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Abstract.The computation of transient probabilities for continuous-time Markov
chains often employs uniformisation, also known as the Jensen’s method. The fast
adaptive uniformisation method introduced by Mateescu approximates the proba-
bility by neglecting insignificant states, and has proven to be effective for quanti-
tative analysis of stochastic models arising in chemical and biological applications.
However, this method has only been formulated for the analysis of properties at
a given point of time t. In this paper, we extend fast adaptive uniformisation to
handle expected reward properties which reason about the model behaviour until
time t, for example, the expected number of chemical reactions that have occurred
until t. To show the feasibility of the approach, we integrate the method into the
probabilistic model checker PRISM and apply it to a range of biological models,
demonstrating superior performance compared to existing techniques.

1 Introduction

Model checking of continuous-time Markov chains (CTMCs) [3] is an established method
that has been successfully used for quantitative analysis of a variety of models, ranging
from biochemical reaction networks [9,17] to performance analysis of computer systems [2].
The analysis typically involves computing the transient probability of the system residing
in a state at a given time t, or, for a model annotated with time-dependent rewards, the
expected reward that can be obtained. Transient probabilities for finite-state CTMCs can
be computed through the uniformisation method, also known as the Jensen’s method.
Uniformisation involves discretising the CTMC with respect to a fixed rate, which en-
ables reduction of the transient probability calculation to an infinite summation of Pois-
son distributed steps of the derived discrete-time Markov chain, and approximating the
probability by truncating to a finite summation. The number of terms required can be
precomputed for a specified precision using the Fox-Glynn method [8].

Many biochemical reaction networks, however, induce CTMC models whose state space
is potentially infinite. To handle such cases, [17] introduced continuous-time propagation
models, a generalisation of continuous-time Markov chains. The idea of this model is to
propagate the (probability or expectation) mass values along the system execution. In
order to analyse propagation models, the fast adaptive uniformisation (FAU) method was
formulated [16]. Similarly to standard uniformisation, FAU applies discretisation, except
that it does so dynamically, starting from some initial condition wrt to a sequence of
rates (a birth process) rather than a single rate, and truncates the computation of the
probability to a finite summation, although the number of summation terms cannot be
precomputed. To deal with the unbounded state space, FAU explores only the relevant
states, ignoring the probability of the insignificant states. Thus, the number of states to be
maintained in memory can be kept small, at a cost of some loss of precision. Importantly,
the FAU method can also speed up the analysis of very large finite models.
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Fast adaptive uniformisation was implemented [6] and applied successfully on a variety
of biological systems [6,17], but for transient probabilities only. Many useful quantitative
analyses involve the computation of expected rewards, which can be instantaneous (in-
curred at time t) or cumulated (until time t). An example of an instantaneous reward
property is the number of molecules of a given species at time 100s, and of a cumulative
property the expected number of reactions that occurred for the duration of 100s. Al-
though one can express cumulative reward properties by adding additional species to the
model, for example by increasing the reward by 1 every time a reaction occurs, this has
the disadvantage of introducing an additional dimension into the model and, as we show
later, can severely affect the performance, resulting in higher memory requirement and a
consequent loss of precision.

In this paper, we extend fast adaptive uniformisation for CTMCs to allow for efficient
computation of cumulative reward properties, thus avoiding the overhead of adding the
additional dimension. We cast our results in the framework of propagation models of
[17]. We implement the method, including the reward extension, and integrate it into the
probabilistic model checker PRISM. To show the practical applicability of FAU, we have
applied it to a range of case studies from biology, demonstrating superior performance
compared to existing techniques.

Related work. FAU generalises adaptive uniformisation [18] by accelerating the dis-
cretisation and neglecting states with insignificant probability. Standard uniformisation is
implemented in a number of tools, including PRISM, which we enhance with the FAU
functionality in this paper. SABRE [6] is the first tool to implement FAU without cu-
mulative rewards. Both PRISM and SABRE support models written in Systems Biology
Markup Language (SBML) as input, in addition to their native modelling languages.
SABRE is a stand-alone tool available for download or as a web interface; it addition-
ally offers deterministic approximations using differential equations (by the Runge-Kutta
fourth order method), which is faster and leads to accurate results for large numbers of
molecules. PRISM does not support deterministic approximations, but provides extensive
support for temporal logic model checking that is appropriate for molecular networks where
some species occur in small numbers, or the encoding of spatial information is needed, as
we consider in this paper. PRISM also provides statistical model checking and Gillespie
simulation. The tool MARCIE [19] implements FAU but does not support cumulative
rewards. Further tools that support reward properties but not FAU include, for instance,
Möbius [4] and MRMC [11].

2 Preliminaries

We begin by giving an overview of the main definitions and results based on [13,6,17].
A continuous-time Markov chain (CTMC) is given by a set of discrete states S and the
transition rate matrix R : S × S → R≥0 where R(s, s) = 0 for all s ∈ S. The rate R(s, s′)
determines the delay before the transition can occur, i.e. the probability of this transition
being triggered within t time-units is 1−e−R(s,s′)·t. Let E(s)

def
=
∑

s′∈S R(s, s′) be the exit

rate and define the generator matrix Q by Q
def
= R− diag(E), where diag(E) is the S × S

matrix with E on its diagonal and zero everywhere else. Then πt : S → R≥0, the transient
probability vector at time t, can be expressed as πt = π · eQt given the initial probability
vector π.

2



0 . . . 98 99 100 101 102 . . .
9.7 9.8 9.9 10.0 10.1 10.2

11.3311.2211.1111.0010.8910.780.11

0

Fig. 1: Birth-death process.
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Fig. 2: Birth process.

We cast our method in the framework of continuous-time (linear) propagation models
[17, Section 2.3.3] which generalise continuous-time Markov chains. We now recall the
relevant results from [17].

Definition 1 (Continuous-time propagation model). A continuous-time propagation
model (CTPM) is a tuple M = (S, π,R), where

–S is a countable or finite set of states,
– π : S → R≥0 where |{s ∈ S | π(s) > 0}| < ∞ is an initialisation vector, and
–R : S × S → R≥0 is a transition matrix, such that for all s ∈ S we have |{s′ ∈ S |
R(s, s′) > 0}| < ∞.

The transition matrix R assigns a rate R(s, s′) to each pair of states, as for CTMCs, and
the initialisation vector π assigns an initial mass value π(s) to each state s ∈ S. There
are only finitely many states to which a positive mass is assigned initially. The models we
consider are finitely branching, that is, for each state there are only finitely many states
to which this state has a positive transition rate.

A CTPM is a CTMC if
∑

s∈S π(s) = 1 and R(s, s) = 0 for all s ∈ S.

Example 1 (Continuous-time Markov chain). In Fig. 1, we depict a CTPM [7, 001-01], a
so-called birth-death process. Each state s is a natural number describing the number s of
molecules of a given species. In each state s, a new molecule can appear with rate λ · s,
and disappear with rate µ · s for λ

def
= 0.1, µ

def
= 0.11. We thus have R(s, s+1)

def
= λ · s for all

s ≥ 0, R(s, s− 1)
def
= µ · s for s ≥ 1 and R(·, ·)

def
= 0 otherwise. We assume that π(100)

def
= 1

and for the other states π(·)
def
= 0. Thus, the model is a CTMC.

To reason about the timed behaviour of a CTPM, we now define its generator matrix
which generalises that for CTMCs.

Definition 2 (Generator matrix). The generator matrix Q(M) : S×S → R of a CTPM
M is defined so that

–Q(M)(s, s′)
def
= R(s, s′) for s, s′ ∈ S with s 6= s′, and

–Q(M)(s, s)
def
= R(s, s)−

∑

s′∈S,

s′ 6=s

R(s, s′).

The propagation process, which propagates probability mass or expectation values, is
then defined as follows. Note that, for CTMCs, πt(s) is the (transient) probability that
the model resides in state s at time t.

Definition 3 (Propagation process). Given a CTPM M = (S, π,R), the propagation
process at time t, πt(M) : S → R, is defined as the solution of the differential equation

π̇(s′)
def
=
∑

s∈S

π(s) ·Q(M)(s, s′)

at time t, for s′ ∈ S, given the initial value π.
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The standard uniformisation [10] method for CTMCs splits the CTMC into a discrete-
time Markov chain (DTMC) and a Poisson process as follows. Define the DTMC P by
P

def
= I + 1

Λ
· Q where Λ is the uniformisation rate such that Λ ≥ maxs∈SE(s). Then

πt can be computed as
∑∞

n=0 πt(Ψ
Λ)(n) · τn where πt(Ψ

Λ)(n) is the value of the Poisson
distribution with rate Λ · t at point n, and τn = τn−1 · P for n > 0, τ0 = π0. For a given
precision ǫ, the summation can be truncated using the Fox and Glynn method [8].

The fast adaptive uniformisation (FAU) [6,17] is a variant of the adaptive uniformisa-
tion [18] which splits the CTMC into a DTMC and a birth process. For an infinite sequence
Λ = (Λ0, Λ1, . . .) of rates with Λn ∈ R≥0 for all n ∈ N, the birth process is defined as the
CTMC ΦΛ def

= (S, π,R), where

–S
def
= N,

– π(0)
def
= 1 and π(·)

def
= 0 otherwise, and

–R(n, n+ 1)
def
= Λn for n ∈ N and R(·, ·)

def
= 0 otherwise.

Note that the Poisson process is a special case of the birth process with constant rates
Λ = (Λ,Λ, . . .).

Transient probabilities of birth processes can be approximated efficiently using spe-
cialised techniques [17, Section 4.3.2, Solution of the birth process]. This is possible by
applying standard uniformisation [10] in a way which takes advantage of the particular
structure of the process. Finally, transient probabilities of general CTPMs can be com-
puted as follows, where we reformulate Pn in terms of the rate matrix, rather than the
generator matrix used in [17].

Theorem 1 (Solving propagation models using a birth process). Consider

– a CTPM M = (S, π,R),
– an infinite sequence of subsets S = (S0, S1, . . .) with Sn ⊆ S denoting active states,
– an infinite sequence Λ = (Λ0, Λ1, . . .) with Λn ≥ sups∈Sn

∑

s′∈S,

s′ 6=s

R(s, s′) of uniformi-

sation rates,
– probability matrices Pn(M) : S × S → R≥0 for n ∈ N, where for s, s′ ∈ S we have

Pn(M)(s, s′)
def
=







R(s,s′)
Λn

if s 6= s′, and
R(s,s′)

Λn
+ 1−

∑

s′′∈S,

s′′ 6=s

R(s,s′′)
Λn

otherwise,

– discrete-time distributions τn(M) : S → R≥0 for n ∈ N with

τn(M)(s′)
def
=

{

π(s′) if n = 0, and
∑

s∈S τn−1(M)(s) · Pn−1(s, s
′) otherwise.

We further require that {s ∈ S | τn(M)(s) > 0} ⊆ Sn for n ∈ N.
Then we have that, at time t, for each s ∈ S:

πt(M)(s) =

∞
∑

n=0

πt(Φ
Λ)(n) · τn(M)(s).

The fast adaptive uniformisation method [17] builds on the result above and works
as follows. Starting with the initial distribution at step n = 0, at each step n the FAU
explores a subset Ŝn of the states Sn. The sets Ŝn are constructed by taking Ŝn−1, adding

4



the successor states {s′ ∈ S | ∃s ∈ Ŝn−1. R(s, s′) > 0} of this set, and discarding states s
with τn(M)(s) < δ, where δ is a fixed precision threshold. This process is repeated until
step m, for instance so that (1−

∑m

n=0 πt(Φ
Λ)(n)) < ε. Thus, we add the probability from

the birth process at each step, and stop the state space exploration as soon as the value
obtained this way is at least 1− ε. In contrast to standard uniformisation, where the Fox
and Glynn [8] algorithm can be utilised, we do not have an a priori step bound, but are
still able to decide in a straightforward way when the infinite sum can be safely truncated.

Definition 4 (Fast Adaptive Uniformisation). Let M, S = (S0, S1, . . .), and Λ =
(Λ0, Λ1, . . .) be as in Theorem 1. Further, consider

– a truncation point m ∈ N,
– a finite sequence of subsets Ŝ = (Ŝ0, . . . , Ŝm) with Ŝn ⊆ Sn denoting active states for
n ∈ {1, . . . ,m},

– probability matrices P̂n(M) : S × S → R≥0 for n ∈ {0, . . . ,m} where

P̂n(M)(s, s′)
def
=

{

Pn(M)(s, s′) if s ∈ Ŝn, and

0 otherwise,

– discrete-time distributions τ̂n(M) : S → R≥0 for n ∈ N with

τ̂n(M)(s′)
def
=

{

π(s′) if n = 0, and
∑

s∈S τ̂n−1(M) · P̂n−1(s, s
′) otherwise.

We define the fast adaptive uniformisation (FAU) value at time t for each s ∈ S as

π̂t(M, Ŝ,Λ)(s)
def
=

m
∑

n=0

πt(Φ
Λ)(n) · τn(M)(s).

Example 2 (Fast Adaptive Uniformisation). We sketch how one can perform FAU for
the CTMC from Example 1 according to Definition 4 and Theorem 1: only for state
s = 100 the initial distribution is positive, so we can use S0

def
= {100}. Then, we use

Sn
def
= {max{0, 100− n}, . . . , n} and Λn

def
= (λ+ µ) · n. The corresponding birth process is

sketched in Fig. 2. In Fig. 3, we depict Sn together with the relevant parts of the matrices
Pn for n = 0, 1, 2, . . . ,∞ (rounding-off the numbers). In addition, for t = 0.1 we provide
the transient probabilities of being in the nth state of the birth process and the first n

summands of π0.1(M)(100).

State s = 0 is absorbing, that is, once entered it cannot be left, and rates leading to
a decrease in molecule count are higher than those leading to an increase. Thus, in the
last line (“Step ∞”) we see that, as n increases, the probability concentrates on the state
s = 0. Thus, we can discard states with a high number of molecules from the reduced state
sets Ŝn, while retaining a sufficient amount of the total probability.

We now define instantaneous rewards, which can be used to express expected reward
properties incurred at a given time. We annotate the models with state rewards.

Definition 5 (State reward structure). A state reward structure for a CTMC M =
(S, π,R) is a function r: S → R≥0.
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Step 0

Step 1

Step 2

Step ∞

0 1 0

0.476

0.524

0 0.524 0 0.476 0

0.467 0.471 0.476

0.5240.5190.513

0.0100.020

0 0.269 0.010 0.493 0 0.227 0

0.457 0.462 0.467 0.471 0.476

0.5240.5190.5130.5080.010

0.039 0.029 0.020 0.020

1 . . . 0 0 0 0 0 . . .

π0.1(Φ
Λ)(0) ≈ 0.122

π0.1(Φ
Λ)(1) ≈ 0.254

π0.1(Φ
Λ)(2) ≈ 0.267

π0.1(Φ
Λ)(∞) = 0

∑0
n=0 π0.1(Φ

Λ)(n) · τn(M)(100) ≈ 0.122

∑1
n=0 π0.1(Φ

Λ)(n) · τn(M)(100) ≈ 0.122

∑2
n=0 π0.1(Φ

Λ)(n) · τn(M)(100) ≈ 0.254

∑∞

n=0 π0.1(Φ
Λ)(n) · τn(M)(100) ≈ 0.299

Fig. 3: Demonstration of Fast Adaptive Uniformisation.

Definition 6 (Instantaneous rewards). Consider a CTMC M = (S, π,R) with state
reward structure r: S → R≥0 and a time point t ∈ R≥0. The instantaneous reward is
defined as

It(M, r)
def
=
∑

s∈S

πt(M)(s) · r(s).

We show that instantaneous rewards can be easily accommodated within the FAU method,
and we can approximate the expected mass value by terminating the state-space explo-
ration using a criterion similar to the probability mass calculation in [17].

Definition 7 (Instantaneous reward approximation). Let M, S = (S0, S1, . . .), and

Λ = (Λ0, Λ1, . . .) be as in Theorem 1 and let Ŝ be as in Definition 4. Then we define

It(M, r, Ŝ,Λ)
def
=
∑

s∈S

π̂t(M,S,Λ)(s) · r(s).

Corollary 1 (Error bounds for FAU). Consider a CTMC M = (S, π,R) for which we
have the uniformisation rates Λ (cf. Theorem 1) and a state reward structure r. Consider

m ∈ N, Ŝ, and τ̂ as in Definition 4. Set Λ
def
= (Λ,Λ, . . .). Then if

max
s∈S

r(s) ·

(

1−

m
∑

n=0

πt(Φ
Λ)(n)

)

<
ǫ

2
and max

s∈S
r(s) ·



1−
∑

s∈Ŝm

τ̂m(s)



 <
ǫ

2

it follows that

It(M, r)− It(M, r, Ŝ,Λ) < ǫ.

Proof.Part of the expected reward value is lost due to the approximation of the infinite
sum. This is accounted for by first inequality. By discarding states while exploring the
state space, we lose further mass. This is accounted for by the second inequality. Adding
up the maxima of the two errors, we can bound the error. ⊓⊔

Example 3 (FAU for Instantaneous Rewards). Consider the CTMC from Example 1 with
a reward structure r assigning to each state s the number of molecules s. When using
the transient probability values computed in Example 2, for the computation of the exact
values we have I0.1(M, r) =

∑

s∈S π̂t(M,S,Λ)(s) · r(s) ≈ . . .+ 100 · 0.299 + . . . ≈ 99.900.
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3 Cumulative Rewards

In this section, we extend the FAU method to reason about properties of the behaviour
of a CTMC model cumulating the rewards until a given point of time. The correctness
of the method is proved using the framework of CTPMs [17], where cumulative rewards
were not considered.

For a given CTMC, we first extend its state space by adding time-accumulating states
to remember how much time was spent in a specific state, and then, noting that the
time-extended CTPM is not a CTMC, show how the expected reward computation can
be approximated.

Definition 8 (Time-extended CTPM). Given a CTMC M = (S, π,R), the time-
extended CTPM is defined as

ext(M)
def
= (Sext, πext,Rext), where

–Sext
def
= S ⊎ Sacc, where for each s ∈ S we have exactly one corresponding time-

accumulating sacc ∈ Sacc, that is, Sacc
def
= {sacc | s ∈ S},

– πext(s)
def
= π for s ∈ S and πext(·)

def
= 0 otherwise, and

– the transition matrix Rext : Sext×Sext → R≥0 is defined such that, for sext, s
′
ext ∈ Sext,

we have

Rext(sext, s
′
ext)

def
=











R(sext, s
′
ext) if sext, s

′
ext ∈ S and sext 6= s′ext,

1 if sext = s ∈ S and s′ext ∈ {sext, sacc},

0 otherwise.

We now use time-extended CTPMs to prove the central theorem of the paper. This is
achieved by first approximating the residence time, and then the cumulative reward, by
considering the reward per time unit of residing in a given state. We use the mixed birth
process probability ΨΛ(n) = 1

Λn
·
∑∞

i=n+1 πt(Φ
Λ)(i), which denotes the probability that

more than n state changes happen within time t in the birth process, divided by the nth
uniformisation rate. This is used to collect the time spent in given state, as opposed to
the probability πt(Φ

Λ)(i) to be in a state at a given point of time.

Theorem 2 (Residence time). Consider a CTMC M = (S, π,R) and let ρt(M) : S →
R≥0 be defined as

ρt(M)(s)
def
=

t
∫

0

πu(s) du

for s ∈ S. Then we have

ρt(M)(s) =

∞
∑

n=0

ΨΛ(n) · τn(M)(s),

for s ∈ S, τ and Λ as in Theorem 1 and ΨΛ(n)
def
= 1

Λn
·
∑∞

i=n+1 πt(Φ
Λ)(i).

Proof.Assume ext(M) = (Sext, πext,Rext). Then, by definition of the structure of the
time-extended CTPM, we have for s ∈ S that

πt(M)(s) = πt(Mext)(s), and ρt(M)(s) = πt(Mext)(sacc).
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By the structure of the time-extended CTPM, we have

τ0(Mext)(sacc) = 0,

τn+1(Mext)(sacc) =
1

Λn

· τn(Mext)(s) + τn(Mext)(sacc) =
1

Λn

· τn(M)(s) + τn(Mext)(sacc)

and thus

τn(Mext)(sacc) =

n−1
∑

i=0

1

Λi

· τi(M)(s).

From this and by Theorem 1 we have

πt(Mext)(sacc) =

∞
∑

n=0

πt(Φ
Λ)(n) · τn(Mext)(sacc)

=

∞
∑

n=0

πt(Φ
Λ)(n) ·

n−1
∑

i=0

1

Λi

· τi(M)(s) =

∞
∑

n=0

n−1
∑

i=0

1

Λi

· τi(M)(s) · πt(Φ
Λ)(n)

=

∞
∑

i=0

∞
∑

n=i+1

1

Λi

· τi(M)(s) · πt(Φ
Λ)(n) =

∞
∑

i=0

(

1

Λi

·

∞
∑

n=i+1

πt(Φ
Λ)(n)

)

· τi(M)(s)

=
∞
∑

i=0

ΨΛ(i) · τi(M)(s) =
∞
∑

n=0

ΨΛ(n) · τn(M)(s). ⊓⊔

The above theorem splits the behaviour of a CTMC into the birth process and a discrete-
time process that determines the time spent in specific states of the CTMC. Thus, we can
now apply the FAU to compute cumulative reward properties. To do this, we accumulate
rewards for being in a state over time. Transition rewards rt : S × S → R≥0 are obtained
for moving from one state to another.

We do not explicitly consider transition rewards for CTMCs here. However, given
state rewards r and transition rewards rt, we can define cumulative reward rates r′ as
r′(s)

def
= r(s) +

∑

s′∈S R(s, s′) · rt(s, s
′). For the properties under consideration, this new

reward structure is equivalent to using transition rewards, as shown in [12, Equation 6].
We stress that time-extended CTPMs are used here only in the proof, and never con-

structed in our method.

Definition 9 (Cumulative rewards). Consider a CTMC M = (S, π,R) with state re-
ward structure r: S → R≥0 and a time duration t ∈ R≥0. The cumulative reward value is
defined as

Ct(M, r)
def
=

t
∫

0

∑

s∈S

πu(M)(s) · r(s) du.

We now use the results from Theorem 2 to compute the reward obtained until a given
point of time. The following corollary follows directly from Theorem 2 and can be used to
approximate cumulative rewards.

Corollary 2 (Computing rewards). For a CTMC M = (S, π,R) with state reward
structure r: S → R≥0 and a time duration t ∈ R≥0, we have

Ct(M, r) =
∑

s∈S

ρt(M)(s) · r(s) =

∞
∑

n=0

∑

s∈S

ΨΛ(n) · τn(M)(s) · r(s).
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Definition 10 (Cumulative reward approximation). Let M, S = (S0, S1, . . .), and

Λ = (Λ0, Λ1, . . .) be as in Theorem 1 and let m ∈ N and Ŝ be as in Definition 4. Then we
define

Ct(M, r, t, Ŝ,Λ)
def
=

m
∑

n=0

∑

s∈S

ΨΛ(n) · τ̂n(M)(s) · r(s).

Calculating the cumulative rewards is of similar complexity to calculating the instanta-
neous rewards. After each step n, we multiply the probability in the discrete-time process
by the corresponding cumulative reward and the value from Ψ , and then sum up the val-
ues obtained this way. The time overhead to compute the accumulated reward values is
negligible. More importantly, it is not necessary to extend the state space, and hence the
space complexity compared to FAU is not increased.

The corollary can be seen as a generalisation of a previous result [12, Theorem 1], where
the computation of cumulative reward-based properties is also considered. However, the
analysis in [12] relies on complete exploration of the state space and uses the special case
Λ = (Λ,Λ, . . .), which reduces the birth process to a Poisson process.

The computation of the error and the bounds on the number of steps is more involved
for cumulative rewards than for instantaneous rewards, as shown in Corollary 1. The
precision which can be achieved depends on the structure of the CTMC and the state
rewards. We often have models in which, for each state, the sum of the rates to new
states (further away from initial states) is bounded. We remark that this does not restrict
the rates back to previously visited states. For this class of models, which includes many
realistic examples as shown below, we derive error bounds as follows.

Corollary 3 (Error bound cumulative). Consider a CTMC M = (S, π,R) for which
we have a fixed Λ so that for each n ∈ N and s ∈ Sn (cf. Theorem 1) we have that
∑

s′∈Sn+1
R(s, s′) ≤ Λ. Further, consider a state reward structure r so that we have fixed

constants c, d ∈ R≥0 where for all n ∈ N and s ∈ Sn we have r(s) ≤ c + dn. Consider

m ∈ N, Ŝ, and τ̂ as in Definition 4. Set Λb
def
= (Λ,Λ, . . .) and B

def
= t · (c+ d+ dΛt). If

B −

m
∑

n=0

(c+ dn) · ΨΛb(n) <
ǫ

2
and B ·



1−
∑

s∈Ŝm

τ̂m(s)



 <
ǫ

2

then we have

Ct(M, r)− Ct(M, r, Ŝ,Λ) < ǫ.

Proof.When applying the FAU method, the worst case of reward loss is when we have
the birth process ΦΛb = (N, π,R) with reward structure r, so that, for all n ∈ N, we have
r(n)

def
= c + dn. Denote the total accumulated reward until time t for this model by B.

Thus, we lose no more reward than B −
∑m

n=0(c + dn) · ΨΛb(n) in case we use Ŝn = Sn

and perform m steps in the FAU.
To take into account the loss of rewards from using Ŝn ⊆ Sn, we consider the total

probability lost (1−
∑

s∈Ŝm
τ̂m(s)). In the worst case, this probability was already lost at

the beginning. In this case, we lose up to B · (1−
∑

s∈Ŝm
τ̂m(s)).

By adding up the two sources of error, we obtain the result. ⊓⊔

If the rates or rewards are increasing more quickly, e.g., if we have a quadratic increase in
the rewards, that is, r(s) ≤ c + dn2 for s ∈ Ŝn, the bounds on the error can be obtained
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using similar reasoning for a different value of B. Because of the simple structure of birth
processes, it is possible to quickly approximate

∑m

n=0(c+ dn) · ΨΛ(n) to find the value m

to terminate the approximation in the worst case.

Example 4 (FAU for Cumulative Rewards). We reconsider the CTMC from Example 1
for which we computed transient probabilities in Example 2. We are interested in the
expected total number of changes to the number of molecules, and thus assign a reward
of 1 to each state change. As discussed, we transform these transition rewards into a
state reward structure r. For instance, state s = 100 has two transitions with rates 10
and 11, both with reward of 1, so that the state reward here is 10 · 1 + 11 · 1 = 21. We
have ΨΛ(0) ≈ 0.042, ΨΛ(1) ≈ 0.029, ΨΛ(2) ≈ 0.017. To compute cumulative rewards,
according to Corollary 2 we can proceed as follows: after each step n of Example 2 and
Fig. 3, for each s ∈ Sn (s ∈ Ŝn) we compute the product ΨΛ(n) · τn(s) · r(s) and build
the sum v(n) =

∑

s∈S ΨΛ(n) · τ̂n(M)(s) · r(s) of these values. States s ∈ S \ Sn need not
be considered, because for those τn(s) = 0. This value v(n) is then added to the partially
computed total cumulative reward. In the example, we have v(0) ≈ 0.042 · 1 · 100, v(1) ≈
0.029 ·(0.524 ·99+0.476 ·101), v(2) = 0.017 ·(0.269 ·98+0.010 ·99+0.493 ·100+0.227 ·102).
Finally, we obtain C0.1(M, r) ≈ 2.099.

4 Case Studies and Implementation

We have integrated the fast adaptive uniformisation method in the probabilistic model
checker PRISM [14] and intend to make it available in one of the next PRISM releases.
Our implementation builds on top of the “explicit” engine, and is written in Java. Models
can be input in the native language of PRISM or SBML. Properties are specified as
non-nested continuous stochastic logic (CSL) [1] formulae extended with the reward oper-
ator [13], as either time-bounded until, or instantaneous or cumulative reward properties.

To show the practical applicability of our method, we apply it to three case studies.
We terminate the state space exploration once we obtain (1−

∑m

n=0 πt(Φ
Λ(n))) < ε for an

adequate ε, and discard states with probability of less than δ in the discrete-time process.
Experiments were performed on a Linux computer with an Intel i7-3770 processor with
3.40GHz and 32GB of RAM.

Wherever possible, we have compared our results to the PRISM engine which performs
best for that particular model. This includes comparison with the symbolic engines of
PRISM (“mtbdd” and “hybrid”), which tended to perform worse than the “explicit”
engine on our examples, likely due to loss of regularity. We note that symbolic engines
cannot handle infinite-state models employed here, but the “explicit” engine is able to,
provided that the reachable state space is finite. Conventional methods could perform
better than FAU when the state space is sufficiently small, in view of the additional
overhead necessary for FAU. We anticipate that the performance of PRISM is indicative
of modern probabilistic model checkers, and therefore our conclusions are more generally
applicable.

In this paper, we do not compare against simulation-based approaches, such as ap-
proximate probabilistic model checking available in PRISM (probability estimation and
statistical hypothesis testing); while simulation has the advantage of not requiring the
generator matrix to be constructed, and hence does not suffer from state-space explosion,
it is sensitive to the size of time bounds and can only guarantee error bounds with a given
confidence interval. FAU can provide guarantees for an arbitrary precision by controlling
δ, although reducing δ will generally incur higher memory requirements. Investigating the
trade-off between FAU and simulation-based techniques deserves further study.
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Model Time (s) States Lost Molecules Reactions

001-01 1 321 8.7060E-09 60.6531 826.2856
001-03 2 347 9.6165E-09 0.6738 2,085.8503
001-04 1 163 8.1621E-09 6.0653 82.6286
001-05 22 2,999 1.1078E-08 6,065.3065 82,628.5611
001-06 1 321 8.7060E-09 60.6531 826.2856
001-07 51 161,617 2.0779E-08 60.6531 826.2856
001-08 2 321 8.7060E-09 60.6531 826.2856
001-18 1 277 8.5217E-09 77.8801 464.5184
001-19 1 321 8.7060E-09 60.6531 826.2856
002-01 2 44 5.9691E-09 9.9326 90.0674
002-02 2 151 7.7930E-09 99.3262 900.6738
002-03 2 107 8.3948E-09 49.6631 450.3369
002-04 19 1,377 1.0983E-08 9,932.6204 90,067.3790
002-05 1 151 7.7930E-09 99.3262 900.6738
002-06 5 36,255 9.9788E-09 99.3262 900.6738
002-07 1 151 7.7930E-09 99.3262 900.6738
002-08 2 44 5.9691E-09 9.9326 90.0674
003-01 2 48 5.3131E-09 28.5423 64.7560
003-02 2 156 7.5890E-09 144.9960 573.9888
003-05 2 48 5.3131E-09 35.7289 64.7560
004-01 1 124 8.0978E-09 24.9989 275.0011
004-02 1 173 9.0356E-09 25.0000 525.0000
004-03 4 773 3.5419E-08 25.0000 5,024.9999

ext. 001-01 66 161,617 2.0779E-08 60.6531 826.2856

Table 1: Discrete Stochastic Model Test Suite Results.

Note that the performance figures given in the tables reflect the relative speeds of
engines at the time of writing, and can change due to further optimisation.

4.1 Discrete Stochastic Model Test Suite

The Discrete Stochastic Model Test Suite [7] is a test suite of models encoded in the
Systems Biology Markup Language (SBML), for which values of certain properties have
been computed up to a given precision. It is aimed at stochastic simulator developers who
can evaluate the accuracy of their tools against known results.

We used PRISM’s SBML import functionality3 to convert SBML to PRISM files.
The models have infinitely many states, and so cannot be handled by existing PRISM

engines (except “explicit”, providing the reachable state space is finite). As the SBML

import does not yet support the SBML feature of events, we were only able to analyse 35
out of the 39 test models. For this case study, we chose ε = 10−9 and δ = 10−13 and apply
analyses for a time bound of 50, which is the largest one for which results are included in
the SBML models. The results for a selection of the models are given in Table 1. For each
“Model”, we give the “Time (s)” in seconds needed to perform the analysis, the maximal
number of “States” in memory, and the probability “Lost” through approximation. The
column “Molecules” is an instantaneous reward property that returns the expected number
of molecules of the first species of the model under consideration. The column “Reactions”
is the expected number of reactions until time 50, which is a cumulative reward property.
In the table, each row corresponds to two analyses; however, the computation time is the
same for both since the same number of states had to be explored.

All analyses (with the exception of “ext. 001-01” not originally from the test suite,
see below) took less than a minute. The results we obtain for “Molecules” agree with
those provided by the test suite, for the number of decimal places given there (values for
“Reactions” are not provided by the test suite). For the model “001-01”, we attempted a
naive approach to compute the number of reactions by adding a new species “Reactions”,
increasing the dimensionality. As can be seen from results given in the last row (“ext. 001-
01”) of Table 1, these performance figures were much worse than for our implementation.
We remark that these figures are similar to those for the (unmodified) “001-07”, in which
also a species tracking a specific reaction is introduced.

3 http://www.prismmodelchecker.org/manual/RunningPRISM/SupportForSBML
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N T
Fastest PRISM engine - explicit FAU

Time (s) States Finished Reactions Time (s) States Lost Finished Reactions

1 10000 3 169 0.0593 15.3193 2 169 1.6882E-09 0.0593 15.3193
1 50000 1 169 0.9999 26.9997 33 169 1.7133E-09 0.9999 26.9997
1 100000 2 169 1.0000 27.0000 140 169 1.7892E-09 1.0000 27.0000
2 10000 1 5,748 0.0224 37.1224 7 5,299 1.3024E-08 0.0224 37.1224
2 50000 2 5,748 0.9999 51.2958 41 5,299 1.5028E-08 0.9999 51.2958
2 100000 2 5,748 1.0000 51.2963 155 5,299 1.5090E-08 1.0000 51.2963
3 10000 15 93,538 0.0138 59.7229 145 67,292 1.0059E-07 0.0138 59.7229
3 50000 52 93,538 0.9999 75.0530 179 67,292 1.0994E-07 0.9999 75.0530
3 100000 96 93,538 1.0000 75.0536 437 67,292 1.1002E-07 1.0000 75.0536
4 10000 268 970,539 0.0103 82.6250 835 514,414 5.6703E-07 0.0103 82.6250
4 50000 1,039 970,539 0.9998 98.6211 872 514,414 5.8001E-07 0.9998 98.6211
4 100000 1,976 970,539 1.0000 98.6218 1,209 514,414 5.8009E-07 1.0000 98.6218
5 10000 3,463 7,377,039 0.0085 105.6602 2,370 2,814,235 2.9759E-06 0.0085 105.6602
5 50000 - - - - 2,416 2,814,235 2.9907E-06 0.9998 122.0891
5 100000 - - - - 2,815 2,814,235 2.9907E-06 1.0000 122.0897
6 10000 - - - - 5,453 12,163,811 1.3377E-05 0.0074 128.7586
6 50000 - - - - 5,644 12,163,811 1.3393E-05 0.9998 145.4913
6 100000 - - - - 5,960 12,163,811 1.3393E-05 1.0000 145.4920

Table 2: DNA Strand Displacement Results.

4.2 DNA Strand Displacement

DNA strand displacement (DSD) [20] is a mechanism for performing computation with
DNA molecules. A variety of logic circuits can be designed and implemented using DSD.
Initial species of DNA are mixed together in a reaction tube, and then strand displacement
reactions proceed autonomously, relying solely on hybridisation between complementary
nucleotide sequences to perform computational steps. In this case study, we consider trans-
ducer gates modelled and analysed in [15, Section 2] (example transducer_K=3.sm). This
model features the parameter N , which corresponds to the number of copies for initial
species, and K, the number of transducers placed in series.

We are interested in the probability that the computation is finished by time T (“Fin-
ished”), an instantaneous reward property, and the expected total number of reactions
(“Reactions”), a cumulative reward property. We fix K = 3 and provide results for differ-
ent N and T in Table 2. The state space of this case study is small enough to be compared
against existing methods in PRISM. We included the results for the “explicit” engine
because it was the fastest. In each row, the best performance in terms of state-space size
or time is highlighted in boldface.

Note also that the FAU method is able to handle larger models than existing PRISM

engines, and obtains better performance for larger model instances.

4.3 DNA Walkers

Fig. 4: Walker ‘XOR’ circuit. Adding
the input X will block the anchorages
labelled ¬X . Once the walker reaches
True or False the computation ends.

We consider models of DNA walkers [22], which
can also be used to design logic circuits on the
nanoscale. The main difference from DSD designs
is that a DNA walker operates on a track of DNA
strands (called anchorages) tethered to a surface,
rather than in solution, and thus the model has
to incorporate spatial information. An example
of an XOR circuit is shown in Fig. 4. We assign
True/False values to absorbing anchorages. The
walker starts in the Initial position and can nav-
igate down a series of junctions [21]. An enzyme
cuts the anchorage when the walker is attached,
allowing the walker to step onto the next anchor-
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Model Time (s) States Lost Signal Steps Blocked (s)

xor(X, Y ) 4126 228,803 1.9736E-02 0.6455 7.7696 606.2731
xor(¬X, Y ) 4070 228,803 1.9736E-02 0.6455 7.7696 606.2731
xor(X, ¬Y ) 4684 239,680 2.2587E-02 0.5979 7.5610 659.3715

xor-(¬X, ¬Y ) 4593 239,680 2.2587E-02 0.5979 7.5610 659.3715
xor-S-(X, Y ) 2970 215,544 1.6719E-02 0.5374 8.8363 133.1672

xor-S-(¬X, Y ) 3027 215,544 1.6719E-02 0.5374 8.8363 133.1672
xor-S-(X¬, Y ) 3651 233,063 1.8775E-02 0.5473 8.4049 146.7377

xor-S-(¬X, ¬Y ) 3630 233,063 1.8775E-02 0.5473 8.4049 146.7377
xor-large-(X, Y ) 18382 443,584 5.1855E-02 0.5661 9.5020 577.2680

xor-large-(¬X, Y ) 18142 443,584 5.1855E-02 0.5661 9.5020 577.2680
xor-large-(X¬, Y ) 19418 455,685 5.2995E-02 0.5674 9.4983 567.3420

xor-large-(¬X, ¬Y ) 18114 455,685 5.2995E-02 0.5674 9.4983 567.3420

Table 3: DNA Walkers.

age. Depending on prior input, certain anchorages can be blocked, which in turn directs
the walker at each junction.

A Markov chain model of the walker was developed [5] previously, and in this paper
we apply model checking with FAU, using the parameter set ε = 10−6 and δ = 10−8.
We analyse three XOR-circuits, from Fig. 4 and two variants, summarising the results
in Table 3. We model check the expected number of steps (column “Steps”) and the
probability of walkers reaching the desired anchorage (column “Signal”) by time T = 200
min. The walker occasionally steps over blockades or between tracks, which may cause it
to reach the wrong answer. Determining the size of the reachable state space appears to
be a hard problem, not unlike determining the number self-avoiding walks on a lattice. We
estimate the size to be around 1 · 107 and 9 · 108 reachable states for the normal and large
tracks, respectively. This state space is too large to construct the models symbolically and
compare against other PRISM engines.

The unmodified track, shown in Fig. 4, is “xor”, and the suffix “-S” indicates that
only one blocker is used instead of two consecutive ones, whereas suffix “-large” indicates
a track with more anchorages. The expected number of steps correlates well with the
track layout: when fewer anchorage are blocked (“-S”), the walker takes more steps on
average. A larger track also results in more steps taken on average. Because the track
has a point-symmetry, the results for inputs X,Y and ¬X,Y are the same, as well as
for inputs ¬X,¬ Y and X,¬Y . Occasionally, the blockade mechanism fails to block an
anchorage. Column “Blocked” shows how much time the walker spends on anchorages that
were supposed to be blocked, which is in line with expectations.

5 Conclusion

In this paper, we have extended fast adaptive uniformisation so that it can also be ap-
plied to cumulative reward properties. Cumulative measures allow one to express many
important quantitative properties, such as the expected number of times a certain re-
action happens and the average percentage of time the system spends in a given state.
Our method does not introduce a significant overhead to the analysis, and in particular
does not require the explicit construction of the extended state space of the underlying
continuous-time propagation model. In contrast to simulation-based approaches, we can
compute guaranteed error bounds for properties, as opposed to ensuring a given confi-
dence interval. We have applied it to several case studies, obtaining superior performance
in virtually all cases compared to existing methods.
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