) 228–237

11. Muppala, J., Ciardo, G., Trivedi, K.: Stochastic reward nets for reliability prediction. Communications
in Reliability, Maintainability and Serviceability 1(2) (July 1994) 9–20

12. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic properties with CSLTA.
IEEE TSE 35(2) (2009) 224–240

13. Chen, T., Han, T., Katoen, J.P., Mereacre, A.: Quantitative model checking of continuous-time Markov
chains against timed automata specifications. In: LICS, IEEE Comp. Soc. (2009) 309–318

	CCMC: A Conditional CSL Model Checker for Continuous-Time Markov Chains
	Introduction
	Logic and Tool Architecture
	Experiments
	Concluding Remarks

