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Abstract We consider the problem of synthesising rate parameters for stochastic
biochemical networks so that a given time-bounded CSL property is guaranteed
to hold, or, in the case of quantitative properties, the probability of satisfying
the property is maximised or minimised. Our method is based on extending CSL
model checking and standard uniformisation to parametric models, in order to
compute safe bounds on the satisfaction probability of the property. We develop
synthesis algorithms that yield answers that are precise to within an arbitrarily
small tolerance value. The algorithms combine the computation of probability
bounds with the refinement and sampling of the parameter space. Our methods
are precise and efficient, and improve on existing approximate techniques that
employ discretisation and refinement. We evaluate the usefulness of the methods
by synthesising rates for three biologically motivated case studies: infection control
for a SIR epidemic model; reliability analysis of molecular computation by a DNA
walker; and bistability in the gene regulation of the mammalian cell cycle.

1 Introduction

Biochemical reaction networks are a convenient formalism for modelling a mul-
titude of biological systems, including molecular signalling pathways, logic gates
built from DNA and DNA walker circuits. For low molecule counts, and assuming
a well-mixed and fixed reaction volume, the prevailing approach is to model such
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networks using continuous-time Markov chains (CTMCs) [20]. Stochastic model
checking [31], implemented in programs such as PRISM [32], allows the analysis of
the model behaviour against temporal logic properties expressed in Continuous
Stochastic Logic (CSL) [3]. For instance, the reliability and performance of DNA
walker circuits are evaluated using properties such as “what is the probability that
the walker reaches the correct final anchorage within 10 minutes?”. We envision
biochemical devices that implement biosensors and medical diagnostic systems,
and hence ensuring appropriate levels of reliability is important.

Stochastic model checking assumes that the model is fully specified, including
reaction rate constants. However, the reaction rates can be unknown or given as
estimates that typically include some measurement error. In spite of this uncer-
tainty, one might want to still demonstrate robustness and reliability of a synthetic
molecular device. Or, one might be interested in the identification of parameter
values that reproduce experimentally observed behaviour. The parameter synthe-
sis problem, studied for CTMCs in [13,23], assumes a formula and a model whose
rates are given as functions of parameters, and aims to compute the parameter
valuations that guarantee the satisfaction of the formula. Previously the parameter
synthesis problem was solved for CTMCs approximately, and only for probabilistic
time-bounded reachability [23]. In this paper, we address the parameter synthesis
problem for stochastic biochemical reaction networks for the full time-bounded
fragment of the (branching-time) logic CSL [3]. We formulate two variants: thresh-
old synthesis, which inputs a CSL formula and a probability threshold and identi-
fies the parameter valuations which meet the threshold, and max synthesis, where
the maximum probability of satisfying the property and the maximizing set of
parameter valuations are returned.

We develop efficient synthesis algorithms that yield answers with arbitrary
precision. The algorithms exploit a recently published technique that computes
safe approximations to the lower and upper bounds for the probability to satisfy
a CSL property over a fixed parameter space [11]. Our algorithms automatically
derive the satisfying parameter regions through iterative decomposition of the
parameter space up to a given tolerance value. We also demonstrate a significant
speed-up of the max synthesis algorithm through the use of a sampling-based
heuristic. The method is demonstrated using three case studies: the SIR epidemic
model [27], where we synthesize infection and recovery rates that maximize the
probability of disease extinction; the DNA walker circuit [17], where we derive
stepping rates that ensure a predefined level of reliability; and a gene regulation
model of the mammalian cell cycle [11], where we investigate degradation rates
that lead to bi-stability.

This work is an extended version of [13], where we first introduced parame-
ter synthesis problems and algorithms for CTMCs. In this version, we provide a
rigorous treatment of the method to compute safe probability bounds and extend
the approach to reward operators. We also include an additional case study on the
gene regulation of the mammalian cell cycle.

Structure of the paper. In Section 2 preliminary definitions are given. In Section 3,
we introduce the threshold problem and the max synthesis problem. In Section 4,
we describe the methods to bound the probability of a formula for a fixed pa-
rameter region. These methods are then used in the synthesis algorithms that are
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described in Section 5. In Section 6, case studies and results of synthesis experi-
ments are discussed. Related work is discussed in Section 7. Concluding remarks
are given in Section 8.

2 Background

This section introduces the main concepts relevant for model checking of (para-
metric) continuous-time Markov chains and stochastic modelling of biochemical
reactions.

2.1 Parametric CTMCs

Before we introduce parametric CTMCs, we recall the standard definition of
CTMCs and describe the uniformisation procedure that is employed for their
model checking based on [31].

Definition 1 (Continuous-time Markov chain (CTMC)) A CTMC is a tu-
ple C = (S, π0,R, L) where:

– S is a finite set of states;
– π0 : S → [0, 1] is the initial state distribution where

∑
s∈S π0(s) = 1;

– R : S × S → R≥0 is the rate matrix; and
– L : S → 2AP is a labelling function mapping each state s ∈ S to the set
L(s) ⊆ AP of atomic propositions that hold true in s.

A transition between states s, s′ ∈ S can occur only if R(s, s′) > 0 and, in that

case, the probability of triggering the transition within time t is 1 − e−tR(s,s′).
The time spent in state s, before a transition is triggered, is exponentially dis-
tributed with exit rate E(s) =

∑
s′∈S R(s, s′), and when the transition occurs the

probability of moving to state s′ is given by R(s,s′)
E(s) .

A CTMC C = (S, π0,R, L) can be extended with a reward structure (ρ, ι).
ρ : S → R≥0 is called state reward and defines the rate with which a reward is
acquired in state s ∈ S, e.g. a reward of tρ(s) is acquired if C remains in state s for
t time units. The function ι : S×S → R≥0 defines the transition reward, such that
ι(si, sj) describes the reward acquired each time the transition (si, sj) occurs.

We now describe the computation of transient probabilities for CTMCs, based
on standard uniformisation (also called Jensen’s method or randomisation). Let E
be a S × S diagonal matrix such that E(si, si) = E(si), and define the generator
matrix by setting Q = R − E. Then, the vector πt : S → R≥0 of transient
probabilities at time t is given by πt = π0e

Qt, such that πt(s) is the probability of
being in state s at time instant t. Below we describe the uniformisation method.

Definition 2 (Uniformised matrix) Let C = (S, π0,R, L) be a CTMC and Q
the associated generator matrix. Then, the uniformised matrix P of C is defined
by P = I+ 1

qQ, where q ≥ maxs{E(s)−R(s, s)} is called the uniformisation rate.

Definition 3 (Path of a CTMC) Let C = (S, π0,R, L) be a CTMC. A path ω
of C is a sequence ω = s0t0s1t1 . . ., where for all i, si ∈ S and ti ∈ R≥0 is the time
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spent in state si. ω is infinite when R(si, si+1) > 0 for all i, and finite of length n
when R(si, si+1) > 0 for all i < n− 1 and E(sn−1) = 0.

The set of paths starting in state s is denoted as Path(s) and a unique prob-
ability measure, Pr, exists on Path(s) [31]. Function ω(i) = si maps a position i
of ω to its i-th state. The state at time t in ω is denoted as ω@t, and is equal to
ω(i) for the smallest i such that

∑i
n=0 tn ≥ t.

The transient state-probabilities by time t are obtained by standard uniformisation
as a sum of state distributions after i discrete-stochastic steps, weighted by the
probability of observing i jumps in a Poisson process.

Definition 4 (Transient probabilities with standard uniformisation) Let
C = (S, π0,R, L) be a CTMC. Let q and P be the associated uniformisation rate
and uniformised matrix, respectively. The vector of transient probabilities at time
t, πt, is given by standard uniformisation as follows [21,24,38]:

πt =
∞∑
i=0

γi,qtτi (1)

where τi = π0Pi is the vector of probabilities in the discretized process at the i-th

step; and γi,qt = e−qt (qt)i

i! denotes the i-th Poisson probability for a process with
parameter qt. An approximate value is given by finite summation

π̂t =

kε∑
i=0

γi,qtτi (2)

when kε satisfies the convergence bound
∑kε

0 γi,qt ≥ 1 − ε for some ε > 0. The
Poisson terms and the summation bound kε are computed efficiently using an
algorithm due to Fox and Glynn [19].

Parametric continuous-time Markov chains (pCTMCs) [23] extend the notion of
CTMCs by allowing transition rates to depend on model parameters. We assume
a set K of model parameters. The domain of each parameter k ∈ K is given by
a closed real interval describing the range of possible values, i.e, [k⊥, k>] ⊆ R.
The parameter space P induced by K is defined as the Cartesian product of the
individual intervals, P =×k∈K [k⊥, k>], so that P is a hyper-rectangular space.
Subsets of the parameter space P are referred to as parameter regions or subspaces.

Definition 5 (Parametric CTMC (pCTMC)) Let K be a set of parameters.
A pCTMC over K is a tuple (S, π0,R, L), where:

– S, π0 and L are as in Definition 1; and
– R : S × S → R[K] is the parametric rate matrix, where R[K] denotes the set

of polynomials over the reals R with variables k ∈ K.

Given a pCTMC and a parameter space P, we denote with CP the set {Cp | p ∈ P}
where Cp = (S, π,Rp, L) is the instantiated CTMC obtained by replacing the
parameters in R with their valuation in p. The definition restricts the rates to be
polynomials, which are sufficient to describe a wide class of biological systems.
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2.2 CSL for Parametric CTMCs

To specify properties over pCTMCs, we employ the time-bounded fragment of
Continuous Stochastic Logic (CSL) [3].

Definition 6 (Time-bounded CSL) The syntax of time-bounded CSL consists
of state formulas (Φ) and path formulas (φ) given as

Φ ::= true | a | ¬Φ | Φ ∧ Φ | P∼r[φ]

φ ::= X Φ | Φ UIΦ

where a ∈ AP is an atomic proposition, ∼ ∈ {<,≤,≥, >}, r ∈ [0, 1] is a probability
threshold and I is an interval of R≥0.

P∼r[φ] holds if the probability of the path formula φ being satisfied from a given
state meets ∼ r. Path formulas are defined by combining state formulas through
temporal operators: X Φ is true if Φ holds in the next state, Φ1 UIΦ2 is true if Φ2

holds at some time point t ∈ I, and Φ1 holds for all time points t′ < t. The future
operator, F, and globally operator, G, are derived from U as follows:

P∼r[F
IΦ] ≡ P∼r[true UI Φ]

P∼r[G
IΦ] ≡ P∼̄1−r[F

I ¬Φ]

where <̄ ≡>, ≤̄ ≡≥, ≥̄ ≡≤ and >̄ ≡<. Informally, FIΦ is true if Φ holds at some
time instant in the interval I, while GIΦ is true if Φ holds for all t ∈ I. The logic
can be extended with the following time-bounded reward operators [31]:

R∼r[C
≤t] | R∼r[I=t] (3)

where t, r ∈ R≥0. R∼r[C
≤t] holds if the expected reward cumulated up to time t

meets the bound ∼ r, while R∼r[I
=t] holds if the expected reward at time t meets

∼ r. We now provide the formal semantics of time-bounded CSL with rewards for
parametric CTMCs. To this end, we introduce two satisfaction relations, �⊥ and
�>, to describe if a CSL property holds for all and some instantiations, respectively,
of a pCTMC.

Definition 7 (Semantics of time-bounded CSL for pCTMCs) Let CP =
(S, π0,R, L) be a pCTMC over a parameter space P with reward structure (ρ, ι).
For each state s ∈ S the satisfaction relations s �⊥ Φ and s �> Φ are defined
inductively by:

s �>true for all s ∈ S s �⊥true for all s ∈ S
s �>a ⇔ a ∈ L(s) s �⊥a ⇔ a ∈ L(s)

s �>¬Φ ⇔ s 2⊥ Φ s �⊥¬Φ ⇔ s 2> Φ
s �>Φ ∧ Ψ ⇔ s �> Φ ∧ s �> Ψ s �⊥Φ ∧ Ψ ⇔ s �⊥ Φ ∧ s �⊥ Ψ
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s �>P∼r[φ]⇔ ∃p ∈ P. P r(ω ∈ Path(s) | ω � φ) ∼ r in Cp
s �⊥P∼r[φ]⇔ ∀p ∈ P. P r(ω ∈ Path(s) | ω � φ) ∼ r in Cp
s �>R∼r[C

≤t]⇔ ∃p ∈ P. Exp(s,XC≤t) ∼ r in Cp
s �⊥R∼r[C

≤t]⇔ ∀p ∈ P. Exp(s,XC≤t) ∼ r in Cp
s �>R∼r[I

=t]⇔ ∃p ∈ P. Exp(s,XI=t) ∼ r in Cp
s �⊥R∼r[I

=t]⇔ ∀p ∈ P. Exp(s,XI=t) ∼ r in Cp

where the path formula φ is expanded as

ω � XΦ ⇔ ω(1) exists and ω(1) � Φ

ω � Φ1UI Φ2 ⇔ ∃t ∈ I. such that [ω@t � Φ2 ∧ (∀r ∈ [0, t). ω(r) � Φ1)]

and Exp(s,X) for X ∈ {XC≤t , XI=t} denotes the expectation of the random vari-
able X with respect to the probability measure Pr over paths starting in s, defined
for any ω = s0t0s1t1 . . . ∈ Path(s) by

XC≤t =

jt−1∑
i=0

(ti · ρ(si) + ι(si, si+1)) +

(
t−

jt−1∑
i=0

ti

)
· ρ(sjt)

XI=t = ρ(ω@t)

where jt = min{j |
∑j
i=0 ti ≤ t}.

Note that, for formula P∼r[φ], �⊥ and �> are defined by quantifying over
p ∈ P and evaluating the satisfaction probability of φ on the instantiation Cp.
This probability can thus be obtained using regular CSL satisfaction relation �.
Therefore, relations �⊥ and �> reduce to � when the parameter space contains
only a single valuation, i.e. P = {p}.

We further define the minimal satisfaction set Sat⊥(Φ) and the maximal sat-
isfaction set Sat>(Φ) as follows:

Sat⊥(Φ) = {s ∈ S | s �⊥ Φ} and Sat>(Φ) = {s ∈ S | s �> Φ}. (4)

We now describe the satisfaction function to capture how the satisfaction probabil-
ity of a given property relates the parameters and the initial state. For simplicity
we define the function and further describe parameter synthesis only for the P
operator: the method also allows a definition based on reward operators, which we
describe in Section 4.3.

Definition 8 (Satisfaction function) Let φ be a CSL path formula, CP be a
pCTMC over a space P and s ∈ S. We denote with Λφ : P −→ S −→ [0, 1] the
satisfaction function such that Λφ(p)(s) = Pr(ω ∈ Path(s) | ω � φ) in Cp.

Since φ allows nested probabilistic operators, the satisfaction function is, in gen-
eral, not continuous.
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2.3 Stochastic models of biochemical reaction networks

Biochemical reaction networks provide a convenient formalism for describing var-
ious biological processes as a system of well-mixed reactive species in a volume of
fixed size. A CTMC semantics can be derived where states describe the number
of molecules of each species, and transitions correspond to reactions that consume
and produce molecules. The rate matrix is defined as

R(si, sj) =
∑

r∈reac(si,sj)

fr(si) (5)

where reac(si, sj) denotes all the reactions changing state si into sj and fr is the
rate function of reaction r. Recalling that the rates of a pCTMC are polynomi-
als over the parameters, fr can be used to describe, among others, mass-action
kinetics [20], according to which the rate of a reaction is proportional to the con-
centrations of its reactants. For instance, a bimolecular chemical reaction of the
form r : A + B → . . . has rate fr(si) = kr

A(si)
V

B(si)
V , where A(si), B(si) are the

numbers of molecules for species A,B in state si, kr is the rate constant of reaction
r and V is the size of the reaction volume.

3 Problem Definition

We consider the problem of synthesizing parameters for pCTMC models of bio-
chemical reaction networks, so that a given specification, expressed in time-bounded
CSL, is satisfied. We allow models that are parametric in the rate constants and
in the initial state. In contrast to previous approaches that support only specific
kinds of properties (e.g. reachability as in [23]), we support the full time-bounded
fragment of CSL with rewards, thus enabling generic and more expressive synthesis
requirements.

We introduce two parameter synthesis problems: the threshold synthesis prob-
lem that, given a threshold ∼ r and a CSL path formula φ, aims to find the
parameter region where the probability of φ meets ∼ r; and the max synthesis
problem that asks for the parameter region where the probability of the input
formula attains its maximum, together with an interval bounding that maximum.
In the latter case, all the synthesised parameters yield probabilities within this
interval, but not all of them are maximising. On the other hand, solutions to the
threshold synthesis problem admit parameter points left undecided. Our approach
supports precise solutions through an input tolerance that limits the volume of
the undecided region for the threshold synthesis problem. For max synthesis, the
tolerance determines the precision of the probability interval and in turn, of the
returned region. To the best of our knowledge, no other parameter synthesis meth-
ods for CTMCs exist that provide guaranteed error bounds. In the remainder of
the paper, we omit the min synthesis problem that is defined and solved in a sym-
metric way to the max case. In addition, we assume there is a single initial state
s0, i.e. ∀s ∈ S π0[s] = 1 if s = s0, and 0 otherwise.

Problem 1 (Threshold Synthesis) Let CP be a pCTMC over a parameter
space P, s0 an initial state, φ a CSL path formula, ∼ r a threshold where r ∈ [0, 1],
∼∈ {≤, <,>,≥} and ε > 0 be a volume tolerance. The threshold synthesis problem
is finding a partition {T ,U ,F} of P, such that:
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1. ∀p ∈ T . Λφ(p)(s0) ∼ r; and
2. ∀p ∈ F . Λφ(p)(s0) 6∼ r; and
3. vol(U)/vol(P) ≤ ε

where vol(A) =
∫
A

1dµ is the volume of A.

Observe that a Boolean combination of state formulas results in a partition of the
parameter space in a natural fashion, by following a three-valued logic interpre-
tation. For example, consider the state formula Φ = P∼r1 [φ1] ∧ P∼r2 [φ2]. Let
{T1,U1,F1} and {T2,U2,F2} be a partition of P that satisfies the threshold syn-
thesis problem for φ1 and φ2, respectively, and ε > 0 be a tolerance value. The
partition {T ,U ,F} of P for Φ is given as follows:

F = F1 ∪ F2, T = T1 ∩ T2, U = P\(F ∪ T ) (6)

The new partition satisfies vol(U)/vol(P) < 2ε.

Problem 2 (Max Synthesis) Let CP be a pCTMC over a parameter space P,
s0 an initial state, φ a CSL path formula, and ε > 0 a probability tolerance. The
max synthesis problem is finding a partition {T ,F} of P and probability bounds
Λ⊥φ , Λ>φ such that:

1. Λ⊥φ − Λ>φ ≤ ε;
2. ∀p ∈ T . Λ⊥φ ≤ Λφ(p)(s0) ≤ Λ>φ ; and
3. ∃p ∈ T . ∀p′ ∈ F . Λφ(p)(s0) > Λφ(p′)(s0).

The above formulation implies two important properties of the set T : i) T contains
all the maximising parameters and ii) all the parameters in T are ε-optimal, i.e.
∀p ∈ T . |Λφ(p)(s0)− Λ∗| ≤ ε, where Λ∗ is the optimal value of the satisfaction
function. Note that some parameters in F can be also ε-optimal, but the third
condition ensures they are not maximising.

Example 1 Figure 1 illustrates a simple birth-death process with an uncertain
parameter k1 representing the birth rate. It depicts the corresponding pCTMC
and the satisfaction function Λ for a reachability property. Figure 2 illustrates the
results of threshold synthesis (left) and max synthesis (right) for this model.

4 Computing Lower and Upper Probability Bounds

This section presents a generalization of the parameter exploration procedure orig-
inally introduced in [11]. The procedure takes a pCTMC CP and CSL path for-
mula φ, and provides safe under- and over-approximations for the minimal and
maximal probability that CP satisfies φ, that is, lower and upper bounds satisfying,
for all s ∈ S,

Λφ,min(s) ≤ inf
p∈P

Λφ(p)(s) and

Λφ,max(s) ≥ sup
p∈P

Λφ(p)(s). (7)

The accuracy of these approximations is improved by partitioning the parameter
space P into subspaces and re-computing the corresponding bounds, which forms
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Fig. 1 Left: The example model contains one species X (bounded by 40) and two reactions:
production of X (∅ → X with parametric rate k1) and degradation of X (X → ∅ with rate
k2 · [X] and k2 = 0.01). [X]i denotes the number of X molecules in state si. The initial state
s0 is given by the population X = 15. The corresponding pCTMC has 41 states. Property φ
indicates that the population of X is between 15 and 20 at time 1000. The parameter space P
is given by the interval of the stochastic rate constant k1 ∈ [0.1, 0.3]. Right: The satisfaction
function Λφ.
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Fig. 2 Synthesis for the birth-death process of Fig. 1. Left: threshold synthesis for P≥0.4[φ]
and with volume tolerance ε = 5%. Right: max-synthesis with probability tolerance ε = 2%.

the basis of the synthesis algorithms that we discuss in the next section. We first
show how to compute bounds Λφ,min(s), Λφ,max(s) for unnested path formulas.
Then, we extend the method to nested path formulas, by providing under- and
over-approximations of the satisfaction sets Sat⊥ and Sat> (see Eqn 4), and to
reward operators. Finally, we analyse the accuracy and consistency of the method,
and show that in case of nested properties, the satisfaction function is characterized
as a piecewise polynomial function.

4.1 Computing bounds for unnested path formulas

Regular time-bounded CSL model checking for an unnested path formula φ re-
duces to the computation of transient probabilities [4]. A similar reduction is also
applicable to the computation of lower and upper bounds Λφ,min and Λφ,max. In
the following, we extend standard uniformisation to obtain safe bounds for a class
of parametric rate functions.

Definition 9 (Parametric transient probabilities) Let CP = (S, π0,R, L) be
a pCTMC over a parameter space P. The vector of transient probabilities at time t
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and for parameter valuation p ∈ P is approximated as follows

π̂t,p = π0

kε∑
i=0

γi,qtP
i
p =

kε∑
i=0

γi,qtτi,p (8)

where π0, γi,qt and kε are as in Definition 4, τi,p = π0Pi
p is the probability evolution

in the discretized process, and Pp is the uniformised matrix obtained from Rp.

We now show how to obtain safe approximations, π̂min
t and π̂max

t , of π̂t,p, such
that for all s ∈ S:

π̂min
t (s) ≤ min

p∈P
π̂t,p(s) and

π̂max
t (s) ≥ max

p∈P
π̂t,p(s). (9)

The function π̂t(s), which maps each parameter p to π̂t,p(s), is a polynomial
of degree kεd, where d is the maximum degree of the elements of the parametric
rate matrix R. Thus, bounding the polynomial expression of π̂t(s) is infeasible
due to the large number of uniformisation steps, kε, and previous approaches have
provided only an approximate solution by sampling the value of π̂t over a grid
in P [23].

We overcome this problem through a stepwise and statewise approximation.
Specifically, for each uniformisation step i, we derive bounds τmin

i and τmax
i , such

that for all s ∈ S:

τmin
i (s) ≤ min

p∈P
τi,p(s) and τmax

i (s) ≥ max
p∈P

τi,p(s). (10)

This allows robust approximations to the transient probabilities given by

π̂min
t =

kε∑
i=0

γi,qtτ
min
i and (11)

π̂max
t =

kε∑
i=0

γi,qtτ
max
i (12)

which satisfy Eqn 9. For fixed p ∈ P and step i, the vector τi,p is given by

τi,p(s) =

{
τi−1,p(s) + 1

q · flux(τi−1,p, s)(p) if i > 0

π0(s) if i = 0
(13)

where q is the uniformisation constant and flux(τ, s)(p) is the net probability inflow
of s in one step, starting from distribution τ . This is defined as:

flux(τ, s)(p) =
∑
s′∈S

Rp(s′, s) · τ(s′)−
∑
s′∈S

Rp(s, s′) · τ(s). (14)

In the stepwise approximation, τmin
i and τmax

i are computed from τmin
i−1 and τmax

i−1 ,
respectively, in such a way that:

τmin
i (s) ≤ τmin

i−1 (s) +
1

q
·min
p∈P

flux(τmin
i−1 , s)(p) and (15)

τmax
i (s) ≥ τmax

i−1 (s) +
1

q
·max
p∈P

flux(τmax
i−1 , s)(p). (16)
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The above inequalities imply Equation 10, since they establish coarser under- and
over-approximations where the parameter valuation p is optimised locally, i.e. at
each step and at each state.

It can be shown that the computation of τmin
i (s) and τmax

i (s) reduces to bound-
ing the range of a polynomial of degree d over the parameters, where d is the
maximum degree in R. Henceforth, we restrict the class of allowed rate functions
in order to compute τmin

i (s) and τmax
i (s). Specifically, we consider models where

the entries of R are multi-affine polynomials, i.e. multivariate polynomials where
each variable has degree at most 1. We remark that this class of models includes
biochemical reaction networks with mass-action kinetics. Due to the following
proposition, we can optimise the flux terms in a precise and efficient way, thus
providing an effective method to compute τmin

i and τmax
i .

Proposition 1 Let CR be a pCTMC over a rectangular space R, with state space
S and parametric rate matrix R. If the entries of R are multi-affine functions,
then for any vector τ : S → [0, 1] and state s ∈ S,

min
p∈R

flux(τ, s)(p) = min
p∈VR

flux(τ, s)(p) and max
p∈R

flux(τ, s)(p) = max
p∈VR

flux(τ, s)(p)

(17)

where VR is the set of vertices of R and flux is as in Equation 14.

Proof The expression flux(τ, s) is a linear combination of the entries of R, and
thus is, in turn, a multi-affine function. By [7,40], the extrema of a multi-affine
function defined over a rectangular domain R are found in the vertices of R. ut

Therefore, the bounds are computed as

τmin
i (s) = τmin

i−1 (s) +
1

q
· min
p∈VR

flux(τmin
i−1 , s)(p) and (18)

τmax
i (s) = τmax

i−1 (s) +
1

q
· max
p∈VR

flux(τmax
i−1 , s)(p) (19)

which requires evaluating the flux terms only at the corner points of R.

The above derivation describes forward computation of the probability bounds,
i.e. the computation starts with an initial distribution at time 0 and the proba-
bility mass is propagated forward in time. Then, the bounds on the satisfaction
function Λφ,min(s) and Λφ,max(s) are computed from π̂min

t and π̂max
t , respectively,

by setting π0(s) = 1. When model checking a CSL formula, the computation of
transient probabilities actually proceeds backwards [31]. For a target set A ⊆ S,
parametric backward analysis computes a series of vectors σmin

i and σmax
i such

that for all s ∈ S:

σmin
i (s) ≤ min

p∈P
σi,p(s) and σmax

i (s) ≥ max
p∈P

σi,p(s) (20)

where σi,p(s) is the probability that, starting from the state s, a state in A is
reached after i steps in the discretised process corresponding to Cp. The compu-
tation of σmin

i and σmax
i exploits Proposition 1 and is analogous to that of the
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forward method. In this way, the vectors Λφ,min, Λφ,max are obtained as:

Λφ,min(s) =

kε∑
i=0

γi,qtσ
min
i (s) (21)

Λφ,max(s) =

kε∑
i=0

γi,qtσ
max
i (s) + ef-g (22)

for all s ∈ S, where the ef-g error is due to the truncation of the infinite sum-
mation in the discretised process, and can be controlled using the Fox and Glynn
algorithm [19]. The set of target states A and time-horizon considered in the uni-
formisation procedure depend on the CSL formula. Note that the uniformised
matrix Pp is modified according to the formula in a similar way to standard non-
parametric CSL model checking [31].

4.2 Computing bounds for nested path formulas

To obtain Λφ,min and Λφ,max for an arbitrary path formula φ that contains nested
state formulas, we have to correctly approximate the sets Sat⊥(Φ) and Sat>(Φ)
for each sub-formula Φ = P∼r[φ]. The approximated sets, denoted as Sat⊥(Φ) and
Sat>(Φ) are defined as

Sat⊥(Φ) = {s ∈ S | s �⊥ Φ} and Sat>(Φ) = {s ∈ S | s �> Φ} (23)

where �⊥ and �> approximate the satisfaction relations �⊥ and �> (see Defini-
tion 7), respectively. For a pCTMC CP , their semantics is defined as follows:

s �> P∼r[φ]⇔ ∃p ∈ P. P r(ω ∈ Path(s) | ω �> φ) ∼ r in CP
s �⊥ P∼r[φ]⇔ ∀p ∈ P. P r(ω ∈ Path(s) | ω �⊥ φ) ∼ r in CP

where the path formula φ is expanded for + ∈ {>,⊥} as

ω �+ XΦ ⇔ ω(1) exists and ω(1) �+ Φ

ω �+ Φ1UI Φ2 ⇔ ∃t ∈ I. such that [ω@t �+ Φ2 ∧ (∀r ∈ [0, t). ω(r) �+ Φ1)].

The semantics of the other state formulas is the same as in Definition 7.

The CSL model checking for pCTMCs proceeds through a bottom-up proce-
dure that computes the sets Sat⊥(Φ) and Sat>(Φ) by iteratively replacing the
innermost P∼r[φ] operators with the corresponding sets of satisfying states. When
φ is non-nested, these sets are obtained from the safe bounds of the corresponding
satisfaction function Λφ (computed as per Section 4.1) as follows:

s �⊥ P∼r[φ]⇔

{
Λφ,min(s) ∼ r if ∼∈ {≥, >}
Λφ,max(s) ∼ r if ∼∈ {≤, <}

(24)

s �> P∼r[φ]⇔

{
Λφ,max(s) ∼ r if ∼∈ {≥, >}
Λφ,min(s) ∼ r if ∼∈ {≤, <}.

(25)
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The approximations �⊥ and �> propagate the bounds on the satisfaction func-
tion inductively on the structure of the CSL formula, such that:

Sat⊥(Φ) ⊆ Sat⊥(Φ) and Sat>(Φ) ⊇ Sat>(Φ). (26)

Correctness follows from the expansion of the satisfaction relations, which we
demonstrate for the P≥r operator only. The left-hand side of Eqn. 26 follows for
Φ = P≥r[φ] through:

s �⊥ P≥r[φ]⇒ Λφ,min(s) ≥ r ⇒ ∀p ∈ P. Λφ(p)(s) ≥ r
⇒ ∀p ∈ P. P r(ω ∈ Path(s) in Cp | ω � φ) ≥ r ⇒ s �⊥ P≥r[φ].

The right-hand side follows from:

s �> P≥r[φ]⇒ ∃p ∈ P. Λφ(p)(s) ≥ r ⇒ Λφ,max(s) ≥ r ⇒ s �> P≥r[φ].

An example of synthesis for nested formulas is illustrated in Section 6.1.1.

Complexity. For CR = (S, π0,R, L), time-bounded path formula φ and fixed n-
dimensional rectangular space R, the time complexity of the procedure for com-
puting the probability bounds is O(tCSL · tpCSL). The factor tCSL = |φ| ·M ·q · tmax

is the worst-case time complexity of time-bounded CSL model checking (see [4]),
where |φ| is the number of time-bounded path sub-formulas in φ, M is the number
of non-zero elements in the rate matrix, tmax is the highest time bound occurring
in φ and q is the uniformisation rate. The factor tpCSL is due to the parametric
analysis. Following Proposition 1 and Eqn 18, for general multi-affine rate func-
tions the bounds τmin

i and τmax
i are obtained by performing 2 · 2n evaluations of

the vector τi,p (there are 2n corner points in R), at each uniformisation step i.
Thus, tpCSL = 2n+1. On the other hand, for linear rate functions tpCSL = O(n),
as shown in [11].

4.3 Computing bounds for reward operators

The standard model checking algorithm for reward operators is based on the uni-
formisation procedure [31]. To obtain the sets Sat>(Φ) and Sat⊥(Φ) for the reward
operators, we have to compute for X ∈ {XC≤t , XI=t} bounds Expmin(s,X) and
Expmax(s,X) on the expected rewards such that:

Expmin(s,X) ≤ inf
p∈P

Exp(s,X) in Cp (27)

Expmax(s,X) ≥ sup
p∈P

Exp(s,X) in Cp. (28)

The quantities can be obtained using the forward computation where the initial
distribution is defined as π0(s) = 1. For a reward structure (ρ, ι), the instantaneous
reward is computed as:

Exp(s,XI=t) =
∑
s′∈S

ρ(s′)πt(s
′). (29)
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To find the cumulative reward, the state-transition rewards ι are additionally taken
into account as follows [30]:

Exp(s,XC≤t) =
∑
s′∈S

∫ t

0

(
ρ(s′)πu(s′) +

∑
s′′∈S

R(s′, s′′)ι(s′, s′′)πu(s′)

)
du (30)

=
∑
s′∈S

∫ t

0

(
ρ(s′) +

∑
s′′∈S

R(s′, s′′)ι(s′, s′′)

)
πu(s′)du (31)

=
∑
s′∈S

(
ρ(s′) +

∑
s′′∈S

R(s′, s′′)ι(s′, s′′)

)∫ t

0

πu(s′)du. (32)

where
∫ t
0
πu(s′)du is the expected amount of time the Markov process spends in

state s′ up until time t. Following the parametric uniformisation of Section 4.1,
safe bounds for the reward operators are found as:

Expmin(s,XI=t) =
∑
s′∈S

ρ(s′)π̂min
t (s′) (33)

Expmax(s,XI=t) =
∑
s′∈S

ρ(s′)
(
π̂max
t (s′) + ef-g

)
(34)

Expmin(s,XC≤t) =
∑
s′∈S

(
rew(ρ, ι, s′)

1

q

∞∑
i=0

γi,qt · τ
min
i (s′)

)
(35)

Expmax(s,XC≤t) =
∑
s′∈S

(
rew(ρ, ι, s′)

1

q

∞∑
i=0

γi,qt · τ
max
i (s′)

)
(36)

where the mixed Poisson probabilities and the combined rewards are

γi,qt = 1−
∞∑
j=i

γj,qt (37)

rew(ρ, ι, s) = ρ(s) +
∑
s′∈S

R(s, s′)ι(s, s′). (38)

The bounds for the cumulative rewards (Equations 35 and 36) are understood as
follows: γi,qt is the probability to see at least i jumps in the discretised process,
which is multiplied by the under- or over-approximation of the probability to be in
state s. So

∑∞
i=0 γi,qt · τ

min
i (s) is an under-approximation of the number of epochs

the discretised process spends in state s. Observe that 1
q is the expected time until

a jump occurs and rew(ρ, ι, s) is the expected reward obtained per time unit spent
in s. As discussed in [31], the infinite sums can be approximated using methods
based on Fox and Glynn [19].

Note that, also for rewards, backward computation allows obtaining safe bounds
for all states s ∈ S, using the vectors σmin

i and σmax
i .

4.4 Analysis of satisfaction function and approximation error

When computing bounds τmin
i and τmax

i on the transient probabilities, an approx-
imation error occurs because the values are obtained by optimizing τi,p locally, i.e.
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at each step and at each state, and this error accumulates at each uniformisation
step. We examine this error for the multi-affine case where Proposition 1 applies.
For a fixed state s, let the maximizing argument of the transient probability be
(cf. Eqn 8):

p∗ = arg maxp∈R πt(s) (39)

Then, the optimal probabilities at step i, τ∗i , are defined by

τ∗i = π0Pi
p∗ . (40)

For state s, the global error after i uniformisation steps corresponds to the
difference between the maximum probability in s and its over-approximation:

gi(s) = |τ∗i (s)− τmax
i (s)|. (41)

This error depends linearly on the size of the parameter space and exponentially
on the number of uniformisation steps, which we summarize as follows.

Proposition 2 Let CR = (S, π0,R, L) be a pCTMC with multi-affine rates on
an n-dimensional rectangular space R, φ be an unnested time-bounded CSL path
formula and gi(s) be the global approximation error for the maximum probability of
being in state s after i uniformisation steps. Then, there exist M1,M2 < ∞ such
that, for any s ∈ S and step i > 0, an upper bound to the error, gi ≥ maxs∈S gi(s),
is given as

gi =

{
0 if i = 0

gi−1 ·
(

1 + M2

q

)
+ M1

q wR if i > 0,
(42)

where wR = maxj=1,...,n(x>j − x⊥j ) is the width of R.

Proof See Appendix A.1.

Let Λ̂φ(.)(s0) be the approximation of the satisfaction function Λφ(.)(s0) for
initial state s0 obtained using standard transient analysis and uniformisation [31].
We now provide an important characterization of Λ̂φ(.)(s0), which holds for pCTMCs
with general polynomial rates.

Theorem 1 For a pCTMC CP on a bounded parameter space P, an initial state
s0 and a finitely-nested and time-bounded CSL path formula φ, the approximate
satisfaction function Λ̂φ(.)(s0) is piecewise polynomial in P over a finite number
of subdomains.

Proof See Appendix A.2.

5 Refinement-based Parameter Synthesis

We present algorithms to solve Problems 1 and 2, utilising the approximation
of probability bounds introduced in Section 4. The algorithms iteratively refine
the parameter space P and compute the probability bounds on the satisfaction
function for each subspace until a required accuracy is obtained.



16 Milan Češka et al.

Algorithm 1 Threshold Synthesis
Require: pCTMC CP over parameter space P, initial state s0, CSL path formula φ, thresh-

old ≥ r and volume tolerance ε > 0
Ensure: T , U and F as in Problem 1
1: T ← ∅, F ← ∅, U ← P
2: repeat
3: D ← decompose(U), U ← ∅
4: for each R ∈ D do
5: (ΛRmin, ΛRmax)← computeBounds(CR, s0, φ)

6: if ΛRmin ≥ r then
7: T ← T ∪R
8: else if ΛRmax < r then
9: F ← F ∪R

10: else
11: U ← U ∪R
12: until vol(U)/vol(P) > ε . where vol(A) =

∫
A

1dµ

(a) (b)

Fig. 3 (a) Refinement in threshold synthesis with ≥ r. Parameter values are on the x-axis,
probabilities on the y-axis. Each box describes a parameter region (width), and its probability
bounds (height). The refinement of R yields regions in T and in U . (b) Initial sampling-guided
refinement of P. Sampled probabilities and a tolerance ∆ are used to identify regions that are
likely to be in T (green area, samples ≥ r+∆), in F (red, ≤ r−∆), or close to the threshold
r (orange and lime green, ∈ (r −∆, r +∆)).

5.1 Threshold Synthesis

Algorithm 1 describes the method to solve the threshold synthesis problem with
input formula φ and threshold ≥ r. The idea, also illustrated in Figure 3(a), is to
iteratively refine the undecided parameter subspace U (line 3) until the termination
condition is met (line 14). At each step, we obtain a partition D of U . For each
subspace R ∈ D, the algorithm computes bounds ΛRmin and ΛRmax on the minimal
and maximal probability that CR with the initial state s0 satisfies φ (line 5). We
then evaluate if ΛRmin is above the threshold r, in which case the satisfaction of
the threshold is guaranteed for the whole region R, which is then added to T .
Otherwise, the algorithm tests whether R can be added to the set F by checking
if ΛRmax is below the threshold r. IfR is neither in T nor in F , it forms an undecided
subspace that is added to the set U . The algorithm terminates when the volume
of the undecided subspace is negligible with respect to the volume of the entire
parameter space, i.e. vol(U)/vol(P) ≤ ε, where ε is the input tolerance. Otherwise,
the algorithm continues to the next iteration, where U is further refined.
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5.1.1 Correctness and termination

Correctness of the algorithm follows from the construction of the regions T (lines
6,7) and F (lines 8,9). The termination condition guarantees the required bound
of the relative volume of U (line 12). Termination of the algorithm for (possibly
nested) CSL properties is stated below.

Proposition 3 For a pCTMC CP over a parameter space P, initial state s0, CSL
path formula φ and volume tolerance ε, Algorithm 1 terminates.

Proof See Appendix A.3.

5.1.2 Initial decomposition

Optionally, a heuristic based on an initial decomposition precedes the refinement
procedure. The initial decomposition can speed up the refinement, since it de-
composes the parameter space P in advance. It is guided by a priori uniform
sampling of probability values. In particular, we sample points p1, p2, . . . , pn ∈ P
and compute Λ̂φ(pi)(s0) for i = 1, . . . , n using standard CSL model checking.

Then, we partition P into subspaces that set apart samples where Λ̂φ(pi)(s0) ≥ r
from those where Λ̂φ(pi)(s0) < r. As depicted in Figure 3(b), we also use a toler-
ance ∆ > 0 to identify regions close to the threshold that are more likely to be
further decomposed. In this case the initial decomposition returns four regions.
Our experiments demonstrates that, in some cases, depending on the shape of
the satisfaction function and the threshold r, the initial decomposition accelerates
the synthesis.

5.2 Max Synthesis

Algorithm 2 is used to solve the max synthesis problem, which returns the set
T containing the parameter valuations that maximize the probability of the path
formula φ and the set F not yielding the maximum value. Starting from T = P,
the algorithm iteratively refines T until the probability tolerance condition at
Problem 2 is met (line 14).

Let D be a partition of T . For each subspace R ∈ D, the algorithm computes
bounds ΛRmin and ΛRmax on the minimal and maximal probability that CR with
the initial state s0 satisfies φ (line 5). The algorithm then rules out subspaces
that are guaranteed to be included in F , by deriving an under-approximation
(M) to the maximum satisfaction probability (line 7). If ΛRmax is below the under-
approximation, the subspaceR can be safely added to the set F (line 9). Otherwise,
it is kept in T .

We consider two approaches for deriving the bound M , namely a naive ap-
proach and a sampling-based approach. In the naive method, we set M to the
maximum over the least bounds in the partition of T , that is, M = max{ΛR

′

min |
R′ ∈ D}. Let R be the region with highest lower bound. The sampling-based
method, illustrated in Algorithm 3, improves on this by sampling a set of param-
eters {p1, p2, . . .} ⊆ R (line 2) and taking the highest value of Λ̂φ(p)(s0), that is,

M = max
{
Λ̂φ(pi)(s0) | pi ∈ {p1, p2, . . .}

}
(line 3). Each Λ̂φ(p)(s0) is computed
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Algorithm 2 Max Synthesis
Require: pCTMC CP over parameter space P, initial state s0, CSL path formula φ and

probability tolerance ε > 0
Ensure: Λ⊥φ , Λ>φ , T and F as in Problem 2

1: F ← ∅, T ← P
2: repeat
3: D ← decompose(T ), T ← ∅, Λ⊥φ ← +∞, Λ>φ ← −∞
4: for each R ∈ D do
5: (ΛRmin, ΛRmax)← computeBounds(CR, s0, φ)

6: M ← getMaximalLowerBound(D)
7: for each R ∈ D do
8: if ΛRmax < M then
9: F ← F ∪R

10: else
11: T ← T ∪R
12: Λ⊥φ ← min{Λ⊥φ , Λ

R
min}

13: Λ>φ ← max{Λ>φ , Λ
R
max}

14: until Λ>φ − Λ
⊥
φ > ε

Algorithm 3 Sampling-guided computation of a maximal lower bound
Require: Parameter decomposition D and number of samples n
Ensure: M , an improved lower bound for max probability in D

1: R = arg maxR′∈D Λ
R′
min

2: (p1, . . . , pn)← Uniform(R, n)

3: M ← maxpi Λ̂(pi)(s0)

Fig. 4 Refinement in max synthesis. The two outermost regions (in red) cannot contain the
maximum, as their upper bound is below the maximum lower bound (M) found at region

R. The maximum lower bound is improved by sampling several points p ∈ R and taking
the highest value (M) of the satisfaction function Λ̂φ(p)(s0). The yellow area highlights the
improvement.

through regular CSL model checking, and is equally expensive as computing the
bounds on a fixed pCTMC. The sampling method results in an improved under-
approximation to the maximum of the satisfaction function. As a result, the bound
rules out more regions, and fewer refinements are required in the next iteration
(see Figure 4).
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5.2.1 Correctness and termination

The correctness of the algorithm derives from the construction of the sets T (lines
12,13) and F (lines 8,9), and from the termination condition (line 14).

We remark that, for nested properties, the satisfaction function is in general
discontinuous, which allows ΛRmax−ΛRmin > ε when T contains a jump discontinuity.
This prevents the algorithm from terminating. For this reason a volume-based
stopping criterion, such as vol(T ) ≤ ε for ε > 0, which replaces the condition
on line 14, should be used when analysing nested properties. Indeed, the volume
of any region containing such a discontinuity can be made arbitrarily small in a
finite number of refinement steps, as discussed in the proof of Proposition 3. With
unnested properties, the following proposition ensures termination.

Proposition 4 For a pCTMC CP over a parameter space P, initial state s0, non-
nested CSL path formula φ and tolerance ε, Algorithm 2 terminates.

Proof See Appendix A.4.

5.3 Complexity

The time complexity of the procedure computing the probability bounds for a fixed
region has been discussed in Section 4.2. The overall runtime of both algorithms
further depends on the number of subspaces that are required to obtain the de-
sired precision. This number scales exponentially in the number of parameters and
linearly in the volume of the parameter space. However, in practice, the number
of required subspaces also depends on the shape of the satisfaction function and
the type of synthesis.

6 Results

We implemented the synthesis algorithms on top of the tool PRISM 4.0 [32]. Cur-
rently, a prototype command-line version is available at https://github.com/

Palmik/prism-pse/. Models and properties are specified using the native specifi-
cation languages of PRISM. Note that the online version of the tool only supports
linear rate functions and non-nested formulas.

We demonstrate the applicability and efficiency of the developed algorithms on
three case studies. We run all experiments on a Linux workstation with an AMD

Phenom
TM

II X4 940 Processor @ 3GHz, 8 GB DDR2 @ 1066 MHz RAM.

6.1 Epidemic model

The SIR model [27] describes the epidemic dynamics in a well-mixed and closed
population of susceptible (S), infected (I) and recovered (R) individuals. In the
model, a susceptible individual is infected after a contact with an infected indi-
vidual with rate ki. Infected individuals recover with rate kr, after which they are
immune to the infection. We can describe this process with the following biochem-
ical reaction model with mass action kinetics (i.e. the rate functions are linear
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with respect to the parameters):

S + I
ki−→I + I (Infection)

I
kr−→R (Recovery)

We represent the model as a pCTMC with parameters ki ∈ [0.005, 0.3] and kr ∈
[0.005, 0.2], and initial populations S = 95, I = 5, R = 0.

We consider the time-bounded CSL path formula φ = (I > 0)U[100,120](I = 0),
specifying behaviour where the infection lasts for at least 100 time units, and dies
out before 120 time units. Property and parameters are taken from [9], where the
authors estimate the satisfaction function for φ following a Bayesian approach1.

First, we perform threshold synthesis experiments to find infection and recovery
rates for which φ is satisfied with probability at least r = 10%. Figure 5 illustrates
the solutions for one-dimensional parameter spaces (plots a,b) obtained by fixing
ki = 0.12 and kr = 0.05, respectively; and for the two-dimensional parameter space
(plots c,d). Results evidence that a significantly higher number of refinement steps
is required for parameter subspaces where the satisfaction function Λ is close to
the probability threshold r.

Second, we perform max and min synthesis experiments for property φ over
one-dimensional and two-dimensional parameter spaces. Results are summarized
in Figure 6. For the experiments in Figure 6b and 6c we observe that, in order
to meet the desired probability tolerance, a high number of refinement steps is
required due to two local extrema close to the minimizing region and a bell-shaped
Λ with the maximizing region at the top, respectively.

Our precise results for the problem in Fig. 6a improve on the estimation in [9],
where in a similar experiment the maximal satisfaction probability is imprecisely
registered at ki = 0.25.

We also compare the solutions to the max synthesis problem over the two-
dimensional parameter space obtained by applying Algorithm 2 with sampling
(Figure 6e) and without (Figure 6f). In the former case, a more precise T region is
obtained (with volume 2.04 times smaller than in the approach without sampling),
hence giving a more accurate approximation of the max probability. Sampling also
allows us to rule out earlier those parameter regions that are outside the final
solution, thus avoiding unnecessary decompositions and improving the runtime
(1.72 times faster than in the approach without sampling). This is visible by the
coarser approximations of probabilities in the F region.

6.1.1 Parameter synthesis for nested CSL formulas

We use the SIR model to illustrate parameter synthesis for a nested CSL formula.
We consider initial populations of S = 3, I = 1 and R = 0 to obtain a small model
with only 14 reachable states, which allows us visualise the main steps of the
synthesis algorithm. We modify the original path formula φ to specify behaviour
where the infection lasts at least 100 time units and, before 200 time units, the
system reaches a state where the infection becomes extinct before time 100 with
probability higher than 90%. Such a property can be formalised as the nested CSL
path formula φ′ = (I > 0)U[100,120](Ψ), where Ψ = P>0.9[F [0,100](I = 0)].

1 In [9], a linear-time specification equivalent to φ is given.
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ki × kr Runtime Subspaces
a) [0.005, 0.3]× 0.05 42.2 s 23
b) 0.12× [0.005, 0.2] 26.7 s 15
c,d) [0.005, 0.3]× [0.005, 0.2] 29.3 min 1320

Fig. 5 Solution to threshold synthesis problems for the SIR model and the property
P≥0.1[(I > 0)U[100,120](I = 0)]. Plots c) and d) depict the same result with two different
angles. Runtime and number of subspaces in the final partition of P are listed. Volume toler-
ance is ε = 10%. Colour code is as in Fig. 3 a).

We show threshold synthesis for property P>0.1[φ′] and parameter space ki ×
kr = 0.12 × [0.02, 0.04]. Recall that the probability bounds Λφ′,min and Λφ′,max

for a nested formula φ′ are computed as:

Λφ′,min(s) = Λφ⊥,min(s) where φ⊥ = (I > 0)U[100,120](Sat⊥(Ψ))

Λφ′,max(s) = Λφ>,min(s) where φ> = (I > 0)U[100,120](Sat>(Ψ))

Figure 7 depicts four steps of the refinement algorithm. In the first step,
Sat⊥(Ψ) contains only states where the population of I is 0 and Sat>(Ψ) con-
tains all reachable states. The threshold synthesis algorithm for P>0.1[φ′] parti-
tions the parameter space into a single undecided region. In the second step, the
parameter space refinement yields a refinement of the satisfaction sets. In par-
ticular, for kr = [0.02, 0.03], we observe that some states no longer appear in
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ki × kr Runtime Subspaces Λ⊥φ Λ>φ T
a) [0.005, 0.3]× 0.05 16.5 s 9 33.94% 34.85% [0.267, 0.3]× 0.05
b) [0.005, 0.3]× 0.05 49.5 s 21 2.83% 2.91% [0.005, 0.0054]× 0.05
c) 0.12× [0.005, 0.2] 99.7 s 57 19.94% 20.42% 0.12× [0.071, 0.076]
d) 0.12× [0.005, 0.2] 10.4 s 5 † 0.005% 0.12× [0.005, 0.026]
e) [0.005, 0.3]× [0.005, 0.2] 3.6 h 5817 35.01% 35.72% [0.217, 0.272]×[0.053, 0.059]
f) [0.005, 0.3]× [0.005, 0.2] 6.2 h 10249 34.77% 35.72% [0.209, 0.29]×[0.051, 0.061]

Fig. 6 Solution to max (a,c,e,f) and min (b,d) synthesis for the SIR model and the formula

φ = (I > 0)U[100,120](I = 0). Sampling-based refinement is used for all experiments but e).
Colour code is as in Fig. 4. In the table, we report runtime, number of subspaces, approximation
(Λ⊥φ and Λ>φ ) of min or max probability, and bounding box of T . Probability tolerance is ε = 1%

for max synthesis and ε = 0.1% for min synthesis. †: The found value, 3.05× 10−10, is of the
same order of magnitude as the precision used during uniformisation.

Sat>(Ψ) (shown red-coloured), while, for kr = [0.03, 0.04], some states are added
to Sat⊥(Ψ) (shown green-coloured). Note that, although Sat⊥(Ψ) 6= Sat>(Ψ), the
approximation is precise enough to decide that the latter parameter subspace is
false, since Λφ′,max(s) < 0.1. In the third refinement step, we manage to refine
only Sat>(Ψ) for region kr = [0.02, 0.025]. The region remains still undecided as
well as region kr = [0.025, 0.03]. Finally, in the fourth step, the satisfaction sets for
kr = [0.02, 0.0225] collapse, i.e. Sat⊥(Ψ) = Sat>(Ψ), which allows us to conclude
that the region is true. Region kr = [0.0275, 0.03] can also be decided, despite the
fact that Sat⊥(Ψ) 6= Sat>(Ψ) here.

This example demonstrates the key aspects of the parameter synthesis method
for nested CSL formulas. In particular, it shows that the refinement of the param-
eter space yields the refinement of the satisfaction sets and can result in parameter
subspaces where, for a given state formula Φ, Sat⊥(Φ) = Sat>(Φ). Note that, if ad-
ditional refinements are needed for such subspaces, the corresponding probability
bounds can be computed in the same way as non-nested formulas. This example



Precise Parameter Synthesis for Stochastic Biochemical Systems 23

1
2
3

0

4

1 2 30 4

1
2
3

0

4

1 2 30 4

SatT

Sat

T

[0.02-0.04]

[0.02-0.03]

0.02

0.04 1
2
3

0

4

1 2 30 4
[0.03-0.04]

0.04

0.02

0.03

1
2
3

0

4

1 2 30 4
[0.02-0.025]

1
2
3

0

4

1 2 30 4
[0.025-0.03]

0.04

0.02

0.03

1
2
3

0

4

1 2 30 4
[0.02-0.0225]

[0.0225-0.025]

1
2
3

0

4

1 2 30 4
[0.25-0.275]

0.04

0.02

0.03

1
2
3

0

4

1 2 30 4
[0.0275-0.3]

1
2
3

0

4

1 2 30 4
0.0225

0.0275

0.025
0.025

p
o
p
S

popI

+

Sat

T

S \ ( U Sat

T

)

unreachable states

true region undecided region false region

Step 1

Step 2 Step 3

Step 4

Fig. 7 Visualisation of four steps of the threshold synthesis algorithm for a small variant of
the SIR model, nested CSL formula P>0.1[(I > 0)U[100,120](Ψ)] (Ψ = P>0.9[F [0,100](I = 0)])
and parameter space ki × kr = 0.12 × [0.02, 0.04]. The two-dimensional grids represent the
state space. Since the total population is preserved by the model dynamics, each state is
unambiguously given by the population of S (popS) and population of I (popI). For a given
parameter region, the satisfaction sets Sat⊥(Ψ) and Sat>(Ψ) for Ψ are depicted using different
colouring of the grid cells. For each step, the vertical coloured bar illustrates the current
partitioning of the parameter space into regions T ,U and F .

also demonstrates that a region can be decided even when Sat⊥(Φ) 6= Sat>(Φ).
This considerably reduces the number of required refinements for the subformula
Φ. In general, the synthesis algorithms for the nested formulas have a higher com-
plexity, since the nesting of probabilistic operators increases the number of regions
to analyse.

6.2 DNA walkers

Fig. 8 Single-junction DNA walker cir-
cuit. In orange: the walker starts on the
Initial anchorage and moves right at the
junction, eventually quenching the flu-
orophore at the Final2 anchorage.

We revisit models of a DNA walker, a
man-made molecular motor that traverses
a track of anchorages and can take direc-
tions at junctions in the track [43], which
can be used to create circuits that evalu-
ate Boolean functions. PRISM models of the
walker stepping behaviour were developed
previously [17] based on rate estimates in
the experimental work. The walker model
is modified here to allow uncertainty in
the stepping rate, and we consider its be-
haviour over a single-junction circuit, see
Figure 8. Following [17], the stepping rate
k is parameterised by d, the distance between the walker-anchorage complex and
an uncut anchorage, and da, the distance between consecutive anchorages, and is
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Runtime Subspaces
Time bound Min. correct Max. incorrect ∅ Sampling ∅ Sampling
T = 15 1.68% 5.94% 0.55 s 0.51 s 22 11
T = 30 14.86% 10.15% 1.43 s 1.35 s 35 15
T = 45 33.10% 12.25% 3.53 s 2.14 s 61 21
T = 200 79.21% 16.47% 213.57s 88.97 s 909 329

Fig. 9 Experiments for the DNA walker model: min-synthesis for φ = F[T,T ] finish-correct

and max-synthesis for φ = F[T,T ] finish-incorrect using ks ∈ [0.005, 0.020], c = 1 and probabil-
ity tolerance ε = 1%. Plots show the solutions and the decompositions for the min (a,b) and
max (c,d) synthesis and T = 15, 200 minutes. Colour code is as in Fig. 4. In the table, results
are reported also for T = 30, 45. The runtime and subspaces are listed only for min-synthesis
(the results for max-synthesis are similar).

defined as:

k =


ks when d ≤ 1.5da

c · ks/50 when 1.5da < d ≤ 2.5da

c · ks/100 when 2.5da < d ≤ 24nm

0 otherwise.

(43)

where the base stepping rate ks ∈ [0.005, 0.020] is now defined as an interval,
as opposed to the original value of 0.009. We have also added factor c for steps
between anchorages that are not directly adjacent, but we will assume c = 1 for
now. The base stepping rate may depend on buffer conditions and temperature,
and we want to verify the robustness of the walker with respect to the uncertainty
in the value of ks.

We compute the minimal probability of the walker making it onto the correct
final anchorage by time T (min synthesis for the formula φ = F[T,T ] finish-correct)
and the maximum probability of the walker making it onto the incorrect anchorage
by time T (max synthesis for the formula φ = F[T,T ] finish-incorrect). In Figure
9, we list the probabilities at T = 15, 30, 45, 200 minutes and depict the solutions
and the parameter space decompositions for both experiments at T = 15, 200 min-
utes. For time T = 30, 45, 200, we note that the walker is robust, as the minimal
guaranteed probability for the correct outcome is greater than the maximum pos-
sible probability for the incorrect outcome. For time T = 15 this is not the case.
From plots (a-d), we observe that minimum and maximum probability values are
obtained for minimum and maximum values of ks, respectively.

We also consider a property that provides bounds on the ratio between the
walker finishing on the correct versus the incorrect anchorage. The rates c · ks/50
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Fig. 10 The computation and results of the threshold synthesis for the DNA walker
model, ks × c ∈ [0.005, 0.020] × [0.25, 4] and different formulas, using volume tolerance

ε = 10%. a) P≥0.4[F[30,30] finish-correct] ∧ P≤0.08[F[30,30] finish-incorrect], runtime 282.5 s,

3489 subspaces∗. b) P≥0.8[F[200,200] finish-correct] ∧ P≤0.16[F[200,200] finish-incorrect], run-
time 8.2 h, 47229 subspaces∗. Results are obtained by solving the synthesis problem for each
sub-formula and by combining the output regions as in Eqn 6. ∗: derived as the sum of runtimes
and subspaces for each sub-formula.

and c · ks/100 correspond to the walker stepping onto anchorages that are not
directly adjacent, which affects the probability for the walker to end up on the
unintended final anchorage. For higher values of c, the walker is more likely to
reach the unintended final anchorage more often. Now we add uncertainty on the
value of c, so that c ∈ [0.25, 4], and define the performance related property by
P≥0.4[F[30,30] finish-correct] ∧ P≤0.08[F[30,30] finish-incorrect], that is, the proba-
bility of the walker to make it onto the correct anchorage is at least 40% by time
T = 30 min, while the probability for it to make it onto the incorrect anchorage
is no greater than 8%. In other words, we require a correct signal of at least 40%
and a correct-to-incorrect ratio of at least 5 by time T = 30 min. We define a
similar property at time T = 200 min, this time requiring a signal of at least 80%:
P≥0.8[F[200,200] finish-correct]∧P≤0.16[F[200,200] finish-incorrect]. The synthesized
ranges of ks and c where the properties hold are shown in Figure 10. Note that in
this case the rate function is a multi-affine polynomial and for fixed c (Figure 9)
the function is linear.

6.3 Gene Regulation of Mammalian Cell Cycle

We consider the gene regulation model published in [42]. The model is shown in
Fig. 11a and explains the regulation of a transition between the early phases of
the mammalian cell cycle. In particular, it targets the transition from the con-
trol G1-phase to S-phase (the synthesis phase). The G1-phase makes an impor-
tant checkpoint controlled by a bistable regulatory circuit, based on an interplay
of the retinoblastoma protein pRB, denoted by A (the so-called tumour sup-
pressor, HumanCyc:HS06650) and the retinoblastoma-binding transcription factor
E2F1, denoted by B (a central regulator of a large set of human genes, Human-
Cyc:HS02261). At high concentration levels (high mode), B activates the G1/S
transition mechanism. On the other hand, a low concentration of B (low mode)
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: A′ = A+ 1

B < MB → k2
a2+B2

(K2
m2+B2)
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J12+A

: B′ = B + 1

B < MB → kp : B′ = B + 1

A > 0→ γA ·A : A′ = A− 1

B > 0→ γB ·B : B′ = B − 1

(b)

Fig. 11 (a) Two-gene regulatory circuit controlling G1/S transition in mammalian cell cycle
(a indicates inhibition,→ activation). (b) Stochastic Michaelis-Menten model of the G1/S reg-
ulatory circuit adapted from [42] in the guarded command notation (guard→ rate : update).
A and B are the number of proteins pRB and E2F1, respectively. Rates are expressed in s−1.
Production rate parameters are as in [42]: k1 = 1, k2 = 1.6, kp = 0.05, Km1 = 0.5, Km2 = 4,
a = 0.04, J11 = 0.5 and J12 = 5. MA = MB = 30 are the bounds on A and B, estimated
through stochastic simulations. Synthesis parameters are: γA ∈ [0.005, 0.5] (degradation rate
of pRB), and γB ∈ [0.005, 0.5] (degradation rate of E2F1).

prevents committing to S-phase. Depending on the parameters, the positive au-
toregulation of B causes bistability of its concentration, i.e. the existence of two
stable states. Of specific interest are the degradation rates of A (γA) and B (γB).
When mitogenic stimulation increases under conditions of active growth, rapid
phosphorylation of A starts and makes the degradation of unphosphorylated A
stronger (i.e. the rate γA increases). This causes B to lock in the high stable mode
implying the cell cycle commits to the S-phase. Since mitogenic stimulation influ-
ences the degradation rate of A, our goal is to study the population distribution
around the low and high steady states and to explore the effect of γA and γB .

The ODE model in [42] describes this system using Michaelis-Menten (MM) ki-
netics [35], which provides a deterministic approximation for enzyme-catalysed re-
actions. In this work, we derive a discrete stochastic translation of the ODE model
by directly using the MM rates. The model is illustrated in Fig. 11b. The corre-
sponding CTMC has 961 states and 3690 transitions. For details on the adequacy of
the MM approximation in the stochastic settings, we refer the reader to [37,39].

We apply threshold synthesis to find the degradation rates that lead to bistabil-
ity. In particular, synthesis parameters are γA ∈ [0.005, 0.5] and γB ∈ [0.005, 0.5]
and thus the rate functions are linear with respect to the parameters. We formal-
ize stability using time-bounded properties with time horizon 1000 seconds, which
reflects the time scale of the gene regulation response. The stabilization of the
model’s dynamics within this time horizon was also confirmed by a steady-state
analysis for different values of the parameters. We use atomic propositions H and
L to denote the high and low mode of B, respectively. In the following experiments,
we assume L is true if B < 2 and H is true if B > 4.

Bistability is commonly expressed as the property of reaching and staying in
either one of two different regions of the state space. In time-bounded CSL, this can
be expressed using the formula P≥rL [GIL] ∧ P≥rH [GIH], where I spans the final
time window and the probability of resting in the two modes is at least rL and rH ,
respectively. However, threshold synthesis for this property, I = [900, 1000] and
different combinations of rL and rH resulted in empty T regions and negligible U
regions, indicating that no parameters can be found that meet this formulation of
bistability. Note that this result agrees with the analysis performed in [11] using
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(a) (b) (c)

γA × γB Runtime∗ Subspaces∗
a) [0.005, 0.5]× [0.005, 0.5] 618 s 809
b) [0.005, 0.5]× [0.05, 0.15] 1256 s 1817
c) [0.005, 0.5]× [0.05, 0.15] 1882 s 1742

Fig. 12 Bistability analysis in the G1/S regulatory circuit model: threshold synthesis for
property P≥0.4[FtL] ∧ P≥0.4[FtH] (a,b) and R≥400[C≤1000](B < 2) ∧ R≥400[C≤1000](B > 4)
(c) with volume tolerance ε = 1%. In b) and c) we improve precision by restricting the range
of γB . Colour code is as in Fig. 3 a). Results are obtained by solving the synthesis problem for
each sub-formula and by combining the output regions as in Eqn 6. ∗: derived as the sum of
runtimes and subspaces for each sub-formula.

a different stochastic translation of the ODE model and parameter exploration
techniques.

Therefore, we analyse whether there is at least a weaker type of bistability in
the form of a bi-modal distribution at time t = 1000. The existence of the bi-modal
distribution is formalized using the future operator F as:

P≥rL [FtL] ∧ P≥rH [FtH].

Results for rL = rH = 0.4 are summarised in Figure 12. In plot a), we observe
that most of the degradation rates violate the formula, with the exception of an
undecided region that spans the domain of γA and γB ∈ [0.05, 0.15]. Although this
result is consistent with input volume tolerance ε, it does not provide a precise
answer to whether satisfiable parameters exist or not.

In order to resolve the undecided region, we perform the same experiment by
restricting the parameter space to the area of interest (plot b). Indeed, note that,
by the volume tolerance criterion, a lower volume of P implies a lower volume
of U . An alternative (less efficient) solution would be keeping P unchanged and
decreasing ε. The results demonstrate that a bi-modal distribution is reached for
a relevant set of parameters. In particular, we show that, for any value of γA
approximately ranging in [0.08, 0.5], there exists a value of γB that satisfy the
property.

To complement the above analysis, we further analyse how long the system
remains in the low and high mode. To this purpose, we synthesise parameters
such that the following cumulative reward property is satisfied:

R≥400[C≤1000](B < 2) ∧ R≥400[C≤1000](B > 4)

where, for subformula R≥400[C≤1000](B ∼ X), the state reward ρ is such that:
∀s ∈ S. ρ(s) = 1 ⇔ B ∼ X in s. Figure 12 c) illustrates the results of param-
eter synthesis restricted to the parameter space as in the previous experiment.
The parameters that satisfy the reward property are aligned with the parameters
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leading to the bimodal distribution. This experiment confirms the existence of a
certain form of the bistability in the stochastic version of the model. Moreover,
our results are comparable with those obtained using numerical simulations of the
ODE model and bifurcation analysis in [42], where bistability is registered2 for
γA ∈ [0.007, 0.03] and fixed γB = 0.1.

7 Related work

The work by Brim et al. [11] first introduced extensions of CSL model checking
and of the uniformisation method for computing safe probability bounds in para-
metric models of stochastic reaction networks. The methods are applied to the
problem of parameter exploration, i.e. finding bounds that approximate the satis-
faction function arbitrarily well. Our work extends [11] with the following five main
contributions. (1) Definition of the threshold and max synthesis problems. (2) Syn-
thesis algorithms that combine iterative refinement of the parameter space with
sampling of probability values. In contrast to [11], where every parameter region
needs to be analyzed, our algorithms focus only on the regions relevant to solve
the synthesis problem, so avoiding unnecessary computation. (3) More general
class of supported rate functions. Specifically, we allow multi-affine dependency of
the rate functions in the parameters, while the method in [11] supports only rate
functions linear in the parameters. (4) Convergence analysis of the approximation
error (see Proposition 2). (5) Theorem 1, which provides a precise mathematical
characterization for the satisfaction function of generic time-bounded and finitely-
nested CSL formulas. Furthermore, the gene regulation model in Section 6.3 is
also studied by Brim et al. [11]. They translate the original ODE model [42] into
the framework of stochastic mass action kinetics, while we consider a stochastic
Michaelis-Menten approximation. In [11], no parameters are found that meet the
bistability requirement, expressed using ‘globally’ and cumulative reward formu-
las. Our analyses confirm that the model does not exhibit bistability if defined
with ‘globally’ formulas, but that bistability occurs if formulated as a bounded
reachability or a cumulative reward formula. This is explained by the different
stochastic encodings of the original ODE model.

Parameter synthesis for CTMCs and bounded reachability specifications is
considered in [23]. The authors show that the problem can be reduced to the
analysis of the polynomial function describing the reachability probability of a
given target state. As illustrated in Section 4.1, the main limitation is the high
degree of the polynomials, which is determined by the number of uniformisation
steps. Thus, in contrast to our work, only an approximate solution can be obtained
using discretization of the parameter space and the experimental evaluation is
limited to one simple case study (a CTMC with 19 states and 54 transitions).

When considering linear-time specifications, specific restrictions can be placed
on the rate function to result in a smooth satisfaction function (i.e. having deriva-
tives of all orders). In that case the function can be approximated using statistical
methods such as Gaussian Process regression, which leverage smoothness [9]. Such
restrictions require the rate function to be smooth in the parameters and poly-
nomial in the state vector. Instead, the synthesis method we presented imposes

2 In [42], we believe that there is a typo in the figure illustrating bistability (Figure 2B).
The range of φpRB (corresponding to γA) should read 0.005-0.035.
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limitations only on the parameter dependency. In contrast to our approach, the
statistical estimation of the satisfaction function cannot provide guaranteed re-
sults. Moreover, the precision of the estimation strongly depends on a number of
experimental design choices, e.g. how many and which parameter values to sample,
while our algorithms provide results with arbitrary precision and do not require
any information except the inputs to the synthesis problem.

A concept similar to smoothness, uniform continuity, can be used to obtain
an unbiased statistical estimator for the satisfaction function [25]. Inference of
parameter values in probabilistic models from time-series measurements is a well
studied area of research [2,10], but different from the problem we consider.

Parameter synthesis problems have been studied for discrete-time Markovian
models in [22,14]. These approaches apply to unbounded temporal properties and
are based on constructing a rational function by performing state elimination [22].

Interval CTMCs, where transition rates are given as intervals, have been em-
ployed to obtain a three-valued abstraction for CTMCs [26]. In contrast to the
parametric models we work with, the transition rates in interval CTMCs are cho-
sen nondeterministically and schedulers are introduced to compute lower and up-
per probability bounds. Along the same lines, [41] introduce models and model
checking algorithms for interval DTMCs and MDPs.

Synthesis approaches for non-stochastic biological models include the work by
Batt et al. [6], where parameters of ODE-based gene regulatory network (GRN)
models are synthesized using discrete abstractions and LTL model checking. In [5],
the method of [18] based on sensitivity analysis is applied to the automated design
of synthetic biological devices from basic ODE modules. In [28], parameter syn-
thesis for discrete GRNs is reduced to coloured LTL model checking and solved
through a distributed algorithm. Methods based on SMT are presented in [29,36]
to synthesize Boolean network models from time-series and perturbation experi-
ments data.

8 Conclusion and Discussion

We have developed efficient algorithms for synthesising rate parameters for bio-
chemical networks so that a given requirement, expressed as a time-bounded CSL
formula, is guaranteed to be satisfied. The techniques are based on the computa-
tion of lower and upper probability bounds of [11], in conjunction with iterative
refinement and sampling of parameters. In this work we focus on biological systems
that, being characterised by complex and non-linear dynamics, are typically hard
to analyse. However, our synthesis algorithms can be equivalently applied also to
the performance and reliability analysis of computer systems.

We remark that improved performance can be easily achieved through parallel
processing of individual subspaces and, within each subspace, of the parametric
uniformisation method. Other techniques can also be integrated to speed up the
synthesis process, including fast adaptive uniformisation [34,16], state aggrega-
tion [44,1], and abstraction [33]. Finally, we plan to include the synthesis algo-
rithms in the param module of the PRISM model checker [14,32], and to extend the
method to general non-linear rate functions.
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A Proofs

A.1 Proposition 2

Consider a parameter region R = [x⊥1 , x
>
1 ]× . . .× [x⊥n , x

>
n ] ⊆ P. Fix an arbitrary state s and

let the maximizing argument of the transient probability in s be (cf. Eqn 8):

p∗ = arg maxp∈R πt(s) (44)

and let τ∗i = π0Pip∗ . The local error introduced during a single discrete time step for state s,

in the multi-affine case, is given by

ei(s) =
1

q
|flux(τ∗i−1, s)(p

∗)− max
p∈VR

flux(τ∗i−1, s)(p)|. (45)

Note that in this analysis the local error is expressed for the discrete distribution τmax
i , from

which the solution πmax
i is derived as a linear combination. We now analyse the global error,

which for i > 1 is given as:

gi(s) =|τ∗i (s)− τmax
i (s)| (46)

=|τ∗i−1(s) +
1

q
flux(τ∗i−1, s)(p

∗)− τmax
i−1 (s)−

1

q
max
p∈VR

flux(τmax
i−1 , s)(p)| (47)

where we now use the definition of gi(s) and employ triangle inequality:

≤gi−1(s) +
1

q

∣∣flux(τ∗i−1, s)(p
∗)− max

p∈VR
flux(τmax

i−1 , s)(p)
∣∣ (48)

≤gi−1(s) +
1

q

∣∣flux(τ∗i−1, s)(p
∗)− max

p∈VR
flux(τ∗i−1 + gi−1, s)(p)

∣∣ (49)

where the overall global error gi is the vector-wise equivalent of gi(s) and we continue

gi(s) ≤gi−1(s) +
1

q
max
p∈VR

flux(gi−1, s)(p) (50)

+
1

q

∣∣flux(τ∗i−1, s)(p
∗)− max

p∈VR
flux(τ∗i−1, s)(p)

∣∣ (51)

≤gi−1(s) +
1

q
max
p∈VR

flux(gi−1, s)(p) + ei(s) (52)

The form of gi(s) is understood as follows. The error in the current step is less than the error
in the previous step plus the maximal local error plus the worst-case additional flux resulting
from the approximation error in the previous step. Let the width of the parameter space R be
given as wR = maxj(x

>
j − x⊥j ).

We now show how to derive bounds M1,M2 <∞ such that

ei ≤
M1

q
wR (53)

max
p∈VR

flux(gi, s)(p) ≤M2 ·max
s∈S

gi−1(s) (54)

Observe that, if the two inequalities above hold, we get the same over-approximation as in
Eqn 42, which would prove the proposition true. For the local error we find

ei(s) ≤
1

q
max
p∈VR

|flux(τ∗i−1, s)(p
∗)− flux(τ∗i−1, s)(p)| (55)

and in this case a Lipschitz constant M1,s exists such that

ei(s) ≤
M1,s

q
wR (56)
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Thus, M1 = maxs∈SM1,s is such that Eqn 53 holds. The maximum flux that propagates due
to the approximation error in the previous step is given as

max
p∈VR

flux(gi−1, s)(p). (57)

Now regard flux(gi−1, s)(p) as a function of gi−1, with p, s fixed. Note that the domain of
the function is given by R′ = ×s∈S [0, gi−1(s)], and thus wR′ = maxs∈S gi−1(s). Also,

flux(0, s)(p) = 0 for 0 : S → 0. Thus, another Lipschitz constant M2,p,s exists such that

flux(gi−1, s)(p) = flux(gi−1, s)(p)− flux(0, s)(p) ≤M2,p,s ·max
s∈S

gi−1(s) (58)

By taking M2 = maxp∈R,s∈SM2,p,s, Eqn 54 holds. Summarizing, the global error on τmax
i (s)

is bounded by gi, under the assumption of multi-affine rate functions, as

gi =

{
0 if i = 0

gi−1 ·
(

1 + M2
q

)
+ M1

q
wR if i > 0,

(59)

A.2 Theorem 1

The probability of satisfying an unnested and time-bounded CSL property given a CTMC
Cp = (S, s0,Rp, L) reduces to the computation of transient-state probabilities over a CTMC
C′p for which the transition relation R′p is easily derived from the original CTMC [4,31].
Recalling Definition 4, the transient-state probability is given by standard uniformisation:

π̂t,p = π0

kε∑
i=0

γi,qtP
i
p. (60)

Provided the entries in P are polynomials of finite degree, the expression π̂t(s) is also a finite-

degree polynomial over domain P. We now prove that the approximate satisfaction function Λ̂φ
of any time-bounded finitely-nested path formula can be expressed as a piecewise polynomial
function with a finite number of subdomains, using the above as the base case in our induction.
Note that only the path operators until (U) and next (X) allow nesting. We prove the induction
step only for the until operator, since the proof for the next operator can be obtained in a
similar way.

Let φ1, φ2 be time-bounded CSL path formulas such that P=?[φ1], P=?[φ2] are piecewise
polynomial with a finite number of subdomains. Consider the nested formula:

P=?

[
P∼1r1 [φ1] UI P∼2r2 [φ2]

]
(61)

for a subdomain I ∈ R≥0, bounds r1, r2 and ∼i ∈ {<,≤,≥, >}.
Observe that, if the satisfaction sets vi = {s ∈ S | s |= P∼iri [φi]} for i = 1, 2 are constant

over a subspace R ⊆ P, then the expression in Eqn 61 is given by a polynomial function over
R, cf. Eqn 60. We will demonstrate that Λ̂P∼1r1

[φ1] UI P∼2r2
[φ2] is piecewise polynomial over

finitely many subdomains by constructing a partition of P that is conditioned on the truth
assignment of each state. Given a state s, allow the partition T1(s) ∪ F1(s) = P where

∀p ∈ T1(s) : s |= P∼1r1 [φ1] (62)

∀p ∈ F1(s) : s 6|= P∼1r1 [φ1]. (63)

By the induction hypothesis P=?[φ1]− r1 is piecewise polynomial over finite many subspaces,
so that T1(s),F1(s) are unions of finitely many subspaces of P. Assume a similar partition
T2(s) ∪ F2(s) = P. We now wish to construct a partition

⋃
v1,v2∈2S R(v1, v2) = P that is

conditioned on the truth assignment of all states, so that ∀p ∈ R(v1, v2):

s ∈ v1 ⇔ s |= P∼1r1 [φ1] ∧ s ∈ v2 ⇔ s |= P∼2r2 [φ2] (64)
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in which case the expression of Eqn 61 is a polynomial function over R(v1, v2) because the
truth-assignment of the nested formulas is fixed. We provide a constructive definition for
R(v1, v2) by finite intersection of the sets Ti(s) and Fi(s), that is:

R(v1, v2) = [∩s∈v1T1(s)] ∩
[
∩s 6∈v1F1(s)

]
∩ [∩s∈v2T2(s)] ∩

[
∩s 6∈v2F2(s)

]
. (65)

Then R(v1, v2) is a union of a finite number of subdomains of P. ut

A.3 Proposition 3

We first show termination of the algorithm for an unnested property P≥r[φ]. Define

f = Λ̂φ(·)(s0)− r

and let the zero-set of f be given as Z(f) = {p ∈ P | f(p) = 0}. In other words, Z(f) is the

set of parameters p yielding satisfaction probability equal to r, i.e. Λ̂φ(p)(s0) = r. Now note
that, at a generic step of the algorithm, the undecided space is composed by those regions Ri
such that Λ

Ri
min < r and Λ

Ri
max ≥ r. Assuming infinite precision, Λ

Ri
min and Λ

Ri
max can be made

arbitrarily tight, i.e. the approximation error made arbitrarily small (cf Prop 2). Therefore,
any such Ri intersects the zero-set of f and the undecided space covers the zero-set. Formally,
given a decomposition ∪iRi = P, the undecided region is given as:

U = ∪iRi s.t. Ri ∩ Z(f) 6= ∅. (66)

Excluding the trivial case that f is identically zero (Z(f) = P), we prove termination in two
steps. First, we show that Z(f) can be covered by finitely many rectangular regions whose total
volume can be made arbitrarily small. Call such cover C. Second, we show that our algorithm
can reach in a finite number of steps a decomposition where U covers C and has volume no
larger than the tolerance ε. Finally, we extend the termination proof to nested CSL properties.

(1) We state now two useful properties of zero-sets: i) the zero-set of a multi-variate polyno-
mial is negligible, i.e. it has Lebesgue measure (volume) 0 (a proof is available in [12]). ii) the
zero-set Z(f ′) of any continuous function f ′ is closed. This follows from the fact that Z(f ′) is
the pre-image of f ′ on the closed set {0}. Now note that the parameter space P is compact
(bounded and closed). It follows that Z(f) ⊂ P is compact too. Z(f) meeting condition i) cor-
responds to saying that for each ε′ > 0 there exists a finite or countable collection R1, R2, . . .
of (possibly overlapping) open rectangles such that

Z(f) ⊆
⋃
k∈K

Rk and
∑
k∈K

vol(Rk) < ε′ (see e.g. [8], Section 1).

Finally, by compactness every open cover of Z(f) has finite a subcover, i.e. there exists a finite
index set K′ ⊆ K such that:

Z(f) ⊆
⋃

k′∈K′
Rk′ ⊆

⋃
k∈K

Rk.

It follows that:

vol

 ⋃
k′∈K′

Rk′

 ≤ ∑
k′∈K′

vol(Rk′ ) ≤
∑
k∈K

vol(Rk) < ε′.

The first inequality holds since rectangles in the cover can overlap. Thus, C
def
=
⋃
k′∈K′ Rk′

is the required finite rectangular cover of Z(f) with arbitrarily small volume. Note that these
properties hold also if we replace in C each rectangle Rk′ with its closure.



Precise Parameter Synthesis for Stochastic Biochemical Systems 35

(2) Since any finite union of overlapping rectangles can be rewritten as a finite union of almost
disjoint rectangles (i.e. intersecting only at their extrema) [15], we rewrite the cover C as

C =
⋃
j∈J

Rj , such that ∀i, j ∈ J. int(Ri) ∩ int(Rj) = ∅

where int(R) is the interior of rectangle R. In particular, this transformation can be done in a
such way that each Rj is a box of width δ, for some δ > 0. We can hence derive the following:

|J | · δn =
∑
j∈J

vol(Rj) = vol(C) < ε′ (67)

where n is the number of dimensions/parameters.

Without loss of generality assume that the parameter space P is the unit cube, meaning
that the algorithm terminates for vol(U) ≤ ε. Assume also that at each step undecided pa-
rameter regions are decomposed by bisection. Consider a number of refinement steps i such
that each undecided region at the i-th step has width w ∈ [δ, 2δ], yielding i = b− log2 δc. From
Eqn. 66 and C being a cover of Z(f), we derive that:

U ⊆ ∪iRi s.t. Ri ∩ C 6= ∅.

Observe that each rectangle in the cover C is intersected by at most 2n undecided regions of
width w. Let N = |J | be the number of boxes in the cover C. Then,

vol(U) ≤ 2n ·N · wn ≤ 2n ·N · (2δ)n < ε′ · 4n (68)

where the last inequality holds by Eqn 67.

Since the bound ε′ on the volume of C is arbitrary, termination follows. Indeed, to satisfy
the termination condition (vol(U) ≤ ε), we can chose ε′ = ε · 4−n which implies the existence
of a suitable δ and, in turn, of a finite number of steps i = b− log2 δc.

(3) By Theorem 1, we know that the satisfaction function of a nested CSL property is piece-
wise polynomial, with a finite number of (bounded) subdomains. We proceed by borrowing
from steps (1) and (2) of this proof. Let D be an index set identifying the subdomains and fd
be the satisfaction function at the d-th subdomain. Then, there exist δ > 0, arbitrary positive
constants {ε′d}d∈D and a set of finite covers {Cd}d∈D such that for all d ∈ D, vol(Cd) < ε′d
and Cd is composed of pairwise-disjoint boxes of width δ. We can now prove termination by
showing that Eqn 68 holds also for the nested case if we set N =

∑
d∈D |Cd| to the total

number of boxes and ε′ =
∑
d∈D ε

′
d.

However, there is an important caveat to discuss. In this case, the satisfaction function
might exhibit jump discontinuities characterized by coarse probability bounds that cannot be
“mitigated” by the iterative refinement procedure. It follows that we need to take into account
all the additional undecided regions that contain jump discontinuity points. Fortunately, since
piecewise continuous functions are continuous almost everywhere, the set of such discontinuities
has measure 0, and hence, by a similar argument to the above proof, the total volume of the
undecided regions containing discontinuities can be made arbitrarily small in a finite number
of steps. ut

A.4 Proposition 4

We prove the proposition by first showing that the safe bounds can be made arbitrarily small
in a finite number of steps. Second, we derive the number of steps for which the termination
condition is met.
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(1) Define f = Λ̂φ(·)(s0) and let Dk be the set of regions at the k-th decomposition step. Fix

a region Rkj ∈ Dk. Let [f(Rkj )] be the interval describing the range of f over Rkj . Since f is

a polynomial function over a bounded domain, then it is also Lipschitz continuous, implying
that there exists a constant mkj s.t. w([f(Rkj )]) ≤ mkj · w(Rkj ), where w denotes the width

of the rectangle. The safe approximation we compute is such that [f(Rkj )] ⊂ [Λ
Rkj
min, Λ

Rkj
max]

and, in particular, Λ
Rkj
max − Λ

Rkj
min = w([f(Rkj )]) + e> + e⊥, where e> and e⊥ are the global

approximation errors for the upper and lower bound of Λ̂φ.

We now derive a closed-form expression for e>, based on Proposition 2. Let e> = gkε ,
where kε is the number of uniformisation steps and, by Eqn 42, there exist positive constants
M1 and M2 such that

gkε = gkε−1 ·
(

1 +
M2

q

)
+
M1

q
(w(Rkj )). (69)

Let c2 = 1 + M2
q

and c1 = M1
q

. Solving the recurrence at Eqn 69, we get the following

expression:

gkε = ck,>j ·w(Rkj )) (70)

where ck,>j =
c1 ·

(
ckε2 − 1

)
c2 − 1

. Following the same derivation for e⊥, we conclude that there

exist positive constants ck,>j and ck,⊥j such that e> = ck,>j ·w(Rkj ) and e⊥ = ck,⊥j ·w(Rkj ).

Then, for all Rkj ∈ Dk:

Λ
Rkj
max − Λ

Rkj
min ≤ (m+ c> + c⊥) ·w(Rkj ) (71)

where m = max{mkj | Rkj ∈ Dk}, c> = max{ck,>j | Rkj ∈ Dk} and c⊥ = max{ck,⊥j | Rkj ∈
Dk}. Since regions are decomposed by sectioning at the mid-point of each parameter interval,
the width of a region is halved at every step, so the equation is expressed as:

Λ
Rkj
max − Λ

Rkj
min ≤ (m+ c> + c⊥) ·

w(P)

2k
. (72)

Then, for an arbitrary precision ε′, there exists a finite number of decomposition steps k such

that Λ
Rkj
max − Λ

Rkj
min ≤ ε

′ for all Rkj ∈ Dk.

(2) Now we show how to determine ε′ s.t. the termination condition Λ>φ −Λ
⊥
φ ≤ ε is met. Let

Rk> be one of the regions with the highest upper probability bound, thus Λ>φ = Λ
Rk>
max. Note

that the highest lower bound M is at least Λ
Rk>
min, and thus every region Rkj in T is such that

Λ
Rkj
max ≥M ≥ Λ

Rk>
min ≥ Λ

Rk>
max − ε′ = Λ>φ − ε

′.

Then, the smallest lower bound in the true region, Λ⊥φ , is at least M−ε′ and so, Λ⊥φ ≥ Λ
>
φ −2·ε′.

This implies that termination is achieved with ε′ = ε
2

and, according to Eqn 72, in a number
of steps equal to:

k =

⌈
log2

(
2 · (m+ c> + c⊥) ·w(P)

ε

)⌉
.

ut


