
Noname manuscript No.
(will be inserted by the editor)

Chemical Reaction Network Designs for Asynchronous
Logic Circuits

Luca Cardelli ⋅ Marta Kwiatkowska ⋅ Max Whitby

Received: date / Accepted: date

Abstract Chemical reaction networks (CRNs) are a

versatile language for describing the dynamical be-

haviour of chemical kinetics, capable of modelling a va-

riety of digital and analogue processes. While CRN de-

signs for synchronous sequential logic circuits have been

proposed and their implementation in DNA demon-

strated, a physical realisation of these devices is difficult

because of their reliance on a clock. Asynchronous se-

quential logic, on the other hand, does not require a

clock, and instead relies on handshaking protocols to

ensure the temporal ordering of different phases of the

computation. This paper provides novel CRN designs

for the construction of asynchronous logic, arithmetic

and control flow elements based on a bi-molecular reac-

tion motif with catalytic reactions and uniform reaction

rates. We model and validate the designs for the de-

terministic and stochastic semantics using Microsoft’s

GEC tool and the probabilistic model checker PRISM,

demonstrating their ability to emulate the function of

asynchronous components under low molecular count.

This research is supported by a Royal Society Research Pro-
fessorship and ERC AdG VERIWARE.

Luca Cardelli
Microsoft Research, Cambridge UK
Department of Computer science, University of Oxford
E-mail: luca@microsoft.com

Marta Kwiatkowska
Department of Computer science, University of Oxford
E-mail: marta.kwiatkowska@cs.ox.ac.uk

Max Whitby
Department of Computer science, University of Oxford
E-mail: max.whitby@cs.ox.ac.uk

1 Introduction

Chemical Reaction Networks (CRNs) are traditionally

used to capture the behaviour of inorganic and organic

chemical reactions in a well-mixed solution. Recently,

a paradigm shift in the scientific community has seen

the use of CRNs extend to that of a high-level pro-

gramming language for molecular computing devices

[13], where the fundamental computational process dif-

fers from conventional digital electronics in that it in-

volves transformation of input chemicals into output

via reaction rules, as opposed to processing discrete

signals (voltage bands) interpreted as Boolean values.

Several digital and analogue circuits [20,34] have been

designed in CRNs and their computational power stud-

ied [35,10]. It has also been demonstrated in principle

that any CRN can be physically realised in DNA [35,

5,12]. CRNs are therefore particularly attractive as a

programming language for use in nanotechnology and

biomedical applications, where it is difficult to integrate

traditional electronics.

Chemical systems can store and process information

in several ways. We focus on finite systems of molecules

interacting in a well-mixed solution under mass-action

kinetics and emulate Boolean circuits by encoding in-

formation through molecular concentrations reaching

a particular threshold. The computation proceeds by

transforming input species concentrations into outputs

according to the reactions of a finite CRN. It is known

that the computational power of CRNs is affected by

the choice of the semantics, deterministic or stochas-

tic. In particular, assuming a small probability of error,

(finite) stochastic CRNs have been shown to be Tur-

ing universal [34]. The deterministic semantics inter-

prets the reactions as a system of differential equations,

which describe the evolution of the system as a vec-

2 Luca Cardelli et al.

tor of real-valued species concentrations over time [10].

The stochastic semantics, on the other hand, views the

state of the system as a vector of (non-negative) inte-

ger molecular counts and state transitions as a reaction

which has a non-zero probability of occurring [13]. The

stochastic evolution of the system over time is obtained

as a solution of the Chemical Master Equation (CME)

[37]. It is well known that the deterministic semantics is

not accurate for small populations. While the stochas-

tic semantics is exact, it is infeasible for large molecu-

lar counts. One scalable alternative is the Linear Noise

Approximation, which is a real-valued approximation

of the CME [8]. The correctness of the behaviour of a

circuit described by a finite CRN can be analysed by in-

specting its stochastic and deterministic evolution over

time. In addition, techniques such as model checking

can be employed to analyse the temporal ordering of

events.

While CRN designs for synchronous sequential logic

circuits have been proposed, to mention [20,35,34], a

physical realisation of these devices is challenging be-

cause of their reliance on a clock to synchronise events

in order to ensure the correct temporal order of the

phases of the computation. Clocks are difficult to make,

since they arise from unique conditions of chemical con-

centrations and kinetic constants, and must control a

large number of events. In electronics, an alternative

circuit design technology is asynchronous sequential logic

[36,23], which instead of a clock relies on handshaking

protocols to synchronise events. Asynchronous circuits

are widely used for low-power microprocessor designs,

e.g., by ARM, though require a larger circuit area. The

key component is the Muller C-element, which is used

to synchronise multiple independent processes in a man-

ner insensitive to the delays on wires and individual

components. To ensure Turing completeness of asyn-

chronous circuits, we also require an isochronous fork

in addition to the Muller C-element. An isochronous

fork is a component which produces a fan-out of sig-

nals that reach the target at virtually the same time.

This assumption is difficult to achieve in conventional

electronics, because of the need to make the wires the

same length, but is straightforward in chemical kinetics

because of the well-mixed assumption.

This paper provides novel CRN designs for the con-

struction of an asynchronous computing device based

on a bi-molecular reaction motif inspired by the Ap-

proximate Majority network [2,7]. The motif employs

catalytic reactions to achieve bistable switching of molec-

ular concentrations, which emulates high and low volt-

age signals in digital electronics. All components are

produced with simple reactions and uniform reaction

rates, where we assume a well-mixed solution under

mass action kinetics, and are independent of a univer-

sal clock. Moreover, any design provided in this paper

could in principle be realised as a DNA strand dis-

placement device [5]. We work with the dual-rail design

methodology and employ a variant of the diagrammatic

language of [6] to represent the designs at the high level.

Starting from the Muller C-element, we design the main

components of a complete asynchronous computing de-

vice in terms of CRNs in a principled way, including

logic gates, control flow and basic arithmetic, as well as

more complex structures such as queues. We validate

the designs by exploring their time evolution for all pos-

sible combinations of inputs using Microsoft’s Visual

GEC tool
1
, with the latter also approximated using an

experimental implementation of the Linear Noise Ap-

proximation (LNA) of [8] provided by Visual GEC that

offers better scalability. We use the LNA to highlight a

flaw with a key design component. Further, we demon-

strate the correct behaviour of the circuits against tem-

poral logic specifications with the probabilistic model

checker PRISM
2

[17]. Our designs constitute the first

feasible implementation of asynchronous computational

components as CRNs, and are relevant for a multitude

of applications in synthetic biology and biosensing.

This paper is an extended version of the conference

paper [9].

2 Related Work

The computational power of Chemical Reaction Net-

works, viewed as a programming language for engineer-

ing biochemical systems, has been studied by a number

of authors, to mention [13,10]. There are a number of

ways in which chemical systems can encode and process

information. This includes simulating Boolean circuits,

where information is encoded in binary form using high

and low concentrations similarly to this paper, e.g. [20,

35,34], as well as geometric arrangements, for example

self-assembly [31] and molecular walkers [14] not consid-

ered here. Researchers have also investigated the power

of CRNs to model distributed algorithms [2].

Regarding synchronous logic circuits, much of the

work to date considered abstract CRN schemes. One

exception is [15], where a system of actual chemical re-

actions is given, together with a precise molecular im-

plementation for gates complete with a thermodynamic

analysis of how the system would evolve, though only

for simple gate designs. In [13] we see the construction

and composition of simple logic gates based upon cat-

1
http://lepton.research.microsoft.com/webgec/ [27],

both for the deterministic and stochastic semantics
2

www.prismmodelchecker.org

http://lepton.research.microsoft.com/webgec/
www.prismmodelchecker.org

Chemical Reaction Network Designs for Asynchronous Logic Circuits 3

alytic reactions, but they do not mention control flow

or systematic component design in a dual rail setting.

In [32] the authors propose CRNs for an inverter, an

incrementer, a decrementer and a copier; their designs

are based on two rate constants, “fast” and “slow”, and

thus are not rate-independent, in contrast to the designs

presented here.

CRNs can also be viewed as computing functions

over reals or Booleans. A single CRN computes a func-

tion over a finite domain, which is analogous to Boolean

circuits in the sense that any given circuit computes

only on inputs of a particular size [34]. An implemen-

tation of dual-rail logic gates that are rate-independent

is given in [11]. In contrast, our designs are composable

and capable of performing non-trivial computation.

Since the behaviour of CRNs is asynchronous, a fact

evident through their equivalence with Petri net mod-

els [13], the main difficulty with programming them is

the need to control the order of reactions. In [13] it is

suggested that this “uncontrollability” can be handled

by changing rate constants, an idea followed up in [24],

where CRN designs for basic arithmetic are given based

on two rate constants, “fast” and “slow”. Our designs,

on the other hand, exploit the asynchrony of the under-

lying CRN model and work with uniform rates.

Designs for the Muller C-element, though not the

remaining components of an asynchronous device, have

been constructed from genetic logic gates [25] and a

genetic toggle switch [26], but we are not aware of

any other nanoscale designs for asynchronous circuits.

[35] shows that any CRN, including those presented in

this paper, can theoretically be implemented as a DNA

Strand Displacement device. These devices have been

demonstrated in the lab [29,30,12], and thus provide

an indication of experimental feasibility of our designs.

3 Preliminaries

3.1 Chemical Reaction Networks

A Chemical Reaction Network (CRN) C = (Λ,R) is a

pair of finite sets, where Λ is a set of chemical species

and and R is a set of reactions. ∣Λ∣ denotes the size

of the set of species. Reactions in R describe how

species interact. Formally, a reaction τ ∈ R is a triple

τ = (rτ , pτ , kτ), where rτ ∈ N∣Λ∣
is the vector of molec-

ular counts of the reactants, pτ ∈ N∣Λ∣
is the vector of

molecular counts of the products and kτ ∈ R>0 are the

coefficient associated to the rate of the reaction. We as-

sume ordering of species within vectors is alphabetical.

Given a reaction τ1 = ([1, 1, 0]T , [0, 0, 2]T , k1), where

⋅T is the transpose of a vector, we often refer to it as

τ1 ∶ A+B
k1
→ 2C, where A,B and C are generic species.

In this paper we are only concerned with uni-

molecular reactions, i.e. those which have only one re-

actant, and bi-molecular, i.e. those with two reactants.

The “reversible reaction” notation A + B ⇋ 2C is

a shorthand for the two reactions A + B
k1
→ 2C and

2C
k2
→ A+B, where k1 and k2 are not necessarily equal.

We assume that the system is well stirred, that is,

the probability of the next reaction occurring between

two molecules is independent of the location of those

molecules, at fixed volume V and temperature; under

these assumptions a configuration or state x ∈ N∣Λ∣
of

the CRN is given by the number of molecules of each

species. Given a configuration x we define z = x
N

, where

N = V ⋅ NA is the volumetric factor, V is the volume

and NA Avogadro’s number. We write x(λi) for the

number of molecules of λi in the configuration x and

z(λi) = x(λi)
N

to denote the concentration of λi in the

same configuration.

We will sometimes distinguish between CRNs with

different initial configurations, and to this end define

a chemical reaction system (CRS) as a tuple S =

(Λ,R, x0) where (Λ,R) is a CRN and x0 ∈ N∣Λ∣
rep-

resents its initial configuration, and we sometimes use

the terms CRN and CRS interchangeably.

Diagrammatic CRN Notation To better visualize

a CRN C = (Λ,R) as a circuit, we employ a directed

multi-edge graph (Λ,E) based upon a fragment of the

diagrammatic notation for influence graphs [6]. Λ, the

nodes, represent the species of the CRN C and edges E

are derived from reactions R as follows. A reaction is
represented as a directed multi-edge with sets of species

as source and target. Each edge is either a pointed arrow

(↑) or a rounded arrow (m), with the source represented

by the flat edge and the target represented by the arrow

head. A reaction that produces a species as a product

is connected to it by a directed edge.

All reactions within our diagrams are catalytic and

are bi-molecular reactions of the form X +Y → X +Z,

meaning that Y is transformed to Z and X is a catalyst,

that is, X influences the transformation of Y to Z. The

edges m represent that a source species is catalytic to a

target reaction.

Example 1 (CRN Diagrams Example) We illustrate the

flexibility of the diagrammatic notation with three CRN

examples. Figure 1a shows the CRN with the single

reaction C + A → C + B. The ball (m) indicates that

C is a catalyst to the reaction A → B represented by

the arrow (↑). A species can act as both a reactant

or catalyst in the same reaction, and similarly for a

4 Luca Cardelli et al.

product. In Figure 1b we depict the CRN with two

reactions {A + A → A +B,B +B → B + A}, in which

both A and B catalyse themselves. Figure 1c depicts the

CRN with reaction set {A+B → B+B,C+B → B+B},

with species B catalysing multiple reactions, which is

represented by a multiheaded edge with multiple ms.

This CRN transforms species A and C into species B.

Dual-Rail Representation We represent a Boolean

circuit with inputs I and outputs O, denoted B(I,O),
as follows. Firstly, a Boolean variable b = {0, 1} could

be encoded in a single species X, where 0 would be

encoded as E[∣X∣] = 0 and 1 as E[∣X∣] ≥ M ,

where E[∣X∣] denotes an expectation of the number

of molecules of X and M is a molecular population

threshold.

The CRN computes by transforming an input con-

centration into an output concentration, which reaches

the appropriate level upon convergence. However, since

absence of molecules cannot be measured, we employ

dual-rail methodology and represent every Boolean vari-

able with two species, denoted Xhi, Xlo. Just like we

cannot represent both 0 and 1 on an electrical wire,

we restrict our CRNs such that either E[∣Xhi∣] ≥ M

or E[∣Xlo∣] ≥ M , but not both, can be present when

a CRN has stabilised and no further reactions occur.

We consider a high concentration output as correct if

E[∣Xhi∣] > 0.8max(Xhi) − 1SD(Xhi), where 0.8 is a

threshold normalised between the values [0, 1], max()
is a function that returns the maximum molecular con-

centration of a species within the CRN and 1SD com-

putes 1 standard deviation from the mean concentra-

tion of E[Xhi]. 1SD returns 0 under the deterministic

semantics. Similarly, we consider a low concentration as

correct if E[∣Xlo∣] < 0.2 ∗max(Xlo) + 1SD(Xlo).
For simplicity, we apply the dual rail methodology

only to the variables in the input and output sets I and

O. The circuits may contain additional variables, which

will be considered internal and assumed not to catal-

yse with any species outside of the CRN circuit. We

will encode these with single species and use the nam-

ing convention of referring to these internal species as

λ, λ1,⋯, λi. When composing two circuits B1(I1, O1)
and B2(I2, O2) in series, we define their composition as

a circuit B(I1, O2), in which all variables in O1 ∪ I2
have been made internal.

Example 2 (Dual-Rail CRN ‘Motif ’) We introduce a

simple two reaction CRN which forms a ‘motif’ common

to all our CRN circuit diagrams. The CRN is given by

the set of reactions {Xhi+Ylo → Xhi+Yhi, Xlo+Yhi →
Xlo+Ylo} shown in Figure 2a, where the input set I con-

tains Xlo and Xhi and the output set contains Ylo, Yhi.

In this CRN the input Xlo or Xhi influences the reac-

tion Ylo ⇋ Yhi to produce as output the same Boolean

value. We also include a diagrammatic CRN showing

the composition of two such motifs in series. Here the

inputs are Xhi, Xlo and outputs Yhi, Ylo.

Example 3 (Dual-rail CRN with Internal (λ) Species)

The CRN shown in Figure 3 represents a circuitB(I,O)
with internal species λ which does not belong to the set

I∪O. Therefore dual rail methodology is not used for λ

as it is not catalytic to any species outside of this CRN

circuit. I comprises Xlo, Xhi and O comprises Yhi, Ylo.

The CRN is simplified to {Xhi+λ→ Xhi+Yhi, Xlo+λ→
Xlo + Ylo, λ+ Yhi → λ+ λ, λ+ Ylo → λ+ λ}. This CRN

converts Yhi and Ylo to λ, assuming a non-zero initial

concentration of molecules, unless there is either Xlo

or Xhi present, in which case a deadlock occurs. We

use the term conversion to mean the occurrence of a

reaction where there are non-zero molecular counts of

reactants present.

Deterministic Semantics Let C = (Λ,R) be a CRN.

The net change associated to a reaction τ ∈ R is de-

fined by υτ = pτ−rτ . The deterministic semantics mod-

els the concentration of the species in Λ over time as

a set of autonomous polynomial first order differential

equations (ODEs):

dΦ(t)
dt

=

F (Φ(t)) = ∑
τ=(rτ ,pτ ,kτ)∈R

υr ⋅ (kτ
∣Λ∣
∏
i=1

Φi(t)rτ,i). (1)

where function Φ ∶ R≥0 → RΛ describes the behaviour

of the system assuming a continuous state-space se-

mantics, and therefore Φ(t) ∈ R∣Λ∣
is the vector of

the species concentrations at time t and F is simply

the derivative of Φ with respect to time. Assuming

t0 = 0, the initial condition is Φ(0) = [x0], where x0
is the initial configuration (vector of concentrations of

molecules) of the CRN. It is well known that the deter-

ministic semantics may be imprecise for low molecular

counts, but is accurate in the limit for high populations

[37]. However, the deterministic semantics produces the

same proportion of molecules, regardless of total con-

centration.

Stochastic Semantics The stochastic semantics is

represented through a continuous-time Markov chain

(CTMC), whose transient evolution can be given via

the Chemical Master Equation (CME) [37]. Let C =

(Λ,R) be a CRN. The propensity rate ατ of a re-

action τ is a function of the current configuration

Chemical Reaction Network Designs for Asynchronous Logic Circuits 5

(a) (b) (c)

Fig. 1: Diagrammatic notation for CRNs. (a) CRN with the single reaction C + A → C + B, in which species C

catalyses the reaction A→ B. (b) CRN with reactions {A+A→ A+B,B +B → B +A}, in which species A and

B are both reactants, products and catalysts. (c) CRN with reactions {A +B → B +B,C +B → B +B}, which

demonstrates that B can be catalytic to multiple reactions.

(a) (b)

Fig. 2: (a) The CRN ‘motif’, in which the input Xlo or Xhi influences the reaction Ylo ⇋ Yhi to produce as output

the same Boolean value. (b) CRN obtained by composing two ‘motif’s depicted in (a) in series. The inputs are

now Xhi, Xlo, outputs Yhi, Ylo, and the remaining species have been made internal through renaming with λ.

Fig. 3: Example CRN with internal λ species, which

converts outputs Yhi and Ylo to λ, assuming a non-zero

initial concentration of molecules, unless there is input

Xlo or Xhi present.

of the system x such that ατ(x)dt is the probabil-

ity that a reaction event occurs in the next infinites-

imal interval dt. We assume mass action kinetics,

therefore ατ(x) = kτ
∏∣Λ∣
i=1 ri,τ !

N ∣rτ ∣−1 ∏∣Λ∣
i=1 (x(λi)ri,τ

), where ri,τ

is the i-th component of the vector rτ and ∣rτ ∣ =

∑∣Λ∣
i=1 ri,τ [1]. We define a time-homogeneous CTMC

(XC(t), t ∈ R≥0) with state space Q ⊆ N∣Λ∣
as fol-

lows. Given x0 ∈ Q, where x0 is the initial configu-

ration of the system, then P (XC(0) = x0) = 1. The

transition rate from state xi to state xj is defined as

r(xi, xj) = ∑{τ∈R∣xj=xi+vτ }Nατ(xi). X
C(t) describes

the stochastic evolution of the molecular populations

of each species in C at time t. For x ∈ Q, we define

P
(t)(x) = P (X(t) = x∣X(0) = x0), where x0 is the

initial configuration. The CME describes the time evo-

lution of X as:

d

dt
(P (t)(x)) =

∑
τ∈R

{Nατ(x − υτ)P (t)(x − υτ) −Nατ(x)P (t)(x)}.

(2)

The solution of the CME is computed through numeri-

cal simulation or discretisation techniques such as uni-

formization [16], and is generally feasible only for small

populations. The CTMC is often represented as a Q×Q
rates matrix, which can be viewed as a state transition

graph and subjected to model checking against tempo-

ral logic properties [17].

Linear Noise Approximation The LNA approxi-

mates the CTMC as a continuous-state Gaussian pro-

cess, given in the form of a set of ODEs that describe

the time evolution of expectation and variance of the

species. The error of approximation is dependent upon

the volumetric factor N , the structure and the rates of

the CRN. Given a CRN C = (Λ,R) with initial config-

uration x0 ∈ N∣Λ∣
and in a system of volume size N , we

define the stochastic process Y = N ⋅Φ+
√
N ⋅Z, where

6 Luca Cardelli et al.

Φ is the deterministic process given in Eqn 1, and Z is a

zero-mean Gaussian process (since we assume the initial

condition is a fixed value), and with covariance C[Z(t)]
described by the solution of the following ODEs with

initial condition C[Z(0)] = 0:

dC[Z(t)]
dt

= F
′(Φ(t), C[Z(t)]) =

JF (Φ(t))C[Z(t)] + C[Z(t)]JTF (Φ(t)) +W (Φ(t)) (3)

where JF (Φ(t)) is the Jacobian of F (Φ(t)), JTF (Φ(t))
its transpose, and

W (Φ(t)) = ∑
τ∈R

υτυτ
T
kτ ∏

S∈Λ

Φ
rS,τ
S (t).

Expected value and covariance matrix of Y (t) are

completely characterized by Φ(t) and C[Z(t)] since

E[Y (t)] = NΦ(t) and C[Y (t)] =
√
NC[Z(t)]

√
N =

NC[Z(t)].
The LNA requires solving a number of ODEs

quadratic in the number of species [8] and is therefore a

scalable alternative to the solution of the CME. In con-

trast to the deterministic semantics, which considers

average concentrations, the LNA does not compromise

stochasticity.

Tool Support A number of software tools exist for ex-

amining the behaviour of CRNs. We employ Microsoft’s

Visual GEC, which provides a programming language,

LBS, for designing and simulating a given CRN under

the deterministic or stochastic semantics, including also

the LNA approximation of the stochastic semantics.

The tool is capable of producing plots of expected or av-
erage species concentrations over time. This functional-

ity is used extensively within this paper to validate our

circuit designs. In addition, Visual GEC exports models

to the probabilistic model checker PRISM [17], which

then enables verification of the induced continuous-time

Markov chain against temporal logic properties. We use

PRISM to verify the correctness of the temporal order-

ing of events occurring as the CRN circuit executes.

Example 4 (CRN Validation Under Different Seman-

tics) We show the operation of our dual-rail CRN

‘motif’ given in Example 2 under the deterministic

and stochastic semantics. The input configuration is

∣Xhi∣ = 10 molecules and output ∣Ylo∣ = 10 molecules.

Figure 4 demonstrates that, after 0.4 seconds, the CRN

stabilises reaching the concentrations of ∣Yhi∣ = 10 and

∣Ylo∣ = 0 as desired. With regards to simulations pro-

vided, concentrations (given in nanomolars) are directly

correlated to concentrations as we assume the volumet-

ric factor N is fixed.

3.2 Asynchronous Hardware

Asynchronous computation is a model of computation

that relies on transitions via local input signals rather

than transitions via a global clock. Asynchronous com-

putation [36], just like its synchronous counterpart, is

Turing complete [21], meaning that any bounded-tape

Turing machine can be implemented with an asyn-

chronous circuit, providing that the implementation of

that circuit has isochronous forks. An isochronous fork

is the propagation of a signal from a single source to

multiple receivers, with the important constraint that

the signal must reach the receivers at precisely the same

time. In classical digital circuitry this corresponds to

the propagation of a signal down wires of exactly the

same length from one component to another. In CRNs

this could be seen as two species reaching a threshold

N at precisely the same time.

Asynchronous circuits, which are designed based

upon the theoretical principles of asynchronous com-

putation, are widely used for low-power microproces-

sor designs, e.g., by ARM, and are increasing in popu-

larity with the increase in distributed computing [23].

Asynchronous designs offer a number of advantages, the

main one being correctness independent of timing, al-

though they require a greater overhead in terms of sil-

icon area.

We illustrate the principles of asynchronous cir-

cuit design by describing its key component called the

Muller C-element and showing how it is used to con-

struct a pipeline that propagates signals.

Muller C-Element The cornerstone of asynchronous

computation is the Muller C-element. A Muller C-

element has two Boolean inputs, X and Y , and one

output Z. By definition these inputs can either be low

or high (represented by 0 or 1). When both inputs are

low the output is low. Similarly, when both inputs are

high the output is high. The variation from a classical

logic gate, however, is that if the inputs are high, or

low, and one of them changes, it ‘remembers’ the last

state. In other words, it retains the last 0 or 1 state.

This is summarised in Figure 5a. An important prop-

erty of the C-element is that it allows an observer to

conclude on seeing output change from 0 to 1 that both

inputs are now 1, and similarly for input change from

1 to 0.

The table specification indicates that asynchronous

circuits exhibit concurrency and causality, and hence

their specifications need to reflect these characteristics.

A common way is as a timing diagram, seen in Figure

5d for the C-element, which represents a set of signals

and their interactions over time. Each row of a timing

Chemical Reaction Network Designs for Asynchronous Logic Circuits 7

(a) (b) (c)

(d)

Fig. 4: Simulation of the motif given in Example 2 under different semantics. The input is initially Xhi and the

output is Ylo, both starting at a concentration of 10 molecules. In (a), (b) and (c) we respectively show the

deterministic solution, stochastic simulation and LNA plot with variance, where Ylo is seen in blue and Yhi is seen

in yellow. We can observe that in all cases Yhi is present after 0.4 seconds. In (d) we show the state transitions of

the induced CTMC that correspond to the output switching from Ylo to Yhi. The computation reaches the correct

output state and stabilises, with no more transitions enabled.

diagram represents one signal and how it switches from

low to high over time. If a signal displays a change be-

fore another signal on another line then this signal must

precede the other. An arrow represents that one signal

change triggers the change of another. In the C-element

diagram, note that X and Y have to precede Z, both in

the transition to 1 and down to zero. However, there is

no causal dependency between X and Y.

Asynchronous diagrams, and in particular the C-

element, are accurately described using Petri nets [36,

p.86] or process algebras [38]. We present a (1-bounded)

Petri net for the C-element in Figure 5c, in which tran-

sitions are interpreted as signal transitions and places

and arcs capture the causal relations between the signal

transitions. Following the usual convention, the Petri

net is drawn in simpler form where most places have

been omitted. We can observe that both tokens are

needed in order to excite the transitions that cause the

event Zhi, which in turn will require the events Xhi and

Yhi to be triggered. The same is true for Zlo.

When considering circuit synthesis, we typically em-

ploy a state graph specification, which can be obtained

from the Petri net representation [23] and is given for

the C-element in Figure 5b. The values in each state

correspond to the values of inputs X,Y and output Z,

respectively. A * symbol indicates that the correspond-

ing variable is excited by the outgoing transition (and

will be changed in the following state). Observe how

we can only transition to a state 1*1*1 from a state

110* requiring X as 1 and Y as 1. Because this is de-

rived from a 1-bounded Petri net, we can assume that

the transitions 0*10 → 110* and 10*0 → 110* do not

conflict.

Muller C-Pipeline In order to replace the need for

a global clock, asynchronous computation relies on ‘lo-

cal cooperation’ in the form of handshaking protocols.

These protocols exchange completion signals in order to

establish when a computation has terminated. These

handshaking protocols rely heavily on the C-element

described above.

The Muller pipeline, shown in Figure 6, is con-

structed by the composition of Muller C-elements (de-

picted by the gate symbol labelled with C) and classical

NOT-gates, which receive and send data to/from the

environment (Left, Right in the figure). Its function is

to propagate a high and low signal along the pipeline,

emulating the ‘wave’ of high and low signals of a clas-

sical synchronous clock. Initially, all C-elements are set

to a value of 0. The ith C-element C[i] will propagate

a 1 from its predecessor, C[i− 1], only if its successor,

C[i + 1], is 0. Similarly, it will propagate a 0 from its

predecessor only if its successor is 1. Eventually the first

8 Luca Cardelli et al.

(a) (b)

(c) (d)

Fig. 5: Four specifications of a C-element with inputs X, Y and an output Z. (a) Conventional logic table, where

‘unchanged’ means that the state of the output is the last stable configuration of 1 or 0. (b) State graph, in which

each state denotes a configuration and a transition is caused by the presence of a signal, where ∗ indicates that the

signal is excited. (c) 1-bounded Petri net specifying the Muller C-element. (d) Timing diagram for the C-element.

request initialised on the left hand side of our pipeline

is propagated to the final request on the right.

The protocol enacted upon this pipeline uses request

and acknowledge rails that can be set to high or low.

The Muller pipeline implements a basic four phase pro-

tocol, which is as follows. Firstly, the sender sends data

and sets request to high, viewed in Figure 6 as the sig-

nal Req being high. The receiver then records this data

and sets acknowledge to high (Ack). Then the sender

responds by setting request to low (Req), and finally

the receiver acknowledges this by setting acknowledge-

ment to low (Ack). If at any point a handshake along

the pipeline is slower than another, the pipeline will be-

have like a FIFO queue with data preserved. Herein lies

the important purpose of the pipeline: it allows for the

delay-insensitive transfer of information from one place

to another. In combination with a latch we can create

the propagation of information across latches using the

pipeline as a control structure.

The construction of data storage and control struc-

tures such as queues and adders is similar to the Muller

pipeline.

Timing Properties of Asynchronous Circuits

Asynchronous circuits can be classified as being self-

Fig. 6: Muller pipeline. Signals are propagated from

left to right using request and acknowledge signals. The
pipeline effectively queues data, only allowing a transi-

tion to occur when a further signal has been acknowl-

edged.

timed, speed independent or delay-insensitive, depend-

ing upon delay assumptions that are made. Assume a

circuit is composed of gates and wires. A self-timed

circuit operates correctly if both gates and wires ex-

perience measurable and fixed delays. A speed inde-

pendent circuit operates correctly if gates exhibit some

unknown time delay within gates but exhibits no time

delay on wires. A delay-insensitive circuit operates cor-

rectly if there is both unknown delay within gates but

also unknown delay within wires. The set of delay in-

sensitive circuits is small, essentially those built from

the Muller C-element and NOT gates, and so a broader

class of quasi-delay insensitive circuits are identified.

Quasi-delay insensitive circuits, which can be composed

Chemical Reaction Network Designs for Asynchronous Logic Circuits 9

of purely C-elements, NOT-gates and forks, are Turing

complete [21]. They are not possible to achieve without

an isochronous fork.

4 Asynchronous Circuit Designs as Chemical

Reaction Networks

In this section we present our dual-rail designs for an

asynchronous computing device in CRNs. The key com-

ponent is the Muller C-element, whose design is inspired

by the well known Approximate Majority (AM) CRN

[2]. We begin by providing a detailed justification for

our C-element design, and then describe the remaining

simple components, including latches, logic gates and

control flow. Finally, we present complex circuits such

as the pipeline, queue and adder.

To justify the designs, we demonstrate that each

component we design exhibits correct behaviour. Con-

sidering as an example the C-element, this amounts to

working with an informal specification of the C-element

in terms of high/low signals as in Figure 5, and then

showing that our (continuous) CRN empirically satis-

fies that specification according to appropriate thresh-

olding for high/low signals, as normally done in elec-

tronics for transistor logic. To this end, we explore the

time evolution of the components under the determin-

istic and stochastic semantics, including also LNA for

scalability. We additionally employ probabilistic model

checking with PRISM, where temporal logic is used to

express the temporal ordering of events. We remark

that, although we validate the components for all pos-

sible input configurations, this does not amount to full

verification of the correctness of the designs. We discuss

the challenges of achieving full verification in Section 6.

4.1 Muller C-element as a CRN

The C-element design is based on the AM CRN, which

computes the majority of two finite populations by con-

verting the minority population into the majority pop-

ulation, so that a single population emerges as output.

It uses a third ‘undecided’ state of the population, from

where catalysis can drive the individuals into either of

the final states. Interestingly, since approximate major-

ity cannot be exactly computed by a bi-molecular CRN

with less than 4 reactions [22], below we present the bi-

molecular AM CRN with exactly four reactions:

X + Y → X + λ

Y +X → Y + λ

X + λ→ X +X

Y + λ→ Y + Y

where X,Y are both the input and output species and λ

is the aforementioned catalytic driver. The intuition be-

hind this reaction network is that we have two compet-

ing initial populations of X and Y , both of which try to

eliminate the other by transforming their counterpart

into the intermediary λ. If λ then interacts with X, it

transforms itself into X, else into Y . Presented below

in Figure 7a is the same AM CRN in our diagrammatic

notation.

(a) (b)

Fig. 7: Two diagrammatic CRNs which are capable of

computing Approximate Majority [2]. In (a) we present

the original in which the inputs X,Y , dependent on

which species has the majority, influence outputs X,Y .

(b) shows a similar AM circuit, but now the input

species are catalysed to arbitrary output species W,Z.

Deconstructed, if we consider the left-hand side of

the diagram, the reaction X → λ is catalysed by the

species Y and so yields the bi-molecular reaction Y +
X → Y + λ. Similarly, X catalyses the reaction λ→ X

in the other direction and yields the reaction X + λ →
X+X. On the right-hand side of the diagram, λ is again

catalysed by X and Y to produce Y , yielding the other

two reactions from the AM CRN. The CRN in Figure

7b, with inputs X and Y and outputs W,Z, is similar

to the AM CRN, except that we produce new arbitrary

outputs W,Z instead of producing greater quantities of

X and Y .

Since we wish to apply the dual-rail methodology,

we represent each signal as a pair of species and en-

code the value 1 (0) as a molecular population of at

least M for some population threshold M (popula-

tion 0). We thus present in Figure 8a a dual-rail CRN

which computes approximate majority with four inputs

Xhi, Xlo, Ylo, Yhi and outputs Zhi, Zlo. Like before, our

input catalyses an intermediary species λ, but this is

split over two reactions. In addition, Zlo and Zhi catal-

yse with reactions Zlo ⇋ λ and Zhi ⇋ λ. This has

the effect that, if there are larger numbers of either

10 Luca Cardelli et al.

Zlo or Zhi, the network enlarges its majority by con-

verting the other into λ. Two rounded arrows (m) over

a reaction (↑) indicates that either species can act as

a catalyst to that reaction. We demonstrate this AM

effect in Figure 8b, where, given the initial configu-

ration of inputs Xlo, Ylo of 10 molecules and output

Zhi, we observe under deterministic semantics that, be-

cause ∣Xlo∣, ∣Ylo∣ > ∣Xhi∣, ∣Yhi∣, an output of Zlo where

∣Zlo∣ = 10 molecules and ∣Zhi∣ = 0 is produced after

0.5 seconds.

We now need to justify the correctness of the design

against the C-element specification in Figure 8a. Given

a starting configuration of input X,Y both 1, and any

starting output, the C-element should eventually out-

put 1. Similarly, if X,Y are both 0, on any initial output

our final output should be 0. For any other configura-

tion of X,Y , the output signal should remain the same.

Thus, given an input Xhi, Yhi, and crucially any start-

ing output configuration Z, we wish to reach a state

where Zhi has at least M molecules where M is a popu-

lation threshold, and Zlo has 0 molecules. Similarly, for

Xlo, Ylo and any Z we should to see a presence of Zlo
after some time t. For all other configurations of the

inputs we wish the output species to remain the same.

When validated against this informal specification

with a starting configuration of Xlo, Yhi at 10 molecules

and Zhi at 10 molecules, our CRN unfortunately fails,

seen in Figure 9. More specifically, we observe that

species Zhi is at a concentration of 6 molecules and

λ has a concentration of 4 molecules after 0.3 seconds.

This simulation was produced using LNA, see Section

3.1, which outputs standard deviation of the mean con-

centrations of species, seen in the shaded regions. This

output configuration is incorrect since Zhi is below the

required threshold, see Section 3.1, of 8 molecules to

represent an output of Z = 1.

We present an amended CRN that resolves this is-

sue in Figure 11a. This CRN is composed of two ap-

proximate majority circuits connected to each other,

with the outcome of the first AM amplifying the out-

come of the second. As we can see from the plot in Fig-

ure 9, we need to amplify the Zhi species and suppress

the λ species. The second AM corrects exactly this is-

sue. Figure 11b is a simulation with inputs Xlo, Yhi at

10 molecules and output Zhi at 10 molecules. Here we

can see that all three species are now at 10 molecules

throughout the duration of the simulation.

To strengthen the validation of the final C-element

design, we provide two further plots for selected initial

configurations. We include in Figure 11c a determin-

istic plot with starting configuration of input Xlo, Ylo
at 10 molecules and output Zhi at 10 molecules. After

one second the system converges to output Zlo at 10

molecules. Figure 11d shows an LNA simulation with

starting configuration of input Xhi, Yhi at 10 molecules

and output Zlo at 10 molecules. After one second we

reach output Zhi with probability ≈ 1. Both these sim-

ulations show that our output changes if both inputs

change. From Figure 11b we observe that the output

does not change if both inputs are different.

An issue to address is the use of dual-rail systems

in which our chemical output is precisely a value of

0 molecules or K molecules, where K is the largest

number of molecules achievable by a population in the

system. In reality, a species may not reach its maxi-

mum population and, due to variance, we may have a

situation, as seen in Figure 9, where one species has

moderate probability of being higher than the output

species we wish to present. Fortunately, we can use our

approximate majority circuit to boost species. Figure

10 shows an example where species Xhi and Yhi are

weak, but the output is boosted by the C-element back

to the maximum output of 10 molecules. The gates are

also reusable: specifically, in Figure 11d we can observe

the inherent reusability of the C-element because the

output reacts to the change in input.

4.2 Latch Design

A latch is a device used in electronics to store a logical

0 or 1, which therefore needs to have at least two sta-

ble states that are cycled between. Latches are used in

asynchronous computing both for storage and for syn-

chronisation purposes. When an input of 1 is received a

latch will ideally display an output of 1, and likewise for

an input of 0. We present two latch designs in Figure 12,

each intended to interface in a specific way when used

within a larger system. The first simple latch, shown

in Figure 12a(i), has input Xlo, Xhi and output species

Ylo, Yhi, the intuition being that either Xlo catalyses

Yhi to Ylo or Xhi catalyses Ylo to Yhi. There are also

two additional reactions that catalyse Ylo to itself and

Yhi to itself, creating a feedback loop. These additional

reactions ensure that, if there is a drop in the molecu-

lar concentrations of input species, the latch retains its

state. For some larger systems we may need the output

state of a latch to be neither Ylo nor Yhi, to signify that

no value is stored within the latch, known as a neutral

state in electronics. A reset wire, to reset a latch to

neutral state, is also commonly used in circuits. To this

end, the latch in Figure 12a(ii) has an input Rhi, Rlo
used to reset the latch to a central state λ, as well as

the standard inputs Xhi, Xlo and outputs Yhi, Ylo. The

advantage of this central state, λ, is that the latch can

be in a state where neither Yhi nor Ylo are present,

which is useful if these reactions are catalytic to any

Chemical Reaction Network Designs for Asynchronous Logic Circuits 11

(a) (b)

Fig. 8: A dual-rail Approximate Majority CRN. (a) Circuit diagram. (b) Deterministic simulation of the CRN in

(a). Given inputs Xlo, Ylo at 10 molecules and output Zhi, we observe that, because ∣Xlo∣, ∣Ylo∣ > ∣Xhi∣, ∣Yhi∣, an

output of Zlo where ∣Zlo∣ = 10 molecules (seen in blue) and ∣Zhi∣ = 0 (seen in red) is expected to be produced

after 0.5 seconds.

other component, in which case they will not be trig-

gered directly. A comparison of the behaviour of the

two latches is displayed in Figures 12b and 12c. With

the same initial conditions Xhi and output Ylo at 10

molecules, the latch in Figure 12a(ii) produces an out-

put Yhi at 10 molecules in 0.2 seconds. We contrast this

with the latch in Figure 12c, which outputs Yhi at 10

molecules in the slower time of 0.5 seconds.

4.3 AM as a Control Flow Element

An arbiter is used to decide an output signal based on

which signal arrived first or if one signal is dominant

over another. They are used in error correction where a

signal may have degraded. Essentially, an arbiter com-

putes the well known function max(∣X1∣, ∣X2∣) for two

inputs. In terms of CRNs, this can be seen as either one

species arriving before another or having higher molec-

ular concentration. Since the AM circuit computes the

max(∣X1∣, ∣X2∣) function, as one population is biased

over another depending upon which has the majority,

it therefore serves as an appropriate candidate for an

arbiter. The proposed arbiter design, seen in Figure

13a, is the same as our AM CRN presented in Fig-

ure 8a, except that there are two inputs, Xhi and Xlo,

and two outputs, Yhi and Ylo, instead of four inputs.

This works as desired since the output Yhi, Ylo begins

to be converted from λ as soon as either of Xhi, Xlo ar-

rives, therefore automatically biasing whichever species

is present first. The ability for approximate majority

to reach a consensus means that this circuit can deal

with stochastic fluctuations in input. Although, within

electronic circuits, an arbiter outputs which signal ar-

rived first, we assume that this information is revealed

through the promotion of an output species linked to

an input species.

In Figure 13b we demonstrate the operation of this

arbiter by LNA simulation on inputs of Xhi at a con-

centration of 5 molecules and Xlo with a concentration

of 0 molecules. After 0.4 seconds we see Yhi (in red) at

a concentration of 10 molecules, representing the ma-

jority.

4.4 Other Control Flow Circuits

Control flow is used to mediate or propagate the flow of

information throughout the computing device. In digi-

tal circuitry forks and joins, both control flow elements,

are naturally implemented using wires. Unfortunately,

there is no natural fork or join within CRNs and con-

sequently we present designs for them. The fork, shown

Figure 14(a), is used to split signals. It has two input

species Xhi, Xlo and four output species, Yhi(1), Yhi(2)
to represent the splitting of Xhi and Ylo(1), Ylo(2) to

represent the splitting of Xlo. The join, see Figure

14(b), joins two input signals to create one output sig-

12 Luca Cardelli et al.

Fig. 9: LNA plot for the candidate CRN for the dual-rail

Muller C-element design in Figure 8. With a starting

configuration of inputs Xlo, Yhi at a concentration of

10 molecules and output Zhi at a concentration of 10

molecules, we can observe that after 0.3 seconds Zhi
(seen in red) is at a concentration of 6 molecules and λ

is at a concentration of 4 molecules (seen in green). The

shaded regions represent standard deviation. As we can

see, with a non-zero probability we cannot distinguish

the signals.

nal. There are 4 inputs Xhi(1), Xhi(2) with output Yhi
to represent the merging of the two input signals and

Xlo(1), Xlo(2) to merge to an output Ylo.

4.5 Dual Rail Asynchronous Logic Gate Designs

Although gate designs for Boolean operators have been

proposed in CRNs [34], we present dual-rail implemen-

tations of logic gates in line with other designs proposed

within this paper. In contrast to the gates in [34], our

gates account for all inputs Xhi, Xlo, Yhi, Ylo and out-

puts Zhi, Zlo. They are also reusable and respond to

changes in input.

The simplest gate, NOT, in Figure 15a(i), inverts

the inputs Xhi, Xlo to outputs Ylo, Yhi. The AND-gate,

shown in Figure 15a(iii), has initial concentrations of

λ1, λ2 as well as input concentrations. With a presence

of species Yhi we can catalyse λ2 into the state λ1, and

with the species Xhi we can catalyse λ1 to Zhi; thus

both species are needed for the gate to output the signal

Zhi. The state Zhi catalyses a reaction between species

Fig. 10: LNA simulation demonstrating two weak input

signals, Xhi and Yhi at 6 and 4 molecules respectively,

boosted by the C-element with an output Zhi at 10

molecules.

Zlo and λ3, therefore showing that only one output sig-

nal can be present at any time. Conversely, with either

Xlo, Ylo we can convert λ3 to Zlo, which in turn can con-

vert Zhi back to λ2 and λ2 to λ1. Using a similar trail

of thought we can see how the other gates are devised,

with OR (Figure 15a(ii)) having initial concentrations

of λ2, λ3, NOR (Figure 15a(vi)) having initial concen-

trations of λ2, λ3 and NAND (Figure 15a(iv)) having

initial concentrations of λ1, λ2. We provide an exam-

ple, showing a deterministic simulation of the AND

gate, seen in Figure 15b, in which inputs Xhi, Yhi at

10 molecules and initial output Zlo is converted to Zhi
after 0.8 seconds.

XOR is slightly different. XOR, traditionally a gate

that requires a composition of many other logic gates,

has to be constructed with all combinations of inputs

considered. The XOR gate (Figure 15a(v)) has initial

concentrations of λ1, λ2, λ3, λ4. In Figure 16 we show an

example validation of the XOR gate for all four input

configurations using LNA.

4.6 Muller C-Pipeline

We construct a CRN to emulate the behaviour of the C-

pipeline outlined in Section 3.2. The pipeline is a mech-

anism to relay handshakes between components, for ex-

ample latches to store data. We construct the pipeline

Chemical Reaction Network Designs for Asynchronous Logic Circuits 13

(a) Our final C-element design. (b) Inputs Xhi, Ylo maintain current output.

(c) Inputs Xlo, Ylo lead to output Zlo. (d) Inputs Xhi, Yhi lead to output Zhi.

Fig. 11: Simulation of the final dual-rail Muller C-element design on selected input configurations. (a) Dual-rail

AM circuit which is our final C-element design. (b) Deterministic simulation with inputs Xlo, Yhi at 10 molecules

and Zhi at 10 molecules, which does not exhibit any change over time. (c) Deterministic simulation resulting in

Zlo (seen in light blue) based on the initial configuration Xlo, Ylo at 10 molecules and initial output Zhi at 10

molecules. (d) LNA simulation resulting in Zhi (seen in yellow) based on the initial configuration of input Xhi, Yhi
at 10 molecules and initial output Zlo at 10 molecules. Note that some plots are overlayed but are either set to 0

or 10 molecules.

14 Luca Cardelli et al.

(a)

(b) (c)

Fig. 12: Two latch designs and their comparison. a(i) Simple latch with two feedback loops. a(ii) Latch with reset

to a neutral state. (b) Deterministic plot of simple latch in a(i). (c) Deterministic plot of the latch in a(ii) which

shows faster convergence.

(a) (b)

Fig. 13: Arbiter circuit design and its simulation. (a)

The arbiter CRN with inputs Xhi and Xlo and out-

puts Yhi and Ylo. The output reflects the input with

the higher concentration of molecules (or which ever

species appeared first). (b) LNA simulation of the ar-

biter, demonstrated with an input of Xhi at a concen-

tration of 5 molecules and Xlo with a concentration of

0 molecules. After 0.4 seconds we see Yhi (in red) at a

concentration of 10 molecules, representing the major-

ity input.

by placing three of our C-element CRNs, shown Fig-

ure 11a, in series. At each intermediate stage between

the C-elements we add a fork. One path of the fork is

negated and fed back into the previous C-element, and

the other path is fed into the new C-element. The key

interaction between the components of the C-pipeline is

that no C-element can output a positive species or neg-

ative species without the previous displaying a positive

or negative one.

The inputs to the C-pipeline CRN are

Reqhi, Reqlo, Acchi and Acclo. The only output is

Chi, Clo, which is the output species of the third

C-element. However, for the sake of clarity, we also

include four other species Ahi, Alo corresponding

to the output of the first C-element and Bhi, Blo
corresponding to the second. On an input of Reqhi at

10 molecules we would expect to see that Ahi, Bhi and

Chi are all at 10 molecules after a staggered amount

of time. If we then changed the input to Reqlo we

would expect to see Ahi, Bhi, Chi diminish with Alo,

Blo, Clo, reaching 10 molecules to reflect the change

in input. This is seen as a ‘wave’ through the pipeline

propagating a high signal and then a low signal.

We design an experiment, see Figure 17, where we

initialise the pipeline with the input species Reqhi at

10 molecules, and all C-elements are initialized with

the intermediary species λ at 10 molecules such that

no C-element yet outputs a species. From both the de-

terministic and LNA simulations of this we can observe

how the species Ahi, Bhi, Chi approach 10 molecules one

after another, showing that indeed the value of Reqhi is

being propagated along the pipeline. In order to show

that our pipeline design is continuously reactive, we

convert all of the species Reqhi to Reqlo via the in-

troduction of a reaction Reqhi → Reqlo. This effect oc-

Chemical Reaction Network Designs for Asynchronous Logic Circuits 15

(a) (b)

Fig. 14: CRNs for control flow components. (a) The fork used to split a signal into two. (b) The join used to merge

signals.

(a) (b)

Fig. 15: (a) Dual-rail logic gate designs: we present a NOT (i), OR (ii), AND (iii), NAND (iv), XOR (v) and NOR

(vi) over inputs X,Y and output Z. (b) Deterministic simulation for AND on inputs Xhi, Yhi at 10 molecules and

initial output Zlo, which is converted to Zhi after 0.8 seconds (seen in grey).

curs at around 1 second and we can observe that the

pipeline responds by reducing the species Ahi, Bhi, Chi
to a molecular count of 0. We also observe (not shown

on the simplified plot) that the species Alo, Blo, Clo
reach 10 molecules at the same time as Ahi, Bhi, Chi
reach 0 molecules (2 seconds). The LNA plot reveals

that all output species are separated by a significant

time difference such that no two species can be con-

flated.

In addition to simulation experiments which plot

expected concentrations of species over time, we also

check temporal properties concerning the interactions

between species and components. Using the PRISM

model checker we interrogate the CTMC models of the

pipeline with specific queries. We give some important

examples of such queries in Table 1, which are verified

by PRISM as being true with very high probability by

checking 20 paths against the property. “Th” refers to

the required population threshold which can be set by

the user. PRISM also has the ability to track and plot

concentrations of species over specific time intervals and

number of samples. For example, for the C-pipeline we

16 Luca Cardelli et al.

(a) Inputs Xlo, Ylo (b) Inputs Xhi, Ylo

(c) Inputs Xlo, Yhi (d) Inputs Xhi, Yhi

Fig. 16: XOR gate validation demonstrated using LNA for all input combinations and λ1, λ2, λ3, λ4 having initial

concentrations of 10 molecules. In (a), we demonstrate that XOR on an input configuration Xlo, Ylo at 10 molecules

produces an output Zlo (seen in grey) at 10 molecules after 0.4 seconds. (d) shows a similar plot on input Xhi, Yhi,

which results in output Zlo (seen in grey). In (b) and (c) we show that both Xhi, Ylo and Xlo, Yhi demonstrate the

correct output of Zhi (seen in pink).

Chemical Reaction Network Designs for Asynchronous Logic Circuits 17

(a) The Muller C-pipeline responding to the input species
Reqhi being present and then transforming to the input
species Reqlo.

(b) The same experiment calculated with the LNA. The stan-
dard deviation is shown with highlighted regions.

Fig. 17: Validation of the Muller C-pipeline. The input request signal, encoded by the species Reqhi, is propagated

to the end of the pipeline (represented by the species Ahi, Bhi, Chi); we then set the request signal to low. The

pipeline then responds by the presence of Ahi, Bhi and Chi diminishing to zero. In (b) we show that the variance

is low, even for low molecular counts.

Fig. 18: The expected concentration of species Bhi,Blo
and intermediary λ plotted over time for the C-pipeline

under the stochastic semantics using reward structures

within PRISM. Each data point is the expectation over

20 samples. We start at t=0.2. With an initial condition

of Reqhi, we can see (in blue) that species Bhi is output

from the second C-element at t > 1.25.

may wish to focus specifically on species concentrations

of the second C-element whilst ignoring the others. We

can isolate the species in question starting at a time

> 0 and simulating only the species of the second C-

element. We demonstrate this property on the pipeline

with initial input species Reqhi at 10 molecules in Fig-

ure 18.

4.7 Queue

We have also designed and validated a queue, the

schematic for which is shown in Figure 19, built by

the addition of latches at each C-element block to the

Muller pipeline. The queue is used in electronics to

regulate and store the flow of information. The asyn-

chronous queue uses the pipeline as a control mecha-

nism to propagate signals between the latches. We use

the latch with reset seen in 12 for this purpose. As the

species Reqhi is propagated along the pipeline, it sends

a signal to the queue to read and store the value in the

next latch along. Each latch represents some computa-

tion that could be completed within each time interval.

For the latches of our queue we have in-

put species Amhi and Amlo and output species

Amshi, Bmshi, Cmshi representing the output of each

latch. Deterministic simulation the queue pipeline is

shown in Figure 19. In this experiment we propagate

a 1 (represented as Amhi at 10 molecules) followed by

0 (Amlo at 10 molecules). We can observe the species

Amshi, Bmshi, which represent the outputs of the first

and second latches, noting an oscillatory pattern of cy-

cling between 1 and 0.

18 Luca Cardelli et al.

Property in English Initial Condition PRISM Query
Prob.
of
Success

“Probability that the first
C-element always outputs
a high signal before
the second wihin 3s”

Reqhi > Th
P =?[(Bhi < Th)U [0,3]

(Ahi > Th)] 0.97

“Probability that the
C-element only changes
when both inputs change
within 10s”

1) ReqhiAcclo
2) ReqloAcchi
3) ReqhiAcchi

P =?[true U [0,10]
Zhi > Th] 0.96

“Probability that the species
Ahi reach their maximum
population within 10s”

Ahi < Th P =?[true U [0,10]
Ahi >= Th] 1

“Probability that request
signal is propagated to the
end of the pipeline
within 10s”

Reqhi > Th,
Ahi > Th

P =?[F [0,10]
Chi > Th] 1

Table 1: Temporal properties for the C-pipeline verified by the PRISM model checker. Each property was checked

on 20 paths for the pipeline with inputs at 10 molecules.

Fig. 19: Deterministic simulation of the queue pipeline. We propagate a value of 1 through the queue. The species

Amshi, Bmshi represent the outputs of the first and second latches. Note that through oscillatory patterns gener-

ated by the pipeline we can mimick properties of a synchronous system.

4.8 Adder

We have also designed a three bit ripple-carry adder,

which operates in a similar fashion to the queue but

instead of latches we compose adders in series, seen in

Figure 20b. An adder, the circuit design for which is

seen in Figure 20a, is a composition of two XOR gates,

two OR gates and an AND gate. The adder produces

two outputs, the value of the summation and the carry.

Within the ripple-carry adder, the carry output of each

adder is fed into the next adder, which outputs the sum

and a carry. In this way, with three adders, we can add

three two-bit numbers together.

Our ripple-carry CRN has four input species per

adder representing the two inputs, and two output

species representing the output. In Figure 21 we show

that the adder exhibits correct behaviour by pro-

ducing the desired output species for a specific in-

put, where each sum is calculated only in the next

stage in the pipeline. If we view each C-element and

adder as one stage in the pipeline, labelled A,B and

C, then we can view the output species of each

adder as a bridge to the next adder. The six output

species, representing the carry-bit output, are denoted

by AabridgeOneOut, BbbridgeOneOut, CcbridgeOneOut and

AabridgeZeroOut, BbbridgeZeroOut, CcbridgeZeroOut. In or-

der to show correct operation the output of the adders

(represented in this case by 10 molecules) should be

interleaved with the control species of the C-pipeline

(Ahi,Bhi,Chi), allowing time for the carry species to

catalyse with the input of the following adder.

Whilst a simulation provides the intuition behind

the ripple-carry adder, using the PRISM model checker

we can query the output of all three adders after 10

seconds to confirm if the correct output is present. We

have four input species per adder, excluding the carry,

which represent two numbers. We expect one species

from each adder as output, representing the addition of

two inputs, plus the carry. The third adder relies on the

Chemical Reaction Network Designs for Asynchronous Logic Circuits 19

(a) (b)

Fig. 20: (a) Circuit diagram for a ripple-carry adder. (b) Three adders in series controlled by the C-pipeline. A

carry-bit output from one adder is fed into the next as part of the input.

(a) Ripple-carry adder response to input values of 1: 10
2: 10 3: 10 to each adder.

(b) Ripple-carry adder response to input values of 1: 10
2: 00 3: 10 to each adder.

Fig. 21: Deterministic simulation of the ripple-carry adder circuit responding to various inputs. We plot the output

species from each section of the pipeline used to coordinate the output from each adder. The carry-bit output

from each adder is represented by AabridgeOneOut, BbbridgeOneOut and CcbridgeOneOut. The output of the C-element

(Ahi, Bhi, Chi) arrives strictly before the output from the adder. The logical input for (a) is 1 and 0 for the first

adder, 1 and 0 for the second adder, and 1 and 0 for the third adder. In (b), we show the computation on different

inputs, namely 1 and 0 for the first adder, 0 and 0 for the second adder, and 1 and 0 for the third adder. The

crossover in the concentrations of output species of the C-element and the logical output of 1 (resulting from

inputs 0, 1 and carry of 1) in the third adder (plots Chi and CcsOneOut) indicates faster convergence but does not

affect the results in further stages of the pipeline.

previous adder’s carry being correct. We therefore only

need to look at the desired output of each adder plus

the carry of the final adder. We summarise this with

the following example PRISM property:

P =?[true U <= 10((AabridgeOneOut > Th) and

(BbbridgeZeroOut > Th) and (CcbridgeOneOut > Th) and

(CcbridgeCarryOneOut > Th))]

With this example we can only satisfy these three out-

puts and the carry, by seeing each of their molecu-

lar concentrations rise above the threshold Th, based

on a specific input configuration. This particular in-

put are the species representing 0 and 1 for the first

adder (for example AaOneZeroIn and AaTwoOneIn), the

species representing inputs 1,1 for the second adder

and 1,1 for the third adder. 0 + 1 in the first adder

20 Luca Cardelli et al.

should give us an outcome of 1 carry 0 and so satisfies

AabridgeOneOut > Th. 1 + 1 plus the 0 carry from the

first adder gives an output of 0 carry 1, and so satisfies

BbbridgeZeroOut > Th. An input of 1 + 1 plus 1 carry

from the second adder means that our output should

be 1 as well as the final carry should be 1, represented

by CcbridgeOneOut > Th and CcbridgeCarryOneOut > Th.

Our adder satisfies this property based upon the in-

puts given and therefore shows correct operation for an

adder.

5 Experimentation

All designs
3

presented in this paper have been validated

using both Microsoft’s Visual GEC tool [27] and the

PRISM model checker [17], both for the deterministic

and stochastic semantics of the CRNs. Visual GEC pro-

vides a programming language, LBS, for designing and

simulating any given CRN. We systematically tested

each component in isolation by simulating its behaviour

against all input and output configurations. Next, we

examined how a component might behave in a larger

system, where it will be exposed to a change in input.

To this end, we introduced new reactions to emulate a

signal change. For instance, if we wished to change a

carrier signal from high to low, we would introduce an

additional reaction Xhi
k
→ Xlo, which converts all of

the signal Xhi into a signal Xlo while the component is

operating.

Since deterministic semantics is not accurate for

low molecular populations, we additionally explored

stochastic semantics. Visual GEC exports models to the

probabilistic model checker PRISM, which then enables
verification of the induced continuous-time Markov

chain against temporal logic properties. This allows one

to check that the circuits ensure the correct tempo-

ral ordering of the events, for example, for the Muller

pipeline seen in Figure 6, that the species in the first

stage of the pipeline is present before the species in

the second, i.e. with probability 1, and that the sig-

nal is eventually propagated to the end of the pipeline.

PRISM implements numerical solution of the CME,

which is exponential in the initial number of molecules

and hence not scalable, and analysis based on stochastic

simulation, which is time consuming. We thus addition-

ally used an experimental implementation of the LNA

within Visual GEC, based on [8]. As well as being ca-

pable of checking temporal logic properties [8,4], the

LNA can plot the species concentration over time to-

gether with standard deviation, and is fast and reason-

ably accurate even for low molecule counts. Moreover,

3
Available from https://github.com/max1s/CRNcode

compared to the deterministic semantics, LNA provides

important information about stochasticity that may af-

fect the robustness of the circuits, and which can be

explored further with CME, stochastic simulation, or

verifying that the circuit converges with probability 1

to a single value.

6 Discussion

When modelling asynchronous circuits as a chemical

system, the wires are chemical species from the output

set of one gate component to the input set of another.

We cannot bound the time for a gate to transform an

input species to an output species. This excludes the

class of self-timed circuits. Under deterministic seman-

tics, we could guarantee an isochronous fork since two

chemical species, either high or low, could theoretically

reach the threshold M at precisely the same time given

equal rates and initial concentrations, and therefore un-

der deterministic semantics we have a Turing-complete

method of computation. We cannot guarantee this un-

der stochastic semantics [13]. This is because there is

a non-zero probability that one species could reach M

before the other. We thus conclude that our circuits, at

worst, can be classified as speed independent. We can

calculate approximately the delay on wires based upon

rates and concentrations for each semantics.

Direct chemical implementations of CRNs have

been theorised and realised, but involve complicated

reaction mechanisms [33]. The most common sub-

strate for chemical kinetics is DNA strand displace-

ment (DSD), which involves the displacement of DNA

strands in solution. These strands are labelled with the

chemical species and, once the reaction has taken place,

an outputting strand represents an output from the

CRN that the strand displacement system is trying to

emulate. DNA strand displacement has been shown to

be a universal substrate for chemical kinetics, specif-

ically for bi-molecular reactions used here [35]. Most

importantly, the AM circuit seen in Figure 8b has been

implemented as a strand displacement device [18]. How-

ever, a potential difficulty with this approach is scala-

bility: as the number of components increases, the num-

ber of chemical species representing them also increases.

Large numbers of chemical species result in large num-

bers of DSD complexes in solution, and consequently

crosstalk needs to be accounted for. Fortunately, a re-

cent experiment with the implementation of a square-

root circuit in solution provided a new experimental

ceiling on the number of species that can be used [29].

Another challenge is to provide formal verification

of the correctness of the designs. We remark that, al-

though we have validated the behaviour of the compo-

https://github.com/max1s/CRNcode

Chemical Reaction Network Designs for Asynchronous Logic Circuits 21

nents for all possible input configurations and verified

that correct outputs are produced and in the correct

order using simulation and simulation-based probabilis-

tic model checking with PRISM, this does not amount

to full verification. Asynchronous diagrams are repre-

sented using a variety of notations, see Figure 5, and

correspond to certain classes of (safe) Petri nets [23]

known as Signal Transition Graphs (STGs), represent-

ing the rise and fall of signals. Our designs are sys-

tems containing many molecules which exhibit stochas-

tic behaviour. Firstly, one would need to show that our

CRN designs meet the specification given as a Petri net,

which would involve relating the two formally via a re-

finement relation, where one needs to relate structures

with many molecules of a given a species to structures

with at most one. This presents us with two major chal-

lenges: scalability and stochasticity. Scalability can be

addressed using compositional verification, which has

been developed for (non-probabilistic) process algebraic

specifications of asynchronous circuits [38] (equivalent

to STGs) and it would be interesting to see if they can

be applied in this setting. However, no probabilistic ex-

tension of this approach is known. Another possibil-

ity is to capture stochasticity by employing stochastic

Petri nets to model the designs as done for molecular

walkers in [3], and then perform temporal logic verifi-

cation using the tool Cosmos. Cosmos relies on an im-

plementation of statistical model checking that exploits

parallelism of the Petri net specifications and achieves

greater scalability than PRISM.

7 Conclusion

We have proposed a novel design for an asyn-

chronous computing device based on Chemical Re-

action Networks. CRNs are inherently asynchronous,

and thus particularly well suited to this computa-

tional paradigm. Our designs are based on a simple,

bi-molecular reaction motif inspired by Approximate

Majority [2,7], employ catalytic reactions and assume

well-mixed solution and constant, uniform rates. More-

over, they do not rely on the universal clock which is

difficult to realise. Since an arbitrary CRN can be phys-

ically realised using DNA strand displacement [35], as

recently demonstrated experimentally in [12], the pro-

posed designs are in principle implementable, and we

have confirmed this in theory by modelling them in the

two-domain setting [5] using Visual DSD [28,19]. Our

designs are the first feasible implementation of an asyn-

chronous computing device in chemical kinetics and are

relevant for a multitude of applications in nanotechnol-

ogy and synthetic biology. As future work we would like

to investigate alternative experimental settings.

References

1. D. F. Anderson and T. G. Kurtz. Continuous time
Markov chain models for chemical reaction networks. In
Design and analysis of biomolecular circuits, pages 3–42.
Springer, 2011.

2. D. Angluin, J. Aspnes, and D. Eisenstat. A simple popu-
lation protocol for fast robust approximate majority. Dis-
tributed Computing, 21(2):87–102, 2008.

3. B. Barbot and M. Kwiatkowska. On quantitative mod-
elling and verification of DNA walker circuits using
stochastic Petri nets. In R. Devillers and A. Valmari,
editors, Application and Theory of Petri Nets and Concur-

rency, volume 9115 of Lecture Notes in Computer Science,
pages 1–32. Springer International Publishing, 2015.

4. L. Bortolussi, L. Cardelli, M. Kwiatkowska, and L. Lau-
renti. Approximation of probabilistic reachability for
chemical reaction networks using the linear noise ap-
proximation. In Proc. 13th International Conference on

Quantitative Evaluation of SysTems (QEST 2016), LNCS.
Springer, 2016. To appear.

5. L. Cardelli. Two-domain DNA strand displacement. De-

velopments in Computational Models, 26:47–61, 2010.

6. L. Cardelli. Morphisms of reaction networks that couple
structure to function. BMC systems biology, 8(1):84, 2014.

7. L. Cardelli and A. Csikász-Nagy. The cell cycle switch
computes approximate majority. Scientific reports, 2,
2012.

8. L. Cardelli, M. Kwiatkowska, and L. Laurenti. Stochastic
analysis of chemical reaction networks using linear noise
approximation. In Computational Methods in Systems Bi-

ology, pages 64–76. Springer, 2015.

9. L. Cardelli, M. Kwiatkowska, and M. Whitby. Chemical
reaction network designs for asynchronous logic circuits.
In Proc. 22nd International Conference on DNA Computing
and Molecular Programming (DNA22), LNCS. Springer,
2016. To appear.

10. H.-L. Chen, D. Doty, and D. Soloveichik. Deterministic
function computation with chemical reaction networks.
Natural Computing, 13(4):517–534, 2013.

11. H.-L. Chen, D. Doty, and D. Soloveichik. Rate-
independent computation in continuous chemical reac-
tion networks. In Proceedings of the 5th conference on In-

novations in theoretical computer science, pages 313–326.
ACM, 2014.

12. Y.-J. Chen, N. Dalchau, N. Srinivas, A. Phillips,
L. Cardelli, D. Soloveichik, and G. Seelig. Programmable
chemical controllers made from DNA. Nature Nanotech-

nology, 8(10):755–762, 2013.

13. M. Cook, D. Soloveichik, E. Winfree, and J. Bruck. Pro-
grammability of chemical reaction networks. In Algorith-
mic Bioprocesses, pages 543–584. Springer, 2009.

14. F. Dannenberg, M. Kwiatkowska, C. Thachuk, and A. J.
Turberfield. DNA walker circuits: Computational po-
tential, design and verification. Natural Computing,
14(2):195–211, 2015.

15. A. P. de Silva and N. D. McClenaghan. Molecular-scale
logic gates. Chemistry–A European Journal, 10(3):574–
586, 2004.

16. M. Kwiatkowska, G. Norman, and D. Parker. Stochas-
tic model checking. In Formal methods for performance
evaluation, pages 220–270. Springer, 2007.

17. M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0:
Verification of probabilistic real-time systems. In Com-

puter aided verification, pages 585–591. Springer, 2011.

22 Luca Cardelli et al.

18. M. R. Lakin, D. Parker, L. Cardelli, M. Kwiatkowska, and
A. Phillips. Design and analysis of DNA strand displace-
ment devices using probabilistic model checking. Journal

of the Royal Society Interface, page rsif20110800, 2012.
19. M. R. Lakin, S. Youssef, F. Polo, S. Emmott, and

A. Phillips. Visual DSD: a design and analysis tool
for DNA strand displacement systems. Bioinformatics,
27(22):3211–3213, 2011.

20. M. O. Magnasco. Chemical kinetics is Turing universal.
Phys. Rev. Lett., 78:1190–1193, Feb 1997.

21. R. Manohar and A. J. Martin. Quasi-delay insensitive
circuits are Turing complete. In ASYNC ’96: Proceedings
of the 2nd International Symposium on Advanced Research

in Asynchronous Circuits and Systems. IEEE Computer
Society, 1996.

22. G. B. Mertzios, S. E. Nikoletseas, C. L. Raptopoulos, and
P. G. Spirakis. Determining majority in networks with
local interactions and very small local memory. In In-

ternational Colloquium on Automata, Languages, and Pro-
gramming, pages 871–882. Springer, 2014.

23. C. J. Myers. Asynchronous circuit design. John Wiley &
Sons, 2004.

24. N. E. Napp and R. P. Adams. Message passing inference
with chemical reaction networks. In Advances in Neural

Information Processing Systems, pages 2247–2255, 2013.
25. N.-p. Nguyen, C. Myers, H. Kuwahara, C. Winstead, and

J. Keener. Design and analysis of a robust genetic Muller
C-element. Journal of theoretical biology, 264(2):174–187,
2010.

26. N.-P. D. Nguyen, H. Kuwahara, C. J. Myers, and J. P.
Keener. The design of a genetic muller c-element. In
Asynchronous Circuits and Systems, 2007. ASYNC 2007.

13th IEEE International Symposium on, pages 95–104.
IEEE, 2007.

27. M. Pedersen and A. Phillips. Towards programming lan-
guages for genetic engineering of living cells. Journal of
the Royal Society Interface, April 2009.

28. A. Phillips and L. Cardelli. A programming language
for composable DNA circuits. J R Soc Interface, 6 Suppl
4:S419–S436, Aug 2009.

29. L. Qian and E. Winfree. Scaling up digital circuit compu-
tation with DNA strand displacement cascades. Science,
332(6034):1196–1201, 2011.

30. L. Qian and E. Winfree. A simple DNA gate motif for
synthesizing large-scale circuits. Journal of the Royal So-

ciety Interface, page rsif20100729, 2011.
31. P. W. Rothemund, N. Papadakis, and E. Winfree. Algo-

rithmic self-assembly of DNA sierpinski triangles. PLoS

biology, 2(12):e424, 2004.
32. P. Senum and M. Riedel. Rate-independent constructs

for chemical computation. PloS one, 6(6):e21414, 2011.
33. S. W. Shin. Compiling and verifying DNA-based Chemical

Reaction Network implementations. PhD thesis, California
Institute of Technology, 2011.

34. D. Soloveichik, M. Cook, E. Winfree, and J. Bruck. Com-
putation with finite stochastic chemical reaction net-
works. natural computing, 7(4):615–633, 2008.

35. D. Soloveichik, G. Seelig, and E. Winfree. DNA as a uni-
versal substrate for chemical kinetics. Proceedings of the

National Academy of Sciences, 107(12):5393–5398, 2010.
36. J. Spars and S. Furber. Principles Asynchronous Circuit

Design. Springer, 2002.
37. N. G. Van Kampen. Stochastic processes in physics and

chemistry, volume 1. Elsevier, 1992.
38. X. Wang and M. Kwiatkowska. On process-algebraic ver-

ification of asynchronous circuits. Fundamenta Informat-
icae, 80(1-3):283–310, 2007.

	Introduction
	Related Work
	Preliminaries
	Asynchronous Circuit Designs as Chemical Reaction Networks
	Experimentation
	Discussion
	Conclusion

