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Stochastic modelling and algorithmic verification techniques have been proved useful in analysing and de-
tecting unusual trends in performance and energy usage of systems such as power management controllers
and wireless sensor devices. Many important properties are dependent on the cumulated time that the de-
vice spends in certain states, possibly intermittently. We study the problem of verifying continuous-time
Markov chains (CTMCs) against linear duration properties (LDP), i.e. properties stated as conjunctions of
linear constraints over the total duration of time spent in states that satisfy a given property. We identify two
classes of LDP properties, eventuality duration properties (EDP) and invariance duration properties (IDP),
respectively referring to the reachability of a set of goal states, within a time bound; and the continuous
satisfaction of a duration property over an execution path. The central question that we address is how to
compute the probability of the set of infinite timed paths of the CTMC that satisfy a given LDP. We present
algorithms to approximate these probabilities up to a given precision, stating their complexity and error
bounds. The algorithms mainly employ an adaptation of uniformisation and the computation of volumes
of multi-dimensional integrals under systems of linear constraints, together with different mechanisms to
bound the errors.
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1. INTRODUCTION
Stochastic modelling and verification [Kwiatkowska et al. 2007] have become estab-
lished as a means to analyse properties of system execution paths, for example depend-
ability, performance and energy usage. Tools such as the probabilistic model checker
PRISM [Kwiatkowska et al. 2011] have been applied to model and verify many sys-
tems, ranging from embedded controllers and nanotechnology designs to wireless sen-
sor devices and cloud computing, in some cases identifying flaws or unusual quanti-
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tative trends in system performance. The verification proceeds by subjecting a system
model to algorithmic analysis against properties, typically expressed in probabilistic
temporal logic, such as the probability of the vehicle hitting an obstacle is less than
0.0001, or the probability of an alarm bell ringing within 10 seconds is at least 95%.
Many important properties, however, are dependent on the cumulated time that the
system spends in certain states, possibly intermittently. Such duration properties, fol-
lowing the terminology of Duration Calculus (DC) [Zhou et al. 1991], have been studied
in the context of timed automata (TAs) [Alur et al. 1997; Bouajjani et al. 1993; Kesten
et al. 1999], but are not currently supported by existing probabilistic model checking
tools. They can express, e.g., that the probability of an alarm bell ringing whenever
the button has been pressed, possibly intermittently, for at least 2 seconds in total is
at least 95%.

In this paper, we consider Continuous-Time Markov Chain (CTMC) models and
study algorithmic verification for linear duration properties (LDP), i.e. properties in-
volving linear constraints over cumulated residence time in certain states. CTMCs are
widely used for performance and dependability analysis, aided by recent improvements
[Baier et al. 2010]. CTMCs allow the modelling of real-time passage in conjunction
with stochastic evolution governed by exponential distributions. They can be thought
of as state transition systems, in which the system resides in a state on average for
1/r time units, where r is the exit rate, and transitions between the states are deter-
mined by a discrete probability distribution. As a concrete example of a system and
property studied here, consider the dynamic power management system (DPMS) from
[Qiu et al. 2001], analysed in [Norman et al. 2005] against properties such as average
power consumption. The DPMS includes a queue of requests, which have an expo-
nentially distributed inter-arrival time, a power management controller and a service
provider. The power management controller issues commands to the service provider
depending on the power management policy, which involves switching between differ-
ent power-saving modes. Figure 1 (on page 5) depicts a CTMC model of the service
provider for a Fujitsu disk drive. It consists of four states: Busy, Idle, Standby and
Sleep. In this paper we are interested in computing the probability of, for instance,
that in 10 hours, the energy spent in the Standby state is less than the energy spent in
the Sleep state and the energy spent in the Idle state is less than one third of the energy
spent in the Busy state. We remark that the restriction to exponential distributions is
not critical, since one can approximate any distribution by phase-type distributions,
resulting in series-parallel combinations of exponential distributions [Neuts 1981].

The focus of CTMC model checking has primarily been on algorithms for specifica-
tions expressed in stochastic temporal logics, including branching-time variants, such
as CSL [Aziz et al. 2000; Baier et al. 2003; Zhang et al. 2012], as well as linear-time
temporal logic (LTL), whose verification reduces to the same problem for embedded
discrete-time Markov chains (DTMCs) [Courcoubetis and Yannakakis 1995]. Model
checking deterministic TA (DTA) properties can be achieved by a reduction to comput-
ing the reachability probability in a piecewise-deterministic Markov processes (PDP,
[Davis 1993]), based on the product construction between the CTMC and the DTA
[Chen et al. 2009; Chen et al. 2011b; Barbot et al. 2011]. In [Chen et al. 2011a], time-
bounded verification of properties expressed by Metric Temporal Logic (MTL) or gen-
eral TAs, which allow nondeterminism, is formulated. Approximation algorithms are
proposed, based on path exploration of the CTMC, constraints generation and reduc-
tion to volume computation. There, “time-bounded” refers to the fact that only timed
paths over a time interval of fixed, bounded length are considered, e.g. the probabil-
ity of an alarm bell ringing whenever the button has been pressed for at least 2 sec-
onds continuously. However, as pointed out in [Alur et al. 1997], the expressiveness of
DTA/MTL is limited and cannot express duration-bounded causality properties which
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constrain the accumulated satisfaction times of state predicates along an execution
path, visited possibly intermittently.

Contributions. We consider linear duration formulas (LDF) expressed as finite con-
junctions of linear constraints on the cumulated time spent in certain states of the
CTMC, see Equation (1) (on page 7) for the precise formulation. Since we work with
CTMCs, we interpret these formulas over finite and infinite timed paths. We distin-
guish two classes of linear duration properties. The difference lies only in how to in-
terpret LDF over infinite timed paths. (Note that the LDF over finite timed paths is
interpreted in a uniform way.)

— Eventuality Duration Property (EDP). Given a set of goal states G of the CTMC
under consideration, an infinite path is said to satisfy LDF if its prefix until (the
first occurrence of) G is reached satisfies EDP. This is similar to [Alur et al. 1997;
Kesten et al. 1999]. Here, we also identify two variants, the time-bounded case and
the unbounded case;

— Invariance Duration Property (IDP). For an infinite path to satisfy LDF, we require
that each prefix of the infinite path satisfies LDF, again distinguishing the time-
bounded case and the unbounded case. This is similar to [Bouajjani et al. 1993]. We
remark that, in DC, a stronger requirement is imposed, i.e., any fragment (not only
the prefix, but also starting from an arbitrary state) of the infinite path must satisfy
LDF. We do not adopt this view, as we work in the traditional setting of temporal
logics, rather than an interval temporal logic.

The central questions we consider is how to compute the probability of the set of timed
paths of the CTMC which satisfy linear-time properties expressed as LDF. To the best
of our knowledge, this is the first paper that considers algorithmic verification of du-
ration properties for continuous-time stochastic models like CTMCs.

An extended abstract of the current paper has appeared in [Chen et al. 2012]. In
addition to providing full proofs, more explanation and examples which are omitted
from [Chen et al. 2012], this paper also includes new results, namely a sharpened er-
ror bound (cf. Section 3.2), and an extension to prefix-accumulation assertions in the
CTMC setting (cf. Section 5). We now give a brief account of the techniques introduced
in this paper. We propose two approaches to verify the time-bounded variant of EDP.
First, we define a system of partial differential equations (PDEs) and a system of in-
tegral equations whose solutions capture the probability that an EDP is satisfied on
a given CTMC. Second, we leverage the uniformisation method [Jensen 1953], which
reduces the problem to computing the probability of a set of finite timed paths under a
system of linear constraints. This can be solved through the computation of volumes of
convex polytopes. In the unbounded case, by exploiting techniques mainly from matrix
theory and linear algebra, we show how to approximate the probability by choosing
a sufficiently large time-bound. This is of independent interest, and can be used else-
where, e.g., to improve our previous results [Chen et al. 2011b; Chen et al. 2011a]. To
verify an IDP, in the unbounded case we perform a graph analysis of the CTMC accord-
ing to the LDF, and thus obtain a variant of EDP, which can be solved by extending
the approaches developed in the previous case. The time-bounded case can be tackled
accordingly and is indeed easier.

We remark that LDPs are closely related to Markovian Reward Models (MRM,
[Baier et al. 2000]), which are CTMCs augmented with multiple reward structures as-
signing real-valued rewards to each state in the model. A large variety of performabil-
ity measures for MRMs can be expressed in continuous stochastic reward logic (CSRL,
[Baier et al. 2000]). CSRL model checking for MRMs [Haverkort et al. 2002; Cloth
2006] involves time-bounded and/or reward-bounded reachability problems, which can
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be formulated in terms of model checking of LDP, over CTMCs, by treating the rewards
in the MRM as coefficients of linear duration formulas. (This will be made clearer in
Section 2.3.) We emphasise that, in contrast to [Baier et al. 2000; Haverkort et al. 2002;
Cloth 2006], we allow the coefficients in LDF to be negative, and hence can deal with
CSRL in MRMs with arbitrary rewards. The link to MRMs (with arbitrary rewards) is
beneficial, as energy constraints [Bouyer et al. 2008; Bouyer et al. 2010] studied in TA
can be naturally adapted to stochastic models (such as CTMCs), and can be solved by
approaches presented in the current paper.

Related work. Algorithmic verification of duration properties has primarily been
studied in the setting of TA, for instance [Alur et al. 1997; Bouajjani et al. 1993; Kesten
et al. 1999]. Similarly to our setting, TA also admit the unfolding of the system into
timed execution paths, except that we have to calculate the probability of the set of
paths satisfying a given property, rather than quantifying over their existence. The
“duration bounded reachability” problem of [Alur et al. 1997] can be viewed as a sub-
class of EDP, in view of the requirement that all coefficients appearing in the linear
constraints are nonnegative. Reachability for integral graphs [Kesten et al. 1999] can
be reduced to verification of EDP for TA, which is solved by mixed linear-integer pro-
gramming. [Bouajjani et al. 1993] extended the branching real-time logic TCTL with
duration constraints and studied response/persistence properties. For DC, which is
based on interval temporal logic that differs from our setting, the focus has been on
so called linear durational invariants (LDI, [Zhou et al. 1994]). Again, TA (and their
subclasses or extensions) are considered, and different techniques are proposed, for in-
stance, reduction to linear programming or CTL, and discretisation. We mention, e.g.,
[Li et al. 1997; Thai and Hung 2004; Zhang et al. 2008], which are specific to TA and
cannot be adapted to CTMCs.

There is only scant work addressing probabilistic/stochastic extensions of DC. Sim-
ple Probabilistic Duration Calculus, interpreted over (finite-state) continuous semi-
Markov processes, is introduced in [Hung and Zhou 1999], together with the associated
axiomatic system, and applied to QoS contracts in [Guelev and Hung 2010]. However,
algorithmic verification is not addressed. [Hung and Zhang 2007] studied verification
problems of (subclasses of) LDI in the setting of probabilistic TA which only involves
discrete probabilities. The technique is an adaption of discretisation for TA.

We also mention [Boker et al. 2011], which considers CTL and LTL extended
with prefix-accumulation assertions for a quantitative extension of Kripke structures
(i.e., weighted Kripke structures). (Un)decidability results are obtained. The prefix-
accumulation assertions are similar to our linear constraints modulo the difference
between models under consideration (CTMCs are a continuous-time model with ran-
domisation, whereas Kripke structures are a discrete model without randomisation.)
For further discussion, we refer the reader to Section 5.

Structure of the paper. This paper is organized as follows. Section 2 introduces basic
definitions of CTMCs and duration properties. The relation between the CTMCs with
duration property and MRMs is also discussed. Section 3 presents results on verifica-
tion of EDP, while Section 4 presents results on IDP. Section 5 shows how to tackle
extensions to the prefix-accumulation assertions. Section 6 concludes the paper.

2. PRELIMINARIES
2.1. Continuous-time Markov chains
Given a set H, let Pr: F(H) → [0, 1] be a probability measure on the measurable space
(H,F(H)), where F(H) is a σ-algebra over H.
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Fig. 1. An example CTMC and its associated infinitesimal generator

Definition 2.1 (CTMC). A (labelled) continuous-time Markov chain (CTMC) is a
tuple C = (S,AP, L, α,P, E) where :

— S is a finite set of states;
— AP is a finite set of atomic propositions;
— L : S → 2AP is the labelling function;
— α is the initial distribution over S;
— P : S × S → [0, 1] is a stochastic matrix; and
— E : S → R>0 is the exit rate function.

Example 2.2. An example CTMC is illustrated in Figure 1, where AP = {Busy , Idle,
Sleep,Standby} and α(s0) = 1 is the initial distribution (in this case, a Dirac distribu-
tion). The exit rates are indicated at the states, whereas the transition probabilities
are attached to the transitions. The CTMC is a model of the service provider of the
DPMS system described in the introduction section of the paper.

In a CTMC C, state residence times are exponentially distributed. More precisely,
the residence time of the state s ∈ S is a random variable governed by an exponential
distribution with parameter E(s). Hence, the probability to exit state s in t time units
(t.u. for short) is given by

∫ t
0
E(s) · e−E(s)τdτ ; and the probability to take the transition

from s to s′ in t t.u. equals P(s, s′)·
∫ t

0
E(s)·e−E(s)τdτ . A state s is absorbing if P(s, s) = 1.

We also define the infinitesimal generator Q of C as

Q = E ·P−E,

where E is the diagonal matrix with exit rates on diagonal. Occasionally we use X(t)
to denote the underlying stochastic process of C.

We write π(t) for the transient probability distribution, where, for each s ∈ S,

πs(t) = Pr ({X(t) = s})
is the probability to be in state s at time t. It is well-known that π(t) completely de-
pends on the initial distribution α and the infinitesimal generator Q, i.e., it is the
solution of the Chapman-Kolmogorov equation

dπ(t)

dt
= π(t)Q, π(0) = α .

Note that efficient algorithms (e.g. the uniformisation approach, cf. Section 3.1.2,
Equation (6)) exist to compute π(t).

An infinite timed path in C is an infinite sequence

ρ = s0
t0−→ s1

t1−→ s2 · · ·
tn−1−→ sn . . . ;
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and a finite timed path is a finite sequence

σ = s0
t0−→ · · · tn−1−→ sn.

In both cases we assume that ti ∈ R>0 for each i ≥ 0; moreover, we write ρ[0..n] for
σ. Below we usually follow the convention to let ρ (resp. σ) range over infinite (resp.
finite) timed paths, unless otherwise stated. We define |σ| := n to be the length of a
finite timed path σ. For a finite or infinite path θ, θ[n] := sn is the (n + 1)-th state of θ
and θ〈n〉 := tn is the time spent in state sn; let θ@t be the state occupied in θ at time

t ∈ R≥0, i.e., θ@t := θ[n], where n is the smallest index such that
n∑
i=0

θ〈i〉 > t. Let PathsC

denote the set of infinite timed paths in C, with abbreviation Paths when C is clear
from the context. Intuitively, a timed path ρ suggests that the CTMC C starts in state
s0 and stays in this state for t0 t.u., and then jumps to state s1, staying there for t1 t.u.,
and then jumps to s2 and so on. An example timed path is ρ = s0

3−→ s1
2−→ s0

1.5−→
s1

3.4−→ s2 . . . with ρ[2] = s0 and ρ@4 = ρ[1] = s1.
Sometimes we refer to discrete time Markov chains (DTMCs), denoted by

D = (S,AP, α, L,P),

where the components of the tuple have the same meaning as those of CTMCs defined
in Definition 2.1. In particular, we say such D is the embedded DTMC of the CTMC
C. Similarly, a (finite) discrete path ς = s0 → s1 → . . . is a (finite) sequence of states;
ς[n] denotes the state si, ς[0..n] denotes the prefix of length n of ς, and |ς| denotes the
length of ς (in case that ς is finite). We also define PathsD to be the set of all infinite
paths of the DTMC D. Given a finite discrete path ς = s0 → · · · → sn of length n and
x0, . . . , xn−1 ∈ R>0, we define ς[x0, . . . , xn−1] to be the finite timed path σ such that
σ[i] := si and σ〈i〉 := xi for each 0 ≤ i < n. Let Γ ⊆ Rn>0, then

ς[Γ] = {ς[x0, . . . , xn−1] | (x0, . . . , xn−1) ∈ Γ}.
The definition of a Borel space on timed paths of CTMCs follows [Baier et al. 2003].

A CTMC C yields a probability measure PrCα on PathsC as follows. Let s0, . . . , sk ∈ S
with P(si, si+1) > 0 for 0 ≤ i < k and I0, . . . , Ik−1 be nonempty intervals in R≥0.
Let C(s0, I0, . . . , Ik−1, sk) denote the basic cylinder set consisting of all ρ ∈ Paths such
that ρ[i] = si (0 ≤ i ≤ k) and ρ〈i〉 ∈ Ii (0 ≤ i < k). F(Paths) is the smallest σ-
algebra on Paths, which contains all sets C(s0, I0, . . . , Ik−1, sk) for all state sequences
(s0, . . . , sk) ∈ Sk+1 with P(si, si+1) > 0 for (0 ≤ i < k) and I0, . . . , Ik−1 ranging over all
sequences of nonempty intervals in R>0. The probability measure PrCα on F(Paths) is
the unique measure defined by induction on k by PrCα(C(s0)) = α(s0) and for k > 0:

PrCα(C(s0, I0, . . . , Ik−1, sk)) =

PrCα(C(s0, I0, . . . , Ik−2, sk−1)) ·
∫
Ik−1

P(sk−1, sk)E(sk−1) · e−E(sk−1)τdτ.

Sometimes we write Pr instead of PrCα when C and α are clear from the context. Ele-
ments of the σ-algebra denote events in the probability space. We now define two such
events that will be needed later.

Definition 2.3. Given a CTMC C and B ⊆ S, we define:

— ♦≤TB =

{
ρ ∈ PathsC | ∃n.ρ[n] ∈ B and

n−1∑
i=0

ρ〈i〉 ≤ T
}

, i.e., ♦≤TB denotes the set of

(infinite) timed paths which reach B in time interval [0, T ]. Note that PrC(♦≤TB)
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can be computed by a reduction to the computation of the transient probability
distribution; see [Baier et al. 2003].

— ♦B = {ρ ∈ PathsC | ∃n.ρ[n] ∈ B}, i.e., ♦B denotes the set of (infinite) timed paths
which reach B. (This is the unbounded variant of ♦≤TB.) Note that PrC(♦B) is
essentially the reachability probability of B in the embedded DTMC of C; see [Baier
et al. 2003].

For any two events Ξ1 and Ξ2, we write Pr(Ξ1 | Ξ2) for the conditional probability of Ξ1

given Ξ2, i.e.,

Pr(Ξ1 | Ξ2) =
Pr(Ξ1 ∩ Ξ2)

Pr(Ξ2)
.

2.2. Duration Properties
We first introduce a language which includes the propositional calculus augmented
with the duration function

∫
and linear inequalities. In the remainder of this section,

we assume a CTMC C = (S,AP, L, α,P, E).
State formulas, are defined inductively as

sf ::= ap | ¬sf | sf1 ∧ sf2,

where ap ∈ AP. Given a state formula sf and a state s ∈ S we say that s satisfies the
state formula sf, denoted s |= sf, iff

s |= ap ⇔ ap ∈ L(s)
s |= ¬sf ⇔ s 6|= sf
s |= sf1 ∧ sf2 ⇔ s |= sf1 and s |= sf2

The duration function
∫

is interpreted over a finite timed path. Let sf be a state
formula and σ = s0

t0−→ . . .
tn−1−→ sn. The value of

∫
sf for σ, denoted JsfKσ, is defined as∑

0≤i<n,
σ[i]|=sf

ti. That is, the value of
∫

sf equals the sum of durations spent in states satisfying

sf.
A linear duration formula (LDF) is of the form:

ϕ =
∧
j∈J

∑
k∈Kj

cjk

∫
sfjk ≤Mj

 , (1)

where cjk,Mj ∈ R, sfjk are state formulas, and J,Kj for j ∈ J are finite index sets.

Remark 2.4. We did not introduce the disjunction or (more general) Boolean opera-
tors in Equation (1) for simplicity. All our results can be generalised to these cases by
the inclusion-exclusion principle, paying the price of higher complexity.

Definition 2.5. Given a finite timed path σ = s0
t0−→ s1

t1−→ . . .
tn−1−→ sn and an LDF

ϕ of the form defined in Equation (1), we write σ |= ϕ if for each j ∈ J ,∑
k∈Kj

cjk · JsfjkKσ ≤Mj .

Example 2.6. For the CTMC in Figure 1, the LDF ϕ =
∫
Idle − 1

3

∫
Busy ≤ 0 ex-

presses the constraint that during the evolution of the CTMC the accumulated time
spent in the Idle state must be less than or equal to one third of the accumulated time
spent in the Busy state.
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Inspired by the notation of [Zhou et al. 1994], we shall also work on a slight extension
of LDF, i.e., formulas of the form1:

Φ :=

∫
1 ≤ T → ϕ,

where T ∈ R≥0 ∪ {∞}. According to Definition 2.5,
∫

1 denotes the total time spent
on a finite timed path σ. Hence σ |= Φ if ϕ holds whenever the total time of σ is less or
equal than T . Note that, if T =∞, Φ simply degenerates to ϕ.

In general, given a CTMC and a duration property specified by an LDF, we are inter-
ested in computing the probability of infinite timed paths satisfying the LDF. We now
generalise the satisfaction relation on finite paths, as defined in Definition 2.5, to infi-
nite paths. Here we have two options, i.e., using the finitary and infinitary conditions.
The former is motivated by standard automata theory, while the latter is natural when
one thinks of “globally” (e.g., the � operator in LTL).

Definition 2.7. Let ρ = s0
t0−→ s1

t1−→ . . . be an infinite timed path and ϕ (or Φ) be
an LDF.

— Finitary satisfaction condition. Given a set of goal states G ⊆ S, we write ρ |=G ϕ if
there exists some i ∈ N such that:
(1) ρ[i] ∈ G and for any 0 ≤ j < i, ρ[j] /∈ G; and
(2) ρ[0..i] |= ϕ (cf. Definition 2.5).
Furthermore, we write ρ |=G

T ϕ for a given T ∈ R≥0 if, in addition to (1) and (2),
i−1∑
j=0

ρ〈j〉 ≤ T holds.

— Infinitary satisfaction condition. We write ρ |=? ϕ if, for any n ≥ 0, ρ[0..n] |= ϕ (cf.
Definition 2.5).

Problem statements. Corresponding to Definition 2.7, we focus on algorithmic verifi-
cation problems for two classes of LDP, i.e., Eventuality Duration Property (EDP) and
Invariance Duration Property (IDP), given below.

— Verification of EDP. Formally, given a CTMC C, a set of goal states G ⊆ S, and
an LDF Φ =

∫
1 ≤ T → ϕ, compute the probability of the set of infinite timed

paths of C satisfying Φ under the finitary satisfaction condition. Depending on T ,
we distinguish two cases:
— Time-bounded case: T < ∞, for which we denote the desired probability by

Prob(C |=G Φ)

— Unbounded case: T = ∞, for which we denote the desired probability by
Prob(C |=G ϕ) . Note that this is valid as, in this case, Φ is simply equivalent to
ϕ.

The algorithms for these two cases are given in Section 3.1 and Section 3.2, respec-
tively.

— Verification of IDP. Formally, given a CTMC C and an LDF Φ =
∫

1 ≤ T → ϕ, com-
pute the probability of the set of infinite timed paths of C satisfying Φ under the
infinitary satisfaction condition. We also have two cases, i.e., the time-bounded case
and unbounded case, which we denote by Prob(C |=? Φ) and Prob(C |=? ϕ) , respec-
tively. The algorithms for these two cases are given in Section 4.2 and Section 4.1,
respectively.

1Note that 1 denotes “true”,→ denotes “implication” and
∫
1 ≤ T → ϕ is a single formula.
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2.3. Relationship to MRMs
In this section, we establish a link between the EDP of CTMC and the model of MRM.
We start with some definitions.

Definition 2.8 (MRM). A (labelled) Markovian reward model M is a pair (C, r),
where C is CTMC and r : S → Rd is a reward structure which assigns to each state
s ∈ S a vector of rewards (r1(s), · · · , rd(s)).

Remark 2.9. The MRM defined in Definition 2.8 is more general than the one in
[Baier et al. 2000], in the sense that we have multiple reward structures, and, more
importantly, we allow arbitrary (instead of nonnegative) rewards associated with the
states.

As mentioned in Section 1, the logic CSRL is introduced in [Baier et al. 2000]. The
fundamental model checking problem for this logic (in particular, a sublogic called
CRL) is the following reward bounded verification problem (which we extend to the
multiple-reward setting, conforming to Definition 2.8): given a set of goal states G and
a vector of reward bounds Mj , compute the probability of the paths which reach G and
in which the j-th accumulated reward does not exceed Mj for each j. Below we show
that this problem is essentially the same as EDP for CTMCs.

On the one hand, for a CTMC C and LDF ϕ, we construct an MRM C[ϕ]. For every
state si ∈ S, we define

rji =
∑
t∈Kj ,
si|=sfjt

cjt

for all j ∈ J . This yields a multiple reward structure r with r(si) = (r0i, · · · , r(|J|−1)i).
Hence C[ϕ] = (C, r). It is straightforward to see that the constraint expressed by LDF
can be alternatively formulated as the “reward-bounded” constraint for MRMs, since∑
k∈Kj

cjk
∫

sfjk essentially denotes the accumulated rewards along a finite timed path,

and hence each Mj can be regarded as the bound of the reward.
On the other hand, given an MRM and a vector of reward bounds Mj for each reward

structure, we construct an LDF ϕ as∧
j∈J

∑
s∈S

rj(s)

∫
@s ≤Mj ,

where @s is an atomic proposition which holds exactly at state s. Hence, the reward-
bounded verification problem for MRMs can be encoded into verification of linear du-
ration properties in CTMCs.

It is straightforward to see that this correspondence, stated in the (time) unbounded
case, can be adapted to the time-bounded case without any difficulties.

3. VERIFICATION OF EDP
In this section, we show how to verify EDP formulas. Throughout this section, we fix a
CTMC C = (S,AP, L, α,P, E), a set of goal states G ⊆ S, and an LDF

Φ =

∫
1 ≤ T →

∧
j∈J

(
∑
k∈Kj

cjk

∫
sfjk ≤Mj︸ ︷︷ ︸

ϕ

).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 T. Chen et al.

3.1. Time-bounded Verification of EDP
Our task is to compute Prob(C |=G Φ). First observe the following.

PROPOSITION 3.1. Given a CTMC C and an LDF Φ, we have:

Prob(C |=G Φ) = Pr(♦G)− Pr(♦≤TG) + Prob(C |=G
T ϕ).

PROOF. We have that

Prob(C |=G Φ) = Pr({ρ ∈ PathsC | ρ |=G Φ})

= Pr

({
ρ ∈ PathsC | ρ |=G ¬

(∫
1 ≤ T

)
∨ ϕ
})

,

where ϕ =
∧
j∈J

(
∑
k∈Kj

cjk
∫

sfjk ≤Mj). We know that

¬
(∫

1 ≤ T
)
∨ ϕ = ¬

(∫
1 ≤ T

)
∨
(
ϕ ∧

∫
1 ≤ T

)
.

Therefore, we have

Prob(C |=G Φ) = Pr

({
ρ ∈ PathsC

∣∣∣ρ |=G ¬
(∫

1 ≤ T
)
∨
(
ϕ ∧

∫
1 ≤ T

)})
= Pr

({
ρ ∈ PathsC

∣∣∣ρ |=G ¬
(∫

1 ≤ T
)
∨
(
ρ |=G ϕ ∧

∫
1 ≤ T

)})
= Pr

({
ρ ∈ PathsC

∣∣∣ρ |=G ¬
(∫

1 ≤ T
)})

+ Pr

({
ρ ∈ PathsC

∣∣∣ρ |=G ϕ ∧
∫

1 ≤ T
})

= Pr(♦G)− Pr(♦≤TG) + Prob(C |=G
T ϕ).

This completes the proof.

Recall that Pr(♦G) and Pr(♦≤TG) can be easily computed (cf. Definition 2.3). Hence,
the remainder of this section is devoted to computing:

Prob(C |=G
T ϕ) := Pr({ρ | ρ |=G

T ϕ}),

i.e., the probability of the set of paths of the CTMC C which reach G in time interval
[0, T ] and satisfy the LDF ϕ before that happens; see Definition 2.7 (1).

3.1.1. PDE and Integral Equation Formulations. In order to compute Prob(C |=G
T ϕ), we

shall use the link to MRMs established in Section 2.3. Recall that C[ϕ] is the MRM
obtained from C and ϕ. We need an extra transformation over C[ϕ], namely, making
each state s ∈ G absorbing and setting r(s) = (0, · · · , 0) (i.e., the rewards associated
with s are all 0). We denote the resulting MRM C[ϕ,G]. Recall that X(t) is the under-
lying stochastic process of the CTMC C. We denote by Y(T ) the vector of accumulated
rewards in the MRM C[ϕ] (see Section 2.3) up to time T , i.e.

Y(T ) = (Y0(T ), . . . , Y|J|−1(T )) =

∫ T

0

r(X(τ))dτ
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and thus each Yj(T ) (j ∈ J) corresponds to a reward structure in C. The vector of
stochastic processes Y(T ) is fully determined by X(T ) and the vector of reward struc-
tures of the state si is r(si) = (r0i, . . . , r(|J|−1)i).

Define F(T,y) to be the matrix of the joint probability distribution of state and re-
wards with entries F(T,y)[s, s′] = F s

′

s (T,y) for s, s′ ∈ S and

F s
′

s (T,y) = Pr

X(T ) = s′,
∧
j∈J

Yj(T ) ≤ yj | X(0) = s


 ,

where y = (y0, · · · , y|J|−1). Note that we define F(T,y) over the induced MRM C[ϕ,G].

THEOREM 3.2. Given a CTMC C, an LDF ϕ, a vector M = (M0, . . . ,M|J|−1), where
each Mj is defined as in ϕ (cf. Equation (1)), and a set of goal states G, we obtain the
induced MRM C[ϕ,G], and we have:

Prob(C |=G
T ϕ) =

∑
s∈S

∑
s′∈G

α(s)F s
′

s (T,M).

PROOF. Let s′ ∈ G be an absorbing state with r(s) = (0, · · · , 0). The probability to
be in s′ at time T is the same as the probability to reach s′ before T (see [Baier et al.
2003]). Therefore, we have that:

Pr({ρ ∈ PathsC(s) | ρ |={s
′}

T ϕ}) = Pr

X(T ) = s′,
∧
j∈J

Yj(T ) ≤Mj | X(0) = s


 ,

which directly follows from the construction in Section 2.3.

Theorem 3.2 suggests a reduction to F(t,y), which we now characterise in terms of
a system of PDEs.

THEOREM 3.3. For an MRM C[ϕ,G] the function F(t,y) is given by the following
system of PDEs:

∂F(t,y)

∂t
+
∑
j∈J

Dj ·
∂F(t,y)

∂yj
= Q · F(t,y), (2)

where Dj is a diagonal matrix such that Dj(s, s) = rj(s).

PROOF. We want to calculate F s
′

s (t,y). Assume that we are in state z at time ∆t, for
some small ∆t. We consider three possible scenarios, and calculate the probability of
each of them:

— No jumps before ∆t;
— One jump before ∆t;
— More than one jump before ∆t.

No jumps before ∆t. The probability of this scenario is:

(1 +Q(s, s)∆t) · F s
′

s (t,y − r(s)∆t).

Here we indicate with y − r(s)∆t the vector operation resulting in:

y − r(s)∆t = (y0 − r0(s)∆t, . . . , y|J|−1 − r|J|−1(s)∆t).
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One jump before ∆t. We denote the probability of being in state z at time ∆t by
gz(∆t). In order to derive the probability of this scenario we split it into three different
cases:

(1) All rewards positive. Let

rmax = (max
s∈S
{r0(s)}, . . . ,max

s∈S
{r|J|−1(s)})

and

rmin = (min
s∈S
{r0(s)}, . . . ,min

s∈S
{r|J|−1(s)}).

The accumulated reward in ∆t is at most rmax∆t and at least rmin∆t. It follows
that:

Q(s, z)∆t · F s
′

z (t,y − rmax∆t) ≤ gz(∆t) ≤ Q(s, z)∆t · F s
′

z (t,y − rmin∆t).

(2) All rewards negative. Let

rmax = (max
s∈S
{|r0(s)|}, . . . ,max

s∈S
{|r|J|−1(s)|})

and

rmin = (min
s∈S
{|r0(s)|}, . . . ,min

s∈S
{|r|J|−1(s)|}).

It follows that:

Q(s, z)∆t · F s
′

z (t,y − rmax∆t) ≤ gz(∆t) ≤ Q(s, z)∆t · F s
′

z (t,y − rmin∆t).

(3) Mixed rewards. Let

rmax = (max
s∈S
{r0(s)|r0(s) ≥ 0}, . . . ,max

s∈S
{r|J|−1(s)|r|J|−1(s) ≥ 0})

and

rmin = (min
s∈S
{r0(s)|r0(s) < 0}, . . . ,min

s∈S
{r|J|−1(s)|r|J|−1(s) < 0}).

It follows that:

Q(s, z)∆t · F s
′

z (t,y − rmax∆t) ≤ gz(∆t) ≤ Q(s, z)∆t · F s
′

z (t,y − rmin∆t).

In all three cases above, note that

lim
∆t→0

gz(∆t)

∆t
= Q(s, z)F s

′

z (t,y).

More than one jump before ∆t. The probability of this scenario is negligible i.e.,
o(∆t). Note that lim

∆t→0

o(∆t)
∆t = 0.

The joint distribution is given by

F s
′

s (t+ ∆t,y) = (1 +Q(s, s)∆t) · F s
′

s (t,y − r(s)∆t) +
∑
z 6=s

gz(∆t) + o(∆t).

From here on we derive the equations for F s
′

s (·) only for nonzero rewards. It can be
extended to the general case. Let |y| = |J | be the cardinality of y. We rewrite F s

′

s (t,y)

as F s
′

s (t, y0, . . . , y|J|−1) to ease the notation and proofs. Given the above notation we can
add and subtract terms from the joint distribution of X(t) and Y(t) as follows:
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F s
′

s (t+ ∆t,y) = F s
′

s (t,y − r(s)∆t) +Q(s, s)∆t · F s
′

s (t,y − r(s)∆t) +
∑
z 6=s

gz(∆t) + o(∆t)

=
(
F s
′

s (t,y)− F s
′

s (t,y)
)

+ F s
′

s (t,y − r(s)∆t) +Q(s, s)∆t · F s
′

s (t,y − r(s)∆t)

+
∑
z 6=s

gz(∆t) + o(∆t)

Let D̂(s) be a diagonal matrix such that D̂(s)[i, i] = ri(s), for all i ≤ |J | − 1 such that
ri(s) 6= 0. Note that D̂(s) is invertible. We observe that

F s
′

s (t+ ∆t,y)− F s
′

s (t,y)

= F s
′

s (t,y − r(s)∆t)− F s
′

s (t,y) +Q(s, s)∆t · F s
′

s (t,y − r(s)∆t)

+
∑
z 6=s

gz(∆t) + o(∆t)

= D̂(s)
−1
· D̂(s)

(
F s
′

s (t,y − r(s)∆t)− F s
′

s (t,y)
)

+Q(s, s)∆t · F s
′

s (t,y − r(s)∆t)

+
∑
z 6=s

gz(∆t) + o(∆t),

and

F s
′

s (t+ ∆t,y)− F s′s (t,y)

∆t

= D̂(s)
−1
· D̂(s)

(
F s
′

s (t,y − r(s)∆t)− F s′s (t,y)

∆t

)
+Q(s, s) · F s

′

s (t,y − r(s)∆t)

+
∑
z 6=s

gz(∆t)

∆t
+ o(∆t).

Notice that all the three cases result in the same outcome. Taking the limit lim
∆t→0

and
renaming the variables we obtain that

∂F s
′

s (t,y)

∂t
+
∑
j∈J

rj(s)
∂F s

′

s (t,y)

∂yj
=
∑
z∈S

Q(s, z)F s
′

z (t,y).

In matrix notation, one has

∂F(t,y)

∂t
+
∑
j∈J

Dj ·
∂F(t,y)

∂yj
= Q · F(t,y),

which completes the proof.

Remark 3.4. The system of PDEs from Theorem 3.3 is a special case of the system
of PDEs given in [Horton et al. 1998; Gribaudo and Telek 2007], which is presented for
stochastic Petri nets.
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Example 3.5. For the CTMC depicted in Figure 1, with r(s0) = 1 and r(s1) = −1,
we can derive the following system of PDEs:

∂F s1s0 (t, y)

∂t
+
∂F s1s0 (t, y)

∂y
= 10F s1s1 (t, y)− 10F s1s0 (t, y),

∂F s0s1 (t, y)

∂t
−
∂F s0s1 (t, y)

∂y
= −6F s0s1 (t, y) + 3F s0s0 (t, y)

+1.2F s0s2 (t, y) + 1.8F s0s3 (t, y).

Note that trivial equations like 0 = 0 are simply omitted.

Next we provide an alternative characterisation of the joint probability distribution
in terms of a system of integral equations, as follows.

THEOREM 3.6. The solution of the system of PDEs in Equation (2) is the least fix-
point of the following system of integral equations:

F s
′

s (t,y) = eQ(s,s)tF s
′

s (0,y−r(s)t) +

∫ t

0

∑
z 6=s

eQ(s,s)xQ(s, z)F s
′

z (t−x,y−r(s)x)dx.

PROOF. One possible solution for the hyperbolic system of PDEs obtained is the
method of characteristics proposed in [Pattipati et al. 1993]. The method consists in
finding the characteristic curves y(t) on which PDEs reduce to ODEs. Let y(t) be an
arbitrary curve and consider the derivative of F s

′

s (t,y(t)) in t. More specifically,

dF s
′

s (t,y(t))

dt
=
∂F s

′

s (t,y(t))

∂t

dt

dt
+
∂F s

′

s (t,y(t))

∂y

dy(t)

dt
.

Note that dt
dt = 1, then considering those curves y(t) such that dy(t)

dt = r(s) yields

dF s
′

s (t,y(t))

dt
=
∂F s

′

s (t,y(t))

∂t
+
∑
j∈J

∂F s
′

s (t,y(t))

∂yj
rj(s) (3)

Note here that the right-hand side of Equation (3) is the left-hand side of Equation (2),
which implies that:

dF s
′

s (t,y(t))

dt
=
∑
z∈S

Q(s, z)F s
′

z (t,y(t)). (4)

Equation (4) defines a system of ordinary differential equations that can be solved if
we fix an initial value for F s

′

s (0,y(0)). The solution is given by:

F s
′

s (t,y(t)) = eQ(s,s)t

∫ t

0

e−Q(s,s)x
∑
z 6=s

Q(s, z)F s
′

z (x,y(x))dx+ F s
′

s (0,y(0))

 . (5)

The curve y(t) defined by the ODE dy(t)
dt = r(s) has as solution:

y(t) = r(s)t+ C.

We can calculate the value of C, given a time t∗ and the value y∗ of the accumulated
reward, by
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C = y∗ − r(s)t∗.

In order to find the solution for the PDE in Equation (2) at a given t∗ and y∗, we
solve the ODE in Equation (4) on the curve given by

y(t) = r(s)t+ y∗ − r(s)t∗ = y∗ − r(s)(t∗ − t),
and more specifically, by substituting x = t∗ − x:

F s
′

s (t∗,y∗) = eQ(s,s)t∗F s
′

s (0,y∗ − r(s)t∗) +

∫ t∗

0

∑
z 6=s

eQ(s,s)xQ(s, z)F s
′

z (t∗ − x,y∗ − r(s)x)dx.

This completes the proof.

Remark 3.7. For readers who are familiar with PDP, Equation (2) can also be ob-
tained as follows. For every state s of the CTMC we assign the system of differential
equations: for each j ∈ J ,

dxj(t)

dt
= rj(s), xj(t) ∈ R.

Note that xj(t) will denote the total accumulated reward at time t for the reward struc-
ture j. This results in a PDP with the state space S × R|J|. The function F s

′

s (t,y) rep-
resents the probability to reach the set of states {s′} × (−∞, y0]× · · · × (−∞, y|J|−1] at
time t.

Theorem 3.3 and Theorem 3.6 imply that, to solve the bounded-time EDP verification
problem, we need to solve (first-order) PDEs or integral equations. However, this is
usually costly and numerically unstable [Higham 2002]. We present solutions in the
next section, based on uniformisation.

3.1.2. Uniformisation. In this section we present a uniformisation-based algorithm to
compute F s

′

s (t,y). The uniformisation method [Jensen 1953] involves transforming the
CTMC C into a behaviorally equivalent DTMC D. (NB this is not the embedded DTMC
of C.) The state space and initial distribution ofD are the same as for C. The probability
matrix P̂ of D is constructed by P̂ = I+ 1

ΛQ, where Λ is the maximal exit rate of C. We
obtain:

π(t) = e(P̂−I)Λt =

∞∑
n=0

P̂n
(Λt)n

n!
e−Λt. (6)

We now apply the uniformisation technique to efficiently compute F s
′

s (t,y). First,
we note that the infinite sum in Equation (6) is equal to the probability (Λt)n

n! e−Λt

that exactly n Poisson arrivals occur in an interval of time [0, t] multiplied with the
probability P̂n to take the state transitions corresponding to the arrivals. Then using
Equation (6) we obtain:

F s
′

s (t,y) =

∞∑
n=0

e−Λt (Λt)
n

n!
·

∑
|ς|=n

Pr({ς | X(0) = s}) · Pr ({X(n) = s′,Y(t) ≤ y | ς})

 ,

where for a given path ς = s→ s1 → · · · → sn−1 → sn,

Prob(ς) := Pr ({ς | X(0) = s}) = P̂(s, s1)× · · · × P̂(sn−1, sn).
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If |ς| = 0 then Prob(ς) := 1. Pr ({X(n) = s′,Y(t) ≤ y | ς}) denotes the conditional prob-
ability that given the path ς at step n the state is s′ and the total accumulated reward
until time t is less than y. The above equation can also be written as:

F s
′

s (t,y)=

∞∑
n=0

e−Λt (Λt)
n

n!

∑
|ς|=n,
ς[0]=s,
ς[n]=s′

Prob(ς) · Pr ({Y(t) ≤ y | ς}) . (7)

Note that

Prob(ς) · Pr ({Y(t) ≤ y | ς}) = Pr ({Y(t) ≤ y ∧ ς}) . (8)

Now the task is to compute Pr ({Y(t) ≤ y ∧ ς}). for which we reduce to the computation
of integration over a convex polytope. The basic idea is to generate timed constraints
over variables determining the residence time of each state along ς to make Y(t) ≤ y
hold. The desired probability can thus be formulated as a multidimensional integral,
which can be computed by the efficient algorithm given in [Lasserre and Zeron 2001].

Given a discrete finite path ς of length k, an LDF ϕ, and a time-bound T , we define
the set of linear constraints S generated in Algorithm 1. In Algorithm 1, line 3 gener-

ALGORITHM 1: Generate a set of linear constraints S induced by ϕ, ς and T
Input: LDF ϕ, a path ς of length k and a time-bound T
Output: A set of linear constraints S

1 S = ∅ ;
2 for j ∈ J do

3 S = S ∪

 ∑
i∈Kj

cji ·
∑

0≤`≤k,
ς[`]|=sfji

x` ≤Mj

;

4 end

5 S = S ∪
{
k−1∑
i=0

xi ≤ T
}
∪
{

k∑
i=0

xi ≥ T
}

;

6 S = S ∪ {xi > 0} for all xi;
7 return S;

ates the set of constraints from each conjunct in formula ϕ. In line 5 we add one more
constraint to ensure that in the interval of time [0, T ] we will reach the last state of ς.

Example 3.8. Assume the LDF ϕ =
∫
Idle− 1

3

∫
Busy ≤ 0∧

∫
Idle− 1

4

∫
Sleep ≤ 0, the

discrete path ς = s0 → s1 → s2 → s1 → s3 and the time-bound T = 6. The set of linear
constraints S generated by Algorithm 1 induced by ς, ϕ and T is:

S =


− 1

3 · x0 + x1 + 0 · x2 + x3 ≤ 0
0 · x0 + x1 − 1

4 · x2 + x3 ≤ 0
x0 + x1 + x2 + x3 ≤ 6
x0, x1, x2, x3 > 0

LEMMA 3.9. Assume a discrete path ς of the CTMC C, an LDF ϕ and a time-bound
T . Let S be the set of linear constraints obtained by Algorithm 1. Then

ς[x0, . . . , xk−1] |=
(
ϕ ∧

∫
1 ≤ T

)
iff (x0, . . . , xk−1) satisfies the constraints in S.
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PROOF. Let ϕj be the j-th conjunct of ϕ. It is easy to see that:
ς[x0, . . . , xk−1] |= ϕj iff (x0, . . . , xk−1) satisfies the constraints in S,

which follows from the definition of |= (see Definition 2.5). Note that ς[x0, . . . , xk−1] |=∫
1 ≤ t iff

k−1∑
i=0

xi ≤ t (see Definition 2.7), which proves the lemma.

We define
Prob(ς[S]) := PrC(ς[0])({ς[x0, . . . , xk−1] | (x0, . . . , xk−1) satisfies the constraints in S}).
For future use, declare the function V olume int(α, ς,S) which, given an initial dis-

tribution α, a finite discrete path ς = s0 → · · · → sk of length k and a set of linear
constraints S over x0, · · · , xk−1, returns

α(s0) ·
k−1∏
i=0

E(si) · P (si, si+1) ·
∫
· · ·
∫

︸ ︷︷ ︸
k

S

k−1∏
i=0

e−E(si)τidτi. (9)

Evidently Prob(ς[S]) is equal to V olume int(α, ς,S). In [Lasserre and Zeron 2001] an
algorithm based on the Laplace transform is proposed to compute certain multidimen-
sional integrals over polytopes. In Equation 9, the integration is over S, which is the
intersection of hyperplanes (in terms of linear inequalities). Hence, the algorithm of
[Lasserre and Zeron 2001] can be applied directly. The time complexity of solving the
multidimensional integral is O(|J |k). Recall that |J | is the number of constraints and k
is the number of variables. Note that we omit the simple constraints from Alg.1, line 5
and 6, when computing the complexity of the algorithm. The simple constraints denote
a constant term in the overall complexity.

The following theorem concludes this section, showing that, in order to compute
Pr ({Y(t) ≤ y ∧ ς}), one only needs to compute Prob(ς[S]), where S is generated from
Algorithm 1.

THEOREM 3.10. Let ς be a discrete path of the CTMC C ending in G, C[ϕ,G] be the
MRM induced by C and LDF ϕ, and S the set of linear constraints generated by ς, ϕ
and time-bound t. We have that:

PrC(s)[ϕ,G] ({Y(t) ≤ y ∧ ς}) = Prob(ς[S]),

where y = M = (M0, ...,M|J|−1).

PROOF. Let C(s) be the CTMC C such that, for a given state s ∈ S, α(s) = 1. From
Theorem 3.2 we know that:

PrC(s)[ϕ,G] ({Y(t) ≤ y}) = PrC(s)({ρ ∈ PathsC(s) | ρ |=G
t ϕ}).

Let ς be a discrete path of length k such that ς[0] = s. We have that:

PrC(s)[ϕ,G] ({Y(t) ≤ y ∧ ς}) =

PrC(s)[ϕ,G]

(
{X(t) = ς[k],Y(t) ≤ y ∧

∃z0, . . . , zk−1, 0≤z0<z1< · · ·<zk−1<t,X(0) = s,

k−1∧
i=0

X(zi) = ς[i]}

)
=

PrC(s)[ϕ,G]

(
{ρ ∈ PathsC(s) | ρ |=ς[k]

t ϕ,

k−1∧
i=0

ρ[i] = ς[i]}

)
.
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From Lemma 3.9 we obtain:

Prob(ς[S]) = PrC(ς[0])

({
ρ ∈ PathsC | ς[ρ〈0〉, . . . , ρ〈k − 1〉] |= ϕ ∧

∫
1 ≤ t

})
.

One can easily see that:

PrC(s)[ϕ,G]

({
ρ ∈ PathsC(s) | ρ |=ς[k]

t ϕ,

k−1∧
i=0

ρ[i] = ς[i]

})
=

PrC(ς[0])

({
ρ ∈ PathsC | ς[ρ〈0〉, . . . , ρ〈k − 1〉] |= ϕ ∧

∫
1 ≤ t

})
.

This completes the proof.

3.1.3. Algorithm. In order to compute F s
′

s (t,y) we must pick a finite set P of paths from
PathsD. Following [Qureshi and Sanders 1994], we introduce a threshold w ∈ (0, 1)
such that only if Prob(ς) > w then ς ∈ P. This is mainly for efficiency considerations.
We also fix a maximum length N for the paths in P. Now we define

P(s, s′, w,N) := {ς ∈ PathsD | |ς| = N, ς[0] = s, ς[N ] = s′,Prob(ς) > w}.

We can approximate F s
′

s (t,y) as

F̃wN
s′

s (t,y) =

N∑
n=0

e−Λt (Λt)
n

n!

∑
ς∈P(s,s′,w,n)

Prob(ς) Pr ({Y(t) ≤ y | ς}) ,

where w and N are chosen as stated in Theorem 3.12. The approximation algorithm to
compute Prob := F s

′

s (t,y) is given in Algorithm 2.

ALGORITHM 2: Compute F̃wN
s′

s
(t,y)

1 Prob = 0;
2 Paths = {s};
3 while Paths 6= ∅ do
4 choose ς ∈ Paths;
5 Paths = Paths \ {ς};
6 if Prob(ς) > w and |ς| ≤ N then
7 if ς[|ς|] = s′ then
8 Prob+ =e−Λt (Λt)|ς|

|ς|! Prob(ς) Pr{Y(t)≤y | ς};
9 else

10 for s′′ ∈ S do
11 insert (ς ◦ s′′) into Paths;
12 end
13 end
14 end
15 end
16 end
17 return Prob;

18 Note that ◦ represents the concatenation operator; ς[|ς|] is the last state of ς.
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Error bound. We give a bound for the truncation of the infinite sum to a finite one,
considering only the discrete paths whose probability is greater than w. We start with
the following technical lemma.

LEMMA 3.11. Let ε ∈ R>0 and T ∈ R≥0. For any N > ΛTe2 + ln( 1
ε ), we have that

∞∑
i=N+1

e−ΛT (ΛT )i

i!
≤ ε.

PROOF. We have that

∞∑
i=N+1

e−ΛT (ΛT )i

i!
= e−ΛT ·

( ∞∑
i=N+1

(ΛT )i

i!

)

≤ e−ΛT · eΛT · (ΛT )N

N !
(Taylor expansion)

≤ (ΛT )N

(N/e)N
=

(
ΛTe

N

)N
(Stirling’s approximation)

≤
(

1

e

)N
(N > ΛTe2)

≤
(

1

e

)ln(1/ε)

= ε. (N > ln(
1

ε
))

The following theorem states the error bound, which also suggests how to choose N
and w for Algorithm 2 for a given ε.

THEOREM 3.12. Given ε > 0, for N > Λte2 + ln
(

1
ε

)
, and w < ε

N∑
n=0

e−Λt (Λt)n

n!

, we have

that ∣∣∣∣F s′s (t,y)− F̃wN
s′

s (t,y)

∣∣∣∣ ≤ 2ε.

PROOF.

∣∣∣∣F s′s (t, y)− F̃wN
s′

s (t,y)

∣∣∣∣
=

∣∣∣∣∣
∞∑
n=0

e−Λt (Λt)
n

n!
·
∑
|ς|=n,
ς[0]=s,
ς[n]=s′

Pr({ς}) · Pr ({Y(t) ≤ y | ς})−

N∑
n=0

e−Λt (Λt)
n

n!
·
∑

ς∈P(s,s′,w,n)

Pr({ς}) Pr ({Y (t) ≤ y | ς})

∣∣∣∣∣
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=

∣∣∣∣∣
∞∑

n=N+1

e−Λt (Λt)
n

n!
·
∑
|ς|=n,
ς[0]=s,
ς[n]=s′

Pr({ς}) · Pr ({Y(t) ≤ y | ς})

︸ ︷︷ ︸
(?)

+

N∑
n=0

e−Λt (Λt)
n

n!
·
∑
|ς|=n,
ς[0]=s,
ς[n]=s′

Pr({ς}) · Pr ({Y(t) ≤ y | ς})−

︸ ︷︷ ︸
(??)

N∑
n=0

e−Λt (Λt)
n

n!
·

∑
ς∈P(s,s′,w,n)

Pr({ς}) Pr ({Y (t) ≤ y | ς})

︸ ︷︷ ︸
(??)

∣∣∣∣∣
We bound term (?) and term (??) separately.

— First, for N > Λte2 + ln
(

1
ε

)
and by Lemma 3.11:

(?) ≤
∞∑

n=N+1

e−Λt (Λt)
n

n!
≤ ε

— Second:

(??) =

N∑
n=0

e−Λt (Λt)
n

n!
·

∑
ς 6∈P(s,s′,w,n)

Pr({ς}) Pr ({Y (t) ≤ y | ς})

≤
N∑
n=0

e−Λt (Λt)
n

n!
· w ·

∑
ς 6∈P(s,s′,w,n)

Pr ({Y (t) ≤ y | ς})

≤ w ·
N∑
n=0

e−Λt (Λt)
n

n!
.

It follows that: ∣∣∣∣F s′s (t, y)− F̃wN
s′

s (t,y)

∣∣∣∣ ≤
∣∣∣∣∣ε+ w ·

N∑
n=0

e−Λt (Λt)
n

n!

∣∣∣∣∣ .
Taking w ≤ ε

N∑
n=0

e−Λt (Λt)n

n!

, we obtain:

∣∣∣∣F s′s (t, y)− F̃wN
s′

s (t,y)

∣∣∣∣ ≤ 2ε.

This completes the proof.
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Complexity. We analyse the complexity of Algorithm 2. Recall that |S| is the number
of states of C. Algorithm 2 is composed of two main steps: (1) find all paths of length at
most N ; and (2) for each of those paths, ς, compute Pr ({Y(t) ≤ y | ς}).

THEOREM 3.13. The complexity of Algorithm 2 is O(|S|N · (|J |+ |J |N )).

PROOF. The number of paths of length less than N −1, from standard graph theory,
is at most |S|N (in case of fully connected CTMCs). Subsequently, for each of those
|S|N paths, say ς, we have to compute Pr ({Y(t) ≤ y | ς}). Using the approach that
generates the set of linear constraints we have that the complexity to compute the
volume of convex polytopes defined over N variables is |J |N (see [Lasserre and Zeron
2001]), whereas the complexity to generate the set of linear constraints is linear in
the cardinality of J . Therefore, the total complexity of Algorithm 2 is O(|S|N · (|J | +
|J |N )).

3.2. Unbounded Verification of EDP
In this section we show how to compute Prob(C |=G ϕ). The main idea is that we
approximate Prob(C |=G ϕ) by Prob(C |=G

T ϕ) for a sufficiently large T ∈ R≥0. Hence,
we reduce the problem to time-bounded verification of EDP, which has been solved in
Section 3.1.

For this purpose, we first introduce some background from linear algebra and matrix
theory. We write A for a square matrix, with aij ∈ R the element of the i’th row and
j’th column of A. A is a nonnegative matrix if for any i, j, aij ≥ 0. We write eig(A) to be
the set of all eigenvalues of matrix A, and ρ(A) = max{|λ| | λ ∈ eig(A)} be the spectral
radius of A, i.e., the maximum module of the eigenvalues of A.

Definition 3.14. Let A be a square matrix. The logarithmic norm of A, denoted by
µ(A), is defined as

µ(A) = max

{
λ
∣∣∣λ ∈ eig(A + A>

2

)}
.

Note that this is well defined; as A+A>

2 is a symmetric matrix, all the eigenvalues are
reals.

Note that µ(A) ≤ ρ
(

A+A>

2

)
and ρ(A) = ρ(A>).

Definition 3.15. Let A be a square matrix of dimension m. We call the graph GA of
A the dependency graph where:

— the nodes of the graph are {1, · · · ,m}, and
— there is an edge from i to j iff aij > 0.

Let GA be a dependency graph. GA is called strongly connected if there is a path from
each vertex in GA to every other vertex. The strongly connected components (SCCs) of
GA are its maximal strongly connected subgraphs. Moreover, a matrix A is irreducible
iff GA is strongly connected.

PROPOSITION 3.16 ([DAHLQUIST 1958]). Let || · || be the spectral matrix norm, α
be a vector with its associated Euclidean vector norm, and T ≥ 0. It holds that:

||α · eQT || ≤ ||α|| · eµ(Q)T .

PROPOSITION 3.17 ([HORN AND JOHNSON 1990]). Let A be an arbitrary matrix
and ε > 0, then there exists some induced matrix norm || · || such that:

||A|| ≤ ρ(A) + ε.
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Definition 3.18. An m×m substochastic matrix A is a nonnegative matrix with the
following properties:

— for any 0 ≤ i ≤ m,
∑

1≤j≤m
aij ≤ 1; and

— there exists some 0 ≤ i ≤ m, such that
∑

1≤j≤m
aij < 1.

LEMMA 3.19. Let A be an m × m irreducible substochastic matrix. It holds that
ρ(A) < 1.

PROOF. For any 1 ≤ i ≤ m let r(n)
i =

m∑
k=1

An
ik be the i-th row sum of An. For n = 1

we write ri instead of r(1)
i . Since A is substochastic we have that 0 ≤ ri ≤ 1 for any

1 ≤ i ≤ m and rj < 1 for at least one 1 ≤ j ≤ m. Note that for n ≥ 1:

r
(n)
j =

m∑
k=1

An
jk =

m∑
k=1

Ajkr
(n−1)
k ≤

m∑
k=1

Ajk = rj < 1.

By irreducibility of A, for any i there is l such that Al
ij > 0. In fact, given that A is

a m×m matrix and i 6= j then we can assume l < m. Thus, we have that:

r
(m)
i =

m∑
k=1

Al
ikr

(m−l)
k < r

(l)
i ≤ 1.

By the Gershgorin circle theorem [Horn and Johnson 1990], we have that ρ(Am) < 1.
Hence ρ(A) < 1.

LEMMA 3.20. Suppose that ρ(A) < 1, then µ(A) < 1.

PROOF. We know that µ(A) ≤ ρ
(

A+A>

2

)
. For any induced matrix norm ||·||, it holds

that:

ρ

(
A + A>

2

)
≤ 1

2
(||A + A>||) ≤ 1

2
||A||+ 1

2
||A>||.

Let ε > 0 then from Proposition 3.17 it holds that for some matrix norm || · ||:

µ(A) ≤ ρ
(
A + A>

2

)
≤ 1

2
||A||+ 1

2
||A>||

≤ 1

2
ρ(A) +

1

2
ε+

1

2
ρ(A>) +

1

2
ε

= ρ(A) + ε.

From Lemma 3.19 we know that ρ(A) < 1 and so we can pick an ε such that ρ(A)+ε <
1. It follows that µ(A) < 1.

Now fix the CTMC C and the set of goal states G ⊆ S with |G| = m. Recall that Q is
the infinitesimal generator of C. As the first step, we identify the set of states S>0 ⊆ S
starting from which there is positive probability to reach G. This can be done through
a graph analysis in a standard way, see [Baier and Katoen 2008, Ch. 10]. We still write
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Q>0 for the principal submatrix of the infinitesimal generator Q corresponding to S>0.
We partition Q>0 as follows

Q>0 =

[
Q1 Q2

0 0

]
, (10)

where Q1 is the square matrix of size (|S>0| − m) × (|S>0| − m) denoting transitions
between the set of transient states s ∈ S>0 \ G, Q2 is the matrix of size (|S>0| −m) ×
m denoting transitions from the transient states to the set of goal states G and 0
is a matrix composed of zeros. The reader should note that, given any infinitesimal
generator Q, it is always possible to express Q = Λ(P − I), where Λ is the maximal
exit rate of C, I is the identity matrix and P = (I + Q

λ ) is a stochastic matrix. In the
sequel we indicate with P1 the principal submatrix of P corresponding to Q1. Abusing
notation we indicate with I1 the identity matrix of the same size as P1.

We define a random variable TG : PathsC → R≥0 that will denote the first entrance
time of G. More specifically, given a path ρ:

TG(ρ) =


∞ ∀j ∈ N. ρ[j] /∈ G
k−1∑
j=0

ρ〈j〉 o/w, where k = min{l | ρ[l] ∈ G} .

The following proposition states a helpful property of the “transient part” of the
infinitesimal generator of C, relying on Lemma 3.19 and Lemma 3.20. Note that [Etes-
sami et al. 2012] contains a similar argument showing essentially the same result,
although in a different context.

PROPOSITION 3.21.
µ(Q1) < 0.

PROOF. We first focus our attention on P1, which is a substochastic matrix. Let GP1

be the dependency graph of P1. We consider the SCC-decomposition of GP1 , and assume
a topological ordering among SCCs {B1, · · · , Bk} such that, for i ∈ Bm and i′ ∈ Bm′ ,
the existence of an edge from i to i′ implies that m < m′. By Lemma 3.19, we have the
following property: for any ` ∈ {1, · · · , k} and the principal submatrix corresponding to
B`, written as P1[B`],

ρ(P1[B`]) < 1. (11)
Since P1 is a nonnegative matrix, we have that there exists a nonnegative eigenvector
v associated with ρ(P1), i.e.,

P1v = ρ(P1)v

We observe that, for any index 1 ≤ i ≤ n, if vi > 0 then, for any j such that there is an
edge from j to i, we have that:

(P1v)j =
∑

1≤k≤n

pjkvk

=
∑

1≤k≤n,
k 6=i

pjkvk + pjivi

≥ pjivi
> 0.
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Since (P1v)j = ρ(P1)vj , we obtain that vj > 0. Repeating the same argument, we
have that, for each SCC, if for some index i we have vi > 0, then for any index i in this
SCC, vi > 0.

It follows that there must exist some SCC such that, for any index i in this SCC,
we have vi > 0. Let ~ be the maximum index for such an SCC. Consider the principal
submatrix corresponding to B~. For each index i ∈ B~, we have that:

(P1v)i =
∑

1≤j≤n

pijvj

=
∑

1≤j≤n,
j∈B~

pijvj +
∑

1≤j≤n,
j /∈B~

pijvj

=
∑

1≤j≤n,
j∈B~

pijvj

= ρ(P1)vi.

It follows that ρ(P1[B~]) ≥ ρ(P1). However, we also have ρ(P1[B~]) ≤ ρ(P1) as P1[B~]
is a principal submatrix. Hence ρ(P1[B~]) = ρ(P1). Therefore, ρ(P1) < 1 by Equa-
tion (11).

Now note that by Lemma 3.20 if ρ(P1) < 1 then µ(P1) < 1. Moreover, µ(Q1) =
µ(Λ(P1 − I1)) which in turn yields that µ(Q1) ≤ Λ(µ(P1) − 1) since µ(I1) = 1. Thus,
µ(P1) < 1 implies that µ(Q1) < 0, which concludes the proof.

PROPOSITION 3.22. For any T ∈ R≥0 it holds that:

PrC({ρ ∈ PathsC | ρ |= ♦G ∧ TG(ρ) > T}) = α̂ · eQ1Te,

where α̂ = α[1, . . . .|S>0| −m] and e is a vector assigning 1’s to the goal states and 0’s to
all the other states.

PROOF. Proof in [Nielsen et al. 2010].

Now we are in a position to state the main result of this section.

THEOREM 3.23. Given 0 < ε < 1 and T >
ln(ε/
√
|G|)

µ(Q1) :

Prob(C |=G ϕ)− Prob(C |=G
T ϕ) ≤ ε.

PROOF. We have

Prob(C |=G ϕ)− Prob(C |=G
T ϕ)

≤PrC({ρ ∈ PathsC | ρ |= ♦G ∧ TG(ρ) ≥ T})
=α̂ · eQ1Te = ||α̂ · eQ1Te|| (by Prop. 3.22)

≤||α̂|| · eµ(Q1)T · ||e|| (by Prop. 3.16)

≤ε

The correctness of the bound is guaranteed by Proposition 3.21.
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Due to this theorem, given an error bound ε and a set of goal states G, we can pick

a time bound T such that T ≥ ln(ε/
√
|G|)

µ(Q1) and compute Prob(C |=G
T ϕ). For computing

µ(Q1), we note that it only requires computing eigenvalues of the symmetrisation of
Q1 for which efficient numerical algorithms exist.

Remark 3.24. This significantly improves a bound obtained in [Chen et al. 2012,
Theorem 7, page 272] through the Markov inequality, i.e.,

∑
s∈S

α(s)Es[TG]
ε . For suffi-

ciently small ε, this is an exponential improvement.

4. VERIFICATION OF IDP
In this section, we tackle the problem of verification of IDP. Again, we fix a CTMC
C = (S,AP, L, α,P, E) and an LDF

Φ =

∫
1 ≤ T →

∧
j∈J

∑
k∈Kj

cjk

∫
sfjk ≤Mj


︸ ︷︷ ︸

ϕ

.

As highlighted in Section 2, we shall distinguish two cases according to whether T is
finite or infinite. We firstly give some definitions and algorithms that are common to
both cases.

Given ϕ, a discrete finite path ς of length k and a time-bound T < ∞, we define the
set of linear constraints S as generated in Algorithm 3. Note that this is different from
the constraints obtained from Algorithm 1 in the previous section.

ALGORITHM 3: Generate a set of linear constraints S induced by ϕ, ς and T
Input: LDF ϕ, a path ς of length k and a time-bound T
Output: A set of linear constraints S

1 S = ∅;
2 for z = 0; z < k; z++ do
3 for j ∈ J do

4 S = S ∪

 ∑
i∈Kj

cji ·
∑

0≤`≤z,
ς[`]|=sfji

x` ≤Mj

;

5 end
6 end

7 S = S ∪
{
k−1∑
i=0

xi ≤ T
}
∪
{

k∑
i=0

xi ≥ T
}

8 ; S = S ∪ {xi > 0} for all xi;
9 return S;

Example 4.1. Let ϕ =
∫
Busy −

∫
Idle ≤ 0 be an LDF and ς = s0 → s1 → s0 → s1 →

s3. The set of linear constraints S induced by ς and ϕ is:

S =


x00 ≤ 0
x00 − x01 ≤ 0
x00 − x01 + x02 ≤ 0
x00 − x01 + x02 − x03 ≤ 0
x00, x01, x02, x03 > 0
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LEMMA 4.2. Let ς be a finite path of the CTMC C, ϕ be an LDF and T be a time-
bound. Moreover, let S be the set of linear constraints obtained by Algorithm 3. Then

ς[x0, . . . , xn−1] |=?

(
ϕ ∧

∫
1 ≤ T

)
iff (x0, . . . , xn−1) ∈ S.

PROOF. Let ϕj be the j-th conjunct of ϕ. From Definition 2.7 we have that

ς[x0, . . . , xn−1] |=? ϕj iff (x0, . . . , xn−1) ∈ S =

n−1⋃
z=0


∑
i∈Kj

cji ·
∑

0≤`≤z,
ς[`]|=sfji

x` ≤Mj

 .

Note that ς[x0, . . . , xn−1] |=
∫

1 ≤ t iff
n−1∑
i=0

xi ≤ t (see Definition 2.7), which proves the

lemma.

We define Prob?(ς[S]) to be

PrC({ρ ∈ PathsC | ∃ (x0, . . . , xn−1) ∈ S. ρ[0..n] ∈ ς[x0, . . . , xn−1] ∧ ρ[0..n] |=? ϕ}),

which can be computed by the function V olume int(α, ς,S) (cf. Equation (9)), where S
is the set of constraints generated from Algorithm 3. We now introduce an auxiliary
definition for paths of CTMCs.

Definition 4.3. Given an infinite timed path ρ, an absorbing set of states G of the
CTMC C, and a time bound T < ∞, we write ρ |=?

G,T ϕ if there exists some n ∈ N such
that:

— ρ[n] ∈ G and
n∑
i=0

ρ〈i〉 ≤ T , and

— for each 0 ≤ i ≤ n, ρ[0..i] |= ϕ.

Remark 4.4. Note that, as we assume that G is absorbing, the only difference be-
tween ρ |=?

G,T ϕ and ρ |=G
T ϕ given in Definition 2.7 lies in that, here, we require that,

for each 0 ≤ i ≤ n, ρ[0..i] |= ϕ, whereas in Definition 2.7 we require that ρ[0..n] |= ϕ.
This reflects the distinction between EDP and IDP.

Our task now is to approximate the probability Prob(C |=?
G,T ϕ). For this pur-

pose, we present Algorithm 4 which computes an approximation P̃robN (C |=?
G,T ϕ)

of Prob(C |=?
G,T ϕ) for a given N .

ALGORITHM 4: Compute P̃robN (C |=?
G,T ϕ)

Input: A CTMC C, an LDF formula ϕ, set of goal states G, time-bound T , and N
1 Prob = 0;
2 for ς ∈ PathsD s.t. ∃i. ς[i] ∈ G and |ς| ≤ N do
3 Generate S from ϕ, ς and T , by Algorithm 3;
4 Prob+ = V olume int(α, ς,S);
5 end
6 return Prob;
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4.1. Verification of unbounded IDP
This section is devoted to computing Prob(C |=? ϕ). For this purpose, we need to per-
form graph analysis of C. We start with some standard definitions. Note that some of
the notions on graphs are essentially the same as in Section 3.2; for readability we
present them here in terms of CTMCs.

Definition 4.5 (BSCC). Assume a CTMC C. A set of states B ⊆ S is a strongly
connected component (SCC) of C if, for any two states s, s′ ∈ B, there exists a discrete
path ς = s0 → s1 → . . .→ sn such that si ∈ B for 0 ≤ i ≤ n, s0 = s and sn = s′. An SCC
B is a bottom strongly connected component (BSCC) if no state outside B is reachable
from any state in B.

Definition 4.6. Given a BSCC B of the CTMC C and an LDF ϕ, we say

— B is bad w.r.t. the j-th conjunct in ϕ, ϕj , if

∃s ∈ B. ∃i ∈ Kj . s |= sfji ∧ cji > 0

and otherwise B is good w.r.t. ϕj .
— B is good w.r.t. ϕ (written B |= ϕ) if B is good for each conjunct of ϕ; otherwise B is

bad (written B 6|= ϕ).

LEMMA 4.7. Given a CTMC C = (S,AP, L, α,P, E), an LDF ϕ and a BSCC B, we
have that, if B is bad, then PrC ({ρ | ρ |=? ϕ} | ♦B) = 0.

PROOF. We have the following basic facts, which follow from ergodicity theorems
related to stochastic processes (see [Meyn and Tweedie 1996]):

(1) Given a BSCC B, every state s ∈ B is visited infinitely often with probability 1.
(2) Any path ρ ∈ PathsC eventually reaches one of the BSCCs of C.

Given the second fact we only need to prove that for a bad BSCC B it holds that
PrC ({ρ | ρ |=? ϕ} | ♦B) = 0. We note that:

PrC({ρ | ρ |=? ϕ} | ♦B) =
PrC({ρ | ρ |=? ϕ} ∩ ♦B)

PrC(♦B)
.

Therefore, in order to prove that PrC({ρ | ρ |=? ϕ} | ♦B) = 0, it is enough to show that
{ρ | ρ |=? ϕ} ∩ ♦B = ∅. We prove it by contradiction. First, observe that

{ρ | ρ |=? ϕ} ∩ ♦B =
⋂
j∈J

({ρ | ρ |=? ϕj} ∩ ♦B) ,

where ϕj is the j-th conjunct of ϕ. Therefore, we will only show that {ρ | ρ |=? ϕj} ∩
♦B = ∅ for some j ∈ J . Let ρ ∈ {ρ | ρ |=? ϕj} ∩ ♦B. Then ρ ∈ ♦B. Given that B is bad
it holds that ∃s ∈ B. ∃i ∈ Kj . sfji ∈ L(s) ∧ cji > 0. From the first fact we know that
there exist infinitely many n such that ρ[n] = s. Therefore, we have that cji

∫
sfji →∞.

We also know that ρ |=? ϕj iff ∀n.ρ[0 . . . n] |= ϕ or

∀n.
∑
k∈Kj

cjk
∑

0≤i′<n,
ρ[0...n]|=sfjk

ρ[0 . . . n]〈i′〉 ≤Mj . (12)

Given that i ∈ Kj and cji
∫

sfji → ∞, Equation (12) does not hold. Therefore, we have
that ρ 6|=? ϕj , which is a contradiction.

Let BSCC be the set of all BSCCs in C and B̃SCC be the set of all good BSCCs.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:28 T. Chen et al.

Definition 4.8. Given a CTMC C = (S,AP, L, α,P, E) and an LDF ϕ, we define a
new CTMC Ca = (S,APa, La, α,Pa, E) as follows:

— APa = AP ∪ {⊥}, where ⊥ is fresh;
— for all s ∈ B and B ∈ B̃SCC make s absorbing and let La(s) = L(s) ∪ {⊥}; and
— for all other states s /∈ B, B ∈ B̃SCC and s′ ∈ S, let Pa(s, s′) = P(s, s′), La(s) = L(s).

Example 4.9. As an example consider the left CTMC C from Figure 2, in which
there are two BSCCs B1 = {s4, s5} and B2 = {s1, s2, s3}. Moreover, assume that B1 6|= ϕ
and B2 |= ϕ for a given LDF ϕ. After applying Definition 4.8 to C we get Ca shown on
the right, where the labels of the states s1, s2 and s3 are augmented with the label {⊥}
and all the other labels are left unchanged.

s4

s5

s0

s1 s2 s3

s4

s5

s0

s1 s2 s3

Fig. 2. Example of BSCC decomposition to demonstrate CTMC conversion in Definition 4.8

We now introduce an auxiliary definition, which, roughly, is the counterpart of (the
unbounded version of) Definition 4.3.

Definition 4.10. Given an infinite timed path ρ and G ⊂ S, we write ρ |=?
G ϕ if there

exists some n ∈ N such that:

— ρ[n] ∈ G, and
— for each 0 ≤ i ≤ n, ρ[0..i] |= ϕ.

The following proposition states that, in order to compute Prob(C |=? ϕ), one can first
make good BSCCs absorbing while removing bad BSCCs, and then reduce to comput-
ing Prob(C |=?

G ϕ) for a suitable G, which, in turn, uses Algorithm 4.

PROPOSITION 4.11. Given a CTMC C = (S,AP, L, α,P, E) and an LDF ϕ, we have
that

Prob(C |=? ϕ) = PrC
a

({ρ | ρ |=?
G ϕ}),

where G = {s ∈ S |⊥∈ L(s)}.

PROOF. Applying the law of total probability we have that

PrC({ρ | ρ |=? ϕ})
=

∑
B∈BSCC

PrC ({ρ | ρ |=? ϕ} | ♦B) · PrC(♦B)

=
∑

B∈B̃SCC

PrC ({ρ | ρ |=? ϕ} | ♦B) · PrC(♦B) (by Lemma 4.7)

=
∑

B∈B̃SCC

PrC ({ρ | ρ |=? ϕ ∧ ({ρ[0 . . . n− 1] 6|= ϕ} ∪ {ρ[0 . . . n− 1] |= ϕ})} | ♦B) · PrC(♦B),

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Verification of LDPs over CTMCs A:29

where for all i < n, ρ[i] /∈ B. We have

PrC({ρ | ρ |=? ϕ})
=

∑
B∈B̃SCC

PrC ({ρ | ρ |=? ϕ ∧ ρ[0 . . . n− 1] 6|= ϕ} | ♦B) · PrC(♦B)

+
∑

B∈B̃SCC

PrC ({ρ | ρ |=? ϕ ∧ ρ[0 . . . n− 1] |= ϕ} | ♦B) · PrC(♦B).

By definition of |=∗, PrC ({ρ | ρ |=? ϕ ∧ ρ[0 . . . n− 1] 6|= ϕ} | ♦B) = 0.
Using similar reasoning as in Lemma 4.7, one can show that
PrC ({ρ | ρ |=? ϕ ∧ ρ[0 . . . n− 1] |= ϕ} | ♦B) = 1, for any B ∈ B̃SCC. Therefore, we
obtain that

PrC({ρ | ρ |=? ϕ})
=

∑
B∈B̃SCC

PrC(♦B) =
∑

B∈B̃SCC

PrC({ρ | ρ |=?
B ϕ})

= PrC

 ⋃
B∈B̃SCC

{ρ | ρ |=?
B ϕ}


= PrC

a

({ρ | ρ |=?
G ϕ}),

where G =
⋃

B∈B̃SCC

{s ∈ B} = {s ∈ S |⊥∈ L(s)} by Definition 4.8.

ALGORITHM 5: Compute P̃rob(C |=? ϕ)

Input: A CTMC C, an LDF formula ϕ, ε1 and ε2

1 Identify all BSCCs B in C;
2 G = ∅;
3 Prob = 0;
4 for each BSCC B do
5 if B |= ϕ then
6 Make every state in B absorbing;
7 G = G ∪B;
8 end
9 end

10 Choose T ≥ ln(ε1)
µ(Q1)

and N ≥ ΛTe2 + ln
(

1
ε2

)
;

11 Prob = P̃robN (C |=?
G,T ϕ);

12 return Prob;

13 Recall that µ(Q1) denotes the logarithmic norm of Q1 (cf. Definition 3.14).

4.1.1. Algorithm. Algorithm 5 computes P̃rob(C |=? ϕ) which is an approximation of
Prob(C |=? ϕ). Lines 4-9 obtain Ca and the goal states G, according to Definition 4.8,
and then the algorithm calls the function P̃robN (C |=?

G,T ϕ), given by Algorithm 4
(on page 26), by choosing T and N according to the specified error bounds ε1 and ε2

respectively.
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Error bound. Intuitively there are two factors that contribute to the error introduced
by Algorithm 5:

— the error introduced by approximating PrC
a

({ρ | ρ |=?
G ϕ}) with Prob(Ca |=?

G,T ϕ),
which can be obtained in a similar way as for Theorem 3.23, denoted by ε1; and

— the error introduced by approximating Prob(Ca |=?
G,T ϕ) with P̃robN (Ca |=?

G,T ϕ),
denoted by ε2.

THEOREM 4.12. Given ε1 and ε2, we have that:

Prob(C |=? ϕ)− P̃rob(C |=? ϕ) ≤ ε1 + ε2.

where P̃rob(C |=? ϕ) can be computed by Algorithm 5.

PROOF. The claim follows from Theorems 3.12, 3.23, and Proposition 4.11.

Remark 4.13. Given ε a priori, one possibility is to let ε1 = ε2 = ε

2
√
|G|

, and hence

T =
ln

(
ε

2
√
|G|

)
µ(Q1) and N =

Λe2 ln

(
ε

2
√
|G|

)
µ(Q1) + ln(

2
√
|G|
ε ) suffice.

4.2. Verification of Time-bounded IDP
In this section we show how to deal with the time-bounded variant of IDP. A well-
known fact regarding CTMCs is that the set of Zeno paths is of probability 0, i.e.,

LEMMA 4.14. Given a CTMC C and a time bound T <∞, we have that:

PrC
({

ρ | ρ |=?

∫
1 ≤ T

})
= 0.

We refer the readers to [Baier et al. 2003] for a proof.
For a CTMC C, we write C[s] for the CTMC obtained from C by making the state s

absorbing. The following theorem plays a pivotal role.

THEOREM 4.15. Given a CTMC C and an LDF Φ it holds that:

Prob(C |=? Φ) =
∑
s∈S

Prob(C[s] |=?
{s},T ϕ).

PROOF. By the law of total probability we have that:

PrC({ρ | ρ |=? Φ}) =
∑
s∈S

PrC({ρ | ρ |=? Φ} | {ρ | ρ@T = s}) · PrC({ρ | ρ@T = s}),

since
∑
s∈S

PrC({ρ | ρ@T = s}) = 1. Observe that:

PrC({ρ | ρ |=? Φ} | {ρ | ρ@T = s})

=
PrC({ρ | ρ |=? Φ}

⋂
{ρ | ρ@T = s})

PrC({ρ | ρ@T = s})

=
PrC{{ρ | ∀i.ρ[0..i] |=

∫
1 ≤ T → ϕ and ρ@T = s}}

PrC({ρ | ρ@T = s})

=
PrC[s]({ρ | ρ |=?

{s},T ϕ)

PrC({ρ | ρ@T = s})
.
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Note that, for the last step, we use Lemma 4.14 and Definition 4.3. It follows that:

PrC({ρ | ρ |=? Φ})

=
∑
s∈S

PrC[s]({ρ | ρ |=?
{s},T ϕ)

PrC({ρ | ρ@T = s})
· PrC({ρ | ρ@T = s})

=
∑
s∈S

Prob(C[s] |=?
{s},T ϕ).

This completes the proof.

The solution boils down to the computation of Prob(C[s] |=?
{s},T ϕ) for each state s,

for which we can apply Algorithm 4 for approximations. A detailed description is given
in Algorithm 6.

ALGORITHM 6: Compute P̃rob(C |=? Φ)

Input: A CTMC C, an LDF Φ and ε
1 Prob = 0 ;
2 Chose N ≥ ΛTe2 + ln

(
|S|·|
√
G|

ε

)
;

3 for s ∈ S do
4 Prob+ = P̃robN (C[s] |=?

{s},T ϕ);
5 end
6 return Prob;

We also have the following error bound.

THEOREM 4.16. Given ε and N ∈ N, it holds that

Prob(C |=? Φ)− P̃rob(C |=? Φ) < ε.

PROOF. For each s, we compute Prob(C[s] |=?
{s},T ϕ) up to ε

|S|·
√
|G|

. Namely, we

choose N such that N ≥ ΛTe2 + ln

(
|S|·
√
|G|

ε

)
. It follows that

Prob(C |=? Φ)− P̃rob(C |=? Φ) ≤ |S| · ε
|S|
≤ ε.

This completes the proof.

5. EXTENSIONS TO PREFIX-ACCUMULATION ASSERTIONS
In this section, we show how to extend our results to the prefix-accumulation assertions
studied in [Boker et al. 2011]. Three prefix-accumulation assertions, namely Sum (sum-
mation), Avg (average) and cAvg (controlled accumulation) are introduced in [Boker
et al. 2011] in the setting of quantitative Kripke structures (QKS). The idea is to adapt
the construction used on QKSs to the settings of CTMCs. We first recall some defini-
tions.

Definition 5.1 (Quantitative Kripke structure). A quantitative Kripke structure is a
tuple K = (P, V, S, sin, R, L) where:

— P is a finite set of Boolean variables;
— V is a finite set of numeric variables;
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— S is a finite set of states, with initial state sin ∈ S;
— R ⊆ S × S is a total transition relation; and
— L : S → 2P ×QV is a labelling function.

For the rest of this section, we fix a QKS K = (P, V, S, sin, R, L). A computation of K
is an infinite sequence of states π = s0, s1, . . . such that s0 = sin and (si, si+1) ∈ R for
every i ≥ 0. In the sequel, [[p]]s ∈ {T,F} and [[v]]s ∈ Q respectively denote the value of
a Boolean variable p ∈ P and a numeric variable v ∈ V in a state s of K.

Definition 5.2 (D-tree). Given a finite set D of directions, a D-tree is a set T ⊆ D∗

such that, if x · d ∈ T where x ∈ D∗ and d ∈ D, then also x ∈ T . The elements of T are
called nodes, and the empty word ε is the root of T . Thus, given two nodes x and y, we
say that x ≤ y iff there is some z ∈ D∗ such that y = x · z. For every x ∈ T , the nodes
x ·d, for d ∈ D, are the successors of x. A node is a leaf if it has no successors. A path of
T is a minimal set π ⊆ T such that ε ∈ π and for every y ∈ π, either y is a leaf or there
exists a unique d ∈ D such that y · d ∈ π. For a set Z, a Z-labelled D-tree is a pair (T, τ)
where T is a D-tree and τ : T → Z maps each node of T to an element in Z.

The QKS K induces the computation tree (TK, τK) which corresponds to the computa-
tions of K. Formally, (TK, τK) is a (2P ×QV )-labelled S-tree, where state(x) denotes the
rightmost state in a node of x of TK and τK(x) = L(state(x)). The prefix-accumulation
values (Sum and Avg) of a numeric variable v at a node x of (TK, τK) are the following:

— [[Sum(v)]]x =
∑
y≤x

[[v]]y, and

— [[Avg(v)]]x = [[Sum(v)]]x
|x|+1 .

The same definition applies for Boolean variables by viewing them as numerical vari-
ables with F = 0 and T = 1.

The prefix-accumulation values Sum and Avg are fairly simple. In practice, one may
wish to control and decide when the accumulation is done in order to take into account
more complex behaviors. For this reason, [Boker et al. 2011] introduce the controlled
accumulation cAvg(u, r1, v, r2), where u, v are numeric variables and r1, r2 are regular
expressions over 2P . The value of a controlled accumulation expression at a node x of
the computation tree is defined as follows (we use r(y) to indicate that the prefix y is a
member in the language of the regular expression r):

JcAvg(u, r1, v, r2)Kx =

∑
y≤x|r1(y)JuKy∑
y≤x|r2(y)JvKy

.

Intuitively, cAvg(u, r1, v, r2) considers the value of u accumulated only over the points
in time where the regular expression r1 is valid and it averages u against v, where v
is the accumulated value of the variable v over the points in time where the regular
expression r2 is valid.

Example 5.3. Following the example in [Boker et al. 2011], we can express the aver-
age waiting time between a request (denote r) and a grant (denote g) over the alphabet
Σ as cAvg(1, r1, 1, r2), where r1 = Σ∗r(Σ\g)∗ describes all the prefixes with a request
that is not yet granted, and r2 = (ε + Σ∗g)(Σ\r)∗r describes all the prefixes in which
a request that need a grant has been issued. Thus, cAvg(1, r1, 1, r2) is the sum of the
waiting durations divided by the number of requests.

Below we show that prefix-accumulation assertions can be encoded by LDF in a pre-
cise sense. Hence, the elegant framework of [Boker et al. 2011] can also be adapted to
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our setting. For the two prefix-accumulation assertions Sum(v) and Avg(v) the transla-
tion is immediate. In fact, the term Sum(v) can be written as∑

s∈S
v(s)

∫
@s,

where @s is an atomic proposition (state formula) which holds exactly at state s. Sim-
ilarly, the assertion Avg(v)≥ c can be encoded as∑

s∈S
v(s)

∫
@s ≥ c ·

∫
1,

which is again an LDF after rearrangement.
The most interesting case is the controlled-average expression cAvg(u, r1, v, r2) for

two numeric variables u, v and two regular expressions r1, r2. The idea is that we want
to sum the value of u over all the points in time where r1 is true and average this with
v constrained to r2.

First of all we construct two deterministic finite automata A1 and A2 out of r1 and
r2, respectively. Then we build the product C′ = C × A1 ×A2. The product of a CTMC
with a deterministic finite automaton is defined as follows.

Definition 5.4 (Product C × A). Given a CTMC C = (S,AP, L, s0,P, E) and a
DFA A = (Q, 2AP, δ, q0, F ) we define the product C × A to be the CTMC C′ =
(Loc,AP′, L′, l0,P′, E′) where:

— Loc = S ×Q;
— AP′ = AP ∪ {p};
— l0 = 〈s0, q0〉;
— given l = 〈s, q〉:

— L′(l) = L(s) if q /∈ F
— L′(l) = L(s) ∪ {p} if q ∈ F

— given l1 = 〈s1, q1〉 and l2 = 〈s2, q2〉, P′(l1, l2) = P(s1, s2) iff:

P(s1, s2) > 0 ∧ q1
L(s1)−→ q2,

and P′(l1, l2) = 0 otherwise.
— given l1 = 〈s1, q1〉 and l2 = 〈s2, q2〉, E′(l1, l2) = E(s1, s2)

where the label p indicates that the regular expression is true in the state labelled
with it.

We focus on cAvg(u, p, v, q) ≥ c instead of cAvg(u, r1, v, r2) ≥ c, where p = T in the
states of C′ where r1 is true (F otherwise) and q = T in the states of C′ where r2 is true
(F otherwise). We define a new reward structure, v′, in C′ as follows:

v′ =


0 if p = false and q = false
−cv if p = false and q = true
u if p = true and q = false
u− cv if p = true and q = true

Similarly to [Boker et al. 2011, Proposition 7], we have the following:

PROPOSITION 5.5. For any CTMC C, reward structures u, v and regular expressions
r1, r2, the computation of cAvg(u, r1, v, r2)≥ c is reduced to the computation of Sum (v′)≥ 0
in C′.
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6. CONCLUSION
We have studied the problem of verifying CTMCs against linear durational properties.
We focused on two classes of LDPs, namely, eventuality duration properties and invari-
ance duration properties. The central question we solved is, what is the probability of
the set of infinite timed paths of the CTMC which satisfy the given LDP? We presented
different algorithms to approximate these probabilities up to a given precision, stating
their complexity and error bounds.

As future work, we plan to study algorithmic verification of more complex duration
properties, for instance response and persistence, as in [Bouajjani et al. 1993]. It is also
interesting to study specifications combining duration properties and temporal proper-
ties (in traditional real-time logics, e.g., MTL). The verification of these specifications
would be challenging. Extending the current work to continuous-time Markov decision
processes is another possible direction.
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