
Automatic Verification of

Competitive Stochastic Systems

by

Aistis Šimaitis

A thesis submitted for the degree of

Doctor of Philosophy

Magdalen College, Oxford

Michaelmas Term 2013

Abstract

In this thesis we present a framework for automatic formal analysis of competitive stochas-

tic systems, such as sensor networks, decentralised resource management schemes or dis-

tributed user-centric environments. We model such systems as stochastic multi-player

games, which are turn-based models where an action in each state is chosen by one of the

players or according to a probability distribution. The specifications, such as “sensors 1

and 2 can collaborate to detect the target with probability 1, no matter what other sensors

in the network do” or “the controller can ensure that the energy used is less than 75mJ ,

and the algorithm terminates with probability at least 0.5”, are provided as temporal logic

formulae. We introduce a branching-time temporal logic rPATL and its multi-objective

extension to specify such probabilistic and reward-based properties of stochastic multi-

player games. We also provide algorithms for these logics that can either verify such

properties against the model, providing a yes/no answer, or perform strategy synthesis

by constructing the strategy for the players that satisfies the specification. We conduct

a detailed complexity analysis of the model checking problem for rPATL and its multi-

objective extension and provide efficient algorithms for verification and strategy synthesis.

We also implement the proposed techniques in the PRISM-games tool and apply them to

the analysis of several case studies of competitive stochastic systems.

Acknowledgements

Firstly, I would like to thank my supervisor, Marta Kwiatkowska, for the invaluable guid-

ance, support and critique provided throughout my studies. I would also like to thank my

mentors Vojtěch Forejt, David Parker and Taolue Chen – their support has been instru-

mental in completing this thesis and the number of lessons learnt from them about science,

life and myself is difficult to count. My thanks also go to all the colleagues and collab-

orators inside and outside the department who made sure that my time spent working

(and not) was very enjoyable. Clemens Wiltsche was especially helpful in the discussions

about stochastic games in the last year. Finally, I would like to thank my family, espe-

cially parents, Rasa and Audrius, for supporting me throughout my education, and most

importantly, my wife Elena, for all the patience, encouragement and motivation that she

has provided me with.

Contents

1 Introduction 1

2 Related Work 5

2.1 Probabilistic model checking . 5

2.2 Strategy synthesis and stochastic games 6

2.3 Multi-objective verification . 8

2.4 Tools and applications . 9

2.5 Summary . 11

3 Background Material 13

3.1 Probabilistic models . 13

3.1.1 Discrete-time Markov chains . 14

3.1.2 Markov decision processes . 15

3.1.3 Stochastic games . 18

3.2 Properties of probabilistic models . 20

3.2.1 Problem definitions . 20

3.2.2 Model checking properties of DTMCs 21

3.2.3 Model checking properties of MDPs 23

3.2.4 Model checking properties of stochastic games 28

3.3 Logics . 31

3.4 Strategy models . 36

3.5 Example . 39

3.6 Summary . 43

4 The Logic rPATL 45

4.1 Syntax and semantics . 46

4.2 Model checking . 51

4.2.1 Model checking algorithm . 52

4.2.2 Computation of probabilities . 52

4.2.3 Computation of rewards . 53

4.3 Complexity . 63

4.4 Strategy synthesis . 65

4.5 rPATL* . 69

4.6 Reward-bounded properties . 71

4.7 Summary . 72

5 Multi-Objective rPATL 75

5.1 Syntax and semantics . 76

5.2 Model checking . 81

5.2.1 Reduction to maximisation of expected reward 82

5.2.2 Reduction to conjunctive rPATL 84

5.2.3 Computation of Pareto sets . 88

5.3 Complexity . 92

5.3.1 Determinacy and optimal strategies 92

5.3.2 Memory requirements . 94

5.3.3 Complexity bounds . 97

5.4 Strategy synthesis . 104

5.5 Multi-objective rPATL* . 108

5.6 Summary . 111

6 Tool Implementation and Applications 113

6.1 Modelling language . 114

6.2 Property specification . 115

6.3 Model checking . 116

6.4 Strategy synthesis . 124

6.5 Experimental results . 125

6.6 Case studies . 128

6.6.1 Microgrid demand-side management 128

6.6.2 Collective decision making for sensor networks 132

6.6.3 Reputation protocol for user-centric networks 135

6.7 Summary . 141

7 Conclusions 143

7.1 Summary and evaluation . 143

7.2 Future work . 144

7.3 Conclusion . 146

A Comparison of strategy models 149

B Proof of Theorem 8 155

C Proof of Theorem 12 161

D Proof of Theorem 15 165

E PRISM-games tool 171

F PRISM-games models 175

F.1 Team formation protocol . 175

F.2 Microgrid demand-side management protocol 180

F.3 Collective decision making protocol for sensor networks 184

F.4 User-centric network protocol . 189

List of Figures

3.1 A discrete-time Markov chain. 15

3.2 A Markov decision process. 17

3.3 A stochastic multi-player game. 19

3.4 Example DTMC. 22

3.5 Example MDP. 27

3.6 Example SMG. 30

3.7 A game demonstrating exponential memory requirement. 38

3.8 Experimental configurations of the agent organisations. 41

3.9 Performance comparison of the original algorithm with the optimal one. . . 42

3.10 Comparison of the optimal coalitions of varying sizes. 43

4.1 Running example: team formation. 49

5.1 Example Pareto sets. 80

5.2 Operations of the functional for conjunctive rPATL. 89

5.3 Examples of Pareto sets for conjunction and disjunction of objectives. . . . 90

5.4 Game demonstrating nondeterminacy. 93

5.5 Game demonstrating non-existence of optimal strategies. 93

5.6 Game in which coalition requires infinite memory to win. 95

5.7 Game illustrating PSPACE-hardness. 98

5.8 Gadgets encoding counter operations. 100

5.9 Game illustrating NP-hardness. 103

5.10 Strategy example. 107

6.1 A PRISM-games SMG model of a team formation game. 114

6.2 PRISM-games screenshots. 124

6.3 Performance of numerical computation algorithms (absolute difference con-

vergence criterion). 126

6.4 Comparison of absolute and relative termination criteria for value iteration

algorithms. 127

6.5 Energy demand curve and its piecewise approximation. 129

6.6 Results for demand-side management algorithm: value per household. . . . 131

6.7 Results for collective decision making algorithm: expected running time. . 134

6.8 Results for collective decision making algorithm: probability to recover. . . 135

6.9 Maximum unpaid services the requester can achieve in obtaining k services. 138

6.10 Cost of k services for requester and a strategy example. 139

6.11 Distribution of requests among providers. 140

E.1 PRISM-games model window. 171

E.2 PRISM-games properties window. 172

E.3 Strategy information window. 172

E.4 PRISM-games strategy import/export format. 173

E.5 PRISM-games simulator window. 174

List of Tables

3.1 Task completion probabilities for the agent organisations. 41

6.1 Performance statistics for PRISM-games. 125

6.2 SMG model sizes for microgrid demand-side management protocol. 130

6.3 Optimal values for Pstart parameter. 130

6.4 SMG model sizes for sensor network protocol. 133

6.5 SMG model sizes for user-centric network protocol. 137

List of Algorithms

1 General model checking routine for rPATL. 117

2 Probability operator model checking routine (Next). 117

3 Probability operator model checking routine (Until). 118

4 Model checking routine for the reward operator. 119

5 Model checking routine for the Fc reward operator. 120

6 Model checking routine for F∞ reward operator. 121

7 Model checking routine for F0 reward operator. 122

8 Routine for computing value for Ri for B ≤ i ≤ B+rmax−1. 123

9 Model checking routine for exact reachability probability. 123

Chapter 1

Introduction

Competitive stochastic systems. The trust placed in computers in contemporary

society is high. We trust computers to pilot planes, control spaceships, perform surgeries,

etc. There is one important aspect about these systems – they are provided to us as a

service. We know that the responsibility for the quality and the consequences largely lies

with the service providers, and therefore we expect them to have invested substantially to

guarantee that the software, which is running these services, is of a high quality. Automatic

verification of software, the method that automatically proves that a system conforms to

its specification, is one of the ways to provide such guarantees. With the use of computer

systems becoming ever more pervasive, the world of computing has been experiencing a

paradigm shift from a centralised to a more distributed setting. Many distributed systems

have emerged and are being used more and more often, including sensor networks, smart

energy management, ad-hoc information sharing, and auction trading agents. Due to

exposed privacy and close interaction with the systems, trust expectations for them are

also very high and the designers will have to ensure that the quality standards meet those

expectations. However, one key difference and challenge in designing and verifying such

systems is that they are open – only certain parts of them could be under the control of

the designer. Other parts may be controlled by different users or be executing without

any awareness of the agents present in the system. Together they form an ecosystem of

agents, each of which potentially representing their owners’ interests and having different

goals. We refer to such systems as competitive stochastic systems : competitive because

each agent could have different or opposing goals and stochastic because algorithms which

they execute or platforms in which they operate can be probabilistic.

Aims. Probabilistic verification tools such as PRISM [77], MRMC [72] and LiQuor [45]

target a variety of formal stochastic models of systems, including Markov chains, Markov

decision processes, and so on. But even though some of those models, e.g., Markov decision

1

2 CHAPTER 1. INTRODUCTION

processes, allow specifying adversarial behaviour of one controller, they do not support

the modelling of competition where several components are allowed to make decisions.

On the other hand, there are methods and tools that support formal modelling and anal-

ysis of competitive systems, e.g., the MCMAS [85] model checker supports games and

Alternating-time Temporal Logic (ATL) model checking, but do not allow to model the

stochastic nature of the systems. The aim of this thesis is to provide a comprehensive

framework for the formal analysis of algorithms for systems that exhibit both stochastic

and competitive behaviour. We do this by jointly developing the theoretical underpinnings,

including property specification language, together with model checking and synthesis al-

gorithms and implementation of the techniques and their application to several relevant

case studies of competitive stochastic systems.

Approach. As an underlying formal model we use stochastic multi-player games (SMGs),

which are state transition systems in which, in each state, the choice of the transition is

controlled either by one of the players in the game or is chosen probabilistically. SMGs

can be seen as an extension of Markov decision processes (MDPs) to multiple players, and

the existence of a large core of techniques for MDPs, including logics, algorithms, tools

and applications, has motivated our choice of this particular extension.

The property specification language that we develop in this thesis builds on temporal

logics such as CTL, LTL and ATL, as well as their probabilistic extensions, which have

been used successfully to express properties of (stochastic) systems. The model checking

algorithms that we designed to verify the properties are based on value iteration, which

is a popular model checking technique in many modern probabilistic model checkers to

achieve scalability and to verify large models.

The PRISM-games tool developed in this thesis is an extension of the PRISM model

checker, taking advantage of its modelling language, user interface and other built-in

functionality, while extending it to support stochastic games and strategy synthesis.

Contributions. The contributions of this thesis can be summarised as follows.

• We have introduced Probabilistic Alternating-time Temporal Logic with Rewards

(rPATL), which combines features of popular temporal logics including ATL and

PCTL and extends their support to SMGs. We perform a complexity analysis of

rPATL model checking and develop model checking algorithms, which can be imple-

mented via value iteration. In addition, we provide algorithms for strategy synthesis

– construction of controllers satisfying the logic specifications – that perform strategy

construction from the results of the value iteration algorithms.

• We have addressed the problem of multi-objective verification for stochastic games.

3

We analysed the complexity of the problem and showed that, even for the simple

objectives like terminal state reachability and expected total reward, the model

checking problem is considerably more difficult than the corresponding problems for

MDPs. We have also extended rPATL to support the specification of multi-objective

properties and provided approximation algorithms for this logic, which are based on

the approximation of the Pareto sets (optimal trade-offs between the objectives).

Similarly to rPATL, we have provided strategy construction methods.

• We have developed PRISM-games, a model checker that supports modelling of

stochastic multi-player games, specification of rPATL properties and the algorithms

for their model checking and synthesis. We have also applied the tool to the analysis

of several case studies of competitive stochastic systems: team formation protocol,

microgrid demand-side management algorithm, collective decision making algorithm

for sensor networks, and a reputation mechanism for user-centric networks.

Thesis structure

The remainder of this thesis is structured as follows. Chapter 2 provides a technical

overview of related work and discusses how the results of the thesis fit in and contribute

to the research area. Background material is presented in Chapter 3. This includes basic

concepts from probability theory and formal probabilistic models, together with discussion

of common properties and their model checking. We also discuss different representation of

player strategies and compare their expressiveness. Chapters 4, 5 and 6 contain the main

contributions of the thesis. In Chapters 4 and 5 we focus on the property specification

language defining the logic rPATL and its extension to multiple objectives. We also study

the problem of model checking this logic on stochastic multi-player games: we perform its

complexity analysis and design algorithms for model checking, as well as strategy synthe-

sis. In Chapter 6 we present PRISM-games, a model checker for stochastic multi-player

games, in which we implemented the rPATL model checking and synthesis techniques de-

veloped in the thesis. We also apply the tool to three case studies of competitive stochastic

systems: decentralised microgrid energy management algorithm, collective decision mak-

ing algorithm for sensor networks, and a reputation and virtual currency mechanism for

user-centric networks. We conclude in Chapter 7 by evaluating the work done in the thesis

and highlighting the research directions that are open for future work.

4 CHAPTER 1. INTRODUCTION

Publications

Some of the work in this thesis has been previously published in jointly authored papers.

In [36, 37] the logic rPATL was introduced. I collaborated with the other authors to

perform complexity analysis and the development of all model checking algorithms for

the logic. These results are presented in Chapter 4. The majority of the work regarding

modelling and analysis of the two case studies in the papers has been done by me. The im-

plementation of rPATL model checking algorithms in the PRISM-games model checker [38]

has been developed jointly by myself, David Parker and Vojtěch Forejt. Strategy synthesis

functionality has been implemented by me. The contents of this work appear in Chapter 6.

In [40], the problem of model checking two-player stochastic games with multiple ex-

pected total reward objectives has been analysed. I collaborated with the other authors

to perform complexity analysis and the development of approximation algorithms for the

problem. In Chapter 5 we build on these results to provide a model checking algorithm

for the multi-objective rPATL formulae.

The analysis of stochastic games with precise expectation objectives has been published

in [39]. I contributed to all the results of the paper except for Section 5 on the counter-

strategy problem. The results of this paper show the nondeterminacy and non-existence of

optimal strategies for multi-objective rPATL specifications, described in Section 5.3 of this

thesis, as well as exponential succinctness of stochastic-update strategies in Appendix A.

In [42] the application of synthesis for multi-objective stochastic games is presented.

I contributed the strategy synthesis and LTL verification sections to the paper. Clemens

Wiltsche has implemented the model checking and strategy synthesis algorithms for multi-

objective expected total reward objectives. A variant of the strategy synthesis algorithm

is presented in Section 5.4 of this thesis to synthesise strategies for multi-objective rPATL;

and also, the multi-objective rPATL* model checking algorithm presented in Section 5.5

are based on the reduction appearing in [42] for multiple LTL objectives.

The case study of a team formation protocol has been published in [41]. I have per-

formed the majority of the modelling and analysis work. David Parker has provided the

prototype implementation of the stochastic game solver. The case study is presented in

Section 3.5 of this thesis. Also, a variant of the protocol is used as a running example

throughout the thesis.

The analysis of a reputation-based virtual currency mechanism for user-centric net-

works has been published in [81]. I have performed the modelling and analysis of the

protocol. The case study is presented in Section 6.6.

Chapter 2

Related Work

In this chapter we give an overview of the research that is closely related to the work of this

thesis: the design of a formal analysis framework and a verification tool for competitive

stochastic systems. The chapter consists of four main sections. We start by discussing

the probabilistic model checking techniques in Section 2.1; then, in Section 2.2, we discuss

the strategy synthesis problem, placing particular emphasis on stochastic games and their

use in verification. In Section 2.3, we review multi-objective verification techniques, and

in Section 2.4 we discuss verification tools and several applications to the systems similar

to the ones studied in this thesis.

2.1 Probabilistic model checking

Model checking [46, 97] is an automated technique to determine whether a model of a

system satisfies a property specification, which is usually provided as a temporal logic

formula. The approach works by exhaustively exploring the system’s state transition

graph and, in the case the property is not satisfied, returns a trace witnessing a faulty

execution of the system – a counter-example to the property specification. Model checking

algorithms for systems with properties expressed as temporal logics have been introduced

in [47] for CTL (Computational Tree Logic) and in [103] for LTL (Linear Temporal Logic),

which are able to express, respectively, branching and linear-time properties that system

executions should satisfy.

The approach to model checking of systems against temporal logic specifications has

been successfully extended to support probabilistic models, i.e., where the transitions be-

tween states of the model happen according to a probability distribution. There are two

common approaches to verification of such systems: one is qualitative, where we are in-

terested in checking if a temporal logic formula is satisfied with probability 1 or 0 in the

5

6 CHAPTER 2. RELATED WORK

model, the second approach is quantitative, where we are interested in computing the prob-

ability of the specification being satisfied. For the simplest of probabilistic models that we

consider, namely, discrete-time Markov chains (DTMCs), where in all states transitions

are taken probabilistically, qualitative model checking has been addressed in [84, 49], and,

for Markov decision processes, where in some states the transition can happen nondeter-

ministically, qualitative model checking has been studied in [95, 108, 49]. To address the

quantitative model checking problem, the logic CTL has been extended with a probabilis-

tic operator P>q[ψ], which is true in a state of the model if the temporal formula ψ holds

with probability greater than q. This gives rise to the logics PCTL [66] and pCTL [7] (the

logics are of equivalent expressiveness and we refer to them as PCTL from hereon). The

model checking of the aforementioned logics for DTMCs reduces to solving a system of lin-

ear equations, and for the extension PCTL* [7], where formula ψ can be an LTL formula,

the solution of the method combines linear equation system solving with the techniques

for qualitative properties [49] to verify the specifications. For MDPs, the PCTL model

checking problem asks whether for all nondeterministic choices the formula holds with a

given probability bound. The problem was considered in [14] and [50], and has been shown

to be reducible to linear programming. [14] also presented the model checking algorithm

for PCTL*.

Besides temporal logics, reward-based properties have been extensively used to specify

quantitative properties of systems [96, 59, 52, 6, 58, 109]. Rewards label the states of

the model with rational numbers representing rewards or costs incurred in that state.

The execution of a system is now also a sequence of rewards as well as states. One

of the most commonly studied properties for DTMCs and MDPs is a discounted total

reward [96, 59, 52], which assigns a discounted sum of the rewards to the execution trace.

Another common reward-based property is the limit average reward (also known as mean-

payoff) [109, 34, 26], assigning the average of the encountered rewards to an execution

trace. Traditionally, model checking of such properties concerns finding the expected value

of the reward function. Finding such a value for the above functions can be reduced to

solving the system of linear equations and linear programming for DTMCs and MDPs,

respectively [96, 59]. Some recent work has also considered the satisfaction problem, which

asks to compute the probability that the reward of the path exceeds a given bound [20].

2.2 Strategy synthesis and stochastic games

In the previous section we discussed probabilistic model checking, a method of formal

verification that checks whether a given model of the system satisfies the property given

as a temporal logic formula or expected reward objective. Another view one could take

2.2. STRATEGY SYNTHESIS AND STOCHASTIC GAMES 7

for the models having nondeterministic choices (e.g., MDPs) is to ask, given a property

specification, to provide a controller (or strategy) that resolves the nondeterminism in a

way that the given property specification is satisfied. We refer to this view as strategy

synthesis. A strategy can be seen as a function mapping an execution history ending in

a control state to the choice to be taken. Strategy synthesis for MDPs can be performed

using the results of the model checking algorithms described in the previous section [14, 96]

and has been applied in a variety of fields, including robotics [82], sensor grids [105], etc.

Strategy synthesis for Markov decision processes has also been used as a mechanism design

tool for multi-agent systems to synthesise the equilibria strategies [94].

Nondeterminism in MDPs is often used to represent the choices of the controller,

whereas random choices model the stochastic environment. A natural extension of this

model is where the behaviour of the environment is allowed to be both nondeterministic

as well as random. The probabilistic model that takes into account the two sources of

nondeterminism is stochastic two-player games introduced by [102]. The central compu-

tational problem in such games is the question of whether a player has a winning strategy.

The games that we study in this thesis are zero-sum, i.e., the goals of the two players, the

controller and the environment, are opposing: winning for one is losing for the other, and

vice versa. Such games have been studied extensively in game theory [12], but found their

way into computer science via modelling of stochastic reactive systems [98, 59], where

researchers studied the synthesis of controllers with reachability and expected total re-

ward objectives [48, 59]. The authors have shown there that memoryless deterministic

controllers are sufficient to win the games for both players, and proved the problem of

deciding the existence of such strategies to be in NP∩coNP [48]. The exact complexity of

such games has been a long-standing open question.

More recently, the study of stochastic two-player games has been extended to broader

classes of objectives, including classical ω-regular specifications [106]. In [25] the authors

addressed the qualitative and quantitative verification of games with Rabin and Streett

objectives, showing that memoryless strategies are sufficient for the player to win the game

with the former objective, and the problems of deciding the existence of a winning strat-

egy are NP-complete and coNP-complete, respectively. However, for the parity winning

objectives, just as for reachability and expected reward objectives, memoryless strategies

are sufficient for both players, and the problem is in NP∩coNP [33]. We also mention that

ω-regular objectives have been studied for a more general class of concurrent stochastic

games, where at each state both players have to take a decision concurrently [24].

There are several logics that have been defined for stochastic games. pATL (Proba-

bilistic Alternating-time Temporal Logic) allows one to reason about concurrent stochastic

multi-player games in a similar way that PCTL allows one to specify the properties of

8 CHAPTER 2. RELATED WORK

MDPs, but model checking of the specifications reduces to solving concurrent stochastic

two-player games [43, 22]. SGL (Stochastic Game Logic) [8] is a very powerful logic, pro-

posed to specify the properties of turn-based stochastic multi-player games, but the model

checking problem for it is undecidable in general [8], as is also the case for a variant of

PCTL for stochastic games [19].

In addition to serving as an independent modelling framework, stochastic games have

been instrumental as a solution method for other problems, e.g., abstraction refinement

for MDPs [73] or model checking for probabilistic timed automata [76].

2.3 Multi-objective verification

When considering the synthesis problem for systems modelled as games or Markov decision

processes, it is useful to have a specification consisting of several properties of different

type. For example, one may be interested in obtaining a controller that ensures that a given

LTL formula is satisfied while making sure that total reward is less than a given bound.

Similar problems (sometimes referred to as multi-dimensional optimisation) have been

studied in optimisation [54], engineering [86] and operations research [104] communities.

Most of the current work in multi-objective verification has been considered for non-

stochastic two-player games. In [23], the authors present model checking algorithm for

games, where one objective is a Büchi fairness constraint (repeated reachability of a certain

set of states) and the second objective is that the resource consumption (total reward) of

the system stays below a given threshold. In [31], the approach has been extended to a

combination of parity and mean-payoff objectives, where the goal is to find the controller

in a two-player game, which maximises the mean-payoff objective, while making sure that

the parity condition (which is a canonical way to represent ω-regular specifications) holds.

In addition to combining different types of objectives, one may consider having sev-

eral objectives of the same type. For the logics like CTL and LTL, to specify that the

model satisfies two formulae one can simply take their conjunction and check the resulting

single-objective property. However, this approach cannot be applied for the reward-based

objectives, or for probabilistic extensions of logics such as PCTL. In [27, 109], the authors

studied the problem of finding a controller optimising an objective that consists of several

mean-payoff functions, and in [35] this work has been extended to also incorporate par-

ity goals. In general, infinite memory strategies are required to win the games with the

aforementioned objectives, but, for finite strategies, if such exist, exponential upper and

lower bounds have been shown [35]. In [16], the authors take a different view, and instead

of looking for a strategy in a game representing the system, they consider the synthesis of

programs directly from LTL specifications under mean-payoff constraints, and two-player

2.4. TOOLS AND APPLICATIONS 9

games are used as a tool to perform such synthesis.

For probabilistic models without nondeterminism (e.g., DTMCs), the multi-objective

verification problem reduces to simply checking each objective individually. In [26], the

authors studied the existence of a controller for Markov decision processes, which makes

sure that a parity condition, and a mean-payoff objective are satisfied with probability

1, and showed that the problem can be solved in polynomial time. The work of [57]

studied a more general problem of providing algorithms for verifying whether a boolean

combination of ω-regular and expected total reward objectives can be achieved from a

state of the MDP. For terminal state reachability and expected total reward objectives,

the proposed algorithm works in polynomial time. The method developed in [57] has been

applied to construct the assume-guarantee reasoning framework for MDPs [79].

The approach of [57] works by constructing a linear program to verify whether a specific

bound for objectives can be obtained, i.e., whether one can answer questions like “does

there exist a controller strategy which reaches state s with probability 0.5 and state t with

probability 0.7?” Sometimes one may be interested in computing the set of all trade-offs

between objectives that one can achieve (i.e., the Pareto set). This provides an alternative

method to model check the multi-objective properties: one can compute the Pareto set

and then check whether the required values are in this set, e.g., for the question above one

would compute the Pareto set for the objectives “reach s” and “reach t” and then check

whether the value pair (0.5, 0.7) is in this set. An approximation algorithm for computing

Pareto sets for MDPs has been presented in [61].

The authors of [21] study the problem of optimising both the mean-payoff objective

and the stability of its value. Several notions of stability are proposed. One notion is the

variance of the value of the mean-payoff objective; another one is the local variance, which

considers how the rewards along the path differ from the mean-payoff of the path.

To the best of our knowledge, little work has been done to address the multi-objective

verification for stochastic games. SGL [8] is able to express multi-objective ω-regular

properties for SMGs, but model checking of the logic is undecidable. We also mention the

work of [19] which considers the satisfiability of PCTL over MDPs, where the problem has

been shown to be undecidable in general.

2.4 Tools and applications

We conclude the chapter by discussing several tools that support formal analysis and

verification of systems, as well as applications of formal analysis to competitive stochastic

systems.

MOCHA [5] was the first model checker to provide the model checking of ATL over

10 CHAPTER 2. RELATED WORK

concurrent multi-player games. As a modelling language, it uses a variant of the Reac-

tive Modules formalism [3]. An extended version of the MOCHA modelling language is

adopted by MCMAS [85], a model checker for multi-agent systems. MCMAS also sup-

ports the verification of ATL specifications, as well as various epistemic operators. Both

MOCHA and MCMAS take advantage of symbolic representations, based on binary deci-

sion diagrams (BDDs), to achieve better scalability. The SPIN model checker [71], which

supports verification of LTL properties for systems modelled in Promela [70], has been

used to model check properties of multi-agent systems [18]. The technique performs a

translation of the AgentSpeak [17] programming language into a Promela specification,

which is then verified by SPIN. UPPAAL [13] is a tool focused on the analysis of real-time

systems specified as timed-automata; the statistical model checking of hybrid models of

systems is also supported.

Probabilistic model checker PRISM [77] supports the modelling and verification of

various probabilistic models, including Markov chains and MDPs. The modelling language

is a probabilistic variant of the Reactive Modules (see [93] for details) and the supported

property specification language for these models is a variant of PCTL, extended with the

reward operators [60], PCTL* and LTL. PRISM has several engines, including a symbolic

one, which is based on multi-terminal BDDs. Modelling and verification of Markov chains

and MDPs is also supported by several other model checkers. For example, in addition to

verification of PCTL, the MRMC [72] model checker supports model checking of long-run

average reward properties for several Markov models, but does not provide a high-level

modelling language (models have to be constructed using PRISM or input as PEPA [69]

specifications). The tool LiQuor [45] supports the verification of MDPs, modelled as

Probmela programs [9], against LTL specifications.

There are several tools which support modelling of stochastic games. GIST [30] is a

tool for the verification of qualitative ω-regular objectives for turn-based stochastic games

containing two players, the system and the environment. If there exists no controller for

the system achieving the objective, the tool can perform synthesis of the assumptions

for the environment (i.e., restrictions for the strategies that the player can propose) that

are sufficient for the system to achieve the objective. We also mention GAVS+ [44],

an algorithmic game solver that supports, amongst other models, solution of MDPs and

stochastic two-player games for reachability objectives.

We conclude the section by reviewing some applications of probabilistic model checking

to the analysis of competitive stochastic systems. In [1], the authors use model checking

of PCTL and reward-based properties over DMTCs and MDPs to analyse the trust-based

reputation and virtual currency scheme for user-centric networks. The in-depth formal

analysis of the trade-off between cooperation incentives and performance has been pro-

2.5. SUMMARY 11

vided, and the possible improvements to the algorithm have been proposed. [11] presents

an analysis of the alternating-offers negotiation protocol [91] for multi-agent systems. In

the paper, the protocol is modelled as a DTMC by fixing the strategy profiles of the

players (and hence making the behaviour of the system purely probabilistic). Using this

approach, the authors were able to explore formally the effects that particular variables of

the strategies have on the outcome of negotiation. In [88], authors present an analysis of

the futures market investor modelled as a two-player stochastic game between the market

and investor. Using MDP model checking, the authors explore various strategies available

for investor against the worst-case scenarios (modelled as nondeterministic choices of the

market). The results for the optimal strategies for the investor are obtained by solving a

stochastic game.

2.5 Summary

In this chapter we have reviewed the work that is related to the research that we present

in this thesis. In Section 2.1, we provided a general overview of the research area –

probabilistic model checking. Then, in Section 2.2, we discussed stochastic games, which

is the underlying formalism used in this thesis, together with some applications to strategy

synthesis. This work is mostly related to Chapter 4. Section 2.3 presented an overview of

the multi-objective verification, which is the focus of Chapter 5 addressing multi-objective

verification for stochastic games. Finally, in Section 2.4, we discussed the tools available

for formal modelling and analysis of systems and their applications to the analysis of

competitive stochastic systems. The model checker PRISM-games, which we present in

Chapter 6, contributes to this body of work by providing a modelling and verification tool

for SMGs, which we then apply to analyse several case studies.

12 CHAPTER 2. RELATED WORK

Chapter 3

Background Material

In this chapter we present the background material and known results that we use in the

thesis. The chapter structure is as follows. In Section 3.1 we review the relevant prob-

abilistic models (discrete-time Markov chains, Markov decision processes and stochastic

games) as well as introduce the associated concepts. Then, in Section 3.2, we present the

definitions, results and examples for the common properties that are analysed for those

models: reachability, parity and expected total reward objectives. In Section 3.3 we dis-

cuss several temporal logics, which are used to express properties of probabilistic models

and present their model checking algorithms. Then, in Section 3.4, we discuss the strat-

egy representation models that we use for strategy synthesis. Finally, before summarising

the material in Section 3.6, we present a case study to illustrate the application of the

introduced probabilistic models and properties to the competitive stochastic systems in

Section 3.5.

3.1 Probabilistic models

In this section we review probabilistic labelled state transitions systems commonly used for

modelling and analysis of systems. We first introduce the notation that we use throughout.

For an alphabet Σ we denote by Σ∗ the set of all finite words formed from Σ, and similarly

by Σω we denote the set of all infinite words formed from the alphabet. Given two words,

λ ∈ Σ∗ and λ′ ∈ Σ∗ ∪ Σω, we denote by λ · λ′ the concatenation of them. A discrete

probability distribution (or just distribution) over a (countable) set X is a function µ : X →
[0, 1] such that

∑
x∈X µ(x) = 1. We write D(X) for the set of all probability distributions

over X. Let supp(µ) = {x ∈ X | µ(x) > 0} be the support set of µ ∈ D(X). We say that a

distribution µ ∈ D(X) is a Dirac distribution if µ(x) = 1 for some x ∈ X. We represent a

distribution µ ∈ D(X) on a set X = {x1, . . . , xn} as a map [x1 7→ µ(x1), . . . , xn 7→ µ(xn)]

13

14 CHAPTER 3. BACKGROUND MATERIAL

and omit the elements of X outside supp(µ) to simplify the presentation. If the context is

clear, we sometimes identify a Dirac distribution µ with the unique element in supp(µ).

3.1.1 Discrete-time Markov chains

One of the simplest probabilistic models are discrete-time Markov chains (DTMCs), in

which the transitions between states happen in a purely probabilistic way. They can be

used to model systems, which evolve in a fully defined deterministic or probabilistic fashion;

for example, DTMCs have been used to analyse Herman’s self-stabilisation algorithm [78]

for ring networks, the Bluetooth device discovery protocol [55], and many others.

Definition 1 (DTMC) A discrete-time Markov chain (DTMC) is represented by a tuple

D = 〈S,∆, AP, χ〉, where:

• S is a countable, non-empty set of states;

• ∆ : S × S → [0, 1] is a transition function;

• AP is a finite set of atomic propositions; and

• χ : S → 2AP is a labelling function.

An element ∆(s, t) of the transition function defines the probability of making a transition

from state s to state t. Hence, we require that for all s ∈ S we have
∑

t∈S ∆(s, t) = 1. We

assume that the transition function is defined for all states. We denote by ∆(s) the set of

all successors that have positive probability to be reached in one step from s, i.e., ∆(s)
def
=

{t ∈ S |∆(s, t) > 0}. States which have only one outgoing transition to themselves are

called terminal ; we denote the set of all terminal states by Term
def
= {s ∈ S |∆(s, s) = 1}.

The labelling function assigns atomic propositions to states to label them with properties

of interest.

An execution of the system is a sequence of states obtained by stepping through a

DTMC according to a transition function ∆, which starts in some specified initial state.

We refer to such a (possibly infinite) sequence as a path λ = s0s1 . . ., where si ∈ S

for all i and sj ∈ ∆(sj−1). We use λj to denote the jth state in the path. Also, by

Suffix(λ, j) = sjsj+1 . . . we denote the suffix of the path λ starting in state sj, e.g.,

Suffix(λ, 1) = s1s2 · · · ; and by Prefix(λ, j) = s0s1 · · · sj−1 we denote the prefix of length j,

e.g., Prefix(λ, 2) = s0s1. By |λ| we denote the number of states in the path λ. The set

of all infinite paths of D is denoted by ΩD and the set of infinite paths starting in state s

is denoted by ΩD,s. Similarly, we use Ω+
D and Ω+

D,s to denote the sets of finite paths. We

often refer to a finite path of a DTMC as a history.

3.1. PROBABILISTIC MODELS 15

In order to reason about a system’s behaviour, we need to be able to determine the

probability of the paths in a DTMC. This is done in a standard way [74] (see also, e.g.,

[75, 60], for a more detailed discussion). For a state s ∈ S, the basic open sets of ΩD,s

are the cylinder sets Cyl(λ)
def
= λ · Sω for every finite path λ = s0s1 . . . sk of D and the

probability assigned to Cyl(λ) is equal to
∏k

i=1 ∆(λi−1, λi). This definition induces a

probability measure on the algebra of cylinder sets, which, by Carathéodory’s extension

theorem, can be extended to a unique probability measure on the σ-algebra generated by

these sets. We denote the resulting probability measure by PrD,s. When the DTMC is

clear from the context, we simply refer to it by Prs.

A bottom strongly connected component (BSCC) of a DTMC D is a subset of states

S ′ ⊆ S such that, for all s ∈ S ′ we have that if ∆(s, t) > 0, then t ∈ S ′, and for any pair

of states s, t ∈ S ′, there is a path from s to t and from t to s.

s0{a, b} s1

{a}

s2

s3s4

1
2

1
3

1
2

2
3

1
2

1
2

1
2

1 1
2

Figure 3.1: Example DTMC.

Example 1 Consider the DTMC shown in Figure 3.1. The set of states of the model is

S = {s0, s1, s2, s3, s4}, the transition function for the state s0 is ∆(s0) = [s1 7→ 1
2
, s4 7→ 1

2
]

and similarly for others. State s0 is labelled with atomic propositions a and b (χ(s0) =

{a, b}), state s1 is labelled with a and all others are labelled with none. An example of an

infinite path through this DTMC is s0s1s0(s4)ω. The probability of this path is 1
2
· 1

3
· 1

2
= 1

12
.

This DTMC has two BSCCs, {s4} and {s2, s3}. The state s4 is the only terminal state of

the DTMC, i.e., Term = {s4}.

3.1.2 Markov decision processes

The next type of model that we consider are Markov decision processes (MDPs), which

generalise DTMCs by adding nondeterministic behaviour. In a state of an MDP a suc-

cessor can now be chosen either according to a probability distribution (as in DTMCs) or

nondeterministically. There are several ways that nondeterminism can be used to model

the system. One example is where the nondeterministic states represent the control states

16 CHAPTER 3. BACKGROUND MATERIAL

of the model, i.e., states where the controller of the system is able to change the path of

execution, e.g., an investor choosing whether to buy or sell the stock. Another common use

is to model potential adversarial behaviour, where the states represent the environment of

the system, the available actions of which are known, but the way that they are chosen is

not, e.g., nondeterministic states could represent the possible actions of an adversary in a

security protocol. MDPs have been applied to the analysis of such systems, for example, to

analyse the strategies for futures market investor [88] and a probabilistic contract signing

protocol [90].

Definition 2 (MDP) A Markov decision process (MDP) is represented by a tuple M =

〈S, (S©, S�),∆, AP, χ〉, where:

• S is a finite, non-empty set of states;

• S© ⊆ S is the set of stochastic states and S� ⊆ S is the set of control states, such

that (S©, S�) is a partition of S;

• ∆ : S × S → [0, 1] is a transition function;

• AP is a finite set of atomic propositions; and

• χ : S → 2AP is a labelling function.

The key difference between DTMCs and MDPs lies in the transition function. If s is a

stochastic state (i.e., s ∈ S©), then transition function behaves in the same way as for

DTMCs, i.e., for each successor state it assigns the probability to move to it in the next

step and
∑

t∈S ∆(s, t) = 1. But if s is a control state (i.e., s ∈ S�), then transition function

simply indicates which successors are available to choose from in that state, i.e., for all

t ∈ S we have ∆(s, t) ∈ {0, 1}, where 1 indicates that an action is available. We often refer

to the choice of successor as an action. As for DTMCs, we assume that ∆(s) is not empty

for all s ∈ S, and define terminal states as Term
def
= {s ∈ S |∆(s, s) = 1 and ∆(s, t) =

0 for t 6= s}.
The definitions of paths through the MDPs are the same as for DTMCs, and we denote

the set of all infinite paths in the MDP M by ΩM, the set of infinite paths starting in a

state s are denoted by ΩM,s, and we use Ω+
M and Ω+

M,s for sets of finite paths. An execution

of the system (that results in a path) in an MDP is a sequence of probabilistic (for s ∈ S©)

and nondeterministic (for s ∈ S�) choices. In order to define the probability measure for

paths, we need to specify a way to resolve the nondeterministic choices. This is done by

means of a strategy. A controller strategy σ is a function mapping from histories ending

in a control state to a distribution on the available successors, i.e., σ : S∗S� → D(S). We

3.1. PROBABILISTIC MODELS 17

denote the set of all controller strategies by Σ. An initial state s of an MDP M and a

controller strategy σ together induce a (possibly infinite) DTMC, on which we can define

a probability measure via cylinder sets as before, except the probability of the cylinder

Cyl(λ) induced by a finite path λ of length k + 1 is now equal to
∏k

i=1 ∆(λi−1, λi) · p(i),
where p(i) = σ(Prefix(λ, i))(λi) if λi−1 ∈ S� and p(i) = 1 otherwise. We denote this

probability measure by PrσM,s, and, if σ and M are clear from the context, for clarity of

presentation we use Prs.

Strategies are often classified based on their use of memory and randomisation. A

strategy σ ∈ Σ is called memoryless if σ(λ·s) = σ(λ′·s) for all paths λ·s, λ′·s ∈ Ω+
M, and

deterministic if σ(λ·s) is a Dirac distribution for all λ·s ∈ Ω+
M.

An end-component of an MDP M is a subset of states S ′ ⊆ S such that, if for all

s, t ∈ S ′ there exists strategy such that the probability to reach t from s is one, and the

probability to reach s from t is one, i.e., ∃σ ∈ Σ .Prs({λ ∈ ΩM |λi = t for some i}) = 1

and ∃σ ∈ Σ .Prt({λ ∈ ΩM |λi = s for some i}) = 1. A maximal end-component is an

end-component to which adding any other state would make it not an end-component. A

bottom end-component is a maximal end-component that has no transitions leaving it.

Example 2 Consider the MDP from Figure 3.2. It has four control states, s0, s2, s3

and s4, but only in two of them (s0 and s2) there are choices available for the controller.

For the ease of presentation, we sometimes label transitions with action names, i.e., in

s0 there are two actions available: action “a” and action “b”. Consider the memoryless

s0 s1 s2

s3 s4 s5

“a”

“b”

1
3

1
3

1
3

Figure 3.2: Example MDP.

deterministic controller strategy σ defined by σ(λ · s0) = σ(λ · s2) = s1 for all λ ∈ Ω+
M. An

example of an infinite path through the MDP is s0s1s2s1(s4s3)ω. The probability of this

path under σ is 1
9

= σ(s0)(s1) · ∆(s1, s2) · σ(s2)(s1) · ∆(s1, s4) = 1 · 1
3
· 1 · 1

3
. This MDP

has three end-components: {s2}, {s3, s4} and {s5} (all maximal). The last two are also

bottom end-components. The only terminal state in the MDP is s5.

18 CHAPTER 3. BACKGROUND MATERIAL

3.1.3 Stochastic games

The final model that we introduce is stochastic multi-player games (SMGs), which gener-

alise MDPs by differentiating between the sources of nondeterminism. Similarly to MDPs,

in each state of an SMG the successor is either chosen randomly or nondeterministically,

but this time the choice in different control states may belong to different controllers, i.e.,

players of the game. A special case of SMGs, stochastic two-player games, have been used

for synthesis of systems (see, e.g., [30]), where control states of one player represent the

actions available to the system and the control states of the other represent the environ-

ment, combining the two potential sources of nondeterminism that we discussed for MDPs

into one game. The synthesis problem then asks to construct a strategy for the controller,

such that, if implemented, ensures that the system satisfies a certain property, no matter

what the environment does.

Definition 3 (SMG) A stochastic multi-player game (SMG) is defined by a tuple G =

〈Π, S, (S©, (Si)i∈Π),∆, AP, χ〉, where:

• Π is a finite set of players;

• S is a finite, non-empty set of states;

• S© is a set of stochastic states and every Si in (Si)i∈Π is the set of states controlled

by the player i (also, (S©, (Si)i∈Π) is a partition of S);

• ∆ : S × S → [0, 1] is a transition function;

• AP is a finite set of atomic propositions; and

• χ : S → 2AP is a labelling function.

The transition function behaves similarly as for MDPs: for stochastic states, it assigns

the probability to move to the next state and we have
∑

t∈S ∆(s, t) = 1 if s ∈ S©, and

for control states we have ∆(s, t) ∈ {0, 1} for s ∈
⋃
i∈Π Si. As for the previous models,

we assume that ∆(s) is defined for all s ∈ S, and define terminal states Term in the same

way as for MDPs.

The executions of the system are modelled as paths of the game in the same way as

for DTMCs and MDPs. The set of all infinite paths in G is denoted by ΩG and the set of

infinite paths starting in state s by ΩG,s. Similarly, we use Ω+
G and Ω+

G,s to denote the sets of

finite paths. In order to define the probability measure on the induced DTMC, we need to

have one strategy per player. The strategy σi for player i is a function σi : S∗Si → D(S).

The probability of the cylinder set Cyl(λ) induced by a finite path λ of length k is defined

3.1. PROBABILISTIC MODELS 19

as
∏k

i=1 ∆(λi−1, λi) · p(i), where p(i) = 1 if λi ∈ S© and p(i) = σi(Prefix(λ, i))(λi) if

λi−1 ∈ Si. We denote this probability measure by Prσ0,...,σn
G,s , where σ0, . . . , σn are strategies

of all players in the game (referred to as a strategy profile). If player strategies and the

game are clear from the context, for clarity of presentation we use Prs.

A subgame is a game composed from a subset of states S ′ ⊆ S such that there are no

successors of stochastic states in S ′ leaving it, i.e., if s ∈ S ′∩S© and t ∈ ∆(s) then t ∈ S ′;
the set of players, transition function, atomic propositions and labelling function are the

same as for the original game.

A stopping game is a game G in which a terminal state is reached with probability 1

for any strategy profile from any state s ∈ S, i.e., for a game with Π = {0, . . . , n} we

have ∀s ∈ S .∀σ0, . . . , σn .Prs({λ ∈ Ωs | ∃i ∈ N . λi ∈ Term}) = 1. Note that the game is

stopping if and only if every subgame contains a terminal state of the original game. The

class of stopping games is quite broad and subsumes important classes such as discounted

games, games on trees and other acyclic graphs, etc.

Example 3 Consider the SMG shown in Figure 3.3, with Π={�,♦}. The state controlled

by a player has a corresponding shape, i.e., S� = {s0, s2} and S♦ = {s1}. We have

one stochastic state S© = {s3}. State s2 is labelled with atomic proposition t, and all

others are labelled with no atomic propositions. An example of an infinite path is λ =

s0

s3

s1 s2

{t}

1
2

1
2

Figure 3.3: Example SMG.

s0s1s2s3s1(s2)ω; if player � strategy σ� is such that σ�(s0)(s1) = 0.3, σ�(s0s1s2)(s3) = 1

and σ�(s0s1s2s3s1(s2)+)(s2) = 1, player ♦ strategy σ♦ is defined by σ♦(λ · s1) = s2 for all

λ ∈ Ω+
G , we have that the probability of this path is 0.15, i.e., Prs0({s0s1s2s3s1(s2)ω}) =

σ�(s0)(s1)·σ♦(s0s1)(s2)·σ�(s0s1s2)(s3)·∆(s3, s1)·σ♦(s0s1s2s3s1)(s2)·σ�(s0s1s2s3s1s2)(s2)·
σ�(s0s1s2s3s1s2s2)(s2) · · · · = 0.3 · 1 · 1 · 0.5 · 1 · 1 · 1 · · · · = 0.15. Player � strategy σ� uses

both memory and randomisation, and player ♦ strategy σ♦ is memoryless deterministic.

This game is not stopping and has no terminal states. Examples of subgames of G are

{s0} and {s0, s1, s3}, but {s0, s2, s3} is not a subgame.

20 CHAPTER 3. BACKGROUND MATERIAL

3.2 Properties of probabilistic models

In this section we provide an overview of behavioural properties that are commonly studied

for the probabilistic models discussed in Section 3.1, and which are also a fundamental

part of the algorithms for model checking specifications of competitive stochastic systems

that we develop in this thesis. We consider three property types: reachability, parity and

expected total reward objectives. We present the problem formulations, model checking

methods and complexity results for DTMCs, MDPs and stochastic two-player games.

3.2.1 Problem definitions

We start by providing the problem definitions that are common for all model types pre-

sented in this section. We define the properties on the sample space of infinite paths Ω

(for different model types this sample space is obtained in a different way as discussed in

the previous section).

Reachability. This is the simplest class of properties for probabilistic models. The

reachability problem asks to compute, for a given state, the probability to reach some

state in a specified set of states in the model, i.e., given an initial state s ∈ S and a set

of target states T ⊆ S, the reachability probability is a measure of paths starting in s

that eventually reach a state in T , i.e., Prs({λ ∈ Ω | ∃i ∈ N . λi ∈ T}). Reachability is

one of the most fundamental properties in probabilistic model checking, and many model

checking problems can be solved by using (or reducing to) reachability. For example,

model checking of PCTL for DTMCs and MDPs uses reachability as a fundamental tool

(see, e.g., [60] for an in-depth discussion).

Parity. The second property type that we consider for probabilistic models are parity

objectives. Given a model and a parity function P : S → {0, . . . , d−1} with d priorities

assigning one to each state, a parity objective is the probability that a path through the

model satisfies the parity condition, namely, that the lowest priority of the states occurring

infinitely often in the path is even. Given a path λ ∈ Ω, let inf(λ) be the set of states

that occur infinitely often in λ. Then, the probability that the parity objective is satisfied

in a state s of the model is given by Prs({λ ∈ Ω | mins∈inf(λ) P (s) is even}).
Parity objectives can express any ω-regular property of the path of the model by

encoding it in a deterministic parity automaton, which has states of the model as its

alphabet. Then, the product of the model and the automaton can be built to obtain a

model of the same class (i.e., the product of a DTMC and a deterministic parity automaton

is a DTMC; the same also holds for MDPs and SMGs). In order to check whether a

model satisfies an ω-regular property, it suffices to compute the probability of the parity

3.2. PROPERTIES OF PROBABILISTIC MODELS 21

objective in the product model. Computing the probabilities of ω-regular properties of

paths is instrumental in model checking the logic PCTL* and verifying LTL properties.

Also, some important path properties can be expressed directly using parity objectives,

e.g., a Büchi objective (i.e., repeated reachability) can be expressed by constructing a

priority function P which assigns priority 0 to the set of states that we want to visit

infinitely often, and assigns priority 1 to all other states. Similarly, one could express

a coBüchi (persistence) property by assigning 1 to states, which we do not want to see

infinitely often, and 2 to all others. Similarly to reachability, the computation of Büchi

and coBüchi objectives is a fundamental component of many model checking algorithms

for more general property types.

Expected total reward. The third type of property that we consider here is the expected

total reward. Here we augment the models with the reward function, assigning a non-

negative reward to each state r : S → Q≥0. The reward of the path is the sum of the

rewards of the states on that path. The expected total reward objective asks to compute

the expected reward accumulated along the path of the model, i.e., for a given state s, the

expected total reward is Es[rew(r)] =
∫

Ωs
rew(r)dPrs, where rew(r)(λ) =

∑∞
i=0 r(λi) for

all λ ∈ Ω.

Expected total reward objectives have been used extensively to model various proper-

ties of systems, with the most common properties being resource consumption and running

time. For example, in [101] the authors analyse dynamic power management for priority

queue systems using expected total rewards on DTMCs; also, in [80] the expected rewards

were used to model running time and transmission costs in the IPv4 Zeroconf protocol

modelled as an MDP.

3.2.2 Model checking properties of DTMCs

In this section we discuss model checking of the properties introduced in the previous

section on DTMCs.

Reachability. For DTMCs, the reachability problem can be solved by finding a solution

to a system of linear equations [84, 49]. Consider a DTMC D = 〈S,∆, AP, χ〉, where

S = {s0, . . . , sn} and a set of target states is T ⊆ S, and let xi represent the probability to

reach a state in T from state si ∈ S. To compute the reachability probability we first need

to identify the states S=0 for which the probability xi of reaching T is 0, which can be

done using standard graph reachability. Then, the following system of equations provides

the reachability probability for each state [84, 49]. For all states si ∈ T we have xi = 1, for

states si ∈ S=0 we have xi = 0 and for all other states we have xi =
∑

j ∆(si, sj) · xj. The

values xi can be computed in polynomial time by solving the system of linear equations

22 CHAPTER 3. BACKGROUND MATERIAL

(e.g., by Gaussian elimination). Iterative solution techniques, such as Jacobi or Gauss-

Seidel iterations, can also be used, which generally achieve good scalability (this can be

further improved by using symbolic methods to store the matrices, see [93] for further

details).

Parity. For DTMCs, model checking of the parity objectives is performed in the following

way [10]. First, using graph algorithms we can identify BSCCs in which the lowest priority

is even. In such components, all sets of paths that have odd priority as the smallest

priority have probability 0, and hence the parity objective holds with probability 1. Having

identified all states belonging to such components, we can reduce the problem to that of

finding the probability to reach a state in such a component (for which we can apply the

algorithm presented in the previous section). Identification of BSCCs can be performed

in polynomial time [52] and hence the model checking problem for parity objectives for

DTMCs can be performed in polynomial time.

Expected total reward. Similarly to reachability objectives, the expected total reward

for DTMCs can be computed by solving a system of linear equations. However, additional

pre-processing is needed before this system of linear equations can be constructed. First,

we need to identify BSCCs in which all states have reward 0, i.e., compute the set S=0. In

these states the expected total reward is 0. Next, we identify the BSCCs, which contain

at least one state with positive reward. These states have infinite expected total reward,

because the probability of the set of paths that do not visit the state having positive

reward infinitely often is 0. We add the states belonging to such a component to the set

S=∞. Also, we add to this set the states, which have a positive probability to reach a

state in S=∞, as the expected reward in such states is infinity too. For all other states,

the expected total reward value is finite and can be obtained by solving a system of linear

equations constructed in the following way. Let xi be a variable representing the expected

total reward in a state si. If si ∈ S=0, then xi = 0. Otherwise, for si ∈ S \ (S=0 ∪ S=∞)

we have xi = r(s) +
∑

j ∆(si, sj) · xj.

s0 s1

s2 s3

1
2

1
2

1
3

1
3

1
3

Figure 3.4: Example DTMC.

3.2. PROPERTIES OF PROBABILISTIC MODELS 23

Example 4 To illustrate the discussed properties, consider the DTMC from Figure 3.4.

We show how to compute the probability to reach a state s2. First, we identify the set

S=0 = {s3}, and then construct the system of linear equations, where xi represents the

probability to reach s2 from si, as follows.

x0 =
1

2
· x2 +

1

2
· x1

x1 =
1

3
· x1 +

1

3
· x2 +

1

3
· x3

x2 = 1

x3 = 0.

Values x0 = 3
4
, x1 = 1

2
, x2 = 1 and x3 = 0 are a unique solution and represent the

reachability probabilities to s2, e.g., Prs0({λ ∈ Ωs0 | ∃i ∈ N . λi = s2}) = x0 = 3
4
. Consider

the reward function defined by r(s0) = r(s1) = 1 and r(s2) = r(s3) = 0. We have

S=0 = {s2, s3} and S=∞ = ∅, and so the expected total reward in the states is given by the

following system of linear equations.

x0 = 1 +
1

2
· x2 +

1

2
· x1

x1 = 1 +
1

3
· x1 +

1

3
· x2 +

1

3
· x3

x2 = 0

x3 = 0.

The unique solution x0 = 1.75, x1 = 1.5, x2 = 0 and x3 = 0 provides the expected total

reward in each state, e.g., Es1 [rew(r)] = x1 = 1.5. Now let us consider a parity objective.

Define the priority function P (si) = i. There are two BSCCs in the DTMC, namely {s2}
and {s3}, and the probability that the parity objective holds is equal to reaching a BSCC

where the even priority is lowest. Hence, it is equal to the probability to reach a state in

{s2}, which can be computed using the system of linear equations for reachability discussed

previously, e.g., Prs1({λ ∈ Ω | mins∈inf(λ) P (s) is even}) = x1 = 1
2
).

3.2.3 Model checking properties of MDPs

For MDPs, the objectives are dependent on the choice of the strategy. As described in

Section 3.1.2, fixing a strategy for an MDP, the resulting DTMC, and hence the above

algorithm for DTMCs can be applied to compute the reachability probability. However, in

MDPs we are often interested in finding the optimal (minimum or maximum) probability

or expectation for a given objective. Memoryless deterministic strategies are sufficient for

24 CHAPTER 3. BACKGROUND MATERIAL

the controller to achieve optimal values for reachability, parity and expected total reward

objectives; also, these values can be computed in polynomial time, as summarised by the

following theorem.

Theorem 1 ([96, 59, 10, 63]) In Markov decision processes, memoryless deterministic

strategies are sufficient for the controller to achieve minimum and maximum values for

reachability, parity and expected total reward objectives; these optimal values can be com-

puted in polynomial time.

We now discuss the algorithms for the computation of optimal values.

Reachability. The optimal reachability probabilities for MDPs can be computed in

polynomial time using linear programming. The linear program (LP) for finding max-

imum probabilities can be constructed as follows (the LP for the minimum value can

be constructed analogously). Consider an MDP M = 〈S, (S©, S�),∆, AP, χ〉, where

S = {s0, . . . , sn}, and a set of target states is T ⊆ S. Let xi denote the maximum

probability of reaching T from si. We first use graph algorithms to identify states from

which the target set is not reachable for any strategy, S=0 and set xi = 0. For states si ∈ T
we set xi = 1. For the remaining states we add the following constraints. If si ∈ S© then

we add the constraint xi ≥
∑

j ∆(si, sj) ·xj. If si ∈ S� then we add the constraint xi ≥ xj

for each successor sj ∈ ∆(si). Finally, the objective function is min
∑

si∈S xi. The lin-

ear program can be solved in polynomial time (e.g., using the Ellipsoid or interior point

methods [89]), in practice other algorithms like the Simplex method [89] perform better,

even though they do not provide performance guarantees.

Parity. Similarly as for DTMCs, model checking of parity objectives in MDPs can be

reduced to the reachability problem via computation of end-components, in which there

exists a strategy for the parity objective to hold with probability 1 (resp. 0, if minimising).

This can be done by computing the end-components containing the states having lowest

even (resp. odd) priority [63] and then computing the maximum probability to reach a

state in that set.

Expected total reward. For MDPs the expected total reward can be computed by

using a combination of methods for solving reachability and parity objectives [96, 52]. We

consider the maximisation problem (solution for minimisation works analogously). For

every state that has a positive reward, we check if there exists a end-component that

contains it. All states belonging to such a component are assigned the value of infinity

and are added to the set S=∞. We also add to this set the states from which there

exists a strategy to reach a state in S=∞ with positive probability (these can be identified

by finding the maximum reachability probability using the methods described earlier).

3.2. PROPERTIES OF PROBABILISTIC MODELS 25

For the remaining states, the expected total reward is finite, which means that, for any

controller strategy, a state is reached that has expected total reward 0 for all strategies.

We can identify such states efficiently by computing maximal end-components for each

state having 0 reward; if all states in such a component have zero reward, then we add

those states to S=0. Note that, from any state, which is not in S=∞, the path ends up

in a state in S=0 with probability 1, and the expected total reward can be computed by

solving the following linear program. As before, let xi denote the expected total reward in

state si. For each si ∈ S=0 we have xi = 0. For the remaining states we add the following

constraints. If si ∈ S© then we add the constraint xi ≥ r(s1)+
∑

j ∆(si, sj) ·xj. If si ∈ S�

then we add the constraint xi ≥ r(s1) + xj for each successor sj ∈ ∆(si). The objective

function is min
∑

si∈S xi. This linear program can be efficiently solved as discussed earlier.

Value iteration. There are other methods for computing the optimal reachability val-

ues in MDPs that are commonly used in practice. For example, for computing optimal

reachability probabilities for MDPs, in addition to other methods, PRISM [77] implements

the value iteration algorithm, which utilises the Bellman equations that can be derived

from the above LP, e.g., for maximisation of the reachability probability we have that the

Bellman operator for reachability is given by:

F (X)(s) =


1 if s ∈ T ,∑

t∈∆(s) ∆(s, t) ·Xt if s ∈ S©,

maxt∈∆(s) Xt otherwise.

The iteration is performed starting from the initial value X = 0|S|.

Value iteration can also be used to compute the optimal values for the expected total

reward objectives for states with bounded values (i.e., states which are not in the set S=∞).

The Bellman functional for the maximisation of the expected total reward is:

F (X)(s) =

r(s) +
∑

t∈∆(s) ∆(s, t) ·Xt if s ∈ S©,

r(s) + maxt∈∆(s) Xt otherwise.

As for reachability, the iteration is started with the initial value X = 0|S|.

The best known bounds on convergence of the value iteration algorithms defined above

are exponential in the number of states of the MDP, and, in practice, the iteration is

terminated earlier with some convergence check (e.g., terminate if maxs∈S |X
k
s−X

k−1
s

Xk
s
| < ε).

The ease of implementation and scalability outweighs the drawbacks of value iteration

and in many practical case studies value iteration has produced good results and was able

26 CHAPTER 3. BACKGROUND MATERIAL

to solve models with state spaces that are hard to handle for LP solvers. We also note

that DTMC is a special case of MDP with no control states, an the above value iteration

algorithms can be used to model check properties for DTMCs as well. For an in-depth

discussion about the value iteration algorithms we refer the reader to [29].

Multiple objectives. All of the model checking problems that we considered so far deal

with single-objective verification, but often the specification of the system contains several

objectives (i.e., multi-objective verification). For DTMCs, problems reduce to checking

each of the properties individually. However, this approach cannot be applied to MDPs,

because, dependent on the strategy, the values for the objectives can be different. So,

for MDPs we are interested in finding out if the controller can achieve a certain trade-off

between objectives, e.g., in a given MDP, does there exist a strategy for the controller, that

makes sure that the probability to reach a set T is greater than x, and at the same time

expected total reward is less than or equal to y. Such problem can be solved using linear

programming [57], and, for terminal state reachability and (finite) expected total reward

objectives, the program is of polynomial size. Also, memoryless randomised strategies are

sufficient to achieve such objectives.

Theorem 2 ([57]) Memoryless randomised strategies are sufficient for the controller to

achieve a boolean combination of terminal state reachability and finite expected total reward

objectives in Markov decision processes; and the problem of deciding whether there exists

such a strategy can be solved in polynomial time.

Value iteration techniques have also been developed for the computation of the trade-offs

achievable by the controller in MDPs [61]. These are based on the computation of the

Pareto sets (i.e., the sets of optimal trade-offs between objectives for which there exists a

controller strategy). The question of whether a combination of objectives can be achieved

then reduces to the problem of checking whether the objective belongs to the Pareto set.

In [61] the authors provide techniques to efficiently compute approximations of the Pareto

sets utilising the value iteration algorithms for single-objective probability and expected

total reward objectives. The algorithm takes advantage of the result of [57] showing that a

conjunction of (maximisation) objectives is achievable if and only if there exists a strategy,

which achieves a certain single-objective expected reward, which is obtained as a weighted

sum of the original objectives.

Example 5 To illustrate the properties discussed, we consider the example MDP from Fig-

ure 3.5. We show how to compute the minimum and maximum probabilities to reach a

state s2. First, we identify the set S=0 = {s3}, and then construct the following linear

3.2. PROPERTIES OF PROBABILISTIC MODELS 27

s0 s1

s2 s3

1
3

1
3

1
3

Figure 3.5: Example MDP.

program for finding the maximum reachability probability to s2.

min
∑
i

xi

x0 ≥ x1

x0 ≥ x2

x1 =
1

3
· x1 +

1

3
· x2 +

1

3
· x3

x2 = 1

x3 = 0 .

The solution to the linear program is x0 = x2 = 1, x1 = 1
2

and x3 = 0. We can also

extract the optimal strategy from the solution, which picks successor s2 in s0 achieving

Prs0({λ ∈ Ωs0 | ∃i ∈ N . λi = s2}) = x0 = 1. To compute the minimum probability to reach

s2 we have to solve the following linear program.

max
∑
i

xi

x0 ≤ x1

x0 ≤ x2

x1 =
1

3
· x1 +

1

3
· x2 +

1

3
· x3

x2 = 1

x3 = 0 .

The solution is x0 = x1 = 1
2
, x2 = 1 and x3 = 0. The minimising strategy in s0 is to pick

s1 as successor achieving Prs0({λ ∈ Ωs0 | ∃i ∈ N . λi = s2}) = x0 = 1
2
.

Let us now consider a parity objective with priority function P (si) = i. To compute the

maximum probability to satisfy this parity objective, we first identify the set of states from

which there is a strategy to win with probability 1, S=1 = {s0, s2}, and for the remaining

states we compute the maximum probability to reach a state in S=1. Because probability

28 CHAPTER 3. BACKGROUND MATERIAL

to reach s0 is 0 from all other states, we can use the solution to the first linear program

to give us the answer, e.g., Prs1({λ ∈ Ω | mins∈inf(λ) P (s) is even} = x1 = 1
2
).

Now let us consider the reward function defined by r(s0) = 1, r(s1) = 1, r(s2) = 2

and r(s3) = 0. To compute the maximum expected total reward we first solve the parity

game where the states having positive reward are given priority 0, and others priority 1,

i.e., P (s0) = P (s1) = P (s2) = 0 and P (s3) = 1. We now compute the states, in which

the maximum winning probability is positive. Note that the probabilities to satisfy this

parity objective coincide with the one discussed in the previous objective, and hence we

have that in states s0, s1 and s2 we can achieve infinite reward (i.e., S=∞ = {s0, s1, s2})
this is because in s2 the strategy can always pick itself as a successor to accumulate infinite

reward. For the case of minimisation we identify the states in which minimum expected

reward is 0, S=0 = {s3}. Now we need to solve the following linear program.

max
∑
i

xi

x0 ≤ 1 + x1

x0 ≤ 1 + x2

x1 = 1 +
1

3
· x1 +

1

3
· x2 +

1

3
· x3

x2 ≤ 2 + x2

x2 ≤ 2 + x3

x3 = 0 .

The solution x0 = 3, x1 = 2.5 x2 = 2, x3 = 0 provides the minimum expected rewards that

can be achieved in the respective states, e.g., Es0 [rew(r)] = x0 = 3. The optimal strategy

is to pick s2 as successor in s0 and s3 as successor in s2.

3.2.4 Model checking properties of stochastic games

Finally, we discuss model checking of properties for stochastic two-player games. The

value of the objective in stochastic games depends on the strategies of both players. Here

we consider that the game is zero-sum, i.e., the objectives of the players are opposing, that

is, one player (�) is trying to maximise the probability to satisfy the objective and another

player (♦) is minimising it. Similarly to MDPs, we are interested in finding the optimal

values for the objective, but in this case those values correspond to both players playing

their optimal strategies – maximising and minimising, respectively. An important result

for stochastic two-player games is that they are determined for the objectives considered

in this section.

3.2. PROPERTIES OF PROBABILISTIC MODELS 29

Theorem 3 ([87]) Stochastic two-player games with reachability, parity and expected to-

tal reward objectives are determined.

Determinacy means that, for all states s of the game we have

sup
σ�∈Σ�

inf
σ♦∈Σ♦

Prs(Θ) = inf
σ♦∈Σ♦

sup
σ�∈Σ�

Prs(Θ),

where Θ denotes the set of paths satisfying the (reachability or parity) objective. Similarly,

for expected total reward we have

sup
σ�∈Σ�

inf
σ♦∈Σ♦

Es[rew(r)] = inf
σ♦∈Σ♦

sup
σ�∈Σ�

Es[rew(r)].

An important consequence is that the maximum value for the objective for one player

is the minimal value for another, which allows us to solve minimisation problems with

algorithms that compute the maximum value by swapping players in the game (and vice

versa).

The next important result for games with the types of objectives discussed here is

that memoryless deterministic strategies are sufficient for both players to achieve optimal

values.

Theorem 4 ([48, 59, 33]) Memoryless deterministic strategies are sufficient for achiev-

ing optimal values for both players in zero-sum stochastic two-player games with reacha-

bility, parity and expected total reward objectives.

The existence of a polynomial-time algorithm for the computation of the optimal values for

such games has been an open problem even for reachability objectives. In order to decide

whether the optimal value exceeds a certain given bound, one can use Theorem 4 with

the determinacy result to guess a memoryless deterministic strategy for one of the players

(depending on whether the answer is yes or no), and then verify the answer in polynomial

time by computing the optimal value in the resulting MDP in polynomial time. This

procedure gives an NP∩coNP upper bound for the complexity of the problem [48]. It also

provides an exponential algorithm to compute optimal values by enumerating memoryless

deterministic strategies.

Value iteration. Similarly to MDPs, we define Bellman functionals that are used to

obtain value iteration algorithms for computing successive approximations of the optimal

values. The optimal reachability probabilities for target set T can be computed using the

30 CHAPTER 3. BACKGROUND MATERIAL

following Bellman operator:

F (X)(s) =



1 if s ∈ T∑
t∈∆(s) ∆(s, t) ·Xt if s ∈ S©,

maxt∈∆(s) Xt if s ∈ S�,

mint∈∆(s) Xt if s ∈ S♦.

Starting from the initial value X = 0|S|, the iteration of this function is guaranteed to

converge in the number of steps that is exponential in the size of the game [29].

For the expected total reward, we define the operator:

F (X)(s) =


r(s) +

∑
t∈∆(s) ∆(s, t) ·Xt if s ∈ S©,

r(s) + maxt∈∆(s) Xt if s ∈ S�,

r(s) + mint∈∆(s) Xt if s ∈ S♦.

(3.1)

The iteration, when starting from the initial value X = 0|S|, converges in a similar way as

for reachability [29], but only in the case where the expected total rewards are bounded

for all states. This is true for the class of stopping games where r(t) = 0 for all t ∈ Term.

For non-stopping games, the states that receive infinite reward (S=∞) can be identified by

solving a parity game as follows. Assign parity 0 to all states that have positive reward

and parity 1 to states that have reward 0. If in a state s player � has a strategy to

make sure that this parity objective holds with positive probability, then s ∈ S=∞, and

otherwise the expected total reward is bounded, because positive rewards appear on the

path only finitely many times. After removing theses states, value iteration algorithm can

be applied for the remaining states.

Example 6 To illustrate the properties discussed above, we consider the game in Fig-

ure 3.6. To achieve the maximum reachability probability to s3, player � has to choose

s0 s1

s2 s3

1
3

1
3

1
3

Figure 3.6: Example SMG.

3.3. LOGICS 31

s1 as successor in s0, and player ♦ chooses to stay in s2 ensuring that the probability

to reach s3 from s2 is 0. This results in supσ�∈Σ�
infσ♦∈Σ♦ Prs0({λ ∈ Ωs0 | ∃i ∈ N . λi =

s3}) = 1
2
. The minimum probability to reach s3 that player � can ensure is 1: we have

that infσ�∈Σ�
supσ♦∈Σ♦

Prs({λ ∈ Ωs | ∃i ∈ N . λi = s3}) = 1 for all s, because the optimal

strategy for player ♦ is to take the action leading to s3 in s2 and for any player � strategy

the game ends either in s2 or s3.

For an example of the parity objective consider priority function P (si) = i. We have

that supσ�∈Σ�
infσ♦∈Σ♦ Prs0({λ ∈ Ωs0 | mins∈inf(λ) P (s) is even}) = 0, because player ♦

can ensure that the game ends in state s3 with probability 1 by picking s3 as successor in

s2; and infσ�∈Σ�
supσ♦∈Σ♦

Prs0({λ ∈ Ωs0 | mins∈inf(λ) P (s) is even}) = 1
2
, because player �

can choose s1 as successor in s0, and, even though player ♦ makes the game stay in s2 if

this state is visited, with probability 1
2

the game ends in s3, from where the parity objective

is not satisfied.

Finally, we illustrate how one can use value iteration to compute the successive approx-

imations of the expected total reward that can be achieved in the game. Consider the reward

function defined by r(s0) = 1, r(s1) = 2, r(s2) = 3, and r(s3) = 0. It is easy to see that the

minimum reward that player � can guarantee is infinity in all states except for s3 where

the expected reward is always zero (it is because the probability to reach s2 is positive from

all states other than s3, and player ♦ can choose to always loop in s2 to accumulate infinite

reward). Computing the maximum expected reward that player � can guarantee using the

value iteration defined above leads to the following sequence of values. We start from the

initial value X0 = (X0
s0
, X0

s1
, X0

s2
, X0

s3
) = (0, 0, 0, 0), then apply one step of equations (3.1)

to obtain F (X0) = (1, 2, 3, 0), F 2(X0) = (4, 11
3
, 3, 0), F 3(X0) = (14

3
, 31

9
, 3, 0), etc. This

sequence converges to F∞(X0) = (11
2
, 9

2
, 3, 0), which is the least fixpoint of the functional

F , representing the maximum expected total reward that player � can guarantee.

3.3 Logics

In this section we present the logics PCTL and pATL that are probabilistic extensions of

the logics CTL and ATL, respectively.

PCTL. We provide the semantics for the logic for MDPs [14] extended with the reward

operator of [75]. Throughout this section we fix an MDP M = 〈S, (S©, S�),∆, AP, χ〉.
The syntax of the logic PCTL is defined by the following grammar:

φ ::= > | a | ¬φ | φ ∧ φ | P./p[ψ] | Rr./q[Fφ]

ψ ::= Xφ | φUφ,

32 CHAPTER 3. BACKGROUND MATERIAL

where a ∈ AP , ./∈ {<,≤,≥, >}, p, q ∈ Q ∩ [0, 1], r : S → Q≥0.

PCTL is a branching-time temporal logic, where the formulae are split into state

(φ) and path (ψ) formulae. We can also derive other standard temporal operators like

Fφ ≡ >Uφ, etc. For a state s ∈ S, we write s |= φ to denote that a state satisfies the

state formula φ, similarly we denote that a path λ ∈ ΩM satisfies path formula ψ by

λ |= ψ. The satisfaction relation |= for PCTL is defined inductively for all states ofM as

follows.

s |= > always

s |= a ⇔ a ∈ χ(s)

s |= ¬φ ⇔ s 6|= φ

s |= φ1 ∧ φ2 ⇔ s |= φ1 and s |= φ2

s |= P./p[ψ] ⇔ ∀σ ∈ Σ .Prs(ψ) ./ p

s |= Rr./q[Fφ] ⇔ ∀σ ∈ Σ .Es[f(r, Sat(φ))] ./ q

and for any path λ in ΩM:

λ |= Xφ ⇔ λ1 |= φ

λ |= φ1 Uφ2 ⇔ λi |= φ2 for some i ∈ N and λj |= φ1 for 0 ≤ j < i.

In the above definition, by Prs(ψ) we denote the probability of the paths satisfying ψ, i.e.,

Prs(ψ)
def
= Prs({λ ∈ ΩM |λ |= ψ}). Also, by Sat(φ)

def
= {s ∈ S | s |= φ} we denote the set of

states that satisfy formula φ. The reward function f : ΩM × 2S → Q≥0 ∪ {∞} is defined

as follows:

f(λ, T) =

∞ if ∀i ∈ N . λi 6∈ T,∑k−1
i=0 r(λi) otherwise, where k = min{j |λj ∈ T}.

The main motivation for the above reward function is to analyse properties like the ex-

pected running time until algorithm’s completion. For example, when considering the

reward structure r(s) = 1 for all s ∈ S representing time-steps, the PCTL formula

Rr≤100[F finished] is true in all states, from which the algorithm always reaches a state

labelled with finished, and, in addition, for all controller strategies the expected number

of steps taken before reaching such a state is less or equal to 100.

The algorithm for PCTL model checking follows the standard structure for branching-

time logics like CTL, by recursively computing the truth-value for states, starting from

the most deeply nested sub-formulae and following the recursive satisfaction relation de-

scribed above [75]. Computation of atomic propositions and boolean combinations is

straightforward. To evaluate the operator P./p[ψ] we take advantage of the properties

3.3. LOGICS 33

P./p[ψ]⇔ inf
σ∈Σ

Prs(ψ) ./ p if ./∈ {≥, >}

and

P./p[ψ]⇔ sup
σ∈Σ

Prs(ψ) ./ p if ./∈ {≤, <},

which imply that it suffices to compute the optimal values in the MDP and compare them

to the bound. Their computation when ψ = Xφ is performed as follows. Assuming that

the set of states satisfying a formula φ, denoted Sat(φ), has already been computed, we

have

inf
σ∈Σ

Prs(Xφ) =


0 if s ∈ S� and ∆(s) \ Sat(φ) 6= ∅,∑

t∈∆(s)∩Sat(φ) ∆(s, t) if s ∈ S©,

1 otherwise,

and similarly

sup
σ∈Σ

Prs(Xφ) =


1 if s ∈ S� and ∆(s) ∩ Sat(φ) 6= ∅,∑

t∈∆(s)∩Sat(φ) ∆(s, t) if s ∈ S©,

0 otherwise.

The computation of optimal values for Prs(φ1 Uφ2) reduces to the computation of opti-

mal reachability probabilities discussed in Section 3.2.3, and can be solved using linear

programming or computed using value iteration. The reduction works as follows. For all

states s 6∈ Sat(φ1)∪Sat(φ2) we remove all transitions leaving the state and add a self-loop,

and for the remaining states we compute the optimal (minimum or maximum depending

on ./) probability to reach a state in Sat(φ2). Finally, the computation of Rr./q[Fφ] reduces

to the computation of the optimal values for the expected total reward as follows. First

note that we have

Rr./q[Fφ]⇔ inf
σ∈Σ

Es[f(r, Sat(φ))] ./ q if ./∈ {≥, >}

and

Rr./q[Fφ]⇔ sup
σ∈Σ

Es[f(r, Sat(φ))] ./ q if ./∈ {≤, <}.

To compute infσ∈Σ Es[f(r, Sat(φ))], we first identify for which states this value is infinite.

By definition of f , the this value is infinite if and only if for all strategies, the probability to

reach a state in Sat(φ) is less than 1. These states can be identified by computing the set

of states satisfying the PCTL formula P<1[Fφ], using the previously described methods.

34 CHAPTER 3. BACKGROUND MATERIAL

For the remaining states, the value is finite and the computation of infσ∈Σ Es[f(r, Sat(φ))]

can be reduced to the computation of the minimum expected total reward in the following

way. Firstly, we make all states in Sat(φ) terminal and construct a reward structure r′

defined by r′(s) = 0 if s ∈ Sat(φ) and r′(s) = r(s) otherwise. Secondly, we remove the

zero-reward end-components from MDP, for which we can use methods from [52]. Now,

in the new MDPM′, we have that infσ∈Σ EM′,s[rew(r′)] = infσ∈Σ EM,s[f(r, Sat(φ))] as we

can apply algorithms for expected total reward from Section 3.2.3 to obtain the value.

To compute supσ∈Σ Es[f(r, Sat(φ))], we first identify the states which do not satisfy

PCTL formula P≥1[Fφ]. Those states get a value of infinity, because there exists a strat-

egy which does not reach a state in Sat(φ) with probability 1. For the remaining states

we reduce the computation to computing the optimal expected total reward in the fol-

lowing way. We make all states in Sat(φ) terminal and construct a reward structure

r′ defined by r′(s) = 0 if s ∈ Sat(φ) and r′(s) = r(s) otherwise. Then, we have that

supσ∈Σ EM′,s[rew(r′)] = supσ∈Σ EM,s[f(r, Sat(φ))], where M′ is the modified MDP and

we can again invoke algorithms for expected total reward from Section 3.2.3 to compute

this value.

pATL. We now present Probabilistic Alternating-time Temporal Logic (pATL), which

has been introduced as an extension of ATL in [43, 22], where the semantics have been

provided for concurrent SMGs, which are multi-player games where at each state sev-

eral players can take actions simultaneously. Turn-based SMGs that we study in this

thesis are a special case of concurrent SMGs, where at each state only one player has

more than one action available. Here we present the semantics and model checking

for pATL for the turn-based SMGs. Throughout the section we assume a fixed SMG

G = 〈Π, S, (S©, (Si)i∈Π),∆, AP, χ〉.
The syntax of the Probabilistic Alternating-time Temporal Logic (pATL) is given by the

following grammar:

φ ::= > | a | ¬φ | φ ∧ φ | 〈〈C〉〉P./p[ψ]

ψ ::= Xφ | φUφ,

where a ∈ AP , C ⊆ Π, ./∈ {<,≤,≥, >}, p ∈ Q ∩ [0, 1].

Similarly to PCTL, pATL is a branching-time temporal logic, where we distinguish

between state formulae (φ) and path formulae (ψ). In addition, it adopts the coalition op-

erator 〈〈C〉〉 of ATL [4], combining it with the probabilistic operator P./p and path formulae

from PCTL [66, 14]. A typical usage of the coalition operator is 〈〈{1, 3}〉〉P≥0.9[X good],

which means “players 1 and 3 have a strategy to ensure that the probability of reaching a

good state in the next step is at least 0.9, regardless of the strategies of other players”. The

3.3. LOGICS 35

satisfaction relation |= for pATL is defined inductively for each state s of G, as follows:

s |= > always

s |= a ⇔ a ∈ χ(s)

s |= ¬φ ⇔ s 6|= φ

s |= φ1 ∧ φ2 ⇔ s |= φ1 and s |= φ2

s |= 〈〈C〉〉P./p[ψ] ⇔ ∃(σi)i∈C such that ∀(σj)j∈Π\C we have Prs(ψ) ./ p,

and for any path λ in ΩG:

λ |= Xφ ⇔ λ1 |= φ

λ |= φ1 Uφ2 ⇔ λi |= φ2 for some i ∈ N and λj |= φ1 for 0 ≤ j < i.

The model checking algorithm of pATL for all formulae, other than 〈〈C〉〉P./p[ψ], is the

same as for PCTL. Model checking of the coalition operator reduces to the computation

of optimal probabilities in a two-player stochastic game (referred to as coalition game),

where the players in the coalition represent one player (�) and the remaining players

represent the other (♦), and similarly as for PCTL on MDPs we have

〈〈C〉〉P./p[ψ]⇔ sup
σ�∈Σ�

inf
σ♦∈Σ♦

Prs(ψ) ./ p if ./∈ {≥, >}

and

〈〈C〉〉P./p[ψ]⇔ inf
σ�∈Σ�

sup
σ♦∈Σ♦

Prs(ψ) ./ p if ./∈ {≤, <}.

Values for the operator Xφ can be computed as follows:

sup
σ�∈Σ�

inf
σ♦∈Σ♦

Prs(Xφ) =



1 if s ∈ S� and ∆(s) ∩ Sat(φ) 6= ∅,

1 if s ∈ S♦ and ∆(s) ∩ Sat(φ) = ∆(s),∑
t∈∆(s)∩Sat(φ) ∆(s, t) if s ∈ S©,

0 otherwise,

and similarly

inf
σ�∈Σ�

sup
σ♦∈Σ♦

Prs(Xφ) =



0 if s ∈ S� and ∆(s) \ Sat(φ) 6= ∅,

0 if s ∈ S♦ and ∆(s) ∩ Sat(φ) = ∅,∑
t∈∆(s)∩Sat(φ) ∆(s, t) if s ∈ S©,

1 otherwise.

36 CHAPTER 3. BACKGROUND MATERIAL

And for the case of φ1 Uφ2, we apply the same reduction as for PCTL, by making states

s 6∈ Sat(φ1)∪Sat(φ2) absorbing and then computing the optimal probability in a coalition

game to reach a state in Sat(φ2) as described in Section 3.2.4.

3.4 Strategy models

When discussing MDPs and SMGs in Section 3.1, we defined the strategies as functions

mapping from finite histories of the states of the model to a next action to be taken by

the controller (for MDPs) or player (for SMGs). Then, in the definitions of properties in

Section 3.2 and logic specifications in Section 3.3, we used quantification over strategies,

e.g., for stochastic two-player games we addressed the problem of whether there exists a

strategy for player � such that, for all strategies of player ♦, the expected total reward

is at least x. Often we are not only interested in deciding the existence of the strategy,

but also want to obtain the actual strategy to, for example, implement it as a program

for an agent. In order to do this, we need to define a strategy model that specifies how the

function is implemented.

In this section we discuss the representation of the strategies and compare two strategy

models, deterministic-update strategy, which is the most commonly seen in the literature,

and the stochastic-update strategy introduced in [20], which is the representation that we

adopt in this thesis and which we have chosen for the implementation of the strategy con-

struction engine in the PRISM-games model checker (presented in Chapter 6). We prove

that, for two reachability objectives (which are a special case of the multi-objective prop-

erties that we discuss in Chapter 5), the stochastic-update strategy can be exponentially

more succinct than the classical deterministic-update representation.

Following [56, 20], we define a strategy by a set of memory elements, memory update

function, next move function, and the initial distribution on the memory elements. We

provide the definition for SMGs, but it also applies to Markov decision processes, as MDPs

can be viewed as SMGs with one non-stochastic player.

Definition 4 A strategy σi of player i in a game G = 〈Π, S, (S©, (Si)i∈Π),∆, AP, χ〉 is a

tuple σi = 〈M, σui , σ
n
i , α〉, where:

• M is a countable set of memory elements;

• σui : M× S → D(M) is a memory update function;

• σni : Si ×M→ D(S) is a next move function; and

3.4. STRATEGY MODELS 37

• α : S → D(M) defines an initial distribution on the memory elements for a given

initial state.

A strategy is memoryless if |M| = 1, requires finite memory if |M| < ∞ and infinite

memory if |M| = ∞. We also classify the strategies based on the use of randomisation.

A strategy σi = 〈M, σui , σ
n
i , α〉 is memoryless deterministic if σui , σni , and α map to

Dirac distributions; deterministic-update if σui and α map to Dirac distributions, while

σni maps to an arbitrary distribution; and stochastic-update where σui , σni , and α can map

to arbitrary distributions. Note that, from an implementation point of view, the controller

using a stochastic-update or a deterministic-update strategy where σni uses randomisation

has to be equipped with a random number generator to provide a correct realisation of

the strategy.

As mentioned before, the most popular strategy model in the literature is deterministic-

update, i.e., when the strategy memory is updated deterministically and randomisation

is allowed to happen only in the next move function (that is, the player can randomise

only if the game is in the state that it controls). We show that allowing randomisation

on the memory update can have significant influence on the size of the memory required

when considering strategies for stochastic games having multiple reachability objectives

(i.e., ensuring that two or more reachability goals are satisfied with the same strategy). In

Theorem 5, we prove that stochastic-update strategies can be exponentially more succinct

than deterministic-update ones already for the case of two terminal state reachability

objectives. The proof of the theorem below has been adapted from the proof provided

in [39], where sufficient and necessary conditions to achieve a precise expectation for any

linearly bounded function in stopping games are presented.

Theorem 5 Stochastic-update strategies are at least exponentially more succinct than

deterministic-update in stochastic games.

We only explain the intuition here and the detailed proof can be found in Appendix A.

To prove this result we use the game from Figure 3.7 starting in state s1 and consider the

objective, where we want player � to reach the target set of states labelled with t with

probability 0.5 and the target set of remaining terminal states with probability 0.5 as well,

i.e., the winning strategy for player � has to distribute the probability equally between the

terminal states labelled with t and not by picking the appropriate probability distribution

in its only state sd, no matter what choices player ♦ makes in states s1 through to sn.

We can show that by picking values x1, . . . , xn appropriately we can ensure that for

every of the 2n set of choices of player ♦, player � needs to play a different distribution

in sd, and hence if a deterministic update strategy is used, it requires |M| = 2n in order

38 CHAPTER 3. BACKGROUND MATERIAL

s1

a1

b1

sf1

st1{t}

s2

a2

b2

sf2

st2{t}

s3 sn

an

bn

sfn

stn{t}

sd

st{t}

sf

1−x1

1−x1

x1

x1

1−x2

1−x2

x2

x2

1−xn

1−xn

xn

xn

Figure 3.7: A game where player � strategy is exponentially more succinct if expressed
as stochastic-update rather than deterministic-update.

to achieve the objective. However, we can construct a stochastic-update strategy that has

2 · |S| memory states as follows. Let val+(s) = supσ�∈Σ�
infσ♦∈Σ♦ Prs(F t) and val−(s) =

infσ�∈Σ�
supσ♦∈Σ♦

Prs(F t) be the maximum and minimum reachability probabilities that

player � can achieve in a given state. The winning stochastic-update strategy σ� =

〈M, σu�, σ
n
�, α〉 that achieves the reachability probability exactly 0.5 from state s1 is defined

as follows:

• M = {(s, val−(s)), (s, val+(s)) | s ∈ S},

• σu�((s, y), t) =



(t, y) if s ∈ S�,

[(t, val−(t)) 7→ β(y, t), (t, val+(t)) 7→ 1− β(y, t)] if s ∈ S♦,

(t, val−(t)) if s ∈ S© and y = val−(s),

(t, val+(t)) if s ∈ S© and y = val+(s),

• σn�(sd, (sd, y)) =

sf if y = val−(sd),

st otherwise,

• α(s) = [(s, val−(s)) 7→ β(0.5, s), (s, val+(s)) 7→ 1− β(0.5, s)],

for all s, t ∈ S, and (s, y) ∈ M, where β(y, s) = c such that 0 ≤ c ≤ 1 and y =

c · val−(s) + (1− c) · val+(s).

Intuitively, the strategy stores the optimal (minimum and maximum) values that can

be achieved in each state, and stochastically updates its memory to ensure that the ex-

pectation of the memory element is the same as the intended value (in this case it is 0.5).

We can then show that the expectation of the memory element is equal to the probability

3.5. EXAMPLE 39

to reach a state labelled with t, and hence probability to reach such a state in this game

is exactly 0.5, and thus the probability to reach a terminal state not labelled with t is 0.5

as well.

Stochastic-update strategies allow player � to react to player ♦ choices by randomising

on the memory elements, and utilising the local relationship between values of the state and

its successor. In the case of the game in Figure 3.7 the relationship is that given a player

♦ state s and two of its successors t, u we have that val−(s), val+(s) ∈ [val−(t), val+(t)]

and val−(s), val+(s) ∈ [val−(u), val+(u)], hence player � can always randomise to keep

one of the four elements in strategy’s memory no matter what is the choice of player ♦,

thus avoiding the exponential explosion in memory size. We show later in the thesis, that

this idea of using the local relationship between memory elements to preserve expectation

can be extended to more dimensions and can be utilised to construct compact stochastic-

update strategies for more general objectives.

3.5 Example

In this section we illustrate how the probabilistic models and properties presented in the

previous sections can be applied to the analysis of competitive stochastic systems. We

present a brief analysis of the team-formation protocol for sensor networks introduced

in [62]. For the full case study, performed using PRISM model checker, we refer the reader

to [41].

A short summary of the protocol is as follows. The system is composed of a network

of agents (referred to as an agent organisation), each having a specific type of resource

(R = {r1, r2, . . . , rk}). The tasks, which require a set of resources (e.g., task Tj = {ri : “ri

is required by the task Tj”}), are advertised to the network and agents are requested

to form teams in order to complete the task. The task is completed successfully if the

team has agents covering all resources from the task. The steps of the algorithm can be

summarised as follows:

1. A set of tasks is generated according to a probability distribution and advertised to

the agents.

2. In random order agents are allowed to act: if an agent has a missing resource for

the task, then it can either initiate a new team for the task or join an existing team

initiated by one of their neighbours. Only one team per task can be initiated.

3. After all agents have completed their actions, the teams, which have all the resources

required by the task, receive a pay-off for successfully completing the task.

40 CHAPTER 3. BACKGROUND MATERIAL

The pay-offs for the agents are defined as follows.

• Type W1(a), which rewards the agent a with 1 point if the agent is in the team that

was able to complete its task after team formation is over, and 0 otherwise.

• Type W2(a), which rewards 1
team size

to the agent a that was in a team that was able

to complete its task, and 0 otherwise.

For a team of agents A, the rewards are defined accordingly as the total reward achieved

by its members, i.e., W1(A) =
∑

a∈AW1(a) and W2(A) =
∑

a∈AW2(a). The underlying

idea of these two types of rewards is that W2 provides incentives for agents to form smaller

teams, which can accomplish tasks, whereas W1 motivates agents to simply be in a suc-

cessful team. From the organisation’s perspective, the W2 reward should be used when

resources are limited, whereas reward W1 encourages agents to introduce resource redun-

dancy into teams, but this may ensure that tasks are completed with higher probabilities.

In the scenario proposed originally by [62], agents do not make any decisions, but if

they have a neighbour who is in a team for which the agent is eligible (i.e., has a missing

resource), then it joins that team, and otherwise it initialises a team for the task with

the probability given by the ratio of neighbours that are not committed to any team and

the total number of neighbours. In this case, the behaviour of the system is entirely

probabilistic and can be modelled as a DTMC. If, instead, we allow agents to make

decisions as to whether join or initiate a team, we obtain an MDP. Finally, if we model

every agent as a different player, we have an SMG. We also augment the models with the

reward structures representing the two pay-off types, W1 and W2.

We now consider model checking of several reachability and expected total reward

properties, and show how different models can be used to analyse the system.

Experimental setup. For our experiments we consider organisations consisting of five

agents, which are organised into four networks, and each agent is assigned one of the

three available resources (see Figure 3.8). We fix seven different tasks that are used in

experiments T = {{r1}, {r2}, {r3}, {r1, r2}, {r1, r3}, {r2, r3}, {r1, r2, r3}}. When running

the algorithm, two tasks T1 and T2 are picked uniformly and independently at random

(with replacement) and are advertised to the agent organisation. For the details of the

PRISM models of the protocol see Appendix F.1.

Properties. We consider three reachability objectives: probability to form a team to

successfully complete task T1, task T2, and to complete both tasks (e.g., form two successful

teams, one for each task). We also consider two expected total reward objectives defined

by W1 and W2 reward functions as described earlier.

3.5. EXAMPLE 41

〈a1 r1〉

〈a2 r1〉

〈a3 r2〉〈a4 r2〉

〈a5 r3〉

(a) Fully connected (Ofc)

〈a1 r1〉

〈a2 r2〉

〈a3 r1〉〈a4 r2〉

〈a5 r3〉

(b) Ring (Or)

〈a1 r1〉

〈a2 r2〉

〈a3 r2〉〈a4 r3〉

〈a5 r3〉

(c) Star (Os)

〈a1 r1〉

〈a2 r2〉

〈a3 r3〉〈a4 r3〉

〈a5 r2〉

(d) Isolated agent (Oia)

Figure 3.8: Experimental configurations of the agent organisations. In parentheses are the
abbreviations that use to refer to the organisations throughout this section.

DTMC analysis. For DTMCs, we can compute the precise values for all five objectives

to assess the performance of different agent organisations; this provides insight regarding

how the algorithm performs in different network configurations.

The model checking results for the reachability probabilities starting from the ini-

tial state s0, i.e., Prs0(F T1 completed), Prs0(F T2 completed) and Prs0(F (T1 completed ∧
T2 completed)), are shown in Table 3.1. We can see that, unsurprisingly, in terms of task

completion the algorithm performs best in the fully connected network and worst in the

star network. However, it is interesting to note that the ring network outperforms the

isolated agent network, even though the number of connections in the network is smaller.

Organisation T1 completed T2 completed T1 and T2 completed
Ofc 0.74562 0.74562 0.49596
Or 0.71461 0.71461 0.47062
Os 0.58324 0.58324 0.23639
Oia 0.71799 0.71799 0.44839

Table 3.1: Task completion probabilities for the agent organisations.

MDP analysis. Next, we modify the algorithm so that the agents are allowed to make

decisions as to whether to join or initiate the team, instead of picking the action according

to some predefined probability. We can use MDP model checking to find the maximum

values that can be achieved by agent organisations, i.e., if all agents collaborate, what

is the maximum probability to complete task T1, complete task T2 or complete both

tasks. Similarly, we can verify the maximum expected pay-off that the agents can achieve.

Then we can compare these results with the DTMC model and assess how effective is the

original algorithm. The comparison of the optimal expected pay-off to the one achieved

by the original algorithm for both types of reward is shown in Figure 3.9. The properties

verified for DTMCs were expected total reward, i.e., Es0 [rew(Wj)], and for MDPs the

42 CHAPTER 3. BACKGROUND MATERIAL

optimal expected total reward: maxσ∈Σ Es0 [rew(Wj)] for j ∈ {1, 2}. We can see that

the performance drop-off is very consistent among agent organisations and reward types,

suggesting that the loss of performance is not closely related to the agent network or

reward type used. Sheet1

Page 1

0

1

2

3

4
DTMC MDP

Agent organisation

E
xp

e
ct

ed
 r

ew
a
rd

Ofc Or Os Oia

0

1

2

3

4
DTMC MDP

Agent organisation

E
xp

e
ct

ed
 r

ew
a
rd

Ofc Or Os Oia

(a) Reward W1(O).

Sheet1

Page 1

0

1

2
DTMC MDP

Agent organisation

E
xp

e
ct

ed
 r

ew
a
rd

Ofc Or Os Oia

0

1

2
DTMC MDP

Agent organisation

E
xp

e
ct

ed
 r

ew
a
rd

Ofc Or Os Oia

(b) Reward W2(O).

Figure 3.9: Performance comparison of original algorithm (modelled as a DTMC) with
the optimal one (modelled as an MDP).

SMG analysis. Finally, we discuss how to enrich the analysis of the system using stochas-

tic games. The previous discussion about optimal performance modelling using MDPs can

be seen as agents forming a grand coalition (i.e., coalition consisting of all agents in the

network) and trying to be as successful as possible. A natural question arises at this point:

“how many agents do we require to be able to guarantee a certain performance of the agent

organisation regardless of the actions of the other agents?” To model this problem, we can

use stochastic two-player games: one player represents the agents in the coalition and the

other represents the remaining players. Now, finding optimal values in this game would

yield an answer to the question posed, because the maximum performance obtained for

the first player would be in the worst-case scenario, i.e., the agents not in the coalition try

to collaborate to minimise this objective. Figure 3.10 shows the comparison of the optimal

coalition performance for different coalition sizes for both reward types. The expected to-

tal reward properties verified for the games are max(σi∈Σi)i∈C min(σi∈Σi)i∈Π\C Es0 [rew(Wj)]

for j ∈ {1, 2}. The graphs reveal that, in our setting, the second type of pay-off (W2) is

more sensitive to the coalition size than the first type (W1) for most agent organisations.

This means that, in order to guarantee a certain level of performance for W2, we would

need to control more agents in the network, whereas the optimisation of W1 can be done

with a smaller number of agents.

3.6. SUMMARY 43

Sheet1

Page 1

1 2 3 4 5
0

1

2

3

4

Coalition size

E
xp

ec
te

d
re

w
ar

d

Ofc Or Os Oia

(a) Reward W1(O).

Sheet1

Page 1

1 2 3 4 5
0

0.3

0.6

0.9

1.2

1.5

1.8

Coalition size

E
xp

ec
te

d
re

w
ar

d

Ofc Or Os Oia

(b) Reward W2(O).

Figure 3.10: Comparison of the optimal coalitions of varying sizes.

Summary. In this section we provided an example of how model checking of the properties

presented in Section 3.2 for the probabilistic models from Section 3.1 can be used to

conduct an analysis of competitive stochastic systems, in this case, a team formation

protocol. We were able to evaluate the performance of the algorithm using DMTCs,

compare it to the optimal performance using MDPs, and then, in order to address the

competitive aspects of the system, we used stochastic games.

Note that the number of states in the probabilistic model representing the protocol is

exponential in the number of agents in the network and thus only relatively small networks

can be analysed. For example, the number of states and transitions in the SMG model

of a five-agent fully connected agent organisation is 731,233 and 907,992, respectively;

but the model with 6 agents already contains 8,155,873 states and 10,040,112 transitions.

This is an example of the well-known state space explosion problem in formal verifica-

tion. However, even the analysis of small models can help to understand the important

properties of the algorithm, which would be hard to capture using other methods, such

as manual analytic techniques or simulation-based methods. For example, we have been

able to establish the optimal value achieved by the algorithm using MDP model checking,

and analysed the performance under competitive scenarios using stochastic games.

3.6 Summary

In this chapter we reviewed the material from probabilistic model checking on which we

build in this thesis. We presented the key probabilistic models: discrete-time Markov

chains, Markov decision processes and (turn-based) stochastic multi-player games and as-

sociated concepts. For the aforementioned models, we also reviewed the algorithms for

44 CHAPTER 3. BACKGROUND MATERIAL

model checking reachability, parity and expected total reward properties. For DTMCs

and MDPs properties can be verified in polynomial time. However, there is no known

polynomial-time algorithm for model checking these properties for stochastic two-player

games. We discussed multi-objective model checking for MDPs, which can be performed in

polynomial-time for terminal state reachability and expected total reward objectives. We

also presented two logics, PCTL and pATL that are used to express branching-time prop-

erties of probabilistic systems and provided their semantics in terms of MDPs (for PCTL)

and SMGs (for pATL). We also discussed the models for representing controller strategies

proving that, for certain property types, the model of choice for this thesis, stochastic-

update strategy, is at least exponentially more succinct than the standard deterministic-

update strategy model. Finally, to illustrate how the described models and properties can

be applied to the analysis of the competitive stochastic systems, we presented the analysis

of a team formation protocol.

Chapter 4

The Logic rPATL

In this chapter we describe a property specification language for competitive stochastic

systems and define its semantics for stochastic multi-player games. More specifically,

we introduce the Probabilistic Alternating-time Temporal Logic with Rewards (rPATL),

which is a temporal logic that allows one to express quantitative objectives that can be

achieved in a game by coalitions of players. The logic rPATL is an extension of the logic

pATL [43] (see Section 3.3), which is itself a probabilistic extension of ATL [4], a widely

used logic for reasoning about multi-player games and multi-agent systems. rPATL allows

us to state that a coalition of players has a strategy which can ensure that either the

probability of an event’s occurrence or an expected reward measure meets some threshold,

e.g., for a distributed network protocol one could specify: “nodes 1 and 2 can collaborate

so that the probability of the protocol terminating within 45 seconds is at least 0.95,

whatever nodes 3 and 4 do”.

An important part of the logic is the inclusion of the expected reward measures. This

enables quantitative reasoning about a system’s use of resources, such as time spent or

energy consumed. rPATL can state, e.g., “sensor 1 can ensure that the expected energy

used, if the algorithm terminates, is less than 75mJ , for any actions of sensors 2, 3, and 4”.

Similar reward-based operators have been introduced to the logic PCTL (see Section 3.3

for discussion), but have not yet been defined for games. In addition to providing model

checking algorithms for the logic and discussing their complexity, we also show how to

synthesise the strategies for players that achieve the objectives specified in rPATL, which,

in the above example, would provide the strategy for sensor 1, which guarantees that “if

the algorithm terminates the energy used is less than 75mJ”. This strategy can then be

used to implement the controller for the sensor.

The chapter is structured as follows. We define the syntax and semantics of the logic

in Section 4.1, provide model checking algorithms in Section 4.2, and discuss the model

45

46 CHAPTER 4. THE LOGIC RPATL

checking complexity in Section 4.3. Section 4.4 describes how to construct the strategies

for the players that satisfy rPATL specifications using the results of the model checking

algorithms. Then, before summarising the chapter in Section 4.7, we discuss several exten-

sions of the logic, including rPATL* in Section 4.5, as well as reward-bounded properties

in Section 4.6.

The technical results in this chapter are largely based on the results published in [36,

37]. We have adapted the semantics and algorithms of rPATL to be defined over a different

(but equivalent) definition of SMG and modified the proofs accordingly, as well as adding

Section 4.4 on strategy synthesis.

4.1 Syntax and semantics

We start by presenting the syntax and semantics of rPATL. Throughout the section, we

assume a fixed game G = 〈Π, S, (S©, (Si)i∈Π),∆, AP, χ〉. In the presentation we use state

reward structures r : S → Q≥0, which are labelling functions mapping each state to a

non-negative rational reward, but note that transition rewards can be easily encoded by

adding an auxiliary state per transition to the model.

Definition 5 (rPATL) The syntax of the Probabilistic Alternating-time Temporal Logic

with Rewards (rPATL) is given by the following grammar:

φ ::= > | a | ¬φ | φ ∧ φ | 〈〈C〉〉P./q[ψ] | 〈〈C〉〉Rr./x[F?φ]

ψ ::= Xφ | φU≤k φ | φUφ

where a ∈ AP , C ⊆ Π, ./∈ {<,≤,≥, >}, q ∈ Q∩ [0, 1], x ∈ Q≥0, r : S → Q≥0 is a reward

structure, ? ∈ {0,∞, c} and k ∈ N.

rPATL is a branching-time temporal logic having two formula types: state (φ) and path

(ψ). We adopt the coalition operator 〈〈C〉〉 of ATL [4], combining it with the probabilistic

operator P./q and path formulae from PCTL [66, 14], and a generalisation of the expected

reward operator Rr./x from [60]. An example of a typical usage of the coalition operator

is 〈〈{agent1, agent2}〉〉P≥0.9[ψ], which means “agents 1 and 2 have a strategy to ensure

that the probability of path formula ψ being satisfied is at least 0.9, no matter what other

players do”. As path formulae, we allow the standard temporal operators X (“next”),

U≤k (“bounded until”) and U (“until”). As usual, we can directly derive ⊥ ≡ ¬>,

boolean connectives such as φ1∨φ2 ≡ ¬(¬φ1∧¬φ2) and common temporal operators such

as Fφ ≡ >Uφ (“eventually”). We can handle the negated path formulae in a 〈〈C〉〉P./q
operator by inverting the probability threshold, e.g., 〈〈C〉〉P≥q[¬ψ] ≡ 〈〈C〉〉P≤1−q[ψ]. This

4.1. SYNTAX AND SEMANTICS 47

allows us to derive, for example, the G (“globally”) and R (“release”) operators, using

the equivalences Gφ ≡ ¬(F¬φ) ≡ ¬(>U¬φ) and φ1Rφ2 ≡ ¬(¬φ1 U¬φ2). This is done in

the same way as for PCTL [66, 14], but, interestingly, cannot be done for ATL, as shown

in [83].

Rewards

Before presenting the semantics of rPATL, we discuss the reward operators in the logic.

We focus on the expected total reward to reach a target, i.e., the expected sum of rewards

cumulated along a path until a state from a specified set T ⊆ S is reached. To cope with

the variety of different properties encountered in practice, we introduce three variants,

which differ in the way they handle the case where T is not reached. The three types are

denoted by the parameter ? ∈ {0,∞, c}. These indicate that, when T is not reached along

the path, the reward is zero, infinite or equal to the cumulated reward along the whole

path, respectively.

The motivation for selecting these particular types of rewards stems from our experi-

ence of devising rPATL specifications for case studies (which we present in Chapter 6).

Each reward type is applicable in different situations. If our goal is, for example, to min-

imise the expected time for the completion of the algorithm, then it is natural to assume

a value of infinity (?=∞) upon non-completion, i.e., we require the algorithm to complete

successfully with probability 1 and, in addition, we want to minimise the expected running

time. The semantics of this operator are essentially the same as for the Rr./q[Fφ] operator

of PCTL (see Section 3.3).

Consider, on the other hand, the situation where we are only interested in, for example,

minimising energy consumption throughout the lifetime of the device. In this case we

might prefer to use type ?= c, to compute expected energy used regardless of termination.

This operator can be viewed as the expected total reward (see Section 3.2.4) enhanced

with a termination condition, i.e., the reward stops accumulating when a certain target

set is reached.

The third type of reward, ?= 0, is useful in situations when the reward accumulated can

only be retrieved when the target is reached, and otherwise it is discarded. For example,

consider analysis of the incentive scheme where the user is rewarded £1 for every new

user is refers to the company, but the amount is paid-out only if he/she refers at least 100

users, and no payment is received otherwise.

We formalise these notions of rewards by defining reward functions that map each

possible path in the game G to a value indicating the total reward cumulated along that

path.

48 CHAPTER 4. THE LOGIC RPATL

Definition 6 (Reward function) For an SMG G = 〈Π, S, (S©, (Si)i∈Π),∆, AP, χ〉, a

reward structure r : S → Q≥0, type ? ∈ {0,∞, c} and a set T ⊆ S of target states, the

reward function rew(r, ?, T) : ΩG → R≥0 is a random variable defined as follows. For

λ ∈ ΩG:

rew(r, ?, T)(λ)
def
=

{
g(?) if ∀j ∈ N : λj /∈ T,∑k−1

j=0 r(λj) otherwise, where k = min{j |λj ∈ T},

and where g(?) = ? if ? ∈ {0,∞} and g(?) =
∑

j∈N r(λj) if ? = c. The expected reward

from a state s ∈ S of G under a strategy profile σ0, . . . , σn is the expected value of the

reward function, i.e., Eσ0,...,σn
s [rew(r, ?, T)].

Semantics

Now, we define the semantics of rPATL. Formulae are interpreted over states of a game

G; we write s |= φ to indicate that state s of G satisfies the formula φ and define Sat(φ)
def
=

{s ∈ S | s |= φ} as the set of states satisfying φ. Also, we use Prs(ψ) as a shorthand for

Prs({λ ∈ ΩG,s | λ |= ψ}), i.e., to denote the probability measure of the paths satisfying

formula ψ. For the 〈〈C〉〉P./q and 〈〈C〉〉Rr./x operators, we give the semantics via a reduction

to a stochastic two-player game called a coalition game.

Definition 7 (Coalition game) For an SMG G = 〈Π, S, (S©, (Si)i∈Π),∆, AP, χ〉 and

a coalition of players C ⊆ Π, we define the coalition game of G induced by C as the

stochastic two-player game GC = 〈{�,♦}, S, (S©, S�, S♦),∆, AP, χ〉 where S� = ∪i∈CSi
and S♦ = ∪i∈Π\CSi.

Definition 8 (rPATL Semantics) The satisfaction relation |= for rPATL is defined

inductively, for each state s of G, as follows:

s |= > always

s |= a ⇔ a ∈ χ(s)

s |= ¬φ ⇔ s 6|= φ

s |= φ1 ∧ φ2 ⇔ s |= φ1 and s |= φ2

s |= 〈〈C〉〉P./q[ψ] ⇔ In coalition game GC, ∃σ� ∈ Σ� such that ∀σ♦ ∈ Σ♦, Prs(ψ) ./ q

s |= 〈〈C〉〉Rr./x[F?φ] ⇔ In coalition game GC, ∃σ� ∈ Σ� such that ∀σ♦ ∈ Σ♦

Es[rew(r, ?, Sat(φ))] ./ x for ? ∈ {0,∞, c}

4.1. SYNTAX AND SEMANTICS 49

s0

s1s16

s15
s2

s3

s5 s6 {T1}

s7 {T1,T2}

s4

s8 ∅

s9 {T2}

s10

{T2}

s11

s12

s13 s14 {T2}

init-1∗

init-1

0.8 (success)0.2 (failure)

join-1

idle

idle

init-2

0.5 (end)0.5 (restart)

idle

init-2

init-2

idle

init-1

idle init-1

join-1

idle

0.5 (end)0.5 (restart)

Figure 4.1: SMG modelling a variant of a team formation protocol with three players
(Π = {�,♦,4}); players � and 4 have resource 2 and player ♦ has resource 1; there are
two tasks advertised: T1 = {1, 2} and T2 = {2}. Action ‘init-i’ initialises a team for task
i, action ‘join-j’ joins a team for task j and action ‘idle’ represents a decision to ignore the
task. States with double border are terminal and contain a self-loop. Each state is also
labelled with atomic proposition corresponding to its name, e.g., χ(s4) = {s4}.

and for any path λ in ΩG:

λ |= Xφ ⇔ λ1 |= φ

λ |= φ1 U≤k φ2 ⇔ λi |= φ2 for some i ≤ k

and λj |= φ1 for 0 ≤ j < i

λ |= φ1 Uφ2 ⇔ λ |= φ1 U≤k φ2 for some k ∈ N.

Example 7 In this example we show how the logic rPATL can be used to analyse an

SMG. Consider the game from Figure 4.1 modelling a variant of a team formation protocol

presented earlier in Section 3.5. The game has three players �, ♦ and 4 having resources

50 CHAPTER 4. THE LOGIC RPATL

2, 1 and 2, respectively. The game starts in s0 and there are two tasks advertised: T1 =

{1, 2} and T2 = {2}. The actions that agents can take are ‘init-i’ (initialise a team for

task i), ‘join-i’ (join a team for task i) and ‘idle’ (do nothing). The task is successfully

completed if a state labelled with the respective atomic proposition is reached (which implies

that the team consisting of agents having all the required resources by the task has been

formed).

An example path through the game is s0s12s11(s7)ω, which corresponds to player �

taking action ‘init-2’, then player 4 taking action ‘init-1’ and, finally, player ♦ selecting

‘join-1’, so that both tasks are successfully completed. The above strategies demonstrate

that rPATL formula 〈〈{�,4,♦}〉〉P≥1[F (T1 ∧ T2)] is satisfied in s0.

Let us consider the rPATL formula 〈〈C〉〉P≥x[>U≤5 T1], which states that the probability

to complete task T1 within 5 steps is at least x. First, note that, if C = {�}, then formula

does not hold for any x > 0, because player ♦ can always pick action ‘idle’ in its states

and hence the task is never be completed. If we have C = {�,♦}, then formula is true

for all x ≤ 0.5 and false for x > 0.5, an optimal strategy for player 4 is to always

pick action ‘idle’. The optimal strategies for � and ♦ are to choose ‘init-1’ and ‘join-

1’ actions, respectively, making sure that a state satisfying T1 is reached along the path

s0s15s2s3s5(s6)ω or s0s15s2s3(s7)ω, which, under deterministic strategies, have probability

measures 0.5 and 1, respectively. Note that the unbounded version of the until for this

coalition is valid for any x, i.e., formula 〈〈{�,♦}〉〉P≥1[>U T1] is true in s0, because no

matter how many times 4 chooses to ‘idle’ in s3, the task is completed with probability 1.

Consider the reward function cost(s15) = cost(s11) = 50, cost(s1) = 5 and cost(s) = 0

for all other states s. The function represents the initiation cost of the task T1 and it is

50 if action ‘init-1’ is executed by player � or ♦ and it is 5 if action ‘init-1∗’ is taken

(the cost of which is cheaper due to the fact that initiation can fail). The rPATL formula

〈〈{�,♦}〉〉Rcost≤x [F?T1] expresses that players � and ♦ have a strategy to complete task T1

while using at most resource x. If ? = ∞, this formula is true for all x ≥ 100 (achieved

using the strategies described in the previous paragraph for satisfying 〈〈{�,♦}〉〉P≥1[F T1]),

but is false for any x < 100, because if � uses action ‘init-1∗’ to reduce the cost, then a

state labelled with T1 is reached with probability < 1 and thus the expected value is infinite.

To circumvent this problem, we can change the reward type to ? = c, now the optimal

strategy for � is to use the action ‘init-1∗’ and the formula is true for x ≥ 25
3

.

To illustrate the usage of the last type of reward, ? = 0, let us define the reward function

bonus(s1) = bonus(s15) = 10 and bonus(s12) = 5 representing the bonuses received by

player � for initiating the team for tasks one and two, respectively. We want to specify

that this bonus is only paid-out if, in the end, at least one task is completed. This can

be expressed as rPATL formula 〈〈{�}〉〉Rbonus≥x [F0 (T1 ∨ T2)]. The formula is true in s0 for

4.2. MODEL CHECKING 51

x ≤ 5, but is false for any x > 5. This is because if � chooses ‘init-2’, then he receives

reward 5 and also guarantees that task 2 is completed for any strategy of other players

(and thus reward 5 is received), whereas if he chooses action ‘init-1’ (where he gets reward

at least 10), then players ♦ and 4 can pick ‘idle’ actions and make sure that a state

satisfying T1 ∨ T2 is never reached (the game terminated in s8) and thus the reward that

was accumulated is never paid-out (i.e., the expectation is 0).

Quantitative queries

Often, instead of asking whether there exists a strategy for a coalition of players to achieve

a certain value, we may want to ask a model checker to compute the maximum or minimum

such value (also, the model checking algorithms that we present are based on the optimal

value computation anyway). To address this issue we consider “quantitative” versions

of the 〈〈C〉〉P./q and 〈〈C〉〉Rr./x operators, in the style of PRISM [77], which return such

numerical values. For the probabilistic operator and a state s ∈ S, we have:

〈〈C〉〉Pmin=?[ψ]
def
= Prmin,max

s (ψ)
def
= inf

σ�∈Σ�

sup
σ♦∈Σ♦

Prs(ψ) ,

〈〈C〉〉Pmax=?[ψ]
def
= Prmax,min

s (ψ)
def
= sup

σ�∈Σ�

inf
σ♦∈Σ♦

Prs(ψ)

and for the reward operator:

〈〈C〉〉Rrmin=?[F
?φ]

def
= Emin,max

s [rew(r, ?, Sat(φ))]
def
= inf

σ�∈Σ�

sup
σ♦∈Σ♦

Es[rew(r, ?, Sat(φ))] ,

〈〈C〉〉Rrmax=?[F
?φ]

def
= Emax,min

s [rew(r, ?, Sat(φ))]
def
= sup

σ�∈Σ�

inf
σ♦∈Σ♦

Es[rew(r, ?, Sat(φ))] .

4.2 Model checking

In this section we discuss model checking for rPATL. We start by providing a generic

procedure to verify rPATL formulae in Section 4.2.1. We then proceed by providing

algorithms based on recursive equations satisfied by the 〈〈C〉〉P./q and 〈〈C〉〉Rr./x operators

(in Sections 4.2.2 and 4.2.3, respectively), which allow us to derive efficient and practically

usable algorithms for model checking rPATL (the pseudocode for the actual algorithms

is presented in Chapter 6 when discussing tool implementation), in which computation of

numerical values is done by evaluating fixpoints up to a desired level of convergence (in

the style of well-known value iteration algorithms [48]). The proofs presented here are

adapted from [37]; the modifications that we provide are to support a different definition

of SMGs.

52 CHAPTER 4. THE LOGIC RPATL

4.2.1 Model checking algorithm

The basic algorithm for model checking an rPATL formula φ on an SMG G proceeds

as for other branching-time logics, such as CTL or PCTL, by determining the set Sat(φ)

recursively, by traversing the parse-tree of the formula φ bottom-up. The nodes of the tree

represent the sub-formulae of φ. At the leaves, we have either the atomic proposition or >.

Computation of satisfaction for these and for logical connectives is done by evaluating the

resulting propositional logic formula. Thus, the focus of this section is on the evaluation

of the 〈〈C〉〉P./q and 〈〈C〉〉Rr./x operators.

Computation of states satisfying these reduces to computation of optimal probabilities

or expected rewards, respectively, in the coalition game GC . For example, if . ∈ {≥, >},
then:

s |= 〈〈C〉〉P.q[ψ] ⇔ Prmax,min
s (ψ) . q ,

s |= 〈〈C〉〉Rr.x[F?φ] ⇔ Emax,min
s [rew(r, ?, Sat(φ))] . x.

For operators ≤ and <, we use the following equivalences to convert them into rPATL

formula with ≥, > operators, which follows from the determinacy result of [87] for zero-

sum stochastic two-player games with Borel measurable payoffs (see Theorem 10 in Sec-

tion 3.2.4):

〈〈C〉〉P≤q[ψ] ≡ ¬〈〈Π \ C〉〉P>q[ψ] ,

〈〈C〉〉P<q[ψ] ≡ ¬〈〈Π \ C〉〉P≥q[ψ].
(4.1)

The following sections describe how to compute the optimal probabilities (Prmax,min
s (ψ))

and expected rewards (Emax,min
s [rew(r, ?, Sat(φ))]) for the coalition game GC .

4.2.2 Computation of probabilities

We begin by showing how to compute the probabilities Prmax,min
s (ψ) for states of a coalition

game GC = 〈{�,♦}, S, (S©, S�, S♦),∆, AP, χ〉. The following results follow in a similar

way as the corresponding statements for PCTL model checking for Markov decision pro-

cesses presented in Section 3.3.

For the X operator and state s ∈ S the probability can be computed as follows:

Prmax,min
s (Xφ) =



1 if s ∈ S� and ∆(s) ∩ Sat(φ) 6= ∅,

1 if s ∈ S♦ and ∆(s) ⊆ Sat(φ),∑
t∈∆(s)∩Sat(φ) ∆(s, t) if s ∈ S©,

0 otherwise.

4.2. MODEL CHECKING 53

Probabilities for the U≤k operator in a state s ∈ S can be computed recursively as follows:

Prmax,min
s (φ1 U≤k φ2) =



1 if s ∈ Sat(φ2),

0 if s 6∈ (Sat(φ1) ∪ Sat(φ2)),

0 if k=0 and s 6 Sat(φ2),

maxt∈∆(s) Prmax,min
t (φ1 U≤k−1 φ2) if s ∈ S�,

mint∈∆(s) Prmax,min
t (φ1 U≤k−1 φ2) if s ∈ S♦,∑

t∈∆(s) ∆(s, t) · Prmax,min
t (φ1 U≤k−1 φ2) if s ∈ S©.

(4.2)

Finally, the unbounded until can be computed via value iteration [48], i.e., using:

Prmax,min
s (φ1 Uφ2) = limk→∞ Prmax,min

s (φ1 U≤k φ2). (4.3)

Also, we can apply the model checking algorithm for pATL and reduce the problem to

reachability (see Section 3.3 for details).

4.2.3 Computation of rewards

Next, we show how to compute the optimal values Emax,min
s [rew(r, ?, Sat(φ))] for all three

types ? ∈ {0,∞, c}. Our algorithms, like similar ones for computing expected total reward

for MDPs (see Section 3.2.3) and games (see Section 3.2.4), rely on computing fixpoints

of certain sets of equations. As in the previous section, we assume that this is done by

value iteration with an appropriate convergence criterion (for discussion on convergence

and experimental results see Section 6.5).

In this section, in addition to a coalition game GC , we fix a reward structure r and a

target set T = Sat(φ), and make the following modifications to GC .

• Fresh atomic propositions t and arew are added to target and positive reward states:

AP := AP ∪ {t, arew}, ∀t ∈ T : χ(t) := χ(t) ∪ {t} and ∀s ∈ S . r(s) > 0 ⇒ χ(s) :=

χ(s) ∪ {arew} (we assume that AP did not originally contain t and arew).

• Target states are made terminal: ∀s ∈ T : ∆(s) := {s}, r(s) = 0.

It is easy to see that the above modification does not affect the value that we want to

compute, i.e., Emax,min
s [rew(r, ?, Sat(φ))], in the original game, since, after the target state

is reached, the reward stops accumulating and adding new atomic propositions does not

change the set Sat(φ).

54 CHAPTER 4. THE LOGIC RPATL

Before presenting the model checking algorithms, we prove the following lemma about

the optimal strategies required to win the games, which we use in several proofs of cor-

rectness of the algorithms later on.

Lemma 1 Memoryless deterministic strategies are sufficient for achieving optimal ex-

pected reward Emax,min
s [rew(r, ?, T)] for types ? = {∞, c}.

Proof. If the expected value is infinite, then memoryless deterministic strategies suffice

by Theorem 4 because this case reduces to the problem of reaching a state where the

expected value is infinite with positive probability. States s ∈ T get value 0 by the game

modification presented above. Otherwise, the values Emax,min
s [rew(r, ?, T)] satisfy:

Emax,min
s [rew(r, ?, T)] =


r(s) + maxt∈∆(s) Emax,min

t [rew(r, ?, T)] if s ∈ S�,

r(s) + mint∈∆(s) Emax,min
t [rew(r, ?, T)] if s ∈ S♦,

r(s) +
∑

t∈∆(s) ∆(s, t) · Emax,min
t [rew(r, ?, T)] if s ∈ S©.

(4.4)

Let Succopt(s) be the set of successors of s that realise the optimum in s ∈ S� ∪S♦, where

opt is max or min, for players � and ♦, respectively. We first analyse the case ? = ∞.

Any strategy σ∞� ∈ Σ� that in s picks the successor from Succopt(s) is optimal. For player

♦, any strategy σ∞♦ ∈ Σ♦ is optimal if it picks the successor from Succopt(s) in s such that

T is reached almost surely under any counter-strategy for player � (because otherwise,

the value is infinity).

Next, assume ?=c and let S=0 = {s | Emax,min
s [rew(r, c, T)] = 0}. To optimise

rew(r, c, T), we fix σc� ∈ Σ� that uses successors from Succopt(s) in s for all s ∈ S�

and ensures that S=0 is reached almost surely. For player ♦, any strategy σc♦ ∈ Σ♦ is

optimal if it picks a successor from Succopt(s) in s.

We now prove the correctness of the above definitions. Given a state s and a strategy

σ� for player �, we denote:

errσ�(s) =
minσ♦∈Σ♦ E

σ�,σ♦
s [rew(r, ?, T)]

Emax,min
s [rew(r, ?, T)]

where we assume errσ�(s) = 1 if the denominator is 0. Observe that we have:

errσ�(s) · Emax,min
s [rew(r, ?, T)] = min

σ♦∈Σ♦

Eσ�,σ♦s [rew(r, ?, T)].

Let ? = c. We prove that the maximiser’s strategy σ = σc� defined above is optimal.

Assume, for a contradiction, that it is not, i.e., errσ(s) < 1 for some s. For all s, we have:

4.2. MODEL CHECKING 55

errσ(s) · Emax,min
s [rew(r, c, T)] = r(s) + errσ(σ(s)) · Emax,min

σ(s) [rew(r, c, T)] (4.5)

and, for all s ∈ S♦, there must be a successor t such that:

errσ(s) · Emax,min
s [rew(r, c, T)] = r(s) + errσ(t) · Emax,min

t [rew(r, c, T)] (4.6)

Fix s such that errσ(s) < 1 is minimal. Thanks to equations (4.4), (4.5) and (4.6), we

get that the value must also be minimal for all successors of s. However, this implies that

S=0 is not reached with probability 1 because, in every t ∈ S=0, we have errσ(t) = 1. The

other cases (σc♦, σ∞� and σ∞♦) can be proved analogously. �

The case ? = c

First, we solve the following stochastic two-player Büchi game (see Section 3.2.4 for dis-

cussion) to identify the states from which the expected reward is infinite:

I := {s ∈ S | ∃σ� ∈ Σ� .∀σ♦ ∈ Σ♦ Prs(inf (arew)) > 0}

where inf (arew) is the set of all paths that visit a state satisfying arew infinitely often (and

hence have infinite reward). The states in I are assigned infinite reward. To compute

values for the remaining states, we remove the states in I from GC before continuing. We

then compute the least fixpoint of the following equations:

f(s) =



0 if s ∈ T,

r(s) + maxt∈∆(s) f(t) if s ∈ S� \ T ,

r(s) + mint∈∆(s) f(t) if s ∈ S♦ \ T ,

r(s) +
∑

t∈∆(s) ∆(s, t) · f(t) if s ∈ S© \ T ,

(4.7)

and let Emax,min
s [rew(r, c, T)] = f(s).

Correctness. To show the correctness of the above algorithm, let us first consider the

states with infinite value. Recall that we denote by inf (arew) the set of paths that visit a

state with positive reward infinitely often (and thus get infinite reward). If, for a state s,

there is σ� ∈ Σ� such that the probability Prs(inf (arew)) is positive for all σ♦ ∈ Σ♦, then

the strategy σ� itself achieves infinite reward. In the other direction, suppose that for every

σ� ∈ Σ� there is some σ♦ ∈ Σ♦ such that Prs(inf (arew)) is equal to zero. Because reward

is not infinite, it follows that, for every σ�, a strategy σ♦ exists, which also ensures that

the expected number of visits to a state satisfying arew is finite and bounded from above.

56 CHAPTER 4. THE LOGIC RPATL

The rest follows easily because the rewards assigned to states by the reward function are

bounded.

Let us now consider finite values. Because of the modification making target states

terminal, no reward is accumulated after visiting a target state and we can change the

random variable to use
∑

j∈N r(λj) instead of rew(r, c, T). It can be shown by induction

that the expected value with respect to this variable can be obtained as limi→∞ fs(i) where:

fs(i) =



0 if i = 0,

r(s) + maxt∈∆(s) ft(i− 1) if i > 0 and s ∈ S�,

r(s) + mint∈∆(s) ft(i− 1) if i > 0 and s ∈ S♦,

r(s) +
∑

t∈∆(s) ∆(s, t) · ft(i− 1) if i > 0 and s ∈ S©.

(4.8)

We can then apply the Kleene fixpoint theorem to obtain that limi→∞ fs(i) is equal to

the least fixpoint of the equations (4.7) (see Section 3.2.4 for discussion on computation

of expected total reward using value iteration).

The case ? =∞

We start by identifying and removing states with infinite expected reward; in this case

it is I := {s ∈ S | s |= 〈〈{�}〉〉P<1[F t]}. Then, for all other states s ∈ S, we compute

the greatest fixpoint, over R, of equations (4.7). The need for the greatest fixpoint arises

because, in the presence of zero-reward subgames (i.e., the subgames in which all rewards

are 0, and which do not contain a target state), multiple fixpoints may exist. For the

previous case (? = c), a least fixpoint of (4.7) gives the correct solution for such cases (i.e.,

because player ♦ should favour staying in such a cycle in all cases); here, the reward would

be infinite if this happens (and hence player ♦ should prefer leaving such a cycle, but the

least fixpoint of the equations (4.7) does not capture this property). The computation is

over R since, e.g., the function mapping all non-target states to∞ may also be a fixpoint,

which is not the one we are interested in.

To find the greatest fixpoint over R, we first compute an over-approximation of the

fixpoint by changing all zero rewards to any ε > 0 and then evaluating the least fixpoint

of (4.7) for the modified reward. Starting from the new initial values, value iteration now

converges from above to the correct fixpoint. For the simpler case of Markov decision

processes, an alternative approach based on removal of zero-reward end-components is

possible [53], but this cannot be adapted efficiently to stochastic games. On the other

hand, our over-approximation-based approach can be used for MDPs.

Correctness. We now prove the correctness of the presented algorithm. First, observe

4.2. MODEL CHECKING 57

that, if a state s ∈ S is assigned infinite value in the initial step, then we indeed have

Emax,min
s [rew(r,∞, T)] = ∞ by definition. We prove the correctness for the other values.

Let u : S → Q be a function that assigns to each state s ∈ S a value such that u(s) ≥
Emax,min
s [rew(r,∞, T)]. Recall that we compute values of equations (4.7) by value iteration,

i.e., we compute:

fs(i) =



0 if s ∈ T,

u(s) if i = 0,

r(s) + maxt∈∆(s) ft(i− 1) if i > 0 and s ∈ S�,

r(s) + mint∈∆(s) ft(i− 1) if i > 0 and s ∈ S♦,

r(s) +
∑

t∈∆(s) ∆(s, t) · ft(i− 1) if i > 0 and s ∈ S©,

(4.9)

for sufficiently large i, and we show that limi→∞ fs(i) = Emax,min
s [rew(r,∞, T)]. Let us

consider auxiliary functions rew i
u which assign numbers to paths as follows:

rew i
u(λ) =


∑
j<k

r(λj) ∃k ≤ i . λk ∈ T,∑
j<i

r(λj) + u(λi) otherwise.

Intuitively, the function rew i
u alters the definition of rew(r,∞, T) by assigning rewards

given by r for the first i steps, and then assigning the reward given by u, if the target has

not been reached yet. One can prove by induction that the value of fs(i) from (4.9) is

equal to Emax,min
s [rew i

u].

We need to show that limi→∞ fs(i) ≥ Emax,min
s [rew(r,∞, T)]. This can be done induc-

tively by showing that fs(i) ≥ Emax,min
s [rew(r,∞, T)] for every i. The base case i = 0

follows from the definitions of f and u, and the inductive step follows by monotonicity of

the function f .

Furthermore, we show that limi→∞ fs(i) ≤ Emax,min
s [rew(r,∞, T)]. Let σmin ∈ Σ♦ be a

memoryless strategy satisfying supσ∈Σ�
Eσ,σmin
s [rew(r,∞, T)] = Emax,min

s [rew(r,∞, T)], i.e.,

σmin is the optimal minimising strategy for player ♦ (such strategy exists by Lemma 1).

Let τ(i) = infσ�∈Σ�
Prσ�,σmin

s ({λ ∈ ΩGC ,s | ∃j ≤ i . λj ∈ T}) be the minimal probability

with which we end-up in a state in T within i steps when playing according to σmin. We

have limi→∞ τ(i) = 1, because otherwise player � would have a strategy to prevent the

target from being reached almost surely and the reward obtained would be infinite. Thus,

we have:

sup
σ�∈Σ�

Eσ�,σmin
s [rew i

u] ≤ Emax,min
s [rew(r,∞, T)] + (1− τ(i)) ·K

58 CHAPTER 4. THE LOGIC RPATL

where K = maxs∈S u(s). As we let i go to ∞, the second summand diminishes, and so

fs(i) = Emax,min
s [rew i

u] ≤ Emax,min
s [rew(r,∞, T)].

The case ? = 0

To achieve the optimal value for this reward type, it does not suffice to consider memoryless

strategies for player �. The optimal strategy may depend on the reward accumulated so

far, which, for a given history λ ∈ Ω+
G , we denote by r(λ)

def
=
∑|λ|

i=0 r(λi). However, this is

only needed until a certain reward bound B is reached, after which the optimal strategy

picks actions that maximise the probability of reaching T (if multiple such actions exist, it

picks the one with the highest expected reward). Example 8 below illustrates this concept.

The bound B can be computed efficiently using algorithms for ? = c and Prmax,min
s (ψ)

and, in the worst-case, can be exponential in the size of G and the reward structure r (the

formula to compute the bound is presented in Equation (4.11)).

Example 8 In this example we show that memory is required for strategies that achieve

optimal expected reward values of type ? = 0, i.e., for optimal values of Emax,min
s [rew(r, 0, T)].

Later, we show that the finite memory is indeed sufficient. Let us consider the following

example:

s1 s0 s3s2
0.1

0.9

The target set is T = {s1} and the reward structure r assigns 1 to s0 and 0 to the other

states. We analyse the optimal value of rew(r, 0, T) in s0. Let σ� be a memoryless ran-

domised strategy that in s0 picks s1 as successor with probability x and s2 with probability

1− x. The expected reward obtained is then:

∞∑
i=1

i · 0.9i−1 · (1− x)i−1 · x =
x

(0.1 + 0.9 · x)2
,

which, for any x, is lower than 25
9

. Now consider the strategy σ′ that is deterministic,

and picks s2 on the first 8 visits to s0 and then s1 on the 9th visit. The value under this

strategy is: 9 · 0.98 ≈ 3.8 > 25
9

. Hence, strategy with memory can achieve strictly greater

expectation than any memoryless strategy.

Remark 1 Note that, in the above example, optimal (memoryless deterministic) strategy

in s0 for both ? =∞ and ? = c is to pick successor s2 and thus achieve values ∞ and 10,

respectively.

4.2. MODEL CHECKING 59

We now present the model checking algorithm. For clarity, we assume that rewards are

integers; rational values can be handled by re-scaling all rewards by the lowest common

multiple of the denominators of rewards appearing in the game. Let R(s,k) be the maximum

expectation of rew(r, 0, T) in state s after history λ with r(λ) = k:

R(s,k)
def
= sup

σ�∈Σ�

inf
σ♦∈Σ♦

[
k · Prs(F t) + Es[rew(r, 0, T)]

]
,

and rmax = maxs∈S r(s). The algorithm works as follows:

1. First we solve the Büchi game (see Section 3.2.4) to identify the states that have

infinite reward:

I := {s ∈ S | ∃σ� ∈ Σ� ∀σ♦ ∈ Σ♦ Prs(inf t(arew)) > 0}}

where inf t(arew) is the set of all paths that visit a state satisfying 〈〈C〉〉P>0[F t]∧ arew

infinitely often. Then, assign infinite reward to states in I and remove them from

the game.

2. For B ≤ k ≤ B + rmax − 1 and for each state s ∈ S:

(a) Assign new reward r′(s) = r(s) · Prmax,min
GC ,s (F t);

(b) For states s ∈ S�, remove from ∆(s) choices that are sub-optimal, i.e., t such

that Prmax,min
t (F t) < Prmax,min

s (F t)⇒ t 6∈ ∆(s);.

(c) Compute R(s,k) using the algorithm for rew(r′, c, T):

R(s,k) = k · Prmax,min
s (F t) + Emax,min

s [rew(r′, c, T)].

3. Find, for all 0 ≤ k < B and states s, the least fixpoint of the equations:

R(s,k) =



k if s ∈ T,

maxt∈∆(s) R(t,k+r(s)) if s ∈ S�,

mint∈∆(s) R(t,k+r(s)) if s ∈ S♦,∑
t∈∆(s) ∆(s, t) ·R(t,k+r(s)) if s ∈ S©.

(4.10)

4. The required value for the state s ∈ S is Emax,min
s [rew(r, 0, T)] = R(s,0).

Correctness. We prove the correctness of the algorithm by considering each of the steps

in turn. To show the correctness of the first step, we prove the following lemma.

60 CHAPTER 4. THE LOGIC RPATL

Lemma 2 supσ�∈Σ�
infσ♦∈Σ♦ Es[rew(r, 0, T)] = ∞ if and only if there is σ� ∈ Σ� such

that for all σ♦ ∈ Σ♦ we have Prs(inf t(arew)) > 0.

Proof. We begin with “⇐” direction. Player �’s strategy σ to ensure that the expected

reward achieved is at least q ∈ R works as follows. Suppose σ� ensures Prs(inf t(arew)) > p

for all σ♦ strategies of player ♦. Since optimal values exist for Büchi games, we can safely

assume that p > 0. The strategy σ mimics strategy σ� if the history λ satisfies r(λ) < q
p·x|S|

where x is the minimal probability that occurs in the game. When r(λ) reaches this bound

and the formula 〈〈C〉〉P>0[F t] is satisfied in the last state of λ, the strategy σ changes its

behaviour and maximises the probability to reach T . Because memoryless deterministic

strategies are sufficient for both players for reachability queries, σ can ensure that T

is reached with probability at least x|S| from the last state of λ. The rest is a simple

computation.

Let us analyse the direction “⇒”. Similarly to the ? = c case, we can show that, if

for every σ� ∈ Σ� there is σ♦ ∈ Σ♦ such that Prs(inf t(arew)) is equal to zero, then there

is σ♦, which ensures that the expected number of visits to a state satisfying arew is finite.

The rest follows as in ? = c; we only need to further consider that if the state satisfies

arew but not P>0[F t] (i.e., it gets non-zero reward but is not labelled with arew), then the

reward achievable by player � in such a state is 0. �

We continue by proving the correctness of the second step of the algorithm by show-

ing that if player � wants to maximise the expected reward with respect to rew(r, 0, T)

choosing only successors, which guarantee maximum probability to reach the target in

each state, he can do so using a memoryless deterministic strategy. Then we show that

this strategy can be played after a certain finite reward (bound B) has been accumulated.

Lemma 3 Let ΣT
� ⊆ Σ� contain all strategies that in all states s ∈ S� use only successors

t ∈ S such that Prmax,min
s (F t) = Prmax,min

t (F t) and for all σ� ∈ ΣT
� and s ∈ S we have

infσ♦∈Σ♦ Prs(F t) = Prmax,min
s (F t). Then there is a memoryless deterministic strategy σ∗� ∈

ΣT
� satisfying:

inf
σ♦∈Σ♦

Eσ
∗
�,σ♦
s [rew(r, 0, T)] = sup

σ�∈ΣT�

inf
σ♦∈Σ♦

Es[rew(r, 0, T)] .

Proof. Assume the game is restricted so that the only successors available in s ∈ S�

are the ones satisfying the lemma condition. We first create a new reward structure r′

defined by r′(s) = r(s) · Prmax,min
s (F t). We show that, for all σ� ∈ ΣT

� and σ♦ ∈ Σ♦ with

Prs(F t) = Prmax,min
s (F t), we have that Es[rew(r′, c, T)] = Es[rew(r, 0, T)], from which the

lemma follows directly, as memoryless deterministic strategies suffice for achieving the

optimal value of rew(r′, c, T).

4.2. MODEL CHECKING 61

Let ΩGC ,s(T)
def
= {λ ∈ ΩGC ,s | ∃i . λi ∈ T}, and t(λ) = mini∈N λi ∈ T . For any strategy

profile σ�, σ♦ such that Prσ�,σ♦s (F t) = Prmax,min
s (F t),

Eσ�,σ♦s [rew(r, 0, T)] =

∫
ΩGC,s

rew(r, 0, T)(λ)dPrs =

∫
ΩGC,s(T)

t(λ)∑
n=0

r(λn)dPrs

=

∫
ΩGC,s(T)

∞∑
n=0

r(λn)dPrs =
∞∑
n=0

∫
ΩGC,s(T)

r(λn)dPrs

=
∞∑
n=0

∑
t∈S

r(t) · Prs(λn= t ∧ λ |=F t)

=
∞∑
n=0

∑
t∈S

r(t) · Prs(λn= t) · Prs(λ |=F t | λn= t)

=
∞∑
n=0

∑
t∈S

r(t) · Prs(λn= t) · Prmax,min
t (F t)

=
∞∑
n=0

∑
t∈S

r′(t) · Prs(λn= t) =
∞∑
n=0

∫
ΩGC,s

r′(λn)dPrs

=

∫
ΩGC,s

rew(r′, c, T)(λ)dPrs = Eσ�,σ♦s [rew(r′, c, T)].

This completes the proof. �

Finally, we prove the existence of the finite bound B on the reward accumulated on the

path, after which it becomes optimal to play the strategy described in the previous lemma.

Given a path h ∈ Ω+
G , we use Es[rew(r, 0, T) | h] to denote the conditional expectation

of rew(r, 0, T) on infinite paths of which h is a prefix, i.e.:

Es[rew(r, 0, T) | h] =

∫
{λ|λ starts with h} r(λ) dPrs

Prs({λ | λ starts with h})
.

Lemma 4 For each state s ∈ S, there exists a finite-memory strategy σ∗ for player �,

which maximises the expected reward rew(r, 0, T) from the state s. In particular, there

exists some bound B such that, for r(h) ≥ B, σ∗(h) becomes memoryless (i.e., as in

Lemma 3).

62 CHAPTER 4. THE LOGIC RPATL

Proof. Fix two strategies σ� ∈ Σ� and σ♦ ∈ Σ♦. For each state s ∈ S and a path

h = s0s1 . . . sn we have that:

Eσ�,σ♦s [rew(r, 0, T) | h] = Eσ
h
�,σ

h
♦

s [rew(r, 0, T) + r(h)]

=

∫
{λ∈ΩGC,s|λ|=F t}

r(h)dPrσ�,σ♦s + Eσ
h
�,σ

h
♦

sn [rew(r, 0, T)]

= Pr
σh�,σ

h
♦

sn (F t) · r(h) + Eσ
h
�,σ

h
♦

sn [rew(r, 0, T)]

where rew(r, 0, T) + r(h) is a random variable assigning rew(r, 0, T)(λ) + r(h) to a path λ

reaching T , and 0 otherwise; and where σhi (h′) = σi(s0s1 . . . sn−1·h′) for i ∈ {�,♦}.

Given a state s ∈ S�, we use PRmax
s to denote the “second” maximal probability to

reach T achievable by a deterministic strategy. Below, without loss of generality we assume

that such successor always exists (i.e., there is always a suboptimal choice with respect to

reaching T). Define:

Bs =
Emax,min
s [rew(r, c, T)]

Prmax,min
s (F t)− PRmax

s

. (4.11)

Let B = maxs∈S Bs. We show that, on paths h ending in s and satisfying r(h) > B, no

optimal strategy of player � can use suboptimal choices and, together with Lemma 3, we

obtain the statement of this lemma.

Let h ·s be a path ending in s ∈ S� and satisfying r(h) > B. Assume σ�(h) determinis-

tically chooses successor t ∈ ∆(s) such that Prmax,min
t (F t) < Prmax,min

s (F t) (for randomised

choices the argument follows analogously). We have that, for any σ♦ ∈ Σ♦:

Eσ�,σ♦s [rew(r, 0, T) | h]

= Pr
σh�,σ

h
♦

s (F t) · r(h) + Eσ
h
�,σ

h
♦

s [rew(r, 0, T)]

≤ PRmax
s · r(h) + Eσ

h
�,σ

h
♦

s [rew(r, 0, T)]

= Prmax,min
s (F t) · r(h)− (Prmax,min

s (F t)− PRmax
s) · r(h) + Eσ

h
�,σ

h
♦

s [rew(r, 0, T)]

< Prmax,min
s (F t) · r(h)− (Prmax,min

s (F t)− PRmax
s) ·B + Eσ

h
�,σ

h
♦

s [rew(r, 0, T)]

≤ Prmax,min
s (F t) · r(h)− Emax,min

s [rew(r, c, T)] + Eσ
h
�,σ

h
♦

s [rew(r, 0, T)]

≤ Emax,min
s [rew(r, 0, T) | h] ,

which contradicts that σ� is optimal. So, the strategy optimising rew(r, 0, T) is of finite-

memory with upper bound B on the memory needed. �

By the equalities from the proof of Lemma 3 and by Lemma 4, the procedure described

in step 2 of the algorithm is correct. The procedure from step 3 of the algorithm is correct

4.3. COMPLEXITY 63

because, for all paths h, we have that:

Es[rew(r, 0, T) | h] =


maxt∈∆(s) Es[rew(r, 0, T) | h · t] if s ∈ S�,

mint∈∆(s) Es[rew(r, 0, T) | h · t] if s ∈ S♦,∑
t∈∆(s) ∆(s, t) · Es[rew(r, 0, T) | h · t] if s ∈ S©.

Summary. In this section we have provided algorithms for rPATL model checking, which

are based on the evaluation of the recursive equations. We will use these algorithms in

the implementation of the PRISM-games model checker, presented in Chapter 6. We have

also analysed memory requirements of the optimal strategies showing that memoryless

strategies are sufficient for coalition players to achieve all but one of the rPATL operators.

We will use these to provide complexity bounds for rPATL model checking in the next

section.

4.3 Complexity

We are now ready to analyse the model checking complexity of rPATL.

Theorem 6 (a) Model checking an rPATL formula with no 〈〈C〉〉Rr./x[F0φ] operator and

where k for the temporal operator U≤k is given in unary is in NP∩coNP. (b) Model

checking an arbitrary rPATL formula is in NEXP∩coNEXP.

Proof. (a) Let ϕ be a rPATL formula with no 〈〈C〉〉Rr./x[F0φ] operator and where k for the

temporal operator U≤k is given in unary. We prove that the problem of deciding whether

the formula is satisfied in s is in NP∩coNP. By equivalences from Equations (4.1), we can

assume that all probabilistic and reward operators only contain bounds ≥ or >, so in the

proof we assume ./∈ {>,≥}.
Let ϕ1, ϕ2, . . . , ϕn be the sequence of all state formulae occurring in ϕ. Also, if ϕi’s

outermost operator is temporal, let Ci denote the outermost coalition in ϕi, and ΣC
j denote

the set of all memoryless deterministic strategies for player j in the coalition game GC (if

the formula contains bounded-until, we expand the model by embedding the steps up to

k into the state and transforming it into unbounded-until; this does not increase the size

of the model since the bound k is given in unary).

We show that the problem is in NP∩coNP by describing a polynomial-size certificate

c that allows us to check that a formula is (not) satisfied. The certificate c is a function

that assigns an element of ΣCi
� ∪ ΣCi

♦ to each tuple (i, s) where s ∈ S and ϕi is a formula

whose outermost operator is temporal. We have the following.

64 CHAPTER 4. THE LOGIC RPATL

• If ϕi ≡ 〈〈C〉〉P./q[ψ] and s |= ϕi, then:

c(i, s) = σ� for σ� ∈ ΣC
� such that infσ♦∈Σ♦ Prs(ψ) ./ q holds.

• If ϕi ≡ 〈〈C〉〉P./q[ψ] and s 6|= ϕi, then:

c(i, s) = σ♦ for σ♦ ∈ ΣC
♦ such that supσ�∈Σ�

Prs(ψ) ./ q does not hold.

• If ϕi ≡ 〈〈C〉〉Rr./x[F?φ] and s |= ϕi, then:

c(i, s) = σ� for σ� ∈ ΣC
� such that infσ♦∈Σ♦ Es[rew(r, ?, Sat(φ))] ./ x holds.

• If ϕi ≡ 〈〈C〉〉Rr./x[F?φ] and s 6|= ϕi, then:

c(i, s) = σ♦ for σ♦ ∈ ΣC
♦ such that supσ�∈Σ�

Es[rew(r, ?, Sat(φ))] ./ x does not hold.

The existence of the strategies assigned by c follows from Theorem 4 and from Lemma 1.

To check the certificate in polynomial time, we compute Sat(ϕ′) for all state subformulae

ϕ′ of ϕ, traversing the parse tree of ϕ bottom-up. Suppose that we are analysing a formula

ϕ′ and that we have computed Sat(ϕ′′) for all state subformulae ϕ′′ of ϕ′. If ϕ′ is an atomic

proposition or its outermost operator is a boolean connective, we construct Sat(ϕ′′) in the

obvious way. Otherwise:

Sat(ϕ′) = {s | c(i, s) is a strategy for player � in the coalition game} .

We verify that our choice of Sat(ϕ′) is correct as follows. For all s ∈ Sat(ϕ′), we construct

an MDP from the appropriate coalition game by fixing the decisions of player � according

to c(i, s), and in polynomial time we check that the minimal probability (or reward) in the

resulting MDP exceeds the bound given by the outermost operator of ϕ′ (see Theorem 4).

If s 6∈ Sat(ϕ′), then we fix the decisions of the second player according to c(i, s) and

proceed analogously, computing the maximal probabilities.

(b) The proof is similar to the one above. We only need to extend the certificate from

the proof to provide a witnessing strategy for formulae of the form 〈〈C〉〉Rr./x[F0φ]. This

is straightforward since, in Lemma 4, we showed that players need only strategies of

exponential size.

In Lemma 4 we showed that, for the optimal strategy, it suffices to play a deterministic

memoryless strategy after a certain reward bound B has been reached and, before that, the

strategy needs to remember only the reward accumulated along the history. Without loss

of generality we assume that rewards are integers, therefore, the strategy in a state may

need a different action for each value of reward below B, and one action for reward, which

is greater or equal to B. So, the overall size of the memory is O(|S|×B). A deterministic

strategy suffices in this case; observe that one could ‘embed’ the memory into the game by

constructing a new game where the set of states is S×{0, . . . , B+ rmax−1}∪{sf} (where

4.4. STRATEGY SYNTHESIS 65

rmax is the maximum reward assigned by a reward structure in a game). The transition

relation is preserved for states (s, k) where k < B, and states (s, k) where k ≥ B have a

transition to sf only. The reward structure r assigns reward R(s,k) to states where k ≥ B,

which can be computed using step 2 of the algorithm for ? = 0, and 0 to all other states.

Then, the deterministic memoryless strategy that maximises rew(r, c, {sf}) in this new

game also is an optimal strategy in the original game (but requiring memory of size B).

The size of B can be at most exponential in the size of GC , i.e., from Lemma 4 it follows

that the size of B for a state s is bounded by

Bs =
Emax,min
s [rew(r, c, T)]

Prmax,min
s (F t)− PRmax

s

.

We claim that all Emax,min
s [rew(r, c, T)], Prmax,min

s (F t) and PRmax
s can be represented as

fractions of integers whose binary representation is polynomial in the size of the input,

from which the bound on the size of Bs follows. For Emax,min
s [rew(r, c, T)] (or Prmax,min

s (F t),

PRmax
s), fixing the optimal strategies for both players we can construct an LP, size of

which is polynomial in the size of input and solution is equal to Emax,min
s [rew(r, c, T)] (or

Prmax,min
s (F t), PRmax

s , respectively). Because the solution of the linear program can be

represented as a fraction of two integers of polynomial binary representations, we get the

claim. Therefore, Bs is at most exponential in the size of G. �

Remark 2 Note that our problem is at least as hard as solving simple stochastic two-

player games, which is known to be in NP∩coNP [48] and for which the existence of

polynomial time algorithms is a long-standing open problem.

4.4 Strategy synthesis

Previously in the chapter we presented the logic rPATL in order to express the properties

of stochastic multi-player games. We also provided the algorithms for model checking the

logic. In this section we take a different perspective on the rPATL specifications. Consider

the rPATL formula 〈〈{controller}〉〉Renergy≤100 [Fc target]. If it evaluates to true in the given

SMG then we have that “player controller has a strategy to ensure that the expected

energy consumption before reaching target is less or equal to 100, for any strategies of the

other players”. But what we may be interested in is to actually obtain the strategy for the

controller, which achieves the given objectives in an SMG, in which the formula is true.

We refer to the problem of obtaining such a strategy for a coalition of players to satisfy a

given rPATL formula as strategy synthesis. In this section we show how to construct the

strategies for coalitions to satisfy the rPATL specifications for SMGs.

66 CHAPTER 4. THE LOGIC RPATL

Before we proceed we note that the strategy synthesis only applies to the coalition-

quantified rPATL formulae 〈〈C〉〉P./x[ψ] and 〈〈C〉〉Rr./x[F?φ]; to construct the strategies we

use the results of the model checking algorithms that were presented in Section 4.2. The

constructions consider the maximisation problem, i.e., we assume ./∈ {≥, >}. The min-

imisation strategies can be constructed in a similar way. To represent the strategies we

use the representation defined in Section 3.4, where strategy σ is modelled as a tuple

σ = 〈M, σu, σn, α〉 whereM is a set of memory elements, σu and σn are the memory up-

date and next move functions, respectively, and α is the initial distribution on the memory

elements.

Probabilities. We provide a winning strategy construction for coalition C in an SMG

G = 〈Π, S, (S©, (Si)i∈Π),∆, AP, χ〉 to satisfy an rPATL formula 〈〈C〉〉P./x[ψ]. The winning

strategies σi = 〈M, σui , σ
n
i , α〉 for i ∈ C are constructed as follows.

• Case ψ = Xφ. M = {m}, and for all s ∈ S and i ∈ C we have σui (m, s) = m,

α(s) = m; and for all states s ∈ Si we have σni (s,m) = t, where t ∈ ∆(s)∩ Sat(φ) if

∆(s) ∩ Sat(φ) is not empty, and any state in ∆(s), otherwise.

• Case ψ = φ1 Uφ2. Let Xs be the value Prmax,min
s (φ1 Uφ2) computed using Equation

(4.3) from Section 4.2.2 representing the maximum probability to satisfy the formula

for each state s. Memory of the strategy contains a single element, M = {m}, and

for all s ∈ S and i ∈ C we have σui (m, s) = m, α(s) = m, and for s ∈ Si we

have σni (s,m) = [t1 7→ 1
n
, . . . , tn 7→ 1

n
], where if T

def
= {t ∈ ∆(s)|Xs ≤ Xt} 6=

∅ then {t1, . . . , tn} = T and {t1, . . . , tn} = ∆(s) otherwise. Intuitively, until the

path satisfies the formula ψ, the strategy randomises uniformly among the optimal

successor states, at least one of which is guaranteed to exist due to monotonicity [48]

of the value iteration from Section 4.2.2 used to compute value Xs. Such a successor

may not exist after the path has satisfied the formula ψ, and in this case, the strategy

simply randomises uniformly among all successors. This can be done since in such

case the probability to satisfy the formula is 1 regardless of any actions of the players.

• Case ψ = φ1 U≤k φ2. Let X0
s , . . . , X

k
s be the values computed using Equations (4.2)

for bounded until from Section 4.2.2 (i.e., X i
s = Prmax,min

s (φ1 U≤i φ2)) representing

the maximum probability to satisfy the formula in i steps for 0 ≤ i ≤ k from each

state s. Memory elements are M = {0, . . . , k} and for all s ∈ S and i ∈ C we

have σui (m, s) = max{m − 1, 0}, α(s) = k, and for s ∈ Si we have σns (s,m) = t

where if m > 0 then t ∈ ∆(s) such that if m > 0 then Xm
s ≤ Xm−1

t , i.e., until the

bound has been reached, the strategy chooses one of the optimal successors, at least

one of which is guaranteed to exist due to monotonicity of the value iteration from

4.4. STRATEGY SYNTHESIS 67

Equations (4.2) used to compute values X0
s , . . . , X

k
s .

Rewards. Now we provide a winning strategy construction for coalition C in an SMG

G = 〈Π, S, (S©, (Si)i∈Π),∆, AP, χ〉 to satisfy an rPATL formula 〈〈C〉〉Rr./x[F?φ] for ? ∈
{0,∞, c}. The winning strategies σi = 〈M, σui , σ

n
i , α〉 for i ∈ C are constructed as follows.

• Case ? = c. Let Xs be the values f(s) computed using Equations (4.7) from

Section 4.2.3 representing the maximum expected reward for each state s. Mem-

ory contains a single element M = {m} and for all s ∈ S and i ∈ C we have

σui (m, s) = m, α(s) = m, and for s ∈ Si we have σni (s,m) = [t1 7→ 1
n
, . . . , tn 7→ 1

n
]

where {t1, . . . , tn} = {t ∈ ∆(s) |Xs − r(s) ≤ Xt}, i.e., the strategy randomises

uniformly among the optimal successors.

• Case ? = ∞. Memory contains one memory element M = {m} and for all s ∈ S
and i ∈ C we have α(s) = m. Memory update function is σui (m, s) = m for all

i ∈ C, and if there exists a strategy from s to reach a target set with probability less

than 1, and hence achieve infinite reward (this is performed by evaluating rPATL

formula 〈〈C〉〉P<1[Fφ], then for s ∈ Si we have σni (s,m) = t where Xs ≥ Xt, and

Xs, Xt are values Prmax,min
s (Fφ),Prmax,min

t (Fφ) computed using Equations (4.3) from

Section 4.2.2. Otherwise, σni (s,m) = arg maxt∈∆(s) Xt, where Xt are the values

f(t) computed by Equations (4.7) from Section 4.2.3. Intuitively, the strategy is

constructed from two strategies, one minimising the probability to reach a target set

and another maximising the expected total reward.

• Case ? = 0. As in Section 4.2.3, for the ease of presentations we assume rewards as-

signed by r are integers. First, let us consider the strategies played in the states

in which an arbitrarily large reward can be achieved, i.e., the states in the set

I from step 1 of the algorithm from Section 4.2.3. Let σb be a memoryless de-

terministic strategy in the Büchi game, which makes sure that a state satisfying

〈〈C〉〉P>0[F t] ∧ arew is visited infinitely often with probability at least pb ≥ p
|S|
min, and

σr be a memoryless deterministic strategy that makes sure that the probability to

reach a target set is at least pr ≥ p
|S|
min from any state in I, where pmin is the minimum

non-zero probability assigned by ∆. Such strategies exist by definition of the set I.

Let B be the bound and R(s,k) be the values computed in step 2 of the algorithm

for 0 ≤ k ≤ B + rmax − 1 by Equations (4.10), and let Xs be the values f(s) for the

expected total reward computed using Equations (4.7) for the reward structure r′.

Memory of all strategies is defined as M = {0, . . . ,max(dx/p3·|S|
min e, B + rmax − 1)}

and for all s ∈ S and i ∈ C we have σui (m, s) = min{m + r(s), B + rmax − 1},

68 CHAPTER 4. THE LOGIC RPATL

α(s) = 0, and if s ∈ I ∩ Si then σni (s,m) = σb(s) if m < dx/p3·|S|
min e and otherwise

σni (s,m) = σr(s); else if s ∈ Si but s 6∈ I then

σni (s,m) =

[t1 7→ 1
n
, . . . , tn 7→ 1

n
] if m < B ,

[r1 7→ 1
m
, . . . , rm 7→ 1

m
] otherwise

where the successor states are {t1, . . . , tn} = {t ∈ ∆(s) |R(s,m) ≤ R(t,m+r(s))} and

{r1, . . . , rm} = {r ∈ ∆(s) |Xs − r(s) ≤ Xr}. Intuitively, strategy σ� for states s ∈ I
plays a Büchi strategy accumulating the required amount of reward before switching

to a strategy which reaches the target set to ‘cash-out’ the reward and satisfy the

property. This amount, after which it can make a switch, is bounded from above

by x/p
3·|S|
min , because once the state s ∈ I is reached and the accumulated reward at

least R = x/(pb · pr), and because R ≤ x/p
2·|S|
min , this guarantees that expectation

is at least x; another factor of p
|S|
min is required to make sure that, if player ♦ plays

sub-optimally from t 6∈ I to take the game into s ∈ I, the expectation is big enough

to be greater than x in the state in which the game started. For the states s 6∈ I,

the strategy plays the strategy following the values of equations from step 3. of

algorithm in Section 4.2.3 and then switches to following the expected total reward

equations after the bound B has been exceeded.

Discussion. In this section we provided methods for strategy synthesis where the strate-

gies can be constructed directly from the results of the (value iteration-based) model check-

ing algorithms from Section 4.2. Strategy constructions provided here can be directly used

to implement and analyse the controllers that satisfy the rPATL specifications. PRISM-

games (see Chapter 6) implements these strategy constructions and, in Section 6.6.3, we

use this functionality to analyse the protocol for user-centric networks.

The advantage of this approach is that strategy synthesis can be performed together

with model checking. Furthermore, after the model checking has been performed, strategy

construction procedure introduces minimal overhead (can be performed in linear time),

except for the cases of bounded-until and reward operator when ? = 0, where the strategy

synthesis requires the storage of intermediate computation results, which would not be

required by otherwise, thus increasing memory requirements. This contrasts with other

strategy construction methods (e.g., policy iteration [28]), which may take the number of

steps exponential in the size of the model.

4.5. RPATL* 69

4.5 rPATL*

In this section, we discuss the logic rPATL*, which extends rPATL in the same way that

PCTL* extends PCTL [14]. In particular, this allows LTL formulae to be provided as

path formulae within the 〈〈C〉〉P./q[ψ] operator. The syntax of rPATL* is given by the

following grammar:

φ ::= > | a | ¬φ | φ ∧ φ | 〈〈C〉〉P./q[ψ] | 〈〈C〉〉Rr./x[F?φ]

ψ ::= φ | ¬ψ | ψ ∧ ψ | Xψ | ψ Uψ

where a ∈ AP , C ⊆ Π, ./∈ {<,≤,≥, >}, q ∈ Q ∩ [0, 1], x ∈ Q≥0, r is a reward structure

and ? ∈ {0,∞, c}.
Similarly to rPATL, we can derive standard temporal operators like Fψ ≡ >Uψ

(“eventually”) and Gψ ≡ ¬F¬ψ (“globally”). The semantics for state formulae are the

same as for rPATL. The semantics for path formulae are as follows. For path λ ∈ ΩG:

λ |= φ ⇔ λ0 |= φ

λ |= ¬ψ ⇔ λ 6|= ψ

λ |= ψ1 ∧ ψ2 ⇔ λ |= ψ1 and λ |= ψ2

λ |= Xψ ⇔ Suffix(λ, 1) |= ψ

λ |= ψ1 Uψ2 ⇔ Suffix(λ, i) |= ψ2 for some i ∈ N
and Suffix(λ, j) |= ψ1 for 0 ≤ j < i .

Examples of rPATL* formulae include:

• 〈〈{1, 3}〉〉P≥1[GF recharge] - “players 1 and 3 have a strategy to make sure that a

recharge state is visited infinitely often with probability 1, no matter what actions

other players take”;

• 〈〈{4}〉〉P>0.5[(G safe) ∧ (FG success)] - “player 4 has a strategy such that, with proba-

bility greater than 0.5, the system ends up and remains in success states, while only

visiting safe states, for any strategies of the other players”.

Example 9 Consider again the team formation game presented in Figure 4.1. rPATL* al-

lows us to express richer properties of paths, for example, formula 〈〈{�,4,♦}〉〉P≥x[(F s5)∧
(F T2)] expresses that players have a strategy to complete task T2 along the paths that visit

s5 with probability at least x. This formula is only true for x ≤ 0.5, and there are two

optimal strategies for the coalition: player � always picks action ‘init-1’, the first time

♦ has a choice, it has to pick ‘join-1’ and 4 has to pick ‘idle’ to make sure the state

70 CHAPTER 4. THE LOGIC RPATL

s5 is visited. In the next round (when the game returns to s2), ♦ can pick any action

(corresponding to the two optimal strategies) and 4 has to select ‘init-2’ to make sure the

task is satisfied. We can also specify liveness properties, for example, the rPATL* formula

〈〈{�,4}〉〉P≥1[(GF s12) ∨ (GF s9)] is true in s0, because no matter what strategy ♦ plays,

� and 4 can make sure that the game either ends in an infinite loop (s12s10)ω or in a

terminal state s9.

Another important use of rPATL* specifications is to impose restrictions on strategies

that players in the coalition can use, e.g., rPATL* formula 〈〈{4,�}〉〉P≥x[(F T1 ∨ T2) ∧
G¬(s5 ∨ s10)] restricts actions that player 4 can take, i.e., he is not allowed to use action

‘idle’ in any of its states, when the coalition is trying to achieve one of the tasks. Simi-

larly, the formula 〈〈{4,�,♦}〉〉P≥x[(X s1)∧ (F (T1 ∨ T2))] forces � to use the failure-prone

initiation mechanism in the first initiation attempt. This formula is only valid for all

x ≤ 0.8, because if failure is experienced during the first initiation, the game terminates

(this happens with probability 0.2), and otherwise players ♦ and 4 can ensure that at

least one of the tasks is achieved with probability 1, by picking actions ‘join-1’ and ‘init-2’,

respectively.

Model checking. We now discuss model checking of the logic rPATL*. This can be

done in a similar fashion to the logic PCTL* for Markov decision processes [14]. Model

checking for an rPATL* formula φ can be performed as follows. Let φ1, φ2, · · · , φn be

a sequence of all (state) subformulae of φ, partially ordered by subsumption and where

φn = φ. We compute Sat(φi) for each subformula φi in turn, starting from φ1. If φi

is an rPATL formula, then we apply the rPATL model checking algorithm described in

Section 4.2.1. Otherwise, it must be of the form 〈〈C〉〉P./q[ψ], where ψ is an LTL formula.

For the latter case, we need to compute the optimal probabilities of satisfying LTL

formula ψ for all states of the coalition game GC and then compare these values with the

bound q. Computing probabilities can be done in the following way. First, we translate

ψ into a deterministic parity automaton with O(22|ψ|) states and O(2|ψ|) indices. Then,

we build the product of the game GC and the deterministic parity automaton, result-

ing in a stochastic two-player game with parity winning conditions. Such games can be

solved using the methods described earlier in Section 3.2.4, where we enumerate all pos-

sible memoryless deterministic strategies. Thus, we can compute the optimal value in

O((|GC |·22|ψ|)2|ψ|) = O(|GC |2
|ψ| ·222|ψ|

) time, which entails that model checking ψ can be

done in 2EXPTIME. Hence, model checking rPATL* is 2EXPTIME-complete (where the

lower bound follows from the fact that model checking LTL formulae for Markov decision

processes is 2EXPTIME-hard [51]).

4.6. REWARD-BOUNDED PROPERTIES 71

4.6 Reward-bounded properties

So far, with rPATL one was able to reason about branching-time properties of paths of

the game and several types of reward. For the reward operators, rPATL can express the

existence of a coalition strategy to achieve a given bound on expected rewards. This does

not, however, rule out the possibility of paths in the game that accumulate arbitrarily

large (or even infinite) rewards, which may be undesirable when modelling resource con-

sumption, because, in practice, the resources are bounded, e.g., a device may have finite

battery capacity. Here, we take different view on the rewards by asking the question:

“does there exist a strategy for the coalition to achieve a given rPATL property using

bounded resources?”. In particular, we extend the syntax of rPATL (see Definition 5)

with the reward-bounded until temporal operator φ1 U r
≤xφ2, where r is a reward structure,

x ∈ Q≥0, and φ1 and φ2 are rPATL state formulae. Satisfaction for a path λ is defined as:

λ |= φ1 U r
≤xφ2 ⇔ there exists k ≥ 0 such that λk |= φ2, λj |= φ1 for

0 ≤ j < k and
∑k

i=0 r(λi) ≤ x.

For example, rPATL formula 〈〈C〉〉P>0.9[>U r
≤100 success] means that coalition C has a

strategy to guarantee that, with probability greater than 0.9, a state satisfying success is

reached whilst consuming no more than 100 units of reward r.

Example 10 Consider the team formation game from Figure 4.1, and the reward function

cost(s15) = cost(s11) = 50, cost(s1) = 5 and cost(s) = 0 for all other states s. The reward-

bounded rPATL formula 〈〈{�,♦}〉〉P≥x[>U cost
≤y T1] expresses that players � and ♦ have a

strategy to make sure that task T1 is completed with probability at least x, while incurring

cost at most y. We also know from Example 7 that, for the standard until, the formula

is valid for any x, i.e., the formula 〈〈{�,♦}〉〉P≥1[>U T1] is true. Now, let us consider

the situation when y = 50, i.e., players are allowed to incur the cost of at most 50. The

formula is true for all x ≤ 0.666597, which is achieved by player � picking ‘init-1∗’ 10

times in a row (and player ♦ picking ‘join-1’). Note that picking ‘init-1’ action would

mean that all resources are used-up in the first step and thus the probability to reach T1 is

0.5. However, if we can allocate more resources to this goal, e.g., set y = 100, the optimal

strategy becomes to pick ‘init-1’ in the first instance and then pick ‘init-1∗’ thereafter. This

strategy achieves the probability of 0.5 + 0.5 · 0.666597 to complete task T1 before running

out of resources.

Model checking. Now, we consider the problem of model checking the reward-bounded

rPATL formulae. In a similar fashion to the bounded until operator (see Section 4.2.2),

72 CHAPTER 4. THE LOGIC RPATL

probabilities for the φ1 U r
≤xφ2 operator can be computed recursively. We have that

Prmax,min
s (φ1 U r

≤xφ2) =



1 if s ∈ Sat(φ2),

0 if s 6∈ (Sat(φ1) ∪ Sat(φ2)),

0 if x < r(s) and s ∈ (Sat(φ1) ∪ Sat(φ2)),

maxt∈∆(s) Prmax,min
t (φ1 U r

≤x−r(s)φ2) if s ∈ S�,

mint∈∆(s) Prmax,min
t (φ1 U r

≤x−r(s)φ2) if s ∈ S♦,∑
t∈∆(s) ∆(s, t) · Prmax,min

t (φ1 U r
≤x−r(s)φ2) if s ∈ S©.

Note that model checking a reward-bounded until operator is equivalent to model-checking

an unbounded until operator on an extended model that encodes the accumulated reward

(up to x) in its state. The state space of the extended model remains finite since rewards

never need to exceed the bound r. This construction allows strategy synthesis to be

performed using the algorithm for unbounded-until on the extended game as described

in Section 4.4.

4.7 Summary

The contributions of this chapter can be summarised as follows.

Logic. We have introduced the temporal logic rPATL and its extensions to specify quan-

titative properties of stochastic multi-player games. The logic combines features of logics

PCTL and ATL to allow reasoning about what the coalitions of players can achieve in

the game. For example, rPATL formula 〈〈{sensor, robot}〉〉Rcost≤95 [F∞ located] states that

“there exists a strategy for a coalition of sensor and robot which can guarantee that the

target has been located with probability 1 and the expected cost incurred is at most 95”.

Algorithms. The model checking is performed via a reduction to a two-player stochastic

game, called a coalition game, where the states belonging to the coalition are assigned to

one player and the remaining states represent the other. The algorithms that we have

devised for model checking rPATL are based on the iterative fixpoint computation, also

known as value iteration, which has proven to work well in practice for other probabilistic

models, including Markov chains and Markov decision processes.

Complexity. We have showed that the problem of model checking rPATL lies in the

complexity class NEXP∩coNEXP, and if one does not consider the reward operator for

type ? = 0 (i.e., rPATL formulae free from subformulae of the form 〈〈C〉〉Rcost./x [F0 φ]) the

model checking problem is in NP∩coNP, due to determinacy and existence of memoryless

4.7. SUMMARY 73

deterministic optimal strategies for the coalition to win the game (whereas reward type

? = 0 requires strategy with memory which is at most exponential in the size of the game).

Synthesis. Often one is not only interested in finding out whether there exists a win-

ning strategy for the coalition to win the game with an objective expressed as rPATL

formula, but to actually obtain the strategies for the players in the coalition. We have

provided algorithms for strategy construction, which can be implemented as controllers

for the players of the game. For example, for the rPATL formula mentioned previously,

〈〈{sensor, robot}〉〉Rcost≤95 [F∞ located], our methods would produce two strategies, one for

player sensor and another for player robot, which, if implemented in the game, would

make sure that, whatever the other players choose to do, the game satisfies the property.

Discussion. The results presented in this chapter are important in several ways. We

provided a specification language extending the logic pATL to support several types of

expected total reward operators to specify quantitative properties of systems, while keeping

the complexity of model checking the logic (with the exception of the Rr./x[F
0 φ] operator)

the same as solving simple stochastic games. This was possible, because of existence of

memoryless deterministic strategies to achieve optimal values (for the Rr./x[F
0 φ] operator,

memory may be required to win). In addition to keeping the complexity the same, we

also provided value iteration algorithms with small memory requirements for all rPATL

operators and also for the extension with the reward-bounded until. The algorithms that

we presented require storing one value per state of the game at any one time, so even for

the operators, which require memory for optimal strategies can be efficiently verified.

Strategy synthesis algorithms that we provided here, use results of the value iteration

algorithms directly to efficiently construct strategies so that the synthesis functionality

could be added to the model checking introducing only small additional overhead (with

the exception of bounded-until and Rr./x[F
0φ], for which we require that the intermediate

results of value iteration are stored, and hence memory requirements are increased).

Finally, note that MDPs are a special case of SMGs, and PCTL properties (as presented

in Section 3.3) can be expressed in rPATL by using an empty set of players in the coalition

operator, e.g., rPATL formula 〈〈∅〉〉Rr./x[F∞φ] is equivalent to PCTL formula 〈〈C〉〉Rr./x[Fφ],

and so model checking algorithms for rPATL can be applied to PCTL model checking

for MDPs as well. For example, the algorithm that we have presented for the Rr./x[F
∞ φ]

operator does not require the pre-processing that involves identification and elimination

of zero-reward end-components before performing value iteration used by PCTL model

checking algorithm presented in [75].

74 CHAPTER 4. THE LOGIC RPATL

Chapter 5

Multi-Objective rPATL

In the previous chapter we presented the logic rPATL that is able to express properties

such as 〈〈{1, 2}〉〉P≥0.5[F target] or 〈〈{1, 2}〉〉Rcost≤10[Fc target], which mean “players 1 and 2

have a strategy to ensure that the probability of reaching target is at least 0.5”, and

“players 1 and 2 have a strategy to ensure that the expected cost before reaching target is

at most 10”, respectively. Such properties are single-objective, because they contain one

operator of the form P./x[ψ] and Rr./x[F
?φ]. In practice, however, one is often interested

in specifying properties of systems involving several objectives. For example, one may be

interested in finding out whether “there exists a strategy for controller, which achieves

probability to reach the target state of at least 0.99 while simultaneously having expected

energy consumption at most 100 units”. rPATL is not able to express such properties. 1

Also, each agent in a coalition may have its own objective and one would like to specify

that “coalition of agents A and B have a joint strategy which ensures that probability to

reach a goal of A is at least 0.5 and the probability to reach a goal of B is at least 0.9”.

In this chapter we present multi-objective rPATL, a generalisation of the logic rPATL,

which allows us to specify properties containing multiple objectives, for example, the

property 〈〈{controller}〉〉(P≥0.99[F target] ∧ Renergy≤100 [Fc target]) expresses the aforementioned

goal that “player controller has a strategy to ensure that a target state is reached with

probability 0.99 and the expected energy consumption is less than or equal to 100, for

any strategies of other players.” Note that this formula is not equivalent to the rPATL

formula 〈〈C〉〉P≥0.99[Fφ]∧〈〈C〉〉Renergy≤100 [Fcφ], which expresses that coalition C has a strategy

to achieve the first objective and also has the strategy to achieve the second objective, but

does not imply that there exists a strategy which achieves both of them at the same time.

Similarly, we can express the second example with the multi-objective rPATL formula

〈〈{A,B}〉〉(P≥0.5[F GA]∧P≥0.9[F GB]), where GA and GB represent the goals of agents A and

1With the exception of the operator Rr
≤x[F∞φ], the semantics of which implies that the goal is satisfied

if and only if the probability to reach φ is 1 and expected reward is ≤ x.

75

76 CHAPTER 5. MULTI-OBJECTIVE RPATL

B, respectively.

Multi-objective rPATL permits formulae to contain a boolean combination of conjunc-

tions and disjunctions of probability and expected total reward objectives. We show in this

chapter that multi-objective rPATL model checking problem is considerably more difficult

than rPATL: the games are not determined already for a conjunction or disjunction of two

objectives; optimal strategies for the coalition, if such exist, may require randomisation

and infinite memory to satisfy a multi-objective rPATL formula; the model checking prob-

lem is PSPACE-hard already for a conjunction of terminal state reachability goals, and is

undecidable if the coalition is restricted to deterministic strategies. 2 Nevertheless, for a

class of stopping games we provide model checking algorithms that can approximate the

answer up to a specified precision, i.e., consider again the multi-objective rPATL formula

〈〈{controller}〉〉(P≥0.99[F target] ∧ Renergy≤100 [F target]): given precision ε > 0, if the algorithm

returns true then there exists a strategy for controller to achieve the probability to reach

target at least 0.99−ε and the expected energy consumption at most 100+ε; and if the

algorithm returns false, then there does not exist a strategy for the controller achiev-

ing probability 0.99+ε and energy consumption of at most 100−ε. As for rPATL, the

algorithms that we provide are based on value iteration.

The chapter is structured as follows. We start by defining the syntax and semantics

of multi-objective rPATL in Section 5.1, then we present model checking algorithms in

Section 5.2. Section 5.3 is dedicated to the complexity analysis, where we discuss the

nondeterminacy of the games, strategy memory requirements, and several complexity

bounds for the multi-objective rPATL model checking. In Section 5.4 we show how to,

using the results of approximation algorithms, construct the winning strategies for the

coalition. Finally, we consider multi-objective variant of the logic rPATL* in Section 5.5,

before summarising the chapter in Section 5.6.

The technical parts of this chapter are largely based on the results published in [39], [42]

and [40]. The results for computing the expected total reward, presented in Section 5.2,

are based on [40]; determinacy and non-existence of optimal strategy results of Section 5.3

have been presented in [39] and memory requirements and complexity analysis is based

on [40]; the results of Sections 5.5 and 5.4 for strategy construction and multi-objective

rPATL* have been adapted from [42].

5.1 Syntax and semantics

We begin by providing the syntax and semantics for the multi-objective version of rPATL.

2The decidability of the model checking problem for general strategies remains open.

5.1. SYNTAX AND SEMANTICS 77

Definition 9 (Multi-objective rPATL) The syntax of the multi-objective rPATL is

given by the following grammar:

φ ::= > | a | ¬φ | φ ∧ φ | 〈〈C〉〉θ

θ ::= P./q[ψ] | Rr./x[F
cφ] | θ ∧ θ | θ ∨ θ | ¬θ

ψ ::= Xφ | φU≤k φ | φUφ

where a ∈ AP , C ⊆ Π, ./∈ {<,≤,≥, >}, q ∈ Q ∩ [0, 1], x ∈ Q, and the reward structure

r is either r : S → Q≥0 or r : S → Q≤0.

Multi-objective rPATL extends the logic rPATL by allowing a boolean combination of ob-

jectives to appear within the coalition operator. We include only one type of the reward op-

erator Rr./x[F
cφ] representing the expected total reward. The type of reward operator where

?=∞ can be expressed in multi-objective rPATL, e.g., Rr≤x[F
∞φ] ≡ (P≥1[Fφ] ∧ Rr≤x[F

cφ]).

We choose not to include ?=0 due its high model checking complexity already for the

(single-objective) rPATL. As a technical convenience, we allow reward structures to be

either non-negative (r : S → Q≥0) or non-positive (r : S → Q≤0). The reason for this is

that, as we show later in Section 5.3, the games with multi-objective rPATL goals are not

determined, and hence we cannot define the equivalent of Equations (4.1) for rPATL by

swapping the coalition to its complement in order to convert a minimisation problem into a

maximisation one (i.e., ≤ to≥ and < to >). Instead, we perform such conversion by chang-

ing the sign of the reward structure and the bound, i.e., 〈〈C〉〉Rr≤x[Fcφ] ≡ 〈〈C〉〉R−r≥−x[Fcφ].

Semantics

We define the semantics of the multi-objective rPATL for a stochastic multi-player game

G = 〈Π, S, (S©, (Si)i∈Π),∆, AP, χ〉 as follows. For boolean connectives and path formulae

the semantics is the same as for rPATL (see Definition 8). The semantics of the 〈〈C〉〉θ
operator is defined via the coalition game GC (see Definition 7) as follows. For each state

s ∈ S of the game G we have s |= 〈〈C〉〉θ if and only if in the coalition game GC there

exists a strategy σ� ∈ Σ� for player � such that, for all strategies σ♦ ∈ Σ♦ of player ♦

we have that the boolean combination of objectives, θ, evaluates to true. Every objective

that appears in θ evaluates to true if it is P./q[ψ] and Prs(ψ) ./ q or if it is Rr./x[F
cφ] and

Es[rew(r, Sat(φ))] ./ x and to false otherwise, where rew(r, Sat(φ))
def
= rew(r, c, Sat(φ)).

Some example multi-objective rPATL formulae are listed below.

• 〈〈{printer, assembler}〉〉(P≥1[F item]∧Rcost≤50[Fc item]∧Rquality≥100 [Fc item]) – “printer and

assembler have a joint strategy to produce an item with probability 1 at an expected

cost at most 50 and expected quality at least 100.”

78 CHAPTER 5. MULTI-OBJECTIVE RPATL

• 〈〈{robot1, robot2}〉〉(P≥1[F target] ∨ (P≥0.9[F target] ∧ Renergy≤50 [Fc target])) – “robots 1

and 2 have a strategy that either locates the target with probability 1, or locates the

target with probability at least 0.9 but has expected energy expenditure of at most

50.”

We refer to multi-objective rPATL restricted to conjunctions only within 〈〈C〉〉θ operator

as conjunctive rPATL, and the variant restricted to disjunctions only is referred to as

disjunctive rPATL.

Additional notions

Before presenting the main results of the chapter we introduce some notions that we use

throughout. Given a vector ~x ∈ Rn, we use xi to refer to its i-th component, where

1 ≤ i ≤ n, and define the norm ‖~x‖ def
=
∑n

i=1 |xi|. Given a number y ∈ R, we use ~x± y to

denote the vector (x1±y, x2±y, . . . , xn±y). Given two vectors ~x, ~y ∈ Rn, the dot product

of ~x and ~y is defined by ~x · ~y =
∑n

i=1 xi · yi, and the comparison operator ≤ on vectors is

defined to be the elementwise ordering. The sum of two sets of vectors X, Y ⊆ Rn is defined

by X+Y = {~x+~y | ~x ∈ X, ~y ∈ Y }. Given a set X, we define the downward closure of X as

dwc(X)
def
= {~y | ∃~x ∈ X . ~y ≤ ~x} and the upward closure as up(X)

def
= {~y | ∃~x ∈ X .~x ≤ ~y},

and convex closure as conv(X)
def
= {~z | ∃α ∈ [0, 1] .∃~x, ~y ∈ X .~z = α · ~x + (1 − α) · ~y}.

We denote by R±∞ the set R ∪ {∞,−∞}, and we define the operations · and + in the

expected way, defining 0 · x = 0 for all x ∈ R±∞ and leaving −∞+∞ undefined. We also

define the function sign(x) : R±∞ → N to be 1 if x > 0, −1 if x < 0 and 0 if x = 0.

Parametrised formulae. We introduce the parametrised notation for multi-objective

rPATL formulae, denoted by ϕ(~r,~v) where ~r is a vector of reward functions and ~v is a vector

of bounds that appear in the formula, e.g., ϕ(~r,~v) = 〈〈C〉〉(Rr1≥v1
[Fcgoal] ∧ P≤v2 [F failure])

or ϕ(~r,~v) = 〈〈C〉〉(
∧n
i=1 Rri≥vi [F

c⊥]). We assume that each element of ~r and ~v of ϕ(~r,~v) =

〈〈C〉〉θ appears at most once in the formula θ. We also assume that formula θ contains

no negations, these can be easily removed by switching the comparison operator, e.g.,

¬P≥v[Fφ] ≡ P<v[Fφ]. If the query does not contain reward operators, we omit ~r and

use ϕ(~v) only. We also use dir(~v) = (d1, . . . , dn) where di denotes the “direction” of the

objective, where di = 1 if the objective in which vi appears is maximisation (i.e., ≥ or >),

and di = −1 if the objective in which vi appears is minimisation (i.e., ≤ or <), e.g., for

ϕ(~r,~v) = 〈〈C〉〉(Rr1≥v1
[Fcgoal] ∧ P≤v2 [F failure]) we have dir(~v) = (1,−1).

Pareto sets. Given an SMG G and a multi-objective rPATL formula ϕ(~r,~v) we say that

a vector ~v is a Pareto vector for a vector of reward functions ~r if and only if for all ε > 0

we have that ϕ(~r,~v − ε · dir(~v)) is true and ϕ(~r,~v + ε · dir(~v)) is false. The Pareto set is

5.1. SYNTAX AND SEMANTICS 79

the set of all such vectors ~v. Given ε > 0, an ε-approximation of a Pareto set is the set

of vectors Q satisfying that, for any ~w ∈ Q, there is a vector ~v in the Pareto set such

that ‖~v − ~w‖ ≤ ε, and for every ~v in the Pareto set there is a vector ~w ∈ Q such that

‖~v − ~w‖ ≤ ε.

Optimal and ε−optimal strategies. Given an SMG G and a multi-objective rPATL

formula ϕ(~r,~v) = 〈〈C〉〉θ we say that optimal strategies exist for coalition C for the query

if, for every point ~v in its Pareto set, ϕ(~r,~v) is true; and we say that ε−optimal strategies

exist if for every such point and for all ε > 0 the formula ϕ(~r,~v − ε · dir(~v)) is true. Note

that ε−strategies exist for all points in the Pareto set by definition.

Vector reward functions. We extend the notion of reward function to vectors. Given

a multi-objective rPATL formula ϕ(~r,~v), for a state s ∈ S we define a vector reward

structure by ~r(s) = (r1(s), . . . , rn(s)), where n is the length of ~r. We can now define a

vector reward function for a path λ ∈ ΩG and a set of target states T ⊆ S of the SMG

G by rew(~r, T)(λ)
def
=
∑k−1

j=0 ~r(λj) where k = min{j |λj ∈ T}. The expected reward from

state s ∈ S of G under a strategy profile σ0, . . . , σn is the expected value of this reward

function, i.e., Eσ0,...,σn
s [rew(~r, T)].

Example 11 In this example we show how the multi-objective rPATL can be used to

analyse the SMG from Figure 4.1. Consider the rPATL formula 〈〈C〉〉P≥1[>U T1] from

Example 7 which is satisfied for coalition C = {�,♦} in state s0. Now if we want also

to bound the resources used to complete the task (modelled by the ‘cost’ reward function,

where cost(s15) = cost(s11) = 50 and cost(s1) = 5), we can express this in multi-objective

rPATL as 〈〈C〉〉(P≥1[F T1]∧Rcost≤50[Fc T1]). This formula no longer holds for C = {�,♦}. To

see this first observe that player � cannot take action ‘init-1∗’ and player ♦ cannot take

action ‘idle’ because the first objective would fail, and player 4 can always take action

‘idle’ in a state s3, making sure that, in order to satisfy the objective P≥1[F T1], player �

has to take action ‘init-1’ every time the game returns to s0, and thus the expected value

for cost is 50 + 0.5 · 50 + 0.52 · 50 + · · · = 100. The grand coalition (i.e., C = {�,♦,4}) is

required to achieve the formula, because 4 can take action ‘init-2’ in s3 making sure that

the objective P≥1[F T1] is satisfied in 4 steps using exactly 50 units of the resource ‘cost’

and thus satisfying the objective Rcost≤50[Fc T1] as well.

We note that resource bounding using multiple objectives is not the same as using the

reward-bounded until discussed in Section 4.6, for example, multi-objective rPATL formula

〈〈{�,♦}〉〉(P≥1[F T1]∧Rcost≤100[Fc T1]) holds in s0, but 〈〈{�,♦}〉〉P≥1[>U cost
≤100T1] does not. This

is because the reward-bounded until does not allow to accumulate more than 100 of reward

‘cost’ along any path (hence, explicitly bounding the expectation), which is not restricted

by the reward objective Rcost≤100[Fc T1].

80 CHAPTER 5. MULTI-OBJECTIVE RPATL

Also, in multi-objective rPATL we can consider several reward functions in the same

formula. Let us define a reward function representing the number of steps to termination

of the game, i.e., steps(s) = 1 is s 6∈ Term. Now we can use this to relax the multi-objective

formula considered earlier so that the restriction on resources only applies if the expected

number of steps executed by the protocol is less than 6, and otherwise it is ignored; this

can be expressed by the following multi-objective rPATL formula: 〈〈{�,♦}〉〉(P≥1[F T1] ∧
(Rcost≤50[Fc T1] ∨ Rsteps>5 [Fc⊥])). Suppose players � and ♦ always play actions ‘init-1’ and

‘join-1’, respectively (to make sure that P≥1[F T1] is satisfied). When the game reaches s3,

if player 4 chooses action ‘init-2’, then the expected cost is exactly 50 and thus objective

Rcost≤50[Fc T1] is true; if he chooses action ‘idle’, then the expected cost becomes greater than

50, but, at the same time, the expected number of steps becomes greater than 5 and thus

the objective Rsteps>5 [Fc⊥] is satisfied. So, no matter which strategy 4 picks, one of the

objectives in the disjunction is satisfied, in addition to the reachability objective, and thus

the formula holds in s0.

Finally, we consider the parametric variant of the formula in a game starting from s0:

ϕ(~v) = 〈〈{�,♦}〉〉(P≥v1 [F T1]∧ Rcost≤v2
[Fc T1]). The Pareto set for the values of ~v is shown in

Figure 5.1a. For any vector ~u in the area shaded in grey (including the black line), the

(a) 〈〈{�,♦}〉〉(P≥v1 [FT1] ∧ Rcost≤v2
[Fc T1]) (b) 〈〈{�,♦}〉〉(P≥v1 [FT1] ∧ R−cost≥−v2

[Fc T1])

Figure 5.1: Pareto sets for multi-objective rPATL formulae. Horizontal axis represents
values for v1 and vertical one represents values for v2 (−v2 in (b)).

formula ϕ(~u) is true, i.e., players � and ♦ have a strategy to guarantee (at least) such

a trade-off between objectives. Conversely, for any vector outside this set the formula is

false, i.e., player 4 has a counter-strategy to any strategy proposed by the coalition of �

and ♦.

We use the computation of such sets as a key tool for multi-objective rPATL model

5.2. MODEL CHECKING 81

checking. The algorithms that we develop in this chapter require the sets to be convex and,

in order to achieve this, we use negative rewards. For example, the multi-objective rPATL

formula ϕ(~v) presented above is equivalent to the formula ϕ′(~v) = 〈〈{�,♦}〉〉(P≥v1 [F T1] ∧
R−cost≥−v2

[Fc T1]), where the ‘cost’ reward function is replaced by the one which negates it, and

the bound is also made negative (see Section 5.2 for a detailed discussion). The Pareto

set for such formula is convex and is shown in Figure 5.1b.

5.2 Model checking

In this section we present model checking algorithms for the multi-objective rPATL, which

guarantee correctness of the result up to a specified precision. We restrict the class of

games considered to stopping SMGs, i.e., the games that end up in a terminal state with

probability 1 for any strategy profile of the players (see Section 3.1.3 for discussion about

stopping games).

The general model checking algorithm is the same as for single-objective rPATL (see

Section 4.2.1). The only difference is in the evaluation of the operator 〈〈C〉〉θ, for which we

also need to solve a coalition game, but this time with multiple objectives. This section

focuses on model checking of this operator.

The high-level strategy for model checking the operator 〈〈C〉〉θ is similar to the one for

(single-objective) rPATL. In the algorithms for rPATL, we computed the optimal values

for probability and expected reward in the coalition game and then compared them to the

given bound. For multi-objective rPATL we compute the Pareto sets for the objectives in

the formula, and then check whether there is a point in this set, which makes the formula

true.

The remainder of the section is structured follows. We begin by showing, in Sec-

tion 5.2.1, that model checking of 〈〈C〉〉θ in a game G can be reduced to model checking

of a formula 〈〈C〉〉θ′ in a game G ′ where θ′ contains only objectives that maximise the

expected total reward with no target states, i.e., of the form Rr≥x[F
c⊥] or Rr>x[F

c⊥]; and

hence, in the following sections we can focus on model checking formulae in this form.

In Section 5.2.2 we establish the relationship between the strategies for multi-objective

rPATL and conjunctive rPATL that allows us to combine the model checking algorithms

for conjunctive and disjunctive rPATL to obtain the approximation algorithm for model

checking general multi-objective rPATL. We present these algorithms in Section 5.2.3.

82 CHAPTER 5. MULTI-OBJECTIVE RPATL

5.2.1 Reduction to maximisation of expected reward

In this section we show that model checking 〈〈C〉〉θ in a game G can be reduced to model

checking of formula 〈〈C〉〉θ′ in a game G ′ where θ′ contains only expected total reward

objectives with no target states, i.e., of the form Rr.x[F
c⊥], where . ∈ {≥, >}. We present

four steps, which can be successively applied to perform the construction of G ′ and θ′:

1. Replace Rr./x[F
cφ] with Rr

′
./x[F

c⊥];

2. Replace P./x[ψ] with Rr./x[F
c⊥];

3. Replace ¬Rr./x[F
cφ] with Rr./′x[F

c⊥];

4. Replace Rr/x[F
c⊥] with Rr

′

.x′ [F
c⊥], where / ∈ {≤, <} and . ∈ {≥, >}.

We now proceed with describing the transformation steps.

“Rr./x[F
cφ] to Rr

′
./x[F

c⊥]”

We start by showing how to, given a game G and a multi-objective rPATL formula 〈〈C〉〉θ
containing the Rr./x[F

cφ] operator, to construct a game G ′ and a formula 〈〈C〉〉θ′ where

Rr./x[F
cφ] is replaced by Rr

′
./x[F

c⊥]. Let us define G ′ as follows. Let S ′ = {(s, I) | s ∈
S and I ∈ {0, 1}}, where (s, I) is assigned to the player that controlled state s in G.

The set of atomic propositions remains the same (i.e., AP ′=AP) and the labelling func-

tion is defined by χ′((s, I)) = χ(s). The transition function ∆′ is defined as follows.

∆′((s, I), (s′, I ′)) = x whenever the conditions below are satisfied:

• ∆(s, s′) = x;

• if s ∈ Sat(φ) and I = 0 then I ′ = 1;

• if s 6∈ Sat(φ) and I = 0 then I ′ = 0;

• if I = 1 then I ′ = 1.

For all other values ∆′ returns 0. The reward function r′ is defined by r′((s, I)) = 0 if

s ∈ Sat(φ) or I = 1, and r′((s, I)) = r(s) otherwise. The above construction ensures that,

when starting from (s, 0), the reward is accumulated only until the state satisfying φ is

reached and, from then on, no reward is accumulated. It follows from the correspondence

of strategies between the two games that, for a state s of G, 〈〈C〉〉θ is satisfied if and only

if 〈〈C〉〉θ′ is satisfied in state (s, 0) of G ′.

5.2. MODEL CHECKING 83

“P./x[ψ] to Rr./x[F
c⊥]”

We continue by showing how to, given a game G and a multi-objective rPATL formula

〈〈C〉〉θ containing P./x[ψ] operator, construct a game G ′ and formula 〈〈C〉〉θ′ where P./x[ψ]

is replaced by Rr./x[F
c⊥]. Let us define G ′ as follows. Let S ′ = {(s, I, J) | s ∈ S and I, J ∈

{0, 1}}, where (s, I, J) is assigned to the player that controlled state s in G. The set of

atomic propositions remains the same (i.e., AP ′=AP) and labelling function is defined by

χ′((s, I, J)) = χ(s). There are two cases to consider for the transition function.

1. If ψ = Xφ, then transition function ∆′ is defined as follows. ∆′((s, I, J), (s′, I ′, J ′)) =

x whenever the conditions below are satisfied:

• ∆(s, s′) = x;

• I ′ = 1;

• if I = J = 0 and s′ ∈ Sat(φ) then J ′ = 0 else J ′ = 1.

For all other values ∆′ returns 0.

2. If ψ = φ1 Uφ2, then ∆′ is defined as follows. ∆′((s, I, J), (s′, I ′, J ′)) = x whenever

the following conditions hold:

• ∆(s, s′) = x;

• if I = J = 0 and s′ ∈ Sat(φ2), then I ′ = 1 and J ′ = 0;

• if I = J = 0 and s′ 6∈ Sat(φ1) ∪ Sat(φ2) then I ′ = J ′ = 1.

• if I = J = 0 and s′ 6∈ Sat(φ2) and s′ ∈ Sat(φ1) then I ′ = J ′ = 0;

• if I 6= 0 or J 6= 0 then I ′ = J ′ = 1.

3. For ψ = φ1 U≤k φ2 we assume that the step counter has been embedded in the

state space and the formula has been transformed into the unbounded-until as in

Section 4.3, and hence the transformation of step 2 can be applied.

The reward function r is defined by r(s, I, J) = 1 if I = 1 and J = 0, and otherwise

r(s, I, J) = 0. For a state s of G, 〈〈C〉〉θ is satisfied if and only if 〈〈C〉〉θ′ is satisfied in

(s, 0, 0) of G ′. To see this it suffices to observe that, due to the constructions above, the

reward function r assigns reward 1 to the state in G ′ if and only if the formula ψ is satisfied

for the first time and assign 0 otherwise.

84 CHAPTER 5. MULTI-OBJECTIVE RPATL

“¬Rr./x[F
cφ] to Rr./′x[F

c⊥]”

We can remove the negation by switching the direction of optimisation, i.e., we have

¬Rr≥x[F
cφ] ≡ Rr<x[F

cφ], ¬Rr>x[F
cφ] ≡ Rr≤x[F

cφ], ¬Rr≤x[F
cφ] ≡ Rr>x[F

cφ] and ¬Rr<x[F
cφ] ≡

Rr≥x[F
cφ].

“Rr/x[F
cφ] to Rr

′

.x′ [F
cφ]”

To perform the transformation, we use the change of sign for the reward function and the

bound. If 〈〈C〉〉θ contains an objective Rr≤x[F
cφ], we can replace it by a goal Rr

′

≥x′ [F
cφ],

where x′ = −x and the reward function is defined by r′(s) = −r(s). The above con-

struction can be performed because, for any strategy profile of the players, we have

that Es[rew(~r, Sat(φ))] ≤ x ≡ −Es[rew(~r, Sat(φ))] ≥ −x ≡ Es[rew(~r, Sat(φ))] ≥ −x =

Es[rew(~r, Sat(φ))] ≥ x′. The same construction can be applied for the strict inequalities.

Remark 3 Note that the transformation provided above may cause the number of states

in the resulting game G ′ to be of the order O(|S|·2n) where S is the set of states in the

original game G and n is the number of objectives in 〈〈C〉〉θ. This effect, however, is already

observed for the multi-objective optimisation of non-terminal state reachability in Markov

decision processes [57].

5.2.2 Reduction to conjunctive rPATL

In this section we consider model checking of the multi-objective rPATL formulae ex-

pressed in the positive conjunctive normal form (CNF), i.e., formulae having the form

〈〈C〉〉
∧n
i=1

∨m
j=1 R

qi,j
.i,jui,j [F⊥], where .i,j ∈ {≥, >}. Note that, using the transformations

from the previous section together with standard rules of propositional logic, any multi-

objective rPATL formula can be transformed into one in such form. In order to conve-

niently reference the reward functions and bounds of the formula expressed in CNF as

above we introduce a few notations. Since we only consider approximation algorithms

here, we assume that formula contain only non-strict inequalities (i.e., ≥). For a vector ~v

we denote by vi,j its v(i−1)n+jth element. Also by ~vi we denote the sub-vector (vi,1, . . . , vi,m)

of ~v. The latter corresponds to a vector of reward functions or bounds within a single

conjunct. The results presented in this section have been published in [40].

The aim of this section is to prove the following theorem.

Theorem 7 Given a stochastic multi-player game G and a multi-objective rPATL formula

ϕ(~q, ~u) = 〈〈C〉〉
∧n
i=1

∨m
j=1 R

qi,j
≥ui,j [F

c⊥], let σ� be a strategy of player � in coalition game

GC. The following two conditions are equivalent.

5.2. MODEL CHECKING 85

• The strategy σ� achieves ϕ(~q, ~u).

• For all ε > 0 there are non-zero vectors ~x1, . . . ~xn ∈ Rm
≥0, such that σ� achieves

ϑ(~r,~v) = 〈〈C〉〉
∧n
i=1 Rri≥vi [F⊥], where ri(s) = ~xi · ~qi(s) and vi = ~xi · (~ui − ε) for all

1 ≤ i ≤ n.

Before presenting the proof of the theorem we discuss how it can be used to design

the approximation algorithm for multi-objective rPATL model checking. Let us assume

that we have an algorithm that can compute the Pareto set for the formula ϑ(~r,~v) =

〈〈C〉〉
∧n
i=1 Rri≥vi [F⊥] (this algorithm is presented in the next section). Let Q be this Pareto

set. Then, every combination of vectors ~x1, . . . ~xn ∈ Rm
≥0 provides us with the set of vectors

U~x1,...~xn
def
= {~v ∈ Qn×m

≥0 | ∃ ~d ∈ Q .∀ 0 ≤ i ≤ n . ~xi · ~vi ≤ di}, such that for every vector ~v in

this set, we have that ϕ(~q,~v) = 〈〈C〉〉
∧n
i=1

∨m
j=1 R

qi,j
≥vi,j [F⊥] is satisfied. The more vectors

different combinations of vectors we take, the more Pareto points we obtain, and, as we

show in the next section, we can construct a set X containing combinations of vectors

~x1, . . . ~xn ∈ Rm
≥0 such that a set

⋃
~x1,...~xn∈X U~x1,...~xn is an ε−approximation of the Pareto

set for ϕ(~q,~v). So, effectively, Theorem 7 enables us to approximate the Pareto set for

any multi-objective rPATL formula with the algorithm computing the Pareto set for the

conjunctive rPATL.

In order to prove Theorem 7 we use the following reformulation of the separating

hyperplane theorem.

Lemma 5 Let W ⊆ Rm
±∞ be a convex set satisfying the following. For all j, whenever

there is ~x ∈ W such that sign(xj) ≥ 0 (resp. sign(xj) ≤ 0), then sign(yj) ≥ 0 (resp.

sign(yj) ≤ 0) for all ~y ∈ W . Let ~z ∈ Rm be a point which does not lie in the closure of

up(W). Then there is a non-zero vector ~x ∈ Rm such that the following conditions hold.

1. For all 1 ≤ j ≤ m we have xj ≥ 0.

2. For all 1 ≤ j ≤ m, if there is ~w ∈ W satisfying wj = −∞, then xj = 0.

3. For all ~w ∈ W , the product ~w · ~x is defined and satisfies ~w · ~x ≥ ~z · ~x.

Proof. Let I ⊆ {1, . . . ,m} be the set of indices such that all ~w ∈ W satisfy sign(wi) ≤ 0.

Let U be the closure of up(W) ∩ Rm. If U = ∅, then we define ~x by xi = 0 if i ∈ I and

xi = 1 otherwise. For any ~w ∈ W , we have

~w · ~x =
∑
i∈I

wi · xi +
∑
i 6∈I

wi · xi

where the left summand is 0. We argue that the right summand must be positive. Suppose

otherwise, then it must be the case that all wi for i 6∈ I are real numbers. But then we

86 CHAPTER 5. MULTI-OBJECTIVE RPATL

can replace any −∞ in ~w by any real number, and get a vector which by the definition

lies in U , contradicting the property that U = ∅.

Suppose U 6= ∅. Note that U is convex and let τ > 0 be the smallest number such that

~z + τ lies in the closure of U . Denote ~̄z := ~z + τ . By the separating hyperplane theorem

[64], there is some non-zero vector ~y ∈ Rm, s.t., for all ~w ∈ U , we have ~w · ~y ≥ ~̄z · ~y.

We show that the vector ~y satisfies the condition 1, i.e., that all components of ~y are

non-negative. Assume, for the sake of contradiction, that for some 1 ≤ j ≤ m we have

yj < 0. Let ~w be any point from U . Let d = ~w · ~y − ~̄z · ~y, and let ~w′ be the vector which

is obtained from ~w by replacing jth coordinate with wj + d+1
−yj . Since d+1

−yj is positive and

U is upwards closed in Rm
±∞, we have ~w′ ∈ U . So, since ~̄z · ~y ≤ ~w′ · ~y, we have

~w′ · ~y =
∑
h

w′h · yh =
d+ 1

−yj
· yj +

∑
h

wh · yh

= −(d+ 1) + ~w · ~y = ~̄z · ~y − 1,

which is a contradiction.

Let ε := ~̄z · ~y − ~z · ~y, we have ε > 0. We define ~x by putting xi = yi for i ∈ I, and

xi = yi + ε
|
∑m
j=1 zj |+1

for i 6∈ I. Because ~y ≥ 0, the vector ~x satisfies the condition 1. We

show that ~x satisfies the condition 2. of the lemma. Let L ⊆ {1, . . . ,m} be the set of

indices such that l ∈ L if and only if there is ~u ∈ W with ul = −∞. Note that L ⊆ I.

Since xl = yl for all l ∈ L, it suffices to show that yl = 0 for all l ∈ L. If L = ∅, there

is nothing we need to prove. Otherwise, because W is convex, there is a vector ~u ∈ W
with ul = −∞ for all l ∈ L, and so for arbitrary α ∈ Rm the set U contains the vector ~uα

defined by uαl = ul if l ∈ L and uαl = α otherwise. Then limα→−∞ ~x · ~uα = −∞ if yl > 0

for any l ∈ L, contradicting that ~y · ~uα ≥ ~y · ~z for all α.

Finally, we prove the condition 3. of the lemma. Let ~w ∈ W . The product ~w · ~x is

defined by the condition 2. of the lemma. Also,

~w · ~x =
∑
i∈I

wi · xi +
∑
i 6∈I

wi · xi =
∑
i∈I

wi · yi +
∑
i 6∈I

wi · (yi +
ε

|
∑m

j=1 zj|+ 1
)

= ~w · ~y +
∑
i 6∈I

wi ·
ε

|
∑m

j=1 zj|+ 1

≥ ~w · ~y ≥ ~̄z · ~y = ~z · ~y + ε

=
(∑

i∈I

zi · xi +
∑
i 6∈I

zi · (xi −
ε

|
∑m

j=1 zj|+ 1
)
)

+ ε

= ~z · ~x−
(∑

i 6∈I

zi
ε

|
∑m

j=1 zj|+ 1

)
+ ε ≥ ~z · ~x.

5.2. MODEL CHECKING 87

where the first inequality follows because all wi are positive for i 6∈ I. �

Proof of Theorem 7. We are now in the position to prove the main theorem. Consider

the coalition game GC and fix player � strategy σ� ∈ Σ�. For the “⇒” direction, for

all 1 ≤ i ≤ n define Rs[i]
def
= {~y ∈ Rm

±∞ | ∃σ♦ ∈ Σ♦ .Es[rew(~qi, ∅)] = ~y}. Fix ε > 0

and 1 ≤ i ≤ n. Because σ� achieves ϕ(~u, ~q) it must also achieve 〈〈C〉〉(
∨m
j=1 R

qi,j
≥ui,j [F⊥]).

Hence, for every ~y ∈ up(Rs[i]) there is a j satisfying yj > ui,j − ε
2
, and so ~ui − ε

2
6∈ Rs[i].

By Lemma 5, since ~ui − ε is not in the closure of up(Rs[i]), and since Rs[i] satisfies the

conditions of the lemma, we can obtain a vector ~xi for up(Rs[i]) and ~ui−ε. Fix any player

♦ strategy σ♦ ∈ Σ♦. We have Es[rew(~qi, ∅)] ∈ up(Rs), and it follows that

Es[rew(ri, ∅)] =

∫
λ∈ΩG,s

∞∑
k=0

m∑
j=1

xi,j · qi,j(λk) dPrs
(∗)
=

∫
λ∈ΩG,s

m∑
j=1

xi,j ·
∞∑
k=0

qi,j(λk) dPrs

=
m∑
j=1

xi,j ·
∫

ΩG,s

∞∑
k=0

qi,j dPrs = ~xi · Es[rew(~qi, ∅)] ≥ ~xi · (~ui − ε) = vi.

The equality marked with (∗) holds because for almost every λ we have
∑∞

k=0

∑m
j=1 xi,j ·

qi,j(λk) =
∑m

j=1 xi,j ·
∑∞

k=0 qi,j(λk); this is true because for every j we either have xi,j = 0,

or the sum
∑∞

k=0 qi,j(λk) is strictly greater than −∞ for almost all λ.

For the “⇐” direction, for each ε > 0 we have non-zero vectors ~x1, . . . , ~xn ∈ Rm
≥0,

such that σ� achieves ϑ(~r,~v). Assume for the sake of contradiction that this σ� does not

achieve ϕ(~u, ~q). Then there exists a player ♦ strategy σ♦ and an index i such that for all j

we have that Es[rew(qi,j, ∅)] = ui,j−τj < ui,j for some τj > 0 (and possibly τj =∞). Now,

fix such a strategy σ♦, a corresponding index i, and let ε =
minj τj

2
< ∞. By assumption,

we can pick ~xi such that σ� achieves ϑ(~r,~v), and hence Es[rew(ri, ∅)] ≥ ~xi · (~ui − ε).

Consequently, Es[rew(ri, ∅)] = ~xi · Es[rew(~qi, ∅)] by the same argument as above. Thus,

~xi ·Es[rew(~qi, ∅)] ≥ ~xi ·(~ui−ε), and because ~xi is non-zero and has no negative components,

there must be a j such that Es[rew(qi,j, ∅)] ≥ ui,j − ε > uu,j − τj = Es[rew(qi,j, ∅)], which

implies a contradiction. �

Remark 4 Note that, in the case of disjunctive rPATL, i.e., formulae having the form

ϕ(~q, ~u) =
∨m
j=1 R

qj
≥uj [F

c⊥], Theorem 7 establishes a relationship between disjunctive rPATL

and single-objective expected total reward: if a coalition strategy achieves ϕ(~q, ~u), then

for every ε > 0 there exists a non-zero vector ~x ∈ Rm
≥0, such that the strategy achieves

〈〈C〉〉Rr≥v[Fc⊥], where r(s)=~x · ~q(s) and v=~x · (~u− ε). We later use this property to show

that memoryless deterministic strategies are sufficient to achieve a disjunction of objectives

(see Theorem 13).

88 CHAPTER 5. MULTI-OBJECTIVE RPATL

5.2.3 Computation of Pareto sets

In this section we present the algorithms for approximating Pareto sets for multi-objective

rPATL in stopping games. We start the section by presenting the algorithm for conjunctive

rPATL, followed by the algorithm for disjunctive rPATL. Finally, we describe how, using

Theorem 7, the two can be combined to model check general multi-objective rPATL. The

results presented in this section have been published in [40].

Given a stopping SMG G, we denote by M the upper bound of the absolute value of

the expected total reward for any objective, i.e., M = |S| · maxs∈Si |ri(s)|
p
|S|
min

where pmin is the

smallest positive probability assigned by ∆ in G. Also note that, in the theorem below,

we relax the reward structure to assign any rational numbers to states.

Theorem 8 (Pareto sets: conjunctive rPATL) For a stopping game G and a multi-

objective rPATL formula ϕ(~r,~v) = 〈〈C〉〉
∧n
i=1 Rri≥vi [Fc⊥], an ε−approximation of the

Pareto sets for all states can be computed in k = |S| + d|S| · ln(ε·(n·M)−1)
ln(1−δ) e iterations of

the operator F defined by

F (X)(s)
def
=


dwc(conv(

⋃
t∈∆(s) Xt) + ~r(s)) if s ∈

⋃
i∈C

dwc(
⋂
t∈∆(s) Xt + ~r(s)) if s ∈

⋃
i∈Π\C

dwc(
∑

t∈∆(s)∆(s, t) ·Xt + ~r(s)) if s ∈ S©,

starting from the initial sets X0
s

def
= {~x ∈ Rn | ~x ≤ ~r(s)} for all s ∈ S.

Proof. We only provide a high level intuition behind the result, and the full proof of

the Theorem 8 is presented in Appendix B. We start by explaining the intuition the

operations of the functional (see Figure 5.2 for illustrations). For s ∈
⋃
i∈C , the coalition

player can randomise between successor states to achieve any convex combination of the

points achievable in the successor states, so the achievable points in s are in the convex

closure of the union of successors. For s ∈
⋃
i∈Π\C , a value in s is achievable by the

coalition, if it is achievable in all successors, and hence we take the intersection. Finally,

stochastic states s ∈ S© are like the coalition-controlled states with a fixed probability

distribution, and the set of achievable points is characterised by the weighted Minkowski

sum of successor points. Having defined this one step relationship, we can show that

performing k iterations of the functional F , the obtained set Xk
s for state s is exactly the

set of all value that can be guaranteed by the coalition C along the paths of length k.

Finally, because the game G is stopping, by picking k large enough, we can guarantee that

Pareto points of Xk
s are within ε of the Pareto points for ϕ(~r,~v). �

5.2. MODEL CHECKING 89

(a) Xs = dwc(conv(Xt ∪Xu)). (b) Xs = dwc(Xt ∩Xu). (c) Xs = dwc(1
2 ·Xt + 1

2 ·Xu).

Figure 5.2: Operations of the functional for a state s with two successors, t and u. Xt is
the downward closure of the black line and Xu is the downward closure of the grey line.
Set Xs, is a downward closure of the dashed line (area shaded in grey).

Next, we present the algorithm for computing Pareto set approximations for disjunc-

tive rPATL. The algorithm uses the relationship between the disjunctive rPATL objectives

and the single-objective expected total reward games established in Theorem 7 (see Re-

mark 4). It makes repeated calls to the algorithm computing optimal values for such

games to compute the approximation of the Pareto set for a disjunctive rPATL formula.

The optimal value of the single-objective expected total reward in the coalition game is

Emax,min
s [rew(~r, ∅)], computation of which was discussed in Section 4.2.3.

Theorem 9 (Pareto sets: disjunctive rPATL) Given a stopping SMG G and a multi-

objective rPATL formula, ϕ(~r,~v) = 〈〈C〉〉(
∨m
j=1 R

rj
≥vj [F⊥]) an ε-approximation of the Pareto

set is the set of Pareto points of UX
def
=
⋃
~x∈X{~p | ~x · ~p ≤ d~x}, where X is a set of all non-

zero vectors ~x such that ‖~x‖ = 1, and where all xi are of the form τ · ki for some ki ∈ N
and τ = ε

2·m2·(M+1)
; and d~x is the optimal value for expected total reward for the reward

function ~x · ~r in the coalition game GC, i.e., Emax,min
s [~x · rew(~r, ∅)].

Proof. By Theorem 7 we have that if Emax,min
s [~x·rew(~r, ∅)] ≥ ~x·~v, then ϕ(~r,~v) is achievable.

Hence, it is not difficult to see that UX yields an under-approximation of achievable points

for ϕ(~r,~v). We show that, for any point in the Pareto set, there is an ε-close point in UX .

Consider any point ~p in the Pareto set for ϕ(~r,~v) and let σ� be a strategy in a coalition

game GC , which achieves this point. Note that, for some ~y ∈ Rm
≥0 such that ‖~y‖ = 1, we

have ~p·~y = d~y, since otherwise ~p would not be a Pareto point. Let ~x = argmin~z∈X‖~z−~y‖ be

a vector in X, which is closest to ~y. Note that d~y−d~x ≤ m·M ·τ and thus d~x ≥ d~y−m·M ·τ .

90 CHAPTER 5. MULTI-OBJECTIVE RPATL

s0

s1

s2

s3

{x}

{y}

0.7

0.3

0.5

0.5

(a) SMG. (b) 〈〈{�}〉〉(P≥v1 [F x]∧P≥v2 [F y]) (c) 〈〈{�}〉〉(P≥v1 [F x]∨P≥v2 [F y])

Figure 5.3: Sets of achievable vectors for the queries ϕ(~v) in state s0 of the SMG (player �
has a strategy to achieve any point in the area shaded in grey). Horizontal axis represents
values for v1 and vertical one represents the values for v2.

For the point ~q = ~p− ε
m

, we have ~q · ~x ≤ d~x because

~q · ~x = ~p · ~x− ~ε

m
· ~x ≤ ~p · ~y + ~p · ~τ − (

~ε

m
· ~y − ~ε

m
· ~τ) ≤ d~y+ ~M · ~τ− ε

m
+m · τ

≤ d~y +m · (M + 1) · τ − ε

m
≤ d~y −m ·M · τ ≤ d~x,

and so ~q ∈ UX . Since ‖~p − ~q‖ ≤ ε, this concludes the proof. The other direction can be

proved similarly. �

The examples of Pareto sets for conjunctive and disjunctive queries are shown in Fig-

ure 5.3. We consider the game from Figure 5.3a starting in state s0. The conjunc-

tive query is ϕ(~v) = 〈〈{�}〉〉(P≥v1 [F x] ∧ P≥v2 [F y]) and the disjunctive query is ϕ(~v) =

〈〈{�}〉〉(P≥v1 [F x] ∨ P≥v2 [F y]), results for which are shown in Figure 5.3b and Figure 5.3c,

respectively.

Finally, using Theorem 7 we can combine the methods described above from Theorem 8

and Theorem 9 to provide an algorithm to compute an ε−approximation of the Pareto set

for any multi-objective rPATL formula. Given a stochastic multi-player game G, a multi-

objective rPATL formula ϕ(~q, ~u) = 〈〈C〉〉(
∧n
i=1

∨m
j=1 R

qi,j
≥ui,j [F⊥]) and ε > 0 the following

procedure computes ε−approximation of the Pareto set for ϕ(~q, ~u).

1. Construct sets X1, X2, . . . , Xn for each conjunct (1 ≤ i ≤ n) containing unit vectors

as in Theorem 9, such that each set contains the number of vectors that suffice for
ε
2
−approximation for the disjunction of objectives.

2. For each ~x = (~x1, . . . , ~xn) ∈
∏n

i=1Xi construct a vector of reward functions ~r =

(~x1 · ~q1, . . . , ~xn · ~qn) as in Theorem 7 and compute the ε
2
−approximation of the Pareto

set for ϑ(~r,~v) = 〈〈C〉〉
∧n
i=1 Rri≥vi [F ⊥], P~x, using algorithm from Theorem 8.

5.2. MODEL CHECKING 91

3. Similarly to Theorem 9, for each ~x and its Pareto set P~x we compute the set of points

that are achievable for ϕ(~q, ~u) with ~x as U~x =
⋃
y∈P~x

∏n
i=1{p | ~xi · p ≤ yi}.

4. The ε−approximation of the Pareto setQ for ϕ is then the Pareto set of
⋃
~x∈

∏n
i=1 Xi

U~x.

We have the following:

• Take a vector ~u from the Pareto set of ϕ(~q, ~u) and a strategy σ� which achieves

it in the coalition game. Then, by Theorem 7, this strategy also achieves vector

~v = (~x1 · ~u1− ε
2
, . . . , ~xn · ~un− ε

2
) for reward function vector ~r = (~x1 · ~q1, . . . , ~xn · ~qn) for

some ~x. By construction of sets Xi in step 1 we have that there exists ~x′ ∈
∏n

i=1 Xi

which differs from ~x by at most ε
2
, and in step 2 we get all achievable points, that

are at most another ε
2

away from optimal ones, hence the points obtained in step 3

are at most ε away from the optimal and so, ~u− ε ∈ Q.

• For any vector ~u ∈ Q, there exists a strategy σ� in a coalition game that achieves at

least ~u− ε, that is, the Pareto set of ϕ(~q, ~u) has to contain vector which is greater or

equal to ~u− ε. But also, by the above construction, we have that any vector ~u + δ

for δ > ε is not achievable, and hence the Pareto set of ϕ(~q, ~u) must contain a vector

~v such that ~u− ε ≤ ~v ≤ ~u+ ε.

Discussion

In this section we have shown how to reduce the model checking of multi-objective rPATL

to model checking the formula of the form 〈〈C〉〉
∧n
i=1

∨m
j=1 R

qi,j
.ui,j [Fc⊥], where . ∈ {>

,≥}, and presented algorithms to approximate the Pareto sets for such a query up to a

specified precision for a class of stopping games. The approximation algorithms that we

have developed here are based on value iteration (for conjunctive rPATL) and solution

of single-objective games (for disjunctive rPATL), which allows us to compute successive

approximations of the solutions. For example, in [42] the prototype implementation of

the algorithm from Theorem 8 (dealing with positive expected rewards only) has been

developed and was applied to models having up to 100,000 states.

Note that the result of Theorem 7 applies to general (i.e., non-stopping) games and

also equations from Theorem 8 can be used to compute successive approximations of the

Pareto sets for such games, but the provision of convergence criteria for such approximation

remains an open problem. The computation of exact Pareto sets for multi-objective rPATL

is an open problem for both stopping and non-stopping games. However, in Theorem 13

in the next section, we use the result Theorem 7 to prove the decidability for disjunctive

rPATL.

92 CHAPTER 5. MULTI-OBJECTIVE RPATL

5.3 Complexity

In this section we turn our attention to the analysis of the complexity of multi-objective

rPATL model checking. All results that we present here are for terminal state reachability

or for the expected total reward properties, and thus are among the simplest of multi-

objective rPATL properties.

The section is structured as follows. In Section 5.3.1 we show that, in contrast with

rPATL, games with multi-objective rPATL objectives are not determined already for two

objectives and optimal strategies may not exist to achieve a point in the Pareto set. Then,

in Section 5.3.2, we discuss the memory requirements for strategies of coalitions showing

that, in general, infinite memory may be required, but if the formulae are restricted to

disjunctions of expected total reward objectives, then memoryless deterministic strategies

suffice. Finally, in Section 5.3.3 we prove several complexity lower bounds showing that

multi-objective rPATL model checking is PSPACE-hard in general, and undecidable if

player strategies are not allowed to use randomisation. For the case where formulae are

restricted to disjunctions of expected total reward objectives, we show that the problem

is NP-complete.

The results of nondeterminacy and non-existence of optimal strategies from Section 5.3.1

are have been published in [39]; results on memory requirements and complexity lower

bounds from Sections 5.3.2 and 5.3.3 have been published in [40].

5.3.1 Determinacy and optimal strategies

We begin by showing that games with multi-objective rPATL goals are not determined.

Theorem 10 Stochastic multi-player games with multi-objective rPATL goals are not de-

termined.

Proof. Consider the game G = 〈{�,♦}, S, (S©, S�, S♦),∆, AP, χ〉 from Figure 5.4. To

show nondeterminacy we first prove that player � does not have a strategy σ� to satisfy

the multi-objective rPATL formula 〈〈{�}〉〉(P≥0.5[F t] ∧ P≤0.5[F t]) in a state s0, i.e., ∀σ� ∈
Σ� .∃σ♦ ∈ Σ♦ . (Prs0(F t) < 0.5∨Prs0(F t) > 0.5). To see this, consider player ♦’s strategy

σ♦, which, if player �’s strategy assigns positive probability to go to s3, σ♦ chooses to

go to s3, and to s4 otherwise. In the first case, σ♦ ensures that the probability to reach

s4 is less than 0.5 (and so Prs0(F t) < 0.5), and in the second case it ensures that the

probability to go to s4 is greater than 0.5 (and so Prs0(F t) > 0.5).

On the other hand, for any player ♦ strategy in this game, there exists a player �

strategy which ensures that the formula holds, i.e., ∀σ♦ ∈ Σ♦ .∃σ� ∈ Σ� . (Prs0(F t) ≥

5.3. COMPLEXITY 93

s0

s1 s2

s3 s4 {t}

0.5 0.5

Figure 5.4: Game demonstrating nondeterminacy.

0.5 ∧ Prs0(F t) ≤ 0.5). Consider player ♦ strategy, which assigns probability p to choose

s3 as a successor. Define a player � strategy σ� such that is assigns probability 1− p to

choose s3, making sure that it is reached with probability exactly 0.5, and hence probability

to reach s4 is also 0.5. Thus σ� is a winning strategy. �

Next, we show that optimal strategies may not exist for a point in the Pareto set of

the multi-objective rPATL query.

Theorem 11 In stochastic multi-player games optimal strategies may not exist for coali-

tion to achieve a point in the Pareto set for a multi-objective rPATL formula.

Proof. Consider the state s0 of the game G = 〈{�,♦}, S, (S©, S�, S♦),∆, AP, χ〉 from Fig-

ure 5.5. The multi-objective rPATL formula that we consider is ϕ(~v) = 〈〈{�}〉〉(P≥v1 [F t] ∧
P≤v2 [F t]) . First, we claim that there does not exist player � strategy to satisfy this for-

s0 s4

{t}
s5 s6 s2

s1

s3

0.5 0.5

Figure 5.5: Game demonstrating non-existence of optimal strategies.

mula for ~v = (0.5, 0.5) in s0. To see this, consider any player � strategy σ� and define the

player ♦ strategy σ♦ as follows. If σ� assigns positive probability to go to s4 in s0, then

σ♦ goes to s5 in s1 and ensures that probability to reach s4 is greater than 0.5 (and so

94 CHAPTER 5. MULTI-OBJECTIVE RPATL

Prs0(F t) > 0.5). Otherwise, σ♦ chooses s2 as successor in s1. Now, if σ� assigns positive

probability to go to s6 in s2, then σ♦ picks s5 as successor ensuring that probability to

reach s4 is less than 0.5 (and so Prs0(F t) < 0.5). If σ� never picks states s4 and s6

as successors with positive probability, then the probability to reach s4 is 0 (and hence

Prs0(F t) < 0.5). So, player ♦ strategy σ♦ as defined above, is a winning strategy for player

♦ for any player � strategy.

We have shown that ϕ(~v) is not achievable. Now to show that the point ~v is indeed

in the Pareto set, we show that for any ε > 0, ϕ(~v − dir(~v) · ε) is achievable (i.e., formula

〈〈{�}〉〉(P≥0.5−ε[F t] ∧ P≤0.5+ε[F t]) holds for any ε). To see this consider player � strategy

σ�, which in s0 picks s4 as successor with probability ε, and, in s2, σ� picks s6 with

probability ε
1−ε ; this ensures that for all player ♦ strategies σ♦ we have 0.5−ε ≤ Prs0(F t) ≤

0.5 + ε, and hence the formula is satisfied. �

Discussion. The results proved in this section provide several important implications

for the model checking of multi-objective games. Firstly, the nondeterminacy and non-

existence of optimal strategies already for terminal state reachability objectives are in

sharp contrast with single-objective games, which are determined and optimal strategies

exist. This means that we cannot leverage the determinacy in the way it is done for single-

objective games, e.g., it no longer suffices to consider only algorithms for maximisation

(i.e., we cannot utilise equations similar to the ones use for rPATL in Equations (4.1)) and

hence we need to deal with minimisation objectives explicitly. Secondly, non-existence of

optimal strategies means that, in some cases, approximation algorithms (e.g., like the ones

presented in Section 5.2) are the best that we can do.

5.3.2 Memory requirements

In this section, we prove that infinite memory is required for a coalition to achieve a

conjunctive rPATL formula and that memoryless strategies are sufficient for disjunctive

rPATL with expected total reward objectives.

Theorem 12 (Conjunctive rPATL) Infinite memory may be required for a coalition to

win a stochastic multi-player game with a conjunctive rPATL objective.

Proof. We provide a sketch of the proof here and the full proof is presented in Appendix C.

To prove the theorem we use the game G = 〈{�,♦}, S, (S©, S�, S♦),∆, AP, χ〉 from Fig-

ure 5.6. We start by explaining the intuition behind the need of infinite memory before

presenting the formal proof. First, we note that it is sufficient to consider deterministic

counter-strategies for player ♦, since, after player � has proposed his strategy the resulting

model is an MDP with finite branching [87].

5.3. COMPLEXITY 95

s0 s1 s2 s3

s4

1{1} s5

2{2} 3 {3}

s6

1{1} s7

2{2} 3 {3}

s8

2{2} s9

1{1} 3 {3}

s10

2{2} s11

1{1} 3 {3}

step A step B

1
2

1
2

1
4

3
4

check

1
3

2
3

1
2

1
2

1
2

1
2

check

1
3

2
3

Figure 5.6: SMG in which infinite memory is required to by player � to satisfy multi-
objective rPATL formula 〈〈{�}〉〉(P≥ 1

3
[F 1] ∧ P≥ 1

3
[F 2] ∧ P≥ 1

3
[F 3]) in state s0.

Consider the game starting in the initial state s0 and a multi-objective rPATL formula

〈〈{�}〉〉(P≥ 1
3
[F 1] ∧ P≥ 1

3
[F 2] ∧ P≥ 1

3
[F 3]). We note that all target states (1, 2 and 3) are

terminal and disjoint, and hence for any σ� and σ♦ we have that
∑

i∈{1,2,3} Prs0(F i) = 1,

and therefore, for any winning player � strategy σ�, it must be the case that, for any

σ♦, Prs0(F i) = 1
3

for i ∈ {1, 2, 3}. Let E ⊆ ΩG,s0 be the set of paths, which never take

any transition ‘check ’ (i.e., do not contain states s6 and s10). The game proceeds by

alternating between the two steps, A and B, as indicated in Figure 5.6. In step A, player

� chooses a probability to go to 1 from state s4, and then player ♦ gets an opportunity

to “verify” that the probability Prs0(F 1|E) of paths reaching 1 conditional on the event

that no ‘check ’ action was taken is 1
3
. He can do this by taking the action ‘check ’ and so

ensuring that Prs0(F 1|ΩG,s0 \ E) = 1
3
. If player ♦ again does not choose to take ‘check ’,

the game continues in step B, where the same happens for 2, and so on.

When first performing step A, player � has to pick probability 1
3

to go to 1. But

since the probability of going from s4 to 2 is < 1
3
, when step B is performed for the first

time, player � must go to 2 with probability y0 >
1
3

to compensate for the “loss” of the

probability in step A. However, this decreases the probability of reaching 1 at step B, and

so player � must compensate for it in the subsequent step A by taking probability > 1
3

of

going to 1. This decreases the probability of reaching 2 in the second step B even more

(compared to first execution of step A), for which player � must compensate by picking

y1 > y0 >
1
3

in the second execution of step B, and so on. So, in order to win, player � has

to play infinitely many different probability distributions in states s4 and s8. Note that,

if player ♦ takes action ‘check ’, player � can always randomise appropriately in states s7

and s11 to achieve probabilities exactly 1
3

for all objectives. �

96 CHAPTER 5. MULTI-OBJECTIVE RPATL

We already mentioned in Remark 4 following the proof of Theorem 7, that if a coalition

strategy achieves disjunctive rPATL formula 〈〈C〉〉
∨m
j=1 R

rj
≥vj [Fc⊥], then for every ε > 0

there exists a non-zero vector ~x ∈ Rm
≥0, such that this strategy achieves single-objective

rPATL formula 〈〈C〉〉Rr≥v [Fc⊥], where r(s) = ~x · ~q(s) and v = ~x · (~u − ε). We now use

this relationship to prove that memoryless deterministic strategies are sufficient to achieve

such disjunctive rPATL objectives.

Theorem 13 (Disjunctive rPATL) Memoryless deterministic strategies are sufficient

for the coalition to achieve a disjunctive rPATL formula ϕ(~r,~v) = 〈〈C〉〉
∨m
j=1 R

rj
≥vj [Fc⊥].

Proof. Assume that there exists a strategy for player � in coalition game GC achieving

ϕ(~r,~v). Then by Theorem 7 we know that for all ε > 0 there exists a winning strategy

which achieves the single-objective ϕε = ∀σ♦ ∈ Σ♦ .Es[~xε · rew(~r, ∅)] ≥ ~xε · (~v − ε) for

some ~xε ∈ Rm. We can assume such strategy is memoryless deterministic (MD), because

such strategies suffice to achieve a single-objective expected total reward in stochastic

games [59]. Define a set Γ = {k−1 | k ∈ N}. We know that for every ε ∈ Γ there exists

an MD strategy achieving ϕε. Because the number of MD strategies if finite, there must

exists some σ�, which is MD and winning for infinitely many ε ∈ Γ. We prove that this

σ� actually achieves ϕε for all ε > 0. Assume for a contradiction that there is some δ > 0

such that

∀~xδ ∈ Rm
≥0 .∃σ♦ ∈ Σ♦ .Es[~xδ · rew(~r)] < ~xδ · (~v − δ). (5.1)

Pick ε ∈ Γ such that ε < δ and pick ~xε ∈ Rm
≥0 such that ∀σ♦ ∈ Σ♦ .Es[~xε · rew(~r, ∅)] ≥

~xε · (~v − ε). But we have that (~v − ε) > (~v − δ), and hence ∀σ♦ ∈ Σ♦ .Es[~xε · rew(~r, ∅)] >
~xε · (~v − δ), which contradicts (5.1). �

Discussion. The result of Theorem 12 for infinite memory for conjunctive rPATL proved

in this section is important in several ways. First, it contrasts multi-objective games with

other models. For example, memoryless deterministic strategies are sufficient for most

single-objective games including reachability, expected total reward and parity objectives

(see Theorem 4 in Section 3.2.4). Also, memoryless deterministic strategies are sufficient

for controller strategy to achieve multi-objective reachability and expected total reward

objectives in MDPs (see Theorem 2 in Section 3.2.3), so it shows that adding another

source of nondeterminism makes the problem more difficult. Note that the proof showed

that player � might need to use infinitely many probability distributions, which, for the

deterministic-update strategy model, implies that infinite memory is required. It does

not rule out the case, that finite memory stochastic-update strategy can be constructed,

which can generate infinitely many probability distributions using finitely many memory

5.3. COMPLEXITY 97

elements (e.g., in Section 3.4 we have shown how such strategy can generate exponentially

many probability distributions with linear number of memory elements).

The result of existence of memoryless deterministic strategies for disjunctive rPATL

objectives proved in Theorem 13 effectively provides an NP algorithm for model checking

such formulae: one can guess such a strategy and then check that the multi-objective

formula holds for any strategy in the resulting MDP; this check can be done in polynomial

time (see Section 3.2.3 and Theorem 2 for discussion).

5.3.3 Complexity bounds

In this section we discuss the complexity bounds of model checking multi-objective rPATL.

We start by showing that the model checking problem of multi-objective rPATL is PSPACE-

hard in general and undecidable, if coalition is restricted to deterministic strategies only.

We finish by proving that the model checking problem for disjunctive rPATL with expected

total reward goals is NP-complete.

Theorem 14 (PSPACE-hardness) The problem of deciding whether a multi-objective

rPATL formula is satisfied in a state of an SMG is PSPACE-hard.

Proof. We prove the PSPACE-hardness of the problem of deciding the existence of a

winning coalition in an SMG to achieve a given multi-objective rPATL formula by re-

duction from satisfiability of quantified boolean formula (QBF), which is known to be

PSPACE-complete [92]. Consider QBF with n variables and m clauses

ψ = ∃x1∀x2∃x3 . . . ∀xn . c1 ∧ c2 ∧ · · · ∧ cm,

where each ci = (li1 ∨ li2 ∨ li3) and lij ∈ {x1,¬x1, . . . , xn,¬xn}. We assume that every

clause contains at most one literal for any given variable. For the reduction we use the

game G = 〈{�,♦}, S, (S©, S�, S♦),∆, AP, χ〉 from Figure 5.7, where the shape of the

state indicates, which player controls it. A state x+
j is labelled with Ci (i.e., Ci ∈ χ(x+

j))

if clause ci of ψ contains literal xj, and same for the state x−j if ci contains literal ¬xj, for

all j. Other labellings are as follows: χ(xj) = ∅, χ(pj) = {pj}, and χ(nj) = {nj} for all

1 ≤ j ≤ n.

Consider the following multi-objective rPATL formula in a state x1:

ϕ = 〈〈{�}〉〉 (
m∧
i=1

P≥ 1
22·n

[F Ci]∧ (5.2)∧
i={1,3,...,n−1}

(P≤0[F pi] ∨ P≤0[F ni])) . (5.3)

98 CHAPTER 5. MULTI-OBJECTIVE RPATL

x1 x2 x3 xn

p1

x+1

n1

x−1

p2

x+2

n2

x−2

pn

x+n

nn

x−n

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Figure 5.7: Game illustrating PSPACE-hardness.

First observe that, in order to win the game, player � has to use a deterministic strategy.

This is ensured by the conjunction in (5.3), which makes sure that if player � has a

winning strategy in state x1, then this strategy has to pick either pi or ni in a state xi for

all i. We show that ψ is true if and only if player � has a winning strategy for ϕ.

For the “⇒” direction, let us assume there are functions qi : Bi−1 → B for i ∈
{1, 3, . . . n − 1} such that for any v2, v4 . . . , vn ∈ B the formula c1 ∧ . . . ∧ cm is satisfied

under the assignment ν defined inductively by

ν(xi) =

qi(ν(x1), . . . , ν(xi−1)) if i ∈ {1, 3, . . . , n− 1}

vi if i ∈ {2, 4, . . . , n}

This can be directly transformed into a player � strategy in the game from Figure 5.7

where ?i ∈ {pi, ni}, b(pi) = 1 and b(ni) = 0:

σ�(x1 ?1 . . . xi−1?i−1) =

{
pi if qi(b(?1), . . . , b(?i−1)) = 1

ni otherwise.

Let σ♦ be an arbitrary strategy for player ♦. Let us consider a path x1?1 . . . xn?n such that,

for every i ∈ {1, 3, . . . n − 1} we have σ�(x1 ?1 . . . xi) = ?i, and for every i ∈ {2, 4, . . . n}
we have σ♦(x1 ?1 . . . xi)(?i) ≥ 0.5. Note that such a path always exsits since player ♦ has

exactly two choices in every state it controls. By the properties of the functions qi and

by the construction of σ� we have that the valuation µ which to xi assigns b(?i) satisfies

every c1 ∧ . . . ∧ cm. Fix cj for 1 ≤ j ≤ m, there must be a literal which makes cj satisfied

under µ, let xk be such a variable. By the definition of the game we have that the state

x+
k (resp. x−k) is labelled by Cj if cj contains xk (resp. ¬xk). Thus, a state labelled with

5.3. COMPLEXITY 99

Cj is reached at least with probability

(k∏
i=1

1

2

)
·
(∏
i∈{2,4,...e(k)}

σ♦(x1 ?1 . . . xi)(?i)
)
≥ 1

22·k ≥
1

22·n

which is the probability of the path x1?1 . . . xkpkx
+
k (resp. x1?1 . . . xknkx

−
k), where e(k) = k

if k is even and e(k) = k − 1 if k is odd.

The other direction “⇐” can be proved by directly constructing assignment functions

from the winning strategy σ� for player �. This can be achieved because the winning

strategy must be deterministic, as discussed above. �

We now show that if one restricts a coalition to use deterministic strategies in the

game, multi-objective rPATL model checking problem becomes undecidable. We build

on the idea presented in the proof for infinite memory (see Theorem 12), to construct

gadgets, which encode counter values of a two-counter machine as probabilities that need

to be played by the coalition in order to achieve a multi-objective rPATL goal. The proof

idea is inspired by the undecidability of existence of a winning strategy in Markov decision

processes with objectives expressed in a variant of the branching-time logic PCTL [19].

Theorem 15 (Undecidability) The problem of whether a multi-objective rPATL for-

mula is satisfied in a state of an SMG, where coalition strategies are restricted to be de-

terministic, is undecidable.

Proof. We present the high level idea for a proof here; the full details can be found in

Appendix D. We show the undecidability of the problem via a reduction to the termination

problem of a two-counter machine. We show that a two-counter machine M does not

terminate if and only if multi-objective rPATL formula is satisfied in the game G(M)

constructed using the reduction presented here.

A two-counter machineM consists of a sequence of instructions l1 : ins1, · · · , ln : insn,

where each insi has one of the following forms:

1. c1 := c2 := 0 and goto lj;

2. c1 = c1 + 1 and goto lj;

3. c2 = c2 + 1 and goto lj;

4. if c1 = 0 then goto lj else c1 = c1 − 1 and goto lk;

5. if c2 = 0 then goto lj else c2 = c2 − 1 and goto lk;

6. Terminate.

100 CHAPTER 5. MULTI-OBJECTIVE RPATL

(init)in (init)out

s0

atjs1

btj ct

s2

ati s3

bti ct

s4

atj

btj ct

ati

bti ct

1
21

2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
3

2
3

1
2

1
3

2
3

(term)in

a2

b1

a1

b2

c

(qk, incj)in (qk, incj)1 (qk, incj)2 (qk, incj)out

s5

atjs6

btj ct

s7

ati s8

bti ct

atj

btj ct

ati

bti ct

s9

btjs10

atjct

s11

bti s12

ati ct

btj

atj ct

bti

ati ct

1
2

1
2

1
4

3
4

1
2

1
2

1
2

1
3

2
3

1
2

1
3

2
3

1
2

1
2

1
2

1
2

1
2

1
3

2
3

1
2

1
3

2
3

(qk, decj)in

(qk, decj)
=0
out

btj

atj

ct

bti

ati

ct

1
2

1
3

1
3

1
3

1
2

(qk, decj)1 (qk, decj)2 (qk, decj)
>0
out

s13 atj

atj btj {s14}

s15

s16ati

bti ct

atj

btj ct

ati

bti ct

s17

btjs18

atj ct

s19

bti s20

ati ct

btj

atj ct

bti

ati ct

1
2

1
2

2
3

1
3

1
2

1
2

1
2

1
3

2
3

1
2

1
3

2
3

1
2

1
2

1
2

1
2

1
2

1
3

2
3

1
2

1
3

2
3

> 0

= 0

Figure 5.8: Operations for counter j. In the order left to right and top to bottom we have
gadgets Init, Terminate, Increment and Decrement. Player � states with double border
contain a gadget allowing to select arbitrary probability distributions with deterministic
strategies (see text for details).

The state of the two-counter machine is encoded by a location l and two counter

values c1, c2 ∈ N, i.e., 〈l, c1, c2〉. Given an initial location l0 with both counter values 0,

the termination problem asks to determine whether a terminal location lt is reached. The

5.3. COMPLEXITY 101

problem is known to be undecidable [67].

Let M be a two-counter machine. We define the game G(M) incrementally. The

game has two players, � and ♦. For each type of instruction, we have a corresponding

gadget, i.e., Init, Terminate, Increment, and Decrement, which are shown in Figure 5.8.

In this figure, player � states with double border are of the form (where

transitions probabilities in stochastic states are uniform), which allows player � to simulate

any probability distribution with deterministic strategies.

Note that, for Increment and Decrement gadgets, j ∈ {1, 2} refers to the counter (c1

or c2), on which the operation is applied in the instruction and i is the other counter, the

value of which remains unchanged. The game G(M) is then constructed by connecting

the instructions together in the following way.

• For the initial instruction “l0 : c1 := c2 := 0 and goto lk;”, we use the Init gadget

and link (init)out to (qk, op)in, if lk is not terminal location where op is the operation

type, and we link (init)out to (term)in if lk is a terminal location;

• For the increment instruction “li : cj := cj + 1 and goto lk;”, we use the Increment

gadget and link (qi, incj)out, if lk is not terminal location where op is the operation

type, and we link (qi, incj)out to (term)in if lk is a terminal location;

• For the decrement instruction if “cj = 0 then goto lk else cj = cj − 1 and goto lk′ ;”,

we use the Decrement gadget and link (qi, decj)
=0
out to (qk, opk)in (resp. (qi, decj)

>0
out to

(qk′ , opk′)in), if lk (resp. lk′) is not a terminal location where opk (resp. opk′) is the

operation type, and we link (qi, decj)
=0
out (resp. (qi, decj)

>0
out) to (term)in if lk (resp.

lk′) is a terminal location.

Note that the (init)in is also the initial state of the whole game and we use sinit = (init)in

as an alias for it. We label the states as “targets” as follows. States atj, aj are labelled with

atomic proposition Taj , states btj, bj are labelled with atomic proposition Tbj for j ∈ {1, 2},
states c, ct are labelled with Tc, and states at1, a

t
2, b

t
1, b

t
2, c

t are all labelled with Tt. We

consider the following multi-objective rPATL formula

ϕ = 〈〈{�}〉〉 (P≥ 1
6
[F Ta1] ∧ P≥ 1

6
[F Tb1] ∧ P≥ 1

6
[F Ta2] ∧ P≥ 1

6
[F Tb2] ∧ P≥ 1

3
[F Tc] ∧ P≥1[F Tt]) .

We show that player � has a winning strategy in G(M) if and only ifM does not termi-

nate. The intuition behind the result is that if there exists a winning strategy for player �,

it has to play probability distributions corresponding to gadget-specific counter updates

and, in addition, never reach a terminal gadget. For example, consider the Init gadget,

102 CHAPTER 5. MULTI-OBJECTIVE RPATL

where in states s0 and s2 player � has to pick probability 2
3·20 to go to s1 and s3 states,

corresponding to the initialisation of counter values to 0. Similarly, the Increment gadget

has the property that if the probability of selecting edge (s5, s6) for player � is 2
3·2cj , then

the probability to select the edge (s9, s10) must be 2

3·2cj+1 , corresponding to a increment of

counter j. In our case if Increment gadget follows the Init gadget, player � has to play
2

3·20 to go to s6 and s8 states, and thus in s9 and s11 he has to pick probabilities 2
3·21 and

2
3·20 to go to s10 and s12, respectively, corresponding to the increment of the first counter.

Essentially, this means that if there is a winning strategy for player �, there is a

unique one having a specific form, i.e., picking probability distributions corresponding to

the counter updates induced by the gadgets, which in turn correspond to the instructions

of the two-counter machine. �

We note that the question whether the multi-objective rPATL model checking problem

is decidable when coalition player strategies are not restricted to deterministic remains

open. Similar is results are known for the problem of finding Nash equilibrium in SMGs,

where the problem is undecidable for deterministic strategies and open in general [107].

In the previous section, we have shown in Theorem 13, that memoryless deterministic

strategies are sufficient for disjunctive rPATL with expected total reward objectives. We

further show that finding such a strategy is not an easy problem by proving its NP-

completeness. We also note that it contrasts with the problem of finding the optimal

strategy in the single-objective expected reward games, which is known to be in NP∩coNP.

Theorem 16 (NP-completness) The problem of deciding whether the multi-objective

rPATL formula 〈〈C〉〉(
∨m
j=1 R

rj
≥qj [F

c⊥]) is satisfied in a state of an SMG is NP-complete.

Proof. We start with NP membership. Since memoryless deterministic strategies suffice

for achieving such disjunctive rPATL objective (see Theorem 13), to determine whether

such a formula is achievable we can guess such a strategy for player � in the coalition game

GC , which uniquely determines an MDP (obtained from G by resolving nondeterminism

in player � states). We can then use the polynomial time algorithm to verify that there

exists no winning player ♦ strategy in this MDP (see Section 3.2.3 for details).

We prove NP-hardness by reducing 3SAT to the problem. Let Ψ be a 3CNF formula

with clauses c1, . . . , cn and variables x1, . . . , xm. We assume that each variable appears at

most once in each clause. For clause j, we denote by vj1, vj2, vj3 the variables that appear

in the clause, e.g., vjk ∈ {x1, . . . , xm,¬x1, . . . ,¬xm} for 1 ≤ k ≤ 3, 1 ≤ j ≤ n.

We construct the game shown in Figure 5.9, where the terminal states are labelled with

x+
i and v−i for all 1 ≤ i ≤ m, corresponding to the valuations of the variables. We further

construct 2m target sets, each a singleton containing either x+
i or x−i . The disjunctive

5.3. COMPLEXITY 103

win

xdec1 xdecm
wcl

x+1 x−1 x+m x−m u1

v12v11 v13

un

vn2vn1 vn3

1
m+1

1
m+1

1
m+1

1
3

1
3

1
3

1
3

1
3

1
3

Figure 5.9: Game illustrating NP-hardness. The set of atomic proposition is AP =
{x+

1 , x
−
1 , . . . , x

+
m, x

−
m}, and the labelling function is defined as follows χ(x+

i) = {x+
i },

χ(x−i) = {x−i }, χ(vjk) = {x+
i } if vjk = xi and χ(vjk) = {x−i } if vjk = ¬xi for 1 ≤ i ≤ m,

1 ≤ j ≤ n, 1 ≤ k ≤ 3. For all other states χ returns an empty set.

rPATL formula that we consider is

ϕ = 〈〈{�}〉〉(R
r+
1
≥q[F

c⊥] ∨ · · · ∨ Rr
+
m
≥q [F

c⊥] ∨ R
r−1
≥q[F

c⊥] ∨ · · · ∨ Rr
−
m
≥q [F

c⊥]) ,

where q = 1
m+1

+ 1
m+1
· 1
n
· 1

3
and reward functions are defined as follows. r+

i (s) = 1 if

x+
i ∈ χ(s) and 0 otherwise, and r−i (s) = 1 if x−i ∈ χ(s) and 0 otherwise. Note that reward

functions assign 1 exactly to the paths that reach the states labelled with the appropriate

atomic proposition; hence the value of the reward function is exactly the probability to

reach such states. We claim that there is a satisfying assignment to Ψ if and only if there

is a strategy σ� achieving ϕ.

For the “⇒” direction, given a satisfying assignment µ, we define a strategy σ� that

goes to x+
i from xdeci if and only if µ(xi) = 1 and to x−i otherwise, for all 1 ≤ i ≤ m.

Consider any strategy σ♦ for player ♦, and let j be such that σ♦ picks uj with probability

at least 1
n

in wcl (such j surely exists). There must be a literal in cj which is satisfied under

µ. Let xi be a variable in this literal. If the literal is of the form xi, then we get that the

state x+
i is reached on a path winx

dec
i x+

i with probability 1
m+1

and on a path winwclujv
j
k,

where x+
i ∈ χ(vjk), with probability at least 1

m+1
· 1
n
· 1

3
, and so the objective is satisfied.

Similarly, if the literal is of the form ¬xi, we get the same line of argument, replacing x+
i

with x−i .

104 CHAPTER 5. MULTI-OBJECTIVE RPATL

For the “⇐” direction, we assume that σ� is memoryless deterministic (see Theo-

rem 13). Define a valuation µ by µ(xi) = 1 if and only if successor x+
i is picked in xdeci .

Let cj be an arbitrary clause in Ψ, and consider a strategy σ♦ of player ♦, which goes de-

terministically to uj in wcl. There must be a target label t ∈ AP satisfying Prwin(F t) ≥ q.

Fix one such label t, and suppose that t = x+
i . This set can be reached by the path

winv
dec
i x+

i , and the paths starting with winwcl. Since the first path has probability only
1

m+1
, the other paths must have a non-zero probability. But since σ♦ is deterministic and

selects uj, there must be a path winwclujv
j
k, where x+

i ∈ χ(vjk), which means that the literal

xi is set to true in cj under µ. Since this literal is true under µ, cj is satisfied. For t = x−i
we proceed similarly. �

Remark 5 Note that terminal state reachability objectives can be transformed into ex-

pected total reward ones (i.e., the ones used in Theorem 16) in linear time, and hence the

NP-completeness result also holds for such objectives.

Discussion. In this section we have shown several bounds for complexity of model check-

ing multi-objective rPATL. Note that, to prove all the theorems, we used terminal state

reachability and the expected total reward objectives, which are among the simplest in the

logic. This way we make sure the complexity results are not due to the transformations

as the ones presented in Section 5.2.1, and thus the results are tight in this respect.

The NP-hardness result proved in Theorem 16 showed that finding the memoryless

deterministic strategy, existence of which was shown in Theorem 13, is a hard problem.

For single-objective games with similar objectives (i.e., reachability, parity, expected total

reward), the problem of finding such strategy is in the complexity class NP∩coNP. Such

result cannot be obtained here because, due to nondeterminacy (shown in Theorem 10),

player ♦ counter-strategy may be dependent on the strategy proposed by player � (the

idea leveraged by our NP-hardness proof). Another important consequence of this theorem

lies in the game used to prove NP-hardness. Note that it is a tree of depth fixed depth, so

if any value iteration-based algorithm would be derived, the cost of single iteration would

be very expensive (unless P=NP), this justifies our method of approximation where we use

the repeated solution of single-objective stochastic game to compute the approximation

of the Pareto set (see Section 5.2).

5.4 Strategy synthesis

In this section we present a construction of the strategy for coalition C of players to satisfy

the multi-objective rPATL formula ϕ(~q, ~u) = 〈〈C〉〉
∧n
i=1

∨m
j=1 R

qi,j
≥ui,j [F ⊥] in a stopping

5.4. STRATEGY SYNTHESIS 105

game G. Note that, as we have shown in Section 5.2.1, any multi-objective rPATL formula

〈〈C〉〉θ can be converted into such form. The strategy construction extends the similar

construction presented in [42] to deal with negative rewards.

We construct the strategy from the model checking algorithm presented in Section 5.2.3.

Let ~u be a point in the ε−approximation of the Pareto set Q for ϕ(~q, ~u) and let ~x =

(~x1, . . . , ~xn) be vectors for which ~v = (~x1·~u1, . . . , ~xn·~un) ∈ Xk
s , where the sets Xk are

the ones computed using the iteration from Theorem 8, for a reward function vector

~r = (~x1 · ~q1, . . . , ~xn · ~qn) up to ε
2
−precision. We show how to construct a strategy that, for

a given state s, guarantees that at least vector ~v−dir(~v)·δ is achieved where δ = ε
2
·|S|·p−|S|min .

The strategy construction uses the idea of stochastic update in a similar way to the

one we used to construct a linear size winning strategy to achieve precise reachability

probability in the game from Figure 5 in Section 3.4. This time, instead of keeping only

two values per state, the strategy keeps the corner points of the polytope Xk
s for each

state s. The memory updates are executed in a way where the memory element is picked

stochastically to ensure that, at every step, the expected value of the memory element

(which is a lower bound for the expected value of the total reward) is kept within ε
2

of the

target vector ~v.

We denote the set of vertices (corner points) of a polytope X as Cnr(X). The strategy

σ� = 〈M, σu�, σ
n
�, α〉 is defined as follows.

• M =
⋃
s∈S′{(s, ~p) | ~p ∈ Cnr(Xk

s)}.

• σu�((s, ~p), t) = [(t, ~qt0) 7→ βt0, . . . , (t,
~qtl) 7→ βtl], where where for all 0 ≤ i ≤ l, ~qti ∈

Cnr(Xk
t), βti ∈ [0, 1], and

∑
i β

t
i = 1, such that

– for s ∈ S� ∪ S♦ we have
∑

i β
t
i · ~qti ≥ ~p− ~r(s)− ε

2
,

– for s ∈ S©, ~qti and βti have to be chosen together with the respective values ~qvi ,

and βvi assigned by σu�((s, ~p), v) for the remaining successors v ∈ S \ {t} of s,

so that they satisfy

∆(s, t) ·
∑
i

βti · ~qti +
∑

v∈S\{t}

∆(s, v) ·
∑
i

βvi · ~qvi ≥ ~p− ~r(s)− ε

2
,

which ensures that the expected total reward is kept larger than the current

memory element.

• σn�(s, (s, ~p)) = [t 7→ 1] for some t ∈ S such that for all 0 ≤ i ≤ l there exist
~qti ∈ Cnr(Xk

t), and βti ∈ [0, 1], such that
∑

i β
t
i = 1 and

∑
i β

t
i · ~qti ≥ ~p− ~r(s)− ε

2
.

106 CHAPTER 5. MULTI-OBJECTIVE RPATL

• α(s) = [(s, ~qs0) 7→ βs0, . . . , (s, ~q
s
l) 7→ βsl], where s is the respective initial state of

G, and ~qsi ∈ Cnr(Xk
s), βsi ∈ [0, 1] (for all 0 ≤ i ≤ l), and

∑
i β

s
i = 1 such that∑

i β
s
i · ~qsi ≥ ~v.

Note that, for all t ∈ S, it is always possible to choose l ≤ n, i.e., the number of points ~qti

and respective coefficients βti may be less than the number of objectives. Also, the points

~qsi can indeed be picked from Xk
s because from Theorem 8 we have that Xk

s ⊇ Xk−1
s − ε

2
.

The correctness of the construction can be proved in a similar way as for Theorem 17

showing that the expectation of the memory element if preserved within ε
2

precision in

every step and we can obtain the claimed error bound δ in the following way. In every step,

the strategy, may introduce an error of at most ε
2
, and, because the game is stopping, in |S|

steps the probability for the game to terminate is at least p
|S|
min, so the upper bound on the

error introduced into the expectation is ε
2
· |S|+ ε

2
· |S| ·(1−p|S|min)+ ε

2
· |S| ·(1−p|S|min)2 + · · · =

ε
2
· |S| · p−|S|min = δ.

Example 12 We provide an example of strategy construction using the method defined

in this section. Consider the stochastic game shown in Figure 5.10a, and the conjunctive

rPATL query ϕ(~v) = 〈〈{�}〉〉(P≥v1 [F x]∧P≥v1 [F y]). The Pareto sets for this formula for all

states of the game can be computed in three iterations of the functional from Theorem 8

and are shown in Figures 5.10b to 5.10e.

We show how to achieve the point (0.5, 0.3), e.g., how to use the algorithm above

to construct a winning strategy σ� = 〈M, σu�, σ
n
�, α〉 for player � with the conjunctive

rPATL objective 〈〈{�}〉〉(P≥0.5[F x] ∧ P≥0.3[F y]). The sets of corner points (also shown in

the figures) for the states are as follows:

Cnr(X3
s0

) = { (0, 0.3), (0.5, 0.3), (0.5, 0) },

Cnr(X3
s1

) = { (0, 0.3), (0.7, 0.3), (1, 0) },

Cnr(X3
s2

) = { (0, 1), (0.5, 0.5), (0.5, 0) }, and

Cnr(X3
s2

) = { (0, 1), (1, 0)}.

So the memory elements of the strategy are as follows:

M = { (s0, (0, 0.3)), (s0, (0.5, 0.3)), (s0, (0.5, 0)),

(s1, (0, 0.3)), (s1, (0.7, 0.3)), (s1, (1, 0)),

(s2, (0, 1)), (s2, (0.5, 0.5)), (s2, (0.5, 0)),

(s3, (0, 1)), (s3, (1, 0))}.

The initial distribution function is defined by α(s0) = (s0, (0.5, 0.3)), since this is the

5.4. STRATEGY SYNTHESIS 107

s0

s1

s2

s3

{x}

{y}

0.7

0.3

0.5

0.5

(a) SMG. (b) X3
s0 (c) X3

s1

(d) X3
s2 (e) X3

s3 (f) Choices when leaving s0

Figure 5.10: Pareto sets for the conjunctive rPATL formula ϕ(~v) = 〈〈{�}〉〉(P≥v1 [F x] ∧
P≥v2 [F y]). The horizontal axis represents values for v1 and the vertical axis represents
values for v2.

point that we want to achieve. Also, the definition of the next move function for the

only state of player �, s3, is straightforward, i.e., we have σn�(s3, (s3, (1, 0))) = x and

σn�(s3, (s3, (0, 1))) = y.

We now describe the memory update function. In the state s0, if player ♦ picks the

action to go to s1, then we have

σu�((s0, (0.5, 0.3)), s1) = [(s1, (0, 0.3)) 7→ p, (s1, (0.7, 0.3)) 7→ 1−p],

where the probability p = 2
7

so that p · 0 + (1−p) · 0.7 = 0.5 and p · 0.3 + (1−p) · 0.3 = 0.3.

The reason for the choice of p is shown in Figure 5.10f: we can see that the point (0.5, 0.3)

is composed of C parts of point (0.7, 0.3) and D parts of (0, 0.3) in X3
s1

, and hence we have

p = D
C+D

= 0.2
0.5+0.2

= 2
7
. Similarly, if player ♦ chooses to go to s2, the memory update

function is defined by

σu�((s0, (0.5, 0.3)), s2) = [(s2, (0.5, 0)) 7→ p, (s2, (0.5, 0.5)) 7→ 1−p],

where p = 2
5
, because in the point (0.5, 0.3) is composed of A parts of (0.5, 0) and B parts

108 CHAPTER 5. MULTI-OBJECTIVE RPATL

of (0.5, 0.5), as shown in Figure 5.10f, so we have p = A
A+B

= 0.2
0.2+0.3

= 2
5
.

Finally, we define the memory update function for the stochastic states. For s1 we have

σu�((s1, (0, 0.3)), s3) = σu�((s1, (0.7, 0.3)), s3) = (s3, (0, 1)),

and for s2 we have

σu�((s2, (0.5, 0)), s3) = σu�((s2, (0.5, 0.5)), s3) = (s3, (1, 0)).

Essentially, the strategy always chooses to go to the state y if player ♦ chooses to go

to s1, and to the state x, if player ♦ chooses to go to s2. One can easily verify that if

player ♦ chooses to go to s1, then the reachability probabilities to x and y are 0.7 and 0.3,

respectively; and, if he chooses to go to s2, then reachability probabilities are 0.5 and 0.5,

and hence the strategy achieves the desired objective 〈〈{�}〉〉(P≥0.5[F x] ∧ P≥0.3[F y]). Note

that we constructed the memory update (and hence the choices of the strategy) in such a

way that the expectation of the memory element of the strategy is at least (0.5, 0.3), and

so the actual value achieved is always at least this vector.

5.5 Multi-objective rPATL*

To conclude our presentation of the multi-objective rPATL, we extend multi-objective

rPATL to incorporate LTL into its path formulae. We also provide model-checking algo-

rithm for the multi-objective rPATL* for stopping games via a reduction to multi-objective

rPATL model checking. We begin by introducing the syntax and semantics of the logic.

Definition 10 (Multi-objective rPATL*) The syntax of the multi-objective rPATL*

is given by the following grammar:

φ ::= > | a | ¬φ | φ ∧ φ | 〈〈C〉〉θ

θ ::= P./q[ψ] | Rr./x[Fφ] | θ ∧ θ | θ ∨ θ | ¬θ

ψ ::= φ | ¬ψ | ψ ∧ ψ | Xψ | ψ Uψ

where a ∈ AP , C ⊆ Π, ./∈ {<,≤,≥, >}, q ∈ Q∩ [0, 1], x ∈ Q≥0, r is a reward structure.

The semantics for the logic is, for all except path formulae, as in multi-objective rPATL

(see Definition 9), and for path formulae ψ semantics is the same as for rPATL* (see

Section 4.5). Example properties of multi-objective rPATL* are as follows.

5.5. MULTI-OBJECTIVE RPATL* 109

• 〈〈{sensor1, sensor2}〉〉(P≥1[G (on1∨on2)]∧P≤0.1[F (appears∧¬detected)]) – “Sensors

1 and 2 have a strategy such that at least one of them always remains on and that the

probability that the suspect appears and is not detected is less that 0.1, no matter

what actions are taken by the other players (e.g., player suspect).”

• 〈〈{algorithm}〉〉(Rincome≥100 [Fc⊥]∧ P≥1[G X 〈〈{algorithm}〉〉(P≥1[F exit]∧ Rcost≤95[Fcexit])]) –

“There exists strategy for the algorithm which generates expected income of at least

100, but also there always is an option to go to the state where it has a strategy

to exit the position at an expected cost of 95, no matter what actions other players

take in the game.”

Example 13 Multi-objective rPATL* allows the usage of rPATL* formulae as objectives

of the game. So, for example, we can enrich the formulae discussed in Example 9 with

resource constraints to obtain, e.g., 〈〈{�,4,♦}〉〉(P>0.4[(F s5)∧ (F T2)]∧Rcost≤99[Fc T2]) states

that the grand coalition of players has a strategy to make sure that the probability of the

path visiting both, state s5 and a state labelled with T2 is greater than 0.4, and the expected

cost incurred during the execution before reaching T2 is at most 99 units.

Consider also the formula ϕ(~v) = 〈〈{�,4}〉〉(P≥v1 [GF s12] ∨ P≥v2 [GF s9]) and a game

starting in s0 of an SMG from Figure 4.1. It can be shown that the formula ϕ(~v) is satisfied

if and only if v1 +v2 ≤ 1 (for v1, v2 ∈ [0, 1]). To see this, recall that, in Example 9, we have

shown that the rPATL* formula 〈〈{�,4}〉〉P≥1[(GF s12)∨(GF s9)] is true, because no matter

which strategy player ♦ chooses, any path of the game satisfies either GF s12 or GF s9. In

this case, ♦ can choose randomly between these outcomes, and hence if v1 + v2 > 1, it

can always pick a distribution such that the formula is false. For example, consider the

case where v1 = 0.5 and v2 = 0.6. Player ♦ can choose a strategy which, with probability

0.55 chooses to take action ‘init-1’, and thus achieves probability 0.55 to satisfy GF s9, and

with probability 0.45 it always takes action ‘idle’, making sure that probability for a path to

satisfy GF s12 is 0.45. This makes sure that both objectives, P≥0.6[GF s9] and P≥0.5[GF s12],

are false, and hence the formula is not satisfied in s0. Using the same reasoning one can

easily see that if v1 + v2 ≤ 1 then, no matter how ♦ divides the probabilities between the

objectives, at least one of them is satisfied.

Next, we consider model checking of rPATL* for stopping games. We show how model

checking multi-objective rPATL* for such games can be reduced to model checking multi-

objective rPATL by providing, in the style of Section 5.2.1, a replacement procedure for

P./q[ψ] operator by Rr./x[F
c⊥]. This transforms multi-objective rPATL* formula into multi-

objective rPATL and the algorithms from Section 5.2 can be used for model checking.

110 CHAPTER 5. MULTI-OBJECTIVE RPATL

“P./q[ψ] to Rr./x[F
c⊥]”

Let us consider rPATL* formula 〈〈C〉〉θ where θ contains P./q[ψ] operator and a stopping

SMG G = 〈Π, S, (S©, (Si)i∈Π),∆, AP, χ〉 with a set of terminal states Term. We start by

constructing a deterministic Rabin automaton for the LTL formula ψ.

Definition 11 (Rabin automaton) A deterministic Rabin automaton is a tuple A =

〈Q,Σ, τ, q0, ((L1, R1), . . . , (Lj, Rj))〉, where Q are states of automaton with initial state

q0 ∈ Q, Σ = S is the alphabet, τ : Q×Σ→ Q is a transition function and Ll, Rl ⊆ Q are

Rabin pairs.

We construct automatonA such that any path λ satisfies ψ iff λ is accepted byA. Without

loss of generality we assume each DRA is complete (i.e., every infinite word induces an

infinite run on the automaton). We construct a new game G ′ as follows.

• Π′ = Π;

• S ′ = {(s, q, I) | s ∈ S, q ∈ Q, I ∈ {0, 1}};

• (s, q, I) ∈ S ′i if s ∈ Si for i ∈ Π;

• ∆′((s, q, I), (t, p, J)) = x whenever

– ∆(s, t) = x;

– if I = 0 then τ(q, t) = p;

– if I = 1 then p = q and I = J ;

– J = 1 iff s ∈ Term;

– J = 0 iff s 6∈ Term;

• AP ′ = AP ;

• χ′((s, q, I)) = χ(s).

A new set of terminal states for the game is Term′ = {(s, q, I) ∈ S ′ | I = 1}. The reward

function r is defined by r(s, q, I) = 1 if s ∈ Term, I = 0 and the run of A on the word

sω starting from q is accepting, and otherwise r(s, q, I) = 0. For a state s of G, 〈〈C〉〉θ
is satisfied if and only if 〈〈C〉〉θ′ is satisfied in (s, τ(q0, s), 0) of G ′. To see this, it suffices

to observe that, due to the constructions above, the reward function r assigns reward 1

to the path in G ′ if and only if the path ends in a terminal state and the word that it

generates is accepted by DRA A (and hence, it satisfies ψ). For stopping games, we do

not need to consider paths, which do not reach terminal states, since any set consisting of

only such paths has probability 0.

5.6. SUMMARY 111

5.6 Summary

The contributions of this chapter can be summarised as follows.

Logic. We have extended the logic rPATL to support multiple objectives within the coali-

tion operator. This allows us to specify properties like 〈〈{controller}〉〉(P≥0.99[F target] ∧
Renergy≤100 [Fc target]), which states that controller has a strategy to guarantee that probability

to reach the target is at least 0.99, while simultaneously, achieving the expected energy

consumption of at most 100 units.

Algorithms. We have provided approximation algorithms to model check the logic in

stopping games. Similarly to the algorithms for rPATL, which were based on the optimal

value computation, algorithms for multi-objective rPATL are based on the computation

of the Pareto sets – the values for bounds for which the formula is true. The algorithms

that we provide are based on the iterative evaluation of recursive equations, providing

successive approximations of the Pareto sets.

Complexity. We have analysed the complexity of the games with multi-objective rPATL

objectives and showed that they differ significantly from the single-objective games. First

of all, the games are not determined already for two objectives; also optimal strategies

may not exist for some points in the Pareto set. The model checking problem is PSPACE-

hard in general and undecidable if one restricts coalition players to use deterministic

strategies. We have also analysed the memory requirements for the optimal strategies

and showed that infinite memory randomised strategy may be required for the coalition to

achieve a multi-objective rPATL formula. For the case where the formulae are restricted to

disjunctions of expected total reward goals, memoryless strategies suffice, but the problem

is NP-complete.

Synthesis. We have provided a method to construct a stochastic-update strategy for the

coalition, which achieves the given objective in a state of a stopping SMG with a specified

precision. The construction uses the Pareto set approximations computed by the model

checking algorithms as its memory elements. This strategy construction has been used in

a case study on autonomous urban driving in [42].

Discussion. In addition to providing means to verify system specifications containing

several objectives, multi-objective rPATL allows to analyse the competitive nature of the

system in more detail allowing, to some extent, to circumvent the drawbacks of zero-sum

single-objective games. For example, consider a game with two players A and B having

goals P≥0.5[F GA] and P≥0.9[F GB], respectively. We are interested in synthesising a strat-

egy for agent A, which would achieve the objective in this game, but the rPATL formula

¬〈〈{A}〉〉P≥0.5[F GA] is true in the game meaning that we cannot find a strategy for A that

112 CHAPTER 5. MULTI-OBJECTIVE RPATL

achieves its objective for any strategy for B. However, since we know that B plays a strat-

egy to achieve its own objective (we assume such strategy exists, i.e., 〈〈{B}〉〉P≥0.9[F GB] is

true), and hence quantification over all strategies of B is too pessimistic. In this case, we

can use multi-objective rPATL formula 〈〈{A}〉〉(P≥0.5[F GA]∨¬P≥0.9[F GB]) to check whether

there exists agent A strategy, such that, if agent B plays a strategy to falsify the objective

of A, then its own objective is not achieved; and if B plays a strategy to achieve its own

objective, then agent A’s objective is also satisfied. Such strategy would guarantee that,

as long as agent B takes actions to achieve its objective, the objective of A is satisfied.

Note that the strategy for player A that achieves 〈〈{A}〉〉(P≥0.5[F GA] ∨ ¬P≥0.9[F GB]) to-

gether with a strategy for player B that achieves 〈〈{B}〉〉P≥0.9[F GB] form a winning secure

equilibria strategy profile [32].

To the best of our knowledge, the work published in [39, 40] and presented in this

chapter is the first one providing algorithms for multi-objective verification for stochastic

games (the previous works of [8] and [19] showed undecidability for more general classes

of problems). We have shown that, already for terminal state reachability objectives, the

problem becomes more difficult than single-objective games and multi-objective MDPs.

Nevertheless, we have provided approximation algorithms that can be used to implement

verification of multi-objective rPATL.

There are several open questions raised by the research done in this chapter. Probably

the most important one is whether the model checking problem for multi-objective rPATL

is decidable in the general case. Also, the question of whether the infinite memory argu-

ment extends to the case where the coalition players are allowed to use stochastic-update

strategies remains open (we have shown that such strategies can be more compact in cer-

tain cases). It would also be interesting to consider approximation algorithms for games

without the stopping restriction for both multi-objective rPATL and rPATL* formulae.

Chapter 6

Tool Implementation and

Applications

In this chapter we present PRISM-games, a model checker for stochastic multi-player

games, which we built to implement rPATL model checking and strategy synthesis algo-

rithms developed in this thesis. We also applied the tool to three case studies of competitive

stochastic systems: distributed demand-side management algorithm for microgrid, collec-

tive decision making algorithm for sensor networks, and reputation and virtual currency

mechanism for user centric-networks.

The tool is built as an extension of the PRISM model checker [77]. The PRISM-games

implementation extends PRISM’s explicit engine to support stochastic multi-player game

models, rPATL property specifications and model checking and synthesis algorithms. In

Section 6.1 we discuss the SMG modelling language and Section 6.2 describes the rPATL

property specification notation. Then, in Section 6.3, we present the pseudocode of the

model checking algorithms that are derived from results in Section 4.2. We also discuss the

strategy synthesis functionality of PRISM-games in Section 6.4. In Section 6.5 we present

the experimental results showing the scalability of the tool and discuss the trade-offs

between time and precision for the value iteration algorithms. Finally, in Section 6.6 we

provide an analysis of the three aforementioned case studies using rPATL model checking

and strategy synthesis functionality of the tool.

PRISM-games is free and open source (GPL license), and runs on all major operating

systems. It is available for download from http://www.prismmodelchecker.org/games/.

The summary of the tool functionality and usage instructions is presented in Appendix E.

Sections 6.1, 6.2, 6.3, 6.4 and 6.5 are an extended version of [38]. The case studies of

the microgrid demand-side management and collective decision making algorithms are

adapted from [37], and the user-centric network case study has been published in [81].

113

http://www.prismmodelchecker.org/games/

114 CHAPTER 6. TOOL IMPLEMENTATION AND APPLICATIONS

smg

player p1 scheduler , [do] endplayer
player p2 agent1 , [go1] endplayer
player p3 agent2 , [go2] endplayer

global num tasks : [-1..2] init -1;

module scheduler
turn : [1..3] init 1;
[] num tasks=-1→ 0.5 : (num tasks ′=1) + 0.5 : (num tasks ′=2);
[go1] num tasks>0 ∧ turn=1 → (turn ′=2);
[go2] num tasks>0 ∧ turn=2 → (turn ′=3);
[do] num tasks>0 ∧ turn=3 → (turn ′=1) ∧ (num tasks ′=num tasks − 1);

endmodule

module agent1
team1 : [1..2] init 1;
[go1] true → (team1 ′=1);
[go1] true → (team1 ′=2);

endmodule

module agent2 = agent1 [go1 =go2 , team1 =team2] endmodule

rewards “total”
turn=3 ∧ team1 6=team2 : 0.3;
turn=3 ∧ team1 =team2 : 1.0;

endrewards

Figure 6.1: A PRISM-games SMG model of a team formation game [41].

6.1 Modelling language

In PRISM-games, SMGs are described in a modelling language, which is an extension of

the PRISM language (see [93] for details). An example of a PRISM-games model of a

variant of team formation game is shown in Figure 6.1. We refer to the components of

this example in the description of the modelling language given below.

A model is composed of modules (e.g., scheduler, agent1 and agent2), whose states are

determined by a set of variables (e.g., turn, team1) and whose behaviour is specified by a

set of guarded commands, containing an (optional) action label, a guard and a probabilistic

update for the module’s (or global) variables. For example, the command

[] num tasks=-1→ 0.5 : (num tasks ′=1) + 0.5 : (num tasks ′=2);

6.2. PROPERTY SPECIFICATION 115

updates the value of num tasks to either 1 or 2 with equal probability, provided the

current value is −1.

Simultaneous updates across several modules can be synchronised using action-labelled

commands. For such command to be executed, the guard has to be satisfied in every

module. For example, the command [go1] true → (team1 ′=1); of module agent1 can

only be executed if the guard num tasks>0 ∧ turn=2 is satisfied in module scheduler

as well. Such composition semantics ensures that each probabilistic transition in the

model is associated with either an action label or a single module. A model also defines

players (e.g., p1, p2 and p3), each of which is assigned a disjoint subset of the model’s

synchronising action labels and modules (e.g., player p2 controls action labelled with

[go1]). This assigns each probabilistic transition to one player. To ensure a turn-based

SMG, all possible probabilistic transitions in a state must belong to the same player; the

tool detects and disallows concurrent actions. The rewards are assigned to states using the

rewards construct. For example, reward “total” assigns reward of 0.3 to states satisfying

turn=3 ∧ team1 6=team2 and 1 to states satisfying turn=3 ∧ team1 =team2 , and 0 to

all other states.

This description results in a slightly different model than that of SMGs used previously,

because the successor in a non-stochastic player’s state can be chosen according to a

probability distribution. This is a useful modelling convenience, but the two models are

equivalent in their expressiveness. The SMG model as used in the thesis can be specified

in PRISM-games directly and the PRISM-games’ SMG can be converted into the one used

here by inserting, for each action, a stochastic state representing the distribution. For a

more detailed discussion see Section 6.3.

6.2 Property specification

PRISM-games supports rPATL logic specifications, including the quantitative form of the

operators, e.g., 〈〈C〉〉Pmax=?[ψ], which returns the maximum probability of ψ that coalition

C can guarantee, instead of a true/false value. PRISM-games also supports precise value

operators representing multi-objective rPATL queries 〈〈C〉〉P=q[ψ] ≡ 〈〈C〉〉(P≥q[ψ]∧P≤q[ψ])

and 〈〈C〉〉Rr=x[Fcφ] ≡ 〈〈C〉〉(Rr≥x[F
cφ] ∧ 〈〈C〉〉Rr≤x[Fcφ]) for stopping games.

Example 14 We several example properties, expressed in PRISM-games syntax, for the

team formation game from Figure 4.1. We use B for player �, D for player ♦ and T for

player 4.

• <<B,T,D>> P>=1 [F ("T1" & "T2")] – “players B, T and D have a joint strategy

to guarantee that a state labelled with T1 and T2 is reached with probability 1.”

116 CHAPTER 6. TOOL IMPLEMENTATION AND APPLICATIONS

• <<B,D>> R{"cost"}>=10 [Fc "T1"] – “players B and D can ensure that the ex-

pected total reward before reaching state labelled with T1 is at least 10.”

• <<B,D>> R{"bonus"}max=? [F0 ("T1" | "T2")] – “what is the maximum expected

bonus along the paths that reach T1 or T2 that players B and D can guarantee?”

• <<T>> R{"cost"}min=? [F "T1"] – “what is the minimum cost that player T can

ensure before reaching T1?.”

• <<B,D,T>> P=0.5 [!"T1" U "T2"] – “players B, D and T can guarantee the prob-

ability to reach T2 before reaching T1 is exactly 0.5.”

6.3 Model checking

This section describes the implementation of the rPATL model checking algorithms in

PRISM-games that were derived from fixpoint equations given in Section 4.2.1.

As mentioned earlier, SMG modelling in PRISM-games has been built by extend-

ing PRISM’s MDP model, which uses different (but equivalent) definition, where, in

each state, a player can choose an action, which then leads to a successor state that

is chosen according to a probability distribution. Formally, in addition to a game G =

〈Π, S, (S©, (Si)i∈Π),∆, AP, χ〉, we are given a set of actions A, and the transition function

∆ is modified so that ∆ : S × A → D(S), and we denote by A(s) the set of actions

available in state s. For every stochastic state s ∈ S©, there is only one action available,

and equations from Section 4.2.1 are modified accordingly, i.e., opts∈∆(s)? is replaced by

opta∈A(s)

∑
t∈S ∆(s, a, t) · ? where opt ∈ {max,min}. We present rPATL model check-

ing algorithms in pseudocode. Given a game G and an rPATL formula φ the algorithms

presented here compute the set of states sat that satisfy the formula.

The general model checking routine is shown in Algorithm 1, which recursively traverses

the formula’s parse tree and calls the appropriate model checking sub-routines in the

process. Standard logic operations are evaluated in the expected way. The routine for

checking probabilistic rPATL formula 〈〈C〉〉P./x[ψ] is shown in Algorithms 2 and 3. Note

that lines 2-4 of the algorithm use the determinacy result from Equations (4.1) to convert

the comparison operator into “maximisation” by swapping the players in the coalition,

e.g., for a state s of an SMG we have 〈〈C〉〉P≤q[ψ]⇔ ¬〈〈Π \C〉〉P>q[ψ]⇔ Prmax,min
s (ψ) ≤ q,

where in Prmax,min
s (ψ) ≤ q maximisation is performed by players Π \ C.

Model checking for the “Next” operator is a one step process, shown in Algorithm 2,

which checks which action gives the biggest probability to reach a target in the next

step. For the “Until” and bounded “Until” we have to perform multiple iterations of

6.3. MODEL CHECKING 117

Algorithm 1 General model checking routine for rPATL.

1: procedure ModelCheck(φ, G = 〈Π, S, (S©, (Si)i∈Π),∆, AP, χ,A〉)
2: sat := ∅
3: if φ ≡ > then
4: sat := S
5: else if φ ≡ a ∈ AP then
6: sat := {s ∈ S | a ∈ χ(s)}
7: else if φ ≡ ¬φ1 then
8: sat := S \ ModelCheck(φ1, G)
9: else if φ ≡ φ1 ∧ φ2 then

10: sat :=ModelCheck(φ1, G) ∪ ModelCheck(φ2, G)
11: else if φ ≡ 〈〈C〉〉P./x[ψ] then
12: sat := ModelCheckProb(φ, G)
13: else if phi ≡ Rr./x[F?φ] then
14: sat := ModelCheckRew(φ, G)
15: end if
16: return sat
17: end procedure
18: procedure ProbReach(C, T , G)
19: return X such that X[s] = Prmax,min

s (FT)
20: end procedure
21: procedure CumRew(C, T , G)
22: return X such that X[s] = Emax,min

s [rew(r, c, T)]
23: end procedure
24: procedure Büchi(C, G)
25: return {s ∈ S | Prmax,min

s (inf t(arew)) > 0}
26: end procedure

Algorithm 2 Probability operator model checking routine (Next).

1: procedure ModelCheckProb(〈〈C〉〉P./x[ψ], G)
2: if ./∈ {≤, <} then
3: C := Π \ C
4: end if
5: sat := ∅
6: if ψ ≡ Xφ1 then
7: T := ModelCheck(φ1, G)
8: for all s ∈ S do
9: if s ∈

⋃
i∈C Si then

10: val := maxa∈A(s)

∑
t∈T ∆(s, a, t)

11: else
12: val := mina∈A(s)

∑
t∈T ∆(s, a, t)

13: end if
14: if val ./ x then
15: sat := sat ∪ {s}
16: end if
17: end for

118 CHAPTER 6. TOOL IMPLEMENTATION AND APPLICATIONS

the fixpoint computation as shown in Algorithm 3. For the bounded version we execute

exactly k iterations of the loop and for the unbounded version we use an absolute precision

stopping criterion, where we execute the iteration until the maximum difference between

the values of two consecutive iterations becomes smaller than a given constant ε. The

effect on performance of the algorithm for different choices of ε is discussed in Section 6.5.

Model checking procedure for the reward operator is shown in Algorithm 4. Similarly

as for the general formulae, here we determine which type of reward the formula uses and

call the appropriate sub-routine after performing the swap of coalitions in order to convert

Algorithm 3 Probability operator model checking routine (Until).

18: else if ψ ≡ φ1 Uφ2 or ψ ≡ φ1 U
≤k φ2 then

19: T2 := ModelCheck(φ2, G)
20: T1 := ModelCheck(φ1, G) \ T2

21: iter := 0
22: X := 0
23: X ′ := 0
24: for all s ∈ S do
25: if s ∈ T2 then X[s] := 1 else X[s] := 0 end if
26: end for
27: while true do
28: X ′ := X
29: iter := iter + 1
30: for all s ∈ S do
31: if s ∈ T1 then
32: if s ∈

⋃
i∈C Si then

33: X[s] := maxa∈A(s)

∑
t∈S ∆(s, a, t) ·X ′[t]

34: else
35: X[s] := mina∈A(s)

∑
t∈S ∆(s, a, t) ·X ′[t]

36: end if
37: end if
38: if X[s] ./ x then
39: sat := sat ∪ {s}
40: end if
41: end for
42: if ψ ≡ φ1 U

≤k φ2 then
43: if k ≤ iter then
44: break
45: end if
46: else if ε > maxs∈S |X[s]−X ′[s]| then
47: break
48: end if
49: end while
50: end if
51: return sat
52: end procedure

6.3. MODEL CHECKING 119

Algorithm 4 Model checking routine for the reward operator.

1: procedure ModelCheckRew(〈〈C〉〉Rr./x[F?φ], G)
2: if ./∈ {≤, <} then
3: C := Π \ C
4: end if
5: if ? = c then
6: ModelCheckRewFc(〈〈C〉〉Rr./x[Fcφ1], G)
7: else if ? =∞ then
8: ModelCheckRewFinf(〈〈C〉〉Rr./x[F∞φ1], G)
9: else if ? = 0 then

10: ModelCheckRewF0(〈〈C〉〉Rr./x[F0φ1], G)
11: end if
12: end procedure

the problem into a “maximisation” one, as described earlier for the 〈〈C〉〉P./p[ψ] operator.

Algorithm 5 gives a procedure to compute the set of states satisfying the formula of

the form 〈〈C〉〉Rr./x[Fcφ] based on the fixpoint equations given in Section 4.2.3. In order

to avoid explicitly computing the states that have infinite expected reward, we do this

indirectly by performing convergence check only on states which have not yet been found

to satisfy (or not satisfy if ./∈ {≤, <}) the formula (we need perform this check every

|S| iterations to make sure that the progress is reflected properly). We can apply this

implementation technique because, for the states, which can accumulate infinite reward

value, X[s] becomes greater than x eventually and then we can add it to the set sat (or

unsat) and terminate considering the convergence of its value. For the states, which do

not satisfy the bound, convergence check is eventually triggered.

The model checking algorithm of rPATL formulae 〈〈C〉〉Rr./x[F∞φ] derived from equa-

tions presented in Section 4.2.3 is shown in Algorithm 6. The algorithm begins by com-

puting the set of states for which value is infinity, that definitely satisfy the formula for

any bound if ./∈ {≥, >}, and definitely do not if ./∈ {≤, <} for any bound x, and then

removes them from the game. For the remaining states, we start by increasing every re-

ward by δ and computing the over-approximation of the values X[s] for all states s. After

this has been done we revert back to the original reward structure and compute the actual

values via value iteration until the desired convergence level has been reached. Finally, the

maximal value is compared against the bound and the states for which the value meets

the bound are added to sat.

In Algorithm 7 we describe the procedure for model checking the final type of the

reward formula, 〈〈C〉〉Rr./x[F0φ]. The algorithm starts by solving a Büchi game (see Sec-

tion 3.2.4) to identify the set of states for which the expectation is infinite (adds them to

sat if ./∈ {≥, >}) and removes them from the game. Then, after computing the bound B,

120 CHAPTER 6. TOOL IMPLEMENTATION AND APPLICATIONS

Algorithm 5 Model checking routine for the Fc reward operator.

1: procedure ModelCheckRewFc(〈〈C〉〉Rr./x[Fcφ1], G)
2: T :=ModelCheck(φ1, G)
3: sat := ∅; unsat := ∅; X := 0; X ′ := 0; iter := 0
4: while true do
5: X ′ := X
6: for all s ∈ S \ T do
7: if s ∈

⋃
i∈C Si then

8: X[s] := r(s) + maxa∈A(s)

∑
t∈S ∆(s, a, t) ·X ′[t]

9: else
10: X[s] := r(s) + mina∈A(s)

∑
t∈s ∆(s, a, t) ·X ′[t]

11: end if
12: if ./∈ {≥, >} ∧X[s] ./ x then
13: sat := sat ∪ {s}
14: else if (./=≤ ∧X[s] > x) ∨ (./=< ∧X[s] ≥ x) then
15: unsat := unsat ∪ {s}
16: end if
17: end for
18: if iter > |S| then
19: if ε > maxs∈S\(sat∪unsat) |X[s]−X ′[s]| then
20: break
21: end if
22: iter := 0
23: end if
24: iter := iter + 1
25: end while
26: return sat
27: end procedure

we compute the values of the reward achieved by the “rich man” strategy, which is played

after ≥ B of the reward has been accumulated along the path (this is done in Algorithm 8

based on the algorithm described in Section 4.2.3). Then we compute the value using the

Equations (4.10) from Section 4.2.3. Note that, for each ‘step’ of these equations, we need

to perform the iteration until the values converge (see lines 16-28); the values converge in

one iteration if all rewards are strictly positive in the game, but may need more iterations

in the presence of zero rewards.

Finally, Algorithm 9 describes a model checking routine for computing the set of states

in which the multi-objective rPATL formula 〈〈C〉〉P=x[Fφ] ≡ 〈〈C〉〉P≥x[Fφ] ∧ 〈〈C〉〉P≤x[Fφ]

is satisfied.

6.3. MODEL CHECKING 121

Algorithm 6 Model checking routine for F∞ reward operator.

1: procedure ModelCheckRewFinf(〈〈C〉〉Rr./x[F∞φ1], G)
2: T :=ModelCheck(φ1, G)
3: inf :=ModelCheck(〈〈C〉〉P<1[>Uφ1], G)
4: S := S \ inf
5: if ./∈ {≥, >} then
6: sat := inf
7: else
8: sat := ∅
9: end if

10: X := 0; X ′ := 0
11: δ := 1
12: while true do
13: X ′ := X
14: for all s ∈ S \ T do
15: if s ∈

⋃
i∈C Si then

16: X[s] := (r(s) + δ) + maxa∈A(s)

∑
t∈S ∆(s, a, t) ·X ′[t]

17: else
18: X[s] := (r(s) + δ) + mina∈A(s)

∑
t∈S ∆(s, a, t) ·X ′[t]

19: end if
20: end for
21: if ε > maxs∈S |X[s]−X ′[s]| then
22: if δ > 0 then
23: δ := 0
24: else
25: break
26: end if
27: end if
28: end while
29: for all s ∈ S do
30: if X[s] ./ x then
31: sat := sat ∪ {s}
32: end if
33: end for
34: return sat
35: end procedure

122 CHAPTER 6. TOOL IMPLEMENTATION AND APPLICATIONS

Algorithm 7 Model checking routine for F0 reward operator.

1: procedure ModelCheckRewF0(〈〈C〉〉Rr./x[F0φ1], G)
2: T :=ModelCheck(φ1, G)
3: inf := Büchi(C, G)
4: if ./∈ {≥, >} then
5: sat := inf
6: else
7: sat := ∅
8: end if
9: S := S \ sat

10: P :=ProbReach(C, T , G)
11: C :=CumRew(C, T , G)
12: B := dmaxs∈S C[s]/(mina,b∈A(s)

∑
t∈S ∆(s, a, t) · P [t]−

∑
t∈S ∆(s, b, t) · P [t])e

13: RB := ComputeRB(T , P , G)
14: for all i ∈ {B, . . . , B+rmax−1} do
15: for all s ∈ S do
16: Ri[s] = i+RB[s]
17: end for
18: end for
19: for i = B−1, . . . , 0 do
20: Ri := 0
21: while true do
22: R′i := Ri
23: for all s ∈ S do
24: if s ∈

⋃
i∈C Si then

25: Ri[s] := i+ maxa∈A(s)

∑
t∈S ∆(s, a, t) ·R′i+r(s)[t]

26: else
27: Ri[s] := i+ mina∈A(s)

∑
t∈S ∆(s, a, t) ·R′i+r(s)[t]

28: end if
29: end for
30: if ε > maxs∈S |Ri[s]−R′i[s]| then
31: break
32: end if
33: end while
34: end for
35: for all s ∈ S \ T do
36: if R0[s] ./ x then
37: sat := sat ∪ {s}
38: end if
39: end for
40: return sat
41: end procedure

6.3. MODEL CHECKING 123

Algorithm 8 Routine for computing value for Ri for B ≤ i ≤ B+rmax−1.

1: procedure ComputeRB(T , P , G)
2: X := 0; X ′ := 0
3: while true do
4: X ′ := X
5: for all s ∈ S \ T do
6: if s ∈

⋃
i∈C Si then

7: X[s] := P [s] · r(s) + maxa∈A(s)

∑
t∈S ∆(s, a, t) ·X ′[t]

8: else
9: X[s] := P [s] · r(s) + mina∈A(s)

∑
t∈S ∆(s, a, t) ·X ′[t]

10: end if
11: end for
12: if ε > maxs∈S |X[s]−X ′[s]| then
13: break
14: end if
15: end while
16: return X
17: end procedure

Algorithm 9 Model checking routine for exact reachability probability.

1: procedure ModelCheckExact(〈〈C〉〉P=x[Fφ], G)
2: T :=ModelCheck(φ, G)
3: sat := ∅
4: bad := S
5: while bad 6= ∅ do
6: bad := ∅
7: Xmin := ProbReach(Π \ C, T , G)
8: Xmax := ProbReach(C, T , G)
9: for all s ∈ S do

10: if Xmin > Xmax then
11: bad := bad ∪ {s}
12: end if
13: end for
14: S := S \ bad
15: end while
16: for all s ∈ S do
17: if Xmin[s] ≤ x ≤ Xmax[s] then
18: sat := sat ∪ {s}
19: end if
20: end for
21: return sat
22: end procedure

124 CHAPTER 6. TOOL IMPLEMENTATION AND APPLICATIONS

Figure 6.2: PRISM-games screenshots: simulation of a synthesised strategy (bottom) and
verification of a property under the strategy (top).

6.4 Strategy synthesis

PRISM-games implements the strategy construction algorithms for rPATL properties de-

scribed in Section 4.4 and the one for precise probability described in Section 3.4. Strate-

gies can be analysed manually by exploring the choices taken and memory updates in the

simulator view. They can also be exported to (and imported from) files for automatic anal-

ysis and usage for strategy implementation (see Figure 6.2 for screenshots demonstrating

this functionality). PRISM-games also supports application of strategies – the product of

a strategy and the original game can be built, resulting in a new model on which other

properties can be verified. For example, in a game with three players we can generate

a strategy for player 1 achieving 〈〈{1}〉〉P≥0.5[F goal1] in the initial state. Implementing

this strategy would then result in a two-player game, in which only players 2 and 3 are

able to chose their actions and on which further properties may be verified. For example,

in rPATL formula 〈〈{2, 3}〉〉P≥0.99[F goal2], player 1 now does not minimise the probabil-

ity of reaching a goal2 state; instead its strategy is fixed to one which achieves the first

rPATL formula. This functionality is useful when evaluating the generated strategy for

other properties. For example, in the case study of user-centric networks that is presented

in Section 6.6.3, we have used strategy implementation to compare the distributions of

requests submitted to service providers by client strategies achieving optimal service cost

6.5. EXPERIMENTAL RESULTS 125

in different pricing schemes.

6.5 Experimental results

In this section we present experimental results testing the performance of PRISM-games.

The results shown here have been obtained during the analysis of the following case studies:

• MDSM: microgrid demand-side management (see Section 6.6.1);

• CDMSN: collective decision making for sensor networks (see Section 6.6.2);

• UCN: reputation and virtual currency protocol for user-centric networks (see Sec-

tion 6.6.3);

• TEAM-FORM: team formation protocol (see Section 3.5).

Case study
[parameters]

SMG statistics Model checking

Players States Transitions Property type
Constr. Check

(s) (s)

MDSM
[N]

5 5 743,904 2,145,120
〈〈C〉〉Rrmax=?[F

∞φ]
14.5 61.9

6 6 2,384,369 7,260,756 55.0 221.7
7 7 6,241,312 19,678,246 210.7 1,054.8

CDMSN
[N]

3 3 1,240 6,240
〈〈C〉〉P./q[F≤k φ]

0.2 0.2
4 4 11,645 73,948 0.8 0.8
5 5 100,032 760,430 3.2 6.4

UCN
[K]

5 4 5,737 9,121
〈〈C〉〉Rrmax=?[F

cφ]
0.163 0.2

10 4 78,516 129,798 2.4 4.4
20 4 718,499 1,227,391 14.9 98.4

TEAM-
FORM

[N]

3 3 12,475 15,228
〈〈C〉〉Pmax=?[Fφ]

0.8 0.2
4 4 96,665 116,464 1.6 0.9
5 5 907,993 1,084,752 13.6 11.2

Table 6.1: Performance statistics for PRISM-games.

Table 6.1 shows model statistics (number of players, states and transitions) for three

SMGs taken from each case study. It also gives the execution time for model checking

a sample property on each one, consisting of the time for model construction (building

an SMG from the modelling language description) and for executing the model checking

algorithms, described earlier in the chapter. Experiments were run on a 2.80GHz PC with

32GB RAM. The details of the PRISM-games models can be found in Appendix F.

As we can see from the table, the largest model that we analysed using PRISM-games

has about 6 million states and 20 million transitions. Due to the use of the explicit

126 CHAPTER 6. TOOL IMPLEMENTATION AND APPLICATIONS

representation, storing such game requires substantial amount of memory, about 20Gb for

the MDSM model with 7 households. The actual model construction and model checking

times are less of a bottleneck.

0	

200	

400	

600	

800	

1E-­‐10	
 1E-­‐08	
 0.000001	
 0.0001	
 0.01	

MDSM	
 (N=3)	

MDSM	
 (N=4)	

CDMSN	
 (N=3)	

CDMSN	
 (N=4)	

UCN	
 (K=10)	

UCN	
 (K=15)	

0	

200	

400	

600	

800	

1E-­‐10	
 1E-­‐08	
 0.000001	
 0.0001	
 0.01	

MDSM	
 (A)	

MDSM	
 (R)	
 	

CDMSN	
 (A)	

CDMSN	
 (R)	
 	

UCN	
 (A)	
 	

UCN	
 (R)	
 	

Figure 6.3: Performance of numerical computation algorithms (number of iterations) for
varying convergence thresholds ε using absolute difference convergence check.

We also discuss how the convergence test and its threshold affect the convergence of

model checking algorithms. As mentioned in Section 6.3, our algorithms are mostly based

on the evaluation of numerical fixpoints, termination of which is decided using a simple

convergence test. More precisely, if Xk
s denotes the value computed for a state s in iteration

k and ε represents a pre-specified convergence threshold, the computation terminates when

the maximum absolute difference between values for successive iterations falls below ε, i.e.,

when:

max
s∈S
|Xk

s −Xk−1
s | < ε

Figure 6.3 illustrates, for several of the models from Table 6.1, how the total number of

iterations of numerical computation required varies for different values of the convergence

threshold ε. For the CDMSN example, we check a property of the form 〈〈C〉〉P./q[Fφ] since

the bounded property used in Table 6.1 always requires exactly k iterations to converge.

We do not include the results for the team formation example since the corresponding SMG

is a tree fixed depth and hence computation always terminates after the same number of

steps. From the plots in Figure 6.3, we can see that varying ε = 10−n for increasing values

6.5. EXPERIMENTAL RESULTS 127

of n results in, for the case studies studied here, at most a linear increase in the number

of iterations required by the method to converge, but the shape of the curve is model

dependent. Also note that, for all models, changing the model size does not affect the

shape of the curve, just the slope and the magnitude. For the MDSM and UCN protocols,

the number of iterations required to satisfy the convergence check stabilises after reaching

ε = 10−4, whereas for CDMSN it keeps increasing with precision.0	

200	

400	

600	

800	

1E-­‐10	
 1E-­‐08	
 0.000001	
 0.0001	
 0.01	

MDSM	
 (N=3)	

MDSM	
 (N=4)	

CDMSN	
 (N=3)	

CDMSN	
 (N=4)	

UCN	
 (K=10)	

UCN	
 (K=15)	

0	

200	

400	

600	

800	

1E-­‐10	
 1E-­‐08	
 0.000001	
 0.0001	
 0.01	

MDSM	
 (A)	

MDSM	
 (R)	
 	

CDMSN	
 (A)	

CDMSN	
 (R)	
 	

UCN	
 (A)	
 	

UCN	
 (R)	
 	

Figure 6.4: Comparison of absolute and relative termination criteria for value iteration
algorithms for different convergence thresholds ε. (A) stands for absolute and (R) stands
for relative convergence checks.

There are other variants of convergence checking used in practice. One such check

is relative difference check. For a given convergence threshold ε the value iteration is

terminated if we have that

max
s∈S

|Xk
s −Xk−1

s |
|Xk

s |
< ε.

Figure 6.4 shows the comparison of the performance between the absolute and relative

convergence checks. The models used were MDSM (N = 4), CDMSN (N = 4) and UCN

(K = 15). For the UCN case study there is almost no difference in the number of iterations

performed, whereas for CDMSN model, there is a significant improvement in convergence

time, which is particularly apparent for lower values of ε. The converse is true for the

MDSM model, where the absolute termination criterion requires less iterations to converge

than the relative one.

Discussion. In this section we have presented the performance statistics for the PRISM-

games model checker. We have also discussed convergence checks for two difference ter-

128 CHAPTER 6. TOOL IMPLEMENTATION AND APPLICATIONS

mination criteria for value iteration. In the case studies that we analysed, varying the

order of magnitude of the convergence threshold ε required linear increase in the number

of iteration required by the algorithm to converge, suggesting that higher precision can be

obtained relatively cheaply. These results regarding the termination have to be interpreted

with care, because neither of the convergence checks used here guarantees the correctness

of the result of the algorithm.

6.6 Case studies

In this section we present the analysis of the three case studies of algorithms for competitive

stochastic systems that we have analysed using PRISM-games. We start by presenting

the analysis of the microgrid demand-side management protocol of [68] for which we use

rPATL model checking functionality of PRISM-games to identify a potential flaw in the

algorithm, then we present the performance and robustness analysis of the algorithm

for collective decision making in sensor networks developed by [99], and finally, we use

a combination of rPATL model checking and strategy synthesis functionality to analyse

of the reputation and virtual currency mechanisms for user-centric networks that were

introduced in [15].

The case studies presented in Sections 6.6.1 and 6.6.2 have been published in [36, 37].

The case study from Section 6.6.3 has been published in [81]. The analyses presented here

are the extended versions of the above publications.

6.6.1 Microgrid demand-side management

Microgrid is an increasingly popular (distributed) model for future energy markets where

neighbourhoods use electricity generation from local sources (e.g., wind/solar power) to

satisfy local demand. Microgrid environment is highly decentralised and users have a sig-

nificant control over the infrastructure, and hence the success of such system is heavily

dependent on the active demand management and cooperation between its users (demand-

side management). One of the key requirements for the infrastructure is the ability to

incentivise cooperation and discourage abuse and selfish behaviour. Such systems are usu-

ally analysed using simulation studies, but these approaches can fail to uncover important

features or weaknesses of the models. In this case study, we use rPATL model checking

to analyse the microgrid demand-side management (MDSM) infrastructure of [68] and

identify an important incentive-related weakness.

6.6. CASE STUDIES 129
Sheet2

Page 1

Actual graph
Time Usage Rel Usage

0 5 0.74
1.5 3 0.44

3 2 0.29
4.5 1.8 0.26

6 2 0.29
7.5 2.5 0.37

9 4.2 0.62
10.5 4.3 0.63

12 4.1 0.6
13.5 4.05 0.6

15 4 0.59
16.5 4 0.59

18 5.1 0.75
19.5 6.6 0.97

21 6.8 1
22.5 6.5 0.96

24 5 0.74

Piecewise linear approximation graph
Time Usage Rel Usage

0 5 0.7353 0.0739
0 4 0.5882 0.0591

1.5 4 0.5882 0.0591
1.5 2.5 0.3676 0.0369

3 2.5 0.3676 0.0369
3 1.9 0.2794 0.0281

4.5 1.9 0.2794 0.0281
4.5 1.9 0.2794 0.0281

6 1.9 0.2794 0.0281
6 2.25 0.3309 0.0332

7.5 2.25 0.3309 0.0332
7.5 3.35 0.4926 0.0495

9 3.35 0.4926 0.0495
9 4.25 0.6250 0.0628

10.5 4.25 0.6250 0.0628
10.5 4.2 0.6176 0.0620

12 4.2 0.6176 0.0620
12 4.08 0.5993 0.0602

13.5 4.08 0.5993 0.0602
13.5 4.03 0.5919 0.0595

15 4.03 0.5919 0.0595
15 4 0.5882 0.0591

16.5 4 0.5882 0.0591
16.5 4.55 0.6691 0.0672

18 4.55 0.6691 0.0672
18 5.85 0.8603 0.0864

19.5 5.85 0.8603 0.0864
19.5 6.7 0.9853 0.0990

21 6.7 0.9853 0.0990
21 6.65 0.9779 0.0982

22.5 6.65 0.9779 0.0982
22.5 5 0.7353 0.0739

24 5 0.7353 0.0739

0 3 6 9 12 15 18 21 24

Time of the day (hours)

P
o
w
e
r

d
e
m
a
n
d

Figure 6.5: MDSM energy demand curve from [68] and its piecewise approximation.

The algorithm. The system in [68] consists of N households connected to a single

distribution manager (DM). At every time-step, the DM randomly contacts a household

that, if needed, can submit a load for execution. Each load has an energy demand that

is required for its execution. The probability of the generating a load at each time-step

is determined by a daily demand curve from [68] (see Figure 6.5). The duration of a

load is random, between 1 and D time-steps, where D is a model parameter. The cost

of executing a load for a single step is the number of tasks currently running. Hence, the

total cost for the whole system increases quadratically with households executing more

loads in a single step.

Each household follows a very simple algorithm, the essence of which is that, when it

is scheduled to act and has a load to execute, if the cost is below an agreed limit clim,

it executes the load, and otherwise it only does so with a pre-agreed probability Pstart.

In [68], the value for each household in a time-step is measured by V= loads executing
cost of execution

and it

is shown (through simulations) that, provided every household conforms to this algorithm,

the peak demand and the total cost of energy to the system are reduced significantly while

still providing a good (expected) value V for each household.

Modelling and analysis. We model the system as an SMG where each household is

represented by a player (see Appendix F.2 for the details of PRISM-games models). We

vary the number of households (N) from 2 to 7. The size of the underlying SMG model

is exponential in N (see Table 6.2 for the experimental results) and so we are unable to

analyse systems with more than 7 households. Other parameters that we use are D=4

130 CHAPTER 6. TOOL IMPLEMENTATION AND APPLICATIONS

Number of households States Transitions Construction time (s)
2 5,302 8,328 0.5
3 33,528 82,560 1.2
4 178,272 473,088 3.1
5 743,904 2,145,120 16.6
6 2,384,369 7,260,756 61.2
7 6,241,312 19,678,246 234.8

Table 6.2: SMG model sizes and construction times.

and clim=1.5. We analyse a period of 3 days, each consisting of 16 time-steps. The daily

demand is generated using a piecewise approximation of the daily demand curve, shown

in Figure 6.5.

First, as a benchmark, assume that all households follow the algorithm of [68], i.e.,

the strategies of all players are fixed and the model is a DTMC. Define reward structure

ri for the value for household i at each step so that for all s ∈ S ri(s) = household load
cost of execution

(where ‘household load’ can be 0 or 1 and the cost of execution is the total number of jobs

running in the system). For the coalition C of players the reward is defined in a similar

way, rC = loads executed by coalition
cost of execution

(where the cost of execution is the total number of jobs

running in the system multiplied by the number of loads executed by the coalition) be the

total reward for a set of households C.

To compute the expected value per household, we use the rPATL query:

1
|C| · 〈〈C〉〉R

rC
max=?[F0 time=max time],

where time=max time is an atomic proposition labelling the terminal states of the protocol.

Initially, fix C to be the set Π of all N players (households) and use DTMC model checking

to determine the optimal value of Pstart (up to precision 0.05) achievable by a memoryless

strategy for each player. The values for games of different sizes are shown in Table 6.3.

The model checking results are shown by the bold lines in Figure 6.6. We also plot (as a

dotted line) the values obtained if no demand-side management is applied (i.e., Pstart = 1).

SMG size (N) 2 3 4 5 6 7
Pstart value 1.0 0.8 0.7 0.65 0.6 0.6

Table 6.3: Optimal values for Pstart parameter.

Next, we consider the situation where the set of households C is allowed to deviate

from the pre-agreed strategy, by choosing to ignore the limit clim if they wish. We check

the same rPATL query as above, but now varying C to be coalitions of different sizes, C ∈
{{1}, {1, 2}, . . . ,Π}. The resulting values are plotted in Figure 6.6a, shown as horizontal

6.6. CASE STUDIES 131
Sheet2

Page 7

1 2 3 4 5 6 7 8

5

10

15

20

Number of households

R
e

w
a

rd
 p

e
r

h
o

u
se

h
o

ld

1 2 3 4 5 6 7 8

5

10

15

20

Number of households

R
e

w
a

rd
 p

e
r

h
o

u
se

h
o

ld

(a) Original version.

Sheet2

Page 7

1 2 3 4 5 6 7 8

5

10

15

20

Number of households

R
e

w
a

rd
 p

e
r

h
o

u
se

h
o

ld

1 2 3 4 5 6 7 8

5

10

15

20

Number of households

R
e

w
a

rd
 p

e
r

h
o

u
se

h
o

ld

(b) Version with punishment.

Figure 6.6: Expected value per household for MDSM. The bold line shows all households
following the algorithm of [68]; the dotted line shows the case without DSM. Horizontal
dashes show deviations by collaborations of increasing size (shortest dash: individual
deviation; longest dash: deviation of all households).

dashes of width proportional to the size of C: the shortest dash represents the deviation

of a single household and the longest is a collaboration of all households in the coalition.

The former shows the maximum value that can be achieved by following the optimal

collaborative strategy, and in presents a benchmark for the performance of the original

algorithm. The key result is that deviations by individuals or small coalitions guarantee

a better expected value for the households than any larger collaboration. This is a highly

undesired weakness for an MDSM system, because it essentially shows that users can

ignore the proposed demand-side management method.

Changing the incentives. We propose a simple punishment mechanism that addresses

the problem: we allow the distribution manager to cancel one job per step if the cost

exceeds clim. The intuition is that, if a household is constantly abusing the system, its job

could be cancelled. Results for the same set of rPATL queries on a revised model that

incorporates the punishment mechanism are shown in Figure 6.6b, where all households

outside the coalition follow the original algorithm. We see that the modification of the

algorithm inverts the incentives. The best option now is full collaboration and small

coalitions who deviate cannot guarantee better expected values any more.

Discussion. In this case study we demonstrated how game-based modelling can be

applied to the analysis of a decentralised protocol for MDSM. Using rPATL model checking

we identified a problem with the incentive design of the pricing/value scheme, which

132 CHAPTER 6. TOOL IMPLEMENTATION AND APPLICATIONS

discourages cooperation between different households. We also proposed a simple ‘policing’

mechanism, which inverts the incentives and encourages cooperation. The size of the SMG

increases exponentially with the number of households, and even though we could only

analyse models with up to seven households, we have managed to identify clear patterns

of behaviour of the system and explore how they change when adding new features to the

model.

6.6.2 Collective decision making for sensor networks

Sensor networks are composed of a set of low-power, autonomous devices, which often

must act collaboratively in order to achieve a particular goal. Formal analysis of such

systems can help to establish performance boundaries (e.g., find the best value achievable

by the sensor network assuming full collaboration) and analyse robustness (e.g., look at

the performance of the system in the presence of failure or unexpected behaviour of some

nodes). In this case study, we illustrate the use of rPATL model checking to analyse a

distributed consensus algorithm for sensor networks [99].

The algorithm. There are N sensors deployed in the environment having a set of targets

K = {k1, k2, . . . }. Each of the targets has a quality parameter Qkj ∈ [0, 1]. The goal is for

the sensors to agree on a target with the maximum quality Qkj . This is quite an abstract

model and the target can be used for anything from locating an intruder in a security

system to RoboBees1 trying to select the best nesting site.

Each sensor i stores a preferred target pi ∈ K, its quality Qpi and an integer li ∈
{1, . . . , L} to represent confidence in the preference. A sensor has three actions: sleep,

explore and communicate. As proposed by [99], each sensor repeatedly sleeps for a

random time t and then either explores (with probability Pexp) or communicates. For the

explore action, sensor i picks a target k ∈ K uniformly at random and, with probability

Pk = Qη
k/(Q

η
k +Qη

pi
), switches its preference (pi) to k and resets confidence to 1. The

intuition behind the formula is that the bigger the difference between qualities of targets,

the more likely it is that the sensor chooses the better one, with parameter η amplifying this

effect. To communicate, sensor compares its preference with that of another sensor chosen

at uniformly at random j. If they agree (i.e., both prefer the same target), confidence

levels of both sensors are increased. If not, with probability

Ps =
Qλ
pj
lγj

Qλ
pj
lγj +Qλ

pi
lγi
,

1For an in-depth discussion of RoboBees see http://robobees.seas.harvard.edu.

http://robobees.seas.harvard.edu

6.6. CASE STUDIES 133

sensor i switches its preference to the target preferred by sensor j. The confidence level of

i is reset to 1 and the confidence of sensor j is increased. With probability 1−Ps, the roles

of sensors i and j are swapped, i.e., sensor j switches preference to pi, resets confidence

to 1 and the confidence of sensor i is increased. This mechanism effectively conducts a

tournament between two sensors with conflicting targets and the one, which has higher

confidence and/or quality of its preferred target, wins with higher probability. The key

property is that after the tournament both sensors prefer the same target. Parameters γ

and λ represent the influence of confidence in and a quality of the target, respectively.

The purpose of the system is to locate and agree upon the target having the best

quality by striking a balance between exploration of the environment (i.e., sensing) and

communication with other sensors. Intuitively, a ‘good’ strategy for sensors should be

to actively communicate when they believe they have found the best quality target and

to explore otherwise. An example of an ‘bad’ strategy could be the one, which actively

communicates to advertise a low quality target, thus not only polluting the system with

false information, but also draining the resources of the sensor network.

Modelling and analysis. We model each sensor in the system as a player in an SMG

(see Appendix F.3 for the details of PRISM-games models). We consider models with

number of players N=3, 4, 5, three targets K={k1, k2, k3} with qualities Qk1=1, Qk2=0.5,

Qk3=0.25 and two confidence levels li ∈ {1, 2}. Table 6.4 shows SMG model sizes for

systems of different size. As in [99], we assume a random scheduling in turns and fix the

Number of sensors States Transitions Construction time (s)
2 111 466 0.05
3 1,240 6,240 0.2
4 11,645 73,948 0.8
5 100,032 760,430 3.2

Table 6.4: SMG model sizes and construction times.

parameters η=1 and λ=1. In [99], two key properties of the algorithm are studied using

simulation: speed of convergence and robustness. We use rPATL model checking to evalu-

ate both of these properties and explore the values that can be obtained by sensor when

they are allowed to execute any action when active. We also assume that only a subset

C of the sensors are under our control, and use rPATL queries to optimise performance

under the worst-case behaviour assumption about the other sensors (modelling hostility

or faults).

First, we study the speed of convergence and the influence of parameter γ upon it. In

[99], it is shown that increasing γ improves the speed of convergence to a decision and

134 CHAPTER 6. TOOL IMPLEMENTATION AND APPLICATIONS

N=5 G

Page 5

0 1 2 3 4 5

5

50

500
1 2 3 4 5 det

ɣ
E

xp
e

ct
e

d
 r

un
ni

ng
 ti

m
e

0 1 2 3 4 5

5

50

500
1 2 3 4 det

ɣ

E
xp

e
ct

e
d

 r
un

ni
ng

 ti
m

e

0 1 2 3 4 5

5

50

500
1 2 3 det

ɣ

E
xp

e
ct

e
d

 r
un

ni
ng

 ti
m

e

0 1 2 3 4 5

5

50

500
1 2 det

Gamma

E
xp

ec
te

d
ru

nn
in

g
ti

m
e

(a) N = 3

N=5 G

Page 5

0 1 2 3 4 5

5

50

500
1 2 3 4 5 det

ɣ

E
xp

e
ct

e
d

 r
un

ni
ng

 ti
m

e

0 1 2 3 4 5

5

50

500
1 2 3 4 det

ɣ

E
xp

e
ct

e
d

 r
un

ni
ng

 ti
m

e

0 1 2 3 4 5

5

50

500
1 2 3 det

ɣ

E
xp

e
ct

e
d

 r
un

ni
ng

 ti
m

e

0 1 2 3 4 5

5

50

500
1 2 det

Gamma

E
xp

ec
te

d
ru

nn
in

g
ti

m
e

(b) N = 4

N=5 G

Page 5

0 1 2 3 4 5

5

50

500
1 2 3 4 5 det

ɣ

E
xp

e
ct

e
d

 r
un

ni
ng

 ti
m

e

0 1 2 3 4 5

5

50

500
1 2 3 4 det

ɣ

E
xp

e
ct

e
d

 r
un

ni
ng

 ti
m

e

0 1 2 3 4 5

5

50

500
1 2 3 det

ɣ

E
xp

e
ct

e
d

 r
un

ni
ng

 ti
m

e

0 1 2 3 4 5

5

50

500
1 2 det

Gamma

E
xp

ec
te

d
ru

nn
in

g
ti

m
e

(c) N = 5

Figure 6.7: Expected running time until the selection of the best quality target for different
models and increasing sizes of coalition C. Dotted lines show optimal performance that
can be achieved using the original algorithm from [99].

stability of it. Figure 6.7 shows the expected running time to reach the best decision (i.e.

select k1) for various values of γ and sizes of the coalition C. We use the reward structure:

r(s) = 1 for all s ∈ S and rPATL query:

〈〈C〉〉Rrmin=?[F∞
∧|Π|
i=1 pi=k1] .

where C ∈ {{1}, {1, 2}, . . . ,Π}. Figure 6.7 also shows the performance of the original

algorithm (line ‘det’). We make several important observations. First, in the scenario we

analysed, we obtain the opposite effect of γ on the convergence than the one shown in [99],

where authors studied the convergence to a decision. This result is expected, as increasing

γ while keeping λ constant increases the relative importance of the preference against the

quality of the site, and thus sensors converge to a (possibly sub-optimal) decision. Second,

observe that, if we lose control of a few sensors (e.g., because a fault occurs), we can still

guarantee a good convergence time, indicating the fault tolerance potential of the system.

Secondly, we consider robustness : the ability of the coalition C to recover from a

‘bad’ state to a ‘good’ state in n steps; this property can be specified by rPATL formula

〈〈C〉〉Pmax=?[F≤n φgood], where φgood represents ‘good’ states. The definition of a ‘bad’ state

that we use is the state in which all sensors have a preference for the lowest quality target,

i.e.,
∧|Π|
i=1 pi = k3. The definition of a ‘good’ state that we adopt here is that “there exists

a strategy for coalition C to make all sensors, with probability > 0.9, select k1 within 10

steps”. So robustness in rPATL is:

〈〈C〉〉Pmax=?[F≤n 〈〈C〉〉P>0.9[F≤10
∧|Π|
i=1 pi=k1]] .

Figure 6.8 shows a range of values over time span n = 1, . . . , 100, the worst-case (mini-

6.6. CASE STUDIES 135Recovery

Page 1

0 25 50 75 100

0

0.25

0.5

0.75

1

1 2 3 4 5

Time (n)

E
xp

e
ct

e
d

 p
ro

ba
bi

lit
y

Figure 6.8: Probability to select k1 within 10 steps is greater than 0.9, with γ = 2.

mum) value for the rPATL query from all possible ‘bad states’. The results are intuitive:

the larger the coalition, the better its capability to recover. Also, as in Figure 6.7, there

is little use of controlling only one sensor, but the control of at least two provides a sig-

nificant improvement. It can also be seen that, for the failure of one sensor does not have

a significant impact on performance, but the failure of more than half has.

Discussion. In this case study we have demonstrated how rPATL can used to analyse

performance and robustness of the sensor network protocol. Note that the results detailed

here are in a complete-information setting, which implicitly assumes that the members of

the coalition (i.e., non-faulty sensors) have knowledge of which sensors are faulty and can

adjust their behaviour accordingly, and therefore the values provided by our analysis are

upper bounds on the performance that can be achieved.

6.6.3 Reputation protocol for user-centric networks

In our final case study we present an analysis of the protocol for user-centric networks.

The analysis presented here differs from the previous two case studies in that, in addition

to model checking, we use strategy synthesis to analyse the protocol.

User-centric networks are designed to encourage users to act cooperatively by sharing

resources and/or services between themselves, for example, in order to provide connectivity

in a mobile ad-hoc network. The effectiveness of such networks is heavily dependent on

136 CHAPTER 6. TOOL IMPLEMENTATION AND APPLICATIONS

their cooperation mechanisms, i.e., a scheme, which defines the cooperation rules and

provides incentives for unselfish behaviour. We analyse a cooperation mechanism for user-

centric networks [15], which combines a reputation-based incentive, used to establish a

measure of trust between users, and a virtual currency mechanism that uses the trust

measures to provide prices for services.

Previously, this cooperation model has been analysed formally using probabilistic

model checking by [1, 2] using PCTL verification on DTMCs and MDPs. Here we take

a different approach and study the cooperation mechanism using strategy-based analysis

using stochastic games. The system is modelled as an SMG, in which service providers

and requesters are modelled as players. We model objectives of players using rPATL and

perform strategy synthesis using PRISM-games to discover important insights into the

model.

The cooperation mechanism. The basic ideas behind the cooperation mechanism

of [15] can be summarised as follows. We assume a general model of providers offering

services to requesters. Cooperation between users is managed through a combination of

reputation and virtual currency mechanisms.

Reputation is represented as a (discrete) trust measure, denoted trust ij. This measure

represents the extent to which user i trusts user j, based on previous interactions between

them and the recommendations provided by the other users in the network. A trust level

Tij is computed as a weighted sum of trust measure and the recommendations provided

by other users in the following way:

Tij = α · trust ij + (1−α) · recs ij,

where recs ij is recommendation – an indirect trust measure, taken as the average value

of trustkj for other users (we call trust ij a direct measure of trust). Provider i decides to

accept the request from user j if Tij is above or equal to the service trust level, denoted

sti (a fixed parameter). The parameter α ∈ [0, 1] controls the relative influence that the

direct and indirect measures of trust have on this decision.

A virtual currency system, which determines the prices of services, is defined as follows.

Minimum and maximum costs Cmin , Cmax and threshold T ′ are parameters of the model

and the cost is defined as

C(trust ij) =

{
Cmin + Cmax−Cmin

T ′
· (T ′ − trust ij) if trust ij < T ′

Cmin if trust ij ≥ T ′

Service provision happens as follows. A requester j chooses a provider i and submits

6.6. CASE STUDIES 137

a request. If Tij ≥ sti, then the request is accepted. In this case, the two users then

negotiate the service cost, using the function of trust ij given above. The negotiation

may fail with probability ci (this may correspond, for example, to the user cancelling the

accepted request). This probability represents the cooperative attitude [1] of the provider

i. If negotiation succeeds, the service is delivered and the requester has to decide whether

or not to pay the provider. If payment is made, the provider increases the trust measure of

the requester by one unit. If not, the measure is decreased by tdi units (also a parameter

of the model).

Modelling. We developed the SMG model of the cooperation mechanism of [15], taking

the PRISM model of [1] as a starting point (see Appendix F.4 for the details of PRISM-

games models). We adopt the same basic network configuration as used in the original

analysis of the protocol [1], which comprises 3 providers and 1 requester, each represented

as a player in the SMG. The parameters of the cooperation mechanism are also taken

from [1] and are as follows. The trust measure trustkj is an integer in the range 0 to 10

and is initially 5. We use α=0.8, unless stated otherwise, and the service trust threshold

sti is set to 5 for all providers. We use a negotiation failure probability of ci=0.05 for all

providers i, and the parameters used to compute prices are fixed at Cmin=2, Cmax=10 and

threshold T ′=8. The statistics for the models constructed in PRISM-games are shown in

Table 6.5. The parameter K is the upper bound on the services that can be delivered in

the network.

K States Transitions Construction time (s)
4 2,517 3,925 0.1
8 33,808 55,296 0.6
12 150,088 250,625 2.6
16 377,626 639,673 7.4
20 718,499 1,227,391 14.9

Table 6.5: SMG model sizes and construction times for different values of K (the upper
bound on the services delivered in the network).

Unpaid requests. First, we consider the extent to which the requester can obtain

services without paying for them. We analyse the maximum (expected) number of unpaid

services that the requester can obtain if its goal is to get k services in total. This is

expressed in rPATL as:

〈〈{requester}〉〉Runpaidmax=?[F
cservices=k]

138 CHAPTER 6. TOOL IMPLEMENTATION AND APPLICATIONS

Graph 1

Page 1

Number of services0.5/2 0.8/1 0.8/2 0.8/inf
1 1 1 1 1
2 1 1 1 1
2 1 1 1 1
3 1 1 1 1
3 1 2 2 1
4 1 2 2 1
4 2 3 2 2
5 2 3 2 2
5 3 3 3 2
6 3 3 3 2
6 3 4 3 3
7 3 4 3 3
7 3 4 4 3
8 3 4 4 3
8 4 5 4 3
9 4 5 4 3
9 4 5 4 3

10 4 5 4 3
10 5 6 5 3
11 5 6 5 3
11 5 7 5 3
12 5 7 5 3
12 6 7 6 3
13 6 7 6 3
13 7 8 6 3
14 7 8 6 3
14 8 8 6 3
15 8 8 6 3
15 9 9 7 3
16 9 9 7 3
16 10 9 7 3
17 10 9 7 3
17 11 10 7 3
18 11 10 7 3
18 12 10 8 3
19 12 10 8 3
19 13 11 8 3
20 13 11 8 3
20 14 11 8 3

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

0.5/2 0.8/1 0.8/2 0.8/inf

k

F
ra

ct
io

n
of

 u
np

ai
d

 s
e

rv
ic

es

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

2

4

6

8

10

Provider 1 Provider 2 Provider 3

Number of acquired services

T
ru

st
 o

f r
eq

ue
st

er

Paid Unpaid

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

0.5/2 0.8/1 0.8/2 0.8/inf

k

U
np

a
id

 s
er

vi
ce

s

(a) Number of unpaid services.

Graph 1

Page 1

Number of services0.5/2 0.8/1 0.8/2 0.8/inf
1 1 1 1 1
2 1 1 1 1
2 1 1 1 1
3 1 1 1 1
3 1 2 2 1
4 1 2 2 1
4 2 3 2 2
5 2 3 2 2
5 3 3 3 2
6 3 3 3 2
6 3 4 3 3
7 3 4 3 3
7 3 4 4 3
8 3 4 4 3
8 4 5 4 3
9 4 5 4 3
9 4 5 4 3

10 4 5 4 3
10 5 6 5 3
11 5 6 5 3
11 5 7 5 3
12 5 7 5 3
12 6 7 6 3
13 6 7 6 3
13 7 8 6 3
14 7 8 6 3
14 8 8 6 3
15 8 8 6 3
15 9 9 7 3
16 9 9 7 3
16 10 9 7 3
17 10 9 7 3
17 11 10 7 3
18 11 10 7 3
18 12 10 8 3
19 12 10 8 3
19 13 11 8 3
20 13 11 8 3
20 14 11 8 3

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

0.5/2 0.8/1 0.8/2 0.8/inf

k

F
ra

ct
io

n
of

 u
np

ai
d

 s
e

rv
ic

es

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

2

4

6

8

10

Provider 1 Provider 2 Provider 3

Number of acquired services

T
ru

st
 o

f r
eq

ue
st

er

Paid Unpaid

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

0.5/2 0.8/1 0.8/2 0.8/inf

k

U
np

a
id

 s
er

vi
ce

s

(b) Fraction of unpaid services.

Graph 1

Page 1

Number of services0.5/2 0.8/1 0.8/2 0.8/inf
1 1 1 1 1
2 1 1 1 1
2 1 1 1 1
3 1 1 1 1
3 1 2 2 1
4 1 2 2 1
4 2 3 2 2
5 2 3 2 2
5 3 3 3 2
6 3 3 3 2
6 3 4 3 3
7 3 4 3 3
7 3 4 4 3
8 3 4 4 3
8 4 5 4 3
9 4 5 4 3
9 4 5 4 3

10 4 5 4 3
10 5 6 5 3
11 5 6 5 3
11 5 7 5 3
12 5 7 5 3
12 6 7 6 3
13 6 7 6 3
13 7 8 6 3
14 7 8 6 3
14 8 8 6 3
15 8 8 6 3
15 9 9 7 3
16 9 9 7 3
16 10 9 7 3
17 10 9 7 3
17 11 10 7 3
18 11 10 7 3
18 12 10 8 3
19 12 10 8 3
19 13 11 8 3
20 13 11 8 3
20 14 11 8 3

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

0.5/2 0.8/1 0.8/2 0.8/inf

k

F
ra

ct
io

n
of

 u
np

ai
d

 s
e

rv
ic

es

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

2

4

6

8

10

Provider 1 Provider 2 Provider 3

Number of acquired services

T
ru

st
 o

f r
eq

ue
st

er

Paid Unpaid

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

0.5/2 0.8/1 0.8/2 0.8/inf

k

U
np

a
id

 s
er

vi
ce

s

(c) Strategy for 0.5/2 and k = 13.

Figure 6.9: Maximum unpaid services the requester can achieve in obtaining k services.

where unpaid denotes a reward structure assigning 1 to every unpaid satisfied request. The

results for various combinations of model parameters α and tdi are shown in Figure 6.9

(we use 0.5/2 to indicate that α = 0.5 and trust is decreased by tdi = 2 units upon an

unpaid service; tdi = inf means that trust is reset to 0 upon an unpaid service).

Figures 6.9a and 6.9b show the number and fraction, respectively, of services that are

unpaid, for a range of k. From Figure 6.9b, in particular, we see that, for parameters 0.5/2

and 0.8/inf , the behaviour is fundamentally different from the other two - the portion of

requests converges to 1 and 0, respectively. For 0.8/inf , this behaviour is expected, because

the trust measure is decreased to 0 upon non-payment; however, the behaviour of 0.5/2

represents an attack on the trust model allowing the requester to receive an unlimited

number of unpaid services for a fixed cost. We synthesise an attacker (requester) strategy

for our model with 3 providers, for the case of acquiring k = 13 services: for a cost of

5 services, the requester can get an unlimited number of unpaid services. We depict the

6.6. CASE STUDIES 139

strategy in Figure 6.9c. Arrows represent ‘request-and-pay’ (white arrow) and ‘request-

and-not-pay’ (grey arrow) actions of the optimal requester strategy, depending on the

number of services acquired so far.

This attack is possible if sti ≤ (1 − α) · Tmax for some provider i, where Tmax is the

maximum trust level among all providers. We note that it is only viable if the network

is sufficiently small since the fixed cost increases with the number of providers sharing

the trust information: to achieve the required indirect trust measure recs ij ≥ sti
1−α , the

requester must pay for a number of services proportional to the number of providers.

However, in order to work, this requires that all providers share their initial direct trust

measure even though they have not encountered the requester.

Cost of obtaining services. We now turn our attention to the virtual currency system,

and study the minimum price at which the requester can buy k services. For this, we use

rPATL formula:

〈〈{requester}〉〉Rcostmin=?[F
∞services=k].

Intuitively, the requester has a strategy to get one unpaid service for each paid service

by executing the following sequence: pay, not pay, pay, not pay, etc. However, a plot

of the above property (see highlighted sections of line ‘Original’ in Figure 6.10a), shows

deviations from this pattern, where the requester can get 4 services for the price of 2 and,

similarly, 11 services for the price of 9.

Graph 2

Page 4

k Original
1 0 0
2 4 4
3 4 4
4 4 7
5 7 7
6 7 9
7 9 9
8 9 11
9 11 11

10 11 13
11 11 13
12 13 15
13 13 15
14 15 17
15 15 17
16 17 19
17 17 19
18 19 21
19 19 21
20 21 23

k Result
1 4.317434164428714E-14
2 4
3 4
4 7
5 7
6 9
7 9
8 11
9 11

10 13
11 13
12 15
13 15
14 17
15 17
16 19
17 19
18 21
19 21
20 23

Optimal/Heur.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

2

3

4

5

6

7

8

9

10

Provider 1 Provider 2 Provider 3

Number of acquired services

T
ru

st
 o

f r
e

q
u

e
st

e
r

Paid Unpaid

0 2 4 6 8 10 12 14 16 18 20

0

5

10

15

20

25

Orig inal Optimal/Heur.

k

M
in

im
u

m
 to

ta
l c

o
st

(a) Minimum cost to obtain k services.

Graph 2

Page 4

k Original
1 0 0
2 4 4
3 4 4
4 4 7
5 7 7
6 7 9
7 9 9
8 9 11
9 11 11

10 11 13
11 11 13
12 13 15
13 13 15
14 15 17
15 15 17
16 17 19
17 17 19
18 19 21
19 19 21
20 21 23

k Result
1 4.317434164428714E-14
2 4
3 4
4 7
5 7
6 9
7 9
8 11
9 11

10 13
11 13
12 15
13 15
14 17
15 17
16 19
17 19
18 21
19 21
20 23

Optimal/Heur.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

2

3

4

5

6

7

8

9

10

Provider 1 Provider 2 Provider 3

Number of acquired services

T
ru

st
 o

f r
e

q
u

e
st

e
r

Paid Unpaid

0 2 4 6 8 10 12 14 16 18 20

0

5

10

15

20

25

Orig inal Optimal/Heur.

k

M
in

im
u

m
 to

ta
l c

o
st

(b) Example strategy for k = 13.

Figure 6.10: Cost of k services for requester and a strategy example.

We synthesise a strategy achieving this and depict it in Figure 6.10b. We can see that

all paid requests are directed to one provider and the others only receive unpaid requests.

In fact, by exploiting the reputation system, the requester is even able to obtain 2 unpaid

140 CHAPTER 6. TOOL IMPLEMENTATION AND APPLICATIONSGraph 3

Page 7

Original
Provider 1 Provider 2 Provider 3

Received 17.89 2.11 1.05
Paid 9 0 0
Unpaid 8 2 1

Cost 2
Provider 1 Provider 2 Provider 3

Received 7.37 7.37 6.32
Paid 3 3 3
Unpaid 4 4 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13

3

4

5

6

7

8

Provider 1 Provider 2 Provider 3

Number of acquired services

T
ru

st
 o

f r
e

q
u

e
st

e
r

Paid Unpaid

Received Paid Unpaid

0

5

10

15

20
Provider 1 Provider 2 Provider 3

E
xp

e
ct

e
d

 r
e

q
u

e
st

s

Received Paid Unpaid

0

2

4

6

8
Provider 1 Provider 2 Provider 3

E
xp

e
ct

e
d

 r
e

q
u

e
st

s

(a) Original pricing scheme.

Graph 3

Page 7

Original
Provider 1 Provider 2 Provider 3

Received 17.89 2.11 1.05
Paid 9 0 0
Unpaid 8 2 1

Cost 2
Provider 1 Provider 2 Provider 3

Received 7.37 7.37 6.32
Paid 3 3 3
Unpaid 4 4 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13

3

4

5

6

7

8

Provider 1 Provider 2 Provider 3

Number of acquired services

T
ru

st
 o

f r
e

q
u

e
st

e
r

Paid Unpaid

Received Paid Unpaid

0

5

10

15

20
Provider 1 Provider 2 Provider 3

E
xp

e
ct

e
d

 r
e

q
u

e
st

s

Received Paid Unpaid

0

2

4

6

8
Provider 1 Provider 2 Provider 3

E
xp

e
ct

e
d

 r
e

q
u

e
st

s

(b) Modified pricing scheme.

Graph 3

Page 7

Original
Provider 1 Provider 2 Provider 3

Received 17.89 2.11 1.05
Paid 9 0 0
Unpaid 8 2 1

Cost 2
Provider 1 Provider 2 Provider 3

Received 7.37 7.37 6.32
Paid 3 3 3
Unpaid 4 4 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13

3

4

5

6

7

8

Provider 1 Provider 2 Provider 3

Number of acquired services

T
ru

st
 o

f r
e

q
u

e
st

e
r

Paid Unpaid

Received Paid Unpaid

0

5

10

15

20
Provider 1 Provider 2 Provider 3

E
xp

e
ct

e
d

 r
e

q
u

e
st

s

Received Paid Unpaid

0

2

4

6

8
Provider 1 Provider 2 Provider 3

E
xp

e
ct

e
d

 r
e

q
u

e
st

s

(c) Optimal strategy for 13 services.

Figure 6.11: Distribution of requests among providers.

requests from provider 2.

Next, we devise a fix by changing the model to allow providers to manage the way they

share trust information between themselves: they can choose whether to share trust infor-

mation after interaction with the requester. We synthesise the optimal trust information

sharing strategy for cooperating providers, whose behaviour is shown as ‘Optimal/Heur.’

in Figure 6.10a and can be seen to avoid the above shortfall. Manual examination of the

synthesised strategy reveals a suitable heuristic whereby providers share trust information

only when its direct trust of the requester is smaller than that of the others. We implement

this heuristic in the model and find that it yields the same model checking results as the

optimal strategy.

Provider selection incentives. Another interesting feature revealed by the analysis

of the strategy provided earlier is that the proposed virtual currency system provides an

incentive for the requester to only ever pay for services from one provider (see Figure 6.11a).

6.7. SUMMARY 141

This is in fact optimal behaviour because, in the computation of the service cost, only the

direct trust measure is used. This may or may not be a desired feature for the mechanism.

We can show that a simple change that incorporates the maximum difference between trust

into the pricing model (i.e., cost is now computed as original cost+maxk |trust ij−trustkj|,
where original cost is the cost assigned by the pricing scheme) incentivises the requester

to disperse its requests between service providers.

Figure 6.11b shows the distribution of requests between providers and Figure 6.11c

depicts the actions of the optimal strategy in the new pricing scheme. This strategy

contrasts with the strategy for the original mechanism from Figure 6.10b because paid

requests are now distributed uniformly across all the service providers. This analysis

of strategies has been performed using the ‘strategy implementation’ feature of PRISM-

games, which allows the user to synthesise an optimal player strategy for some rPATL

formula, and then evaluate a second rPATL property on the modified SMG in which one

coalition’s strategy is fixed using the previously synthesised one. In this instance, we used

the following rPATL formulae:

〈〈{requester}〉〉Rcostmin=?[F
∞services=k] and 〈〈∅〉〉Rrmin=?[F

cservices=k]

where the first formula was used to synthesise the strategy and the second formula is the

one used to analyse it (r represents reward structures for Received, Paid, and Unpaid).

Discussion. In this case study we showed how strategy synthesis can be used in con-

junction with model checking to analyse a protocol for user-centric networks. We studied

several aspects of the protocol showing how, using rPATL model checking and synthesis

on SMGs, we can enrich the results obtained using PCTL on DTMCs and MDPs, which

did not allow to study competitive scenarios. Even though the network that we used is

relatively small, we were able to captures some of the fundamental aspects of the protocol.

For instance, observe that the decision whether to provide a service to a requester does

not depend on the trust level of other requesters in the network, so incorporating more

requesters does not offer any more information about the dynamics of trust and provided

services. On the other hand, using three service providers already allows us to identify

malicious strategies for the requester that can be generalised to an arbitrary number of

providers.

6.7 Summary

The contributions of his chapter are summarised as follows.

142 CHAPTER 6. TOOL IMPLEMENTATION AND APPLICATIONS

Tool. We have presented PRISM-games, a model checker for stochastic multi-player

games implementing rPATL model checking and strategy synthesis techniques developed

in this thesis. The tool extends the PRISM model checker with support for stochastic

games and rPATL model checking, as well as the strategy synthesis and analysis function-

ality. The tool is released as open source (under GPL license) and is publicly available to

download from http://www.prismmodelchecker.org/games/. The summary of the tool

functionality and usage instructions is presented in Appendix E.

Algorithms. In this section we have also presented the pseudocode for the rPATL model

checking algorithms that were constructed using the results presented in Section 4.2.

Case studies. We have presented three case studies of competitive stochastic systems

illustrating the applicability of our methods and tools. We have provided stochastic game

models and used rPATL model checking and strategy synthesis functionality to explore

the quantitative features of the microgrid demand-side management, collective decision

making algorithms and a reputation-based virtual currency mechanism. For these al-

gorithms we have identified several problems/unwanted features and suggested possible

improvements.

Discussion. PRISM-games has allowed us to study several protocols for competitive

stochastic systems and discover interesting properties and undesired behaviours. How-

ever, the scalability that we can achieve is limited in terms of the number of agents when

compared to simulation-based approaches for the same protocols. For example, team for-

mation that we studied has been analysed in [62] for systems consisting of 100 agents; the

number of agents used in the collective decision algorithm’s analysis was 1000 [99] and the

microgrid demand-side management algorithm has been studied with agent populations

reaching 100,000 [68]. On the other hand, using simulation only allowed authors to study

fixed strategies of agents without considering potential optimal behaviour and/or hostil-

ity. We have also shown that performing analysis based on strategy synthesis can help

to better understand the system and, for example, to generate potential attacks on the

protocol as we have done for the user-centric network protocol.

The number of states is usually exponential in the number of players. However, we

found that explicit implementation is able to handle reasonable model sizes. Currently,

memory requirement is the bottleneck for the model checking, whereas computation time

and numerical precision are lesser problems. Symbolic implementation is a natural next

step to overcome the memory problem.

http://www.prismmodelchecker.org/games/

Chapter 7

Conclusions

7.1 Summary and evaluation

The aim of this work was to develop a framework for the automatic formal analysis of

algorithms for competitive stochastic systems. We took the approach where such systems

are modelled as stochastic multi-player games and the properties are provided as logic

formulae, which are then automatically verified against the model. The main strength

of such an analysis is the ability to automatically analyse strategic scenarios involving

nondeterministic behaviour. The main weakness is the state-space explosion problem: the

underlying SMG size is often exponential in the number of agents in the system. For

example, in the case studies presented in this thesis, we were able to analyse systems

composed of up to 7 agents. In models of such size it is difficult to capture emergent

properties that require large scale. In this thesis, we have provided a set of results ranging

from theoretical foundations to verification tools, which provide a framework for the formal

analysis of competitive stochastic systems, and are summarised below.

In Chapter 4 we introduced the logic rPATL that is able to express branching-time

and reward-based properties for SMGs. We developed model checking algorithms that

are based on the solution of two-player stochastic games, for which we provided value

iteration algorithms. We also developed strategy synthesis algorithms that use results of

the value iteration algorithms directly to efficiently construct strategies with little addi-

tional overhead. We analysed the complexity of the model checking problem, showing

that model checking of the logic is in NP∩coNP (excluding the Rr./x[F
0φ] operator) and

in NEXP∩coNEXP (for the full logic). The NP∩coNP complexity bound stems from the

complexity of the reachability problem in two-player stochastic games, which has been a

long-standing open problem [48]. The NEXP∩coNEXP complexity upper bound is ob-

tained for the full logic, because at most exponential memory is required for the players

143

144 CHAPTER 7. CONCLUSIONS

to satisfy the logic formulae, which contain the Rr./x[F
0φ] operator. In addition, we have

introduced several extensions of rPATL, including reward-bounded properties, operators

to find optimal coalitions that are required to satisfy the formula, and the logic rPATL*,

which allows the use of LTL to specify properties of paths.

In Chapter 5 we extended the logic rPATL to support boolean combinations of objec-

tives to allow richer specifications of properties. We found that, already for a conjunction

or disjunction of two reachability objectives, such games are not determined and optimal

strategies may not exist. Also, infinite memory may be required by the players to achieve

a formula composed of the terminal state reachability objectives. This is in contrast with

both multi-objective MDPs and single-objective two-player stochastic games, which are

determined and optimal memoryless strategies exist. We also analysed the complexity of

model checking the logic and showed that it is PSPACE-hard in general, undecidable if

players are not allowed to use randomisation, and NP-complete if the formulae are re-

stricted to disjunctions of total expected reward or terminal state reachability objectives.

Nevertheless, we provided approximation algorithms that can be used for the implemen-

tation of verification and strategy synthesis for multi-objective rPATL.

In Chapter 6 we described PRISM-games, a tool implementing the rPATL model check-

ing and synthesis algorithms. We applied the tool to several case studies of competitive

stochastic systems (also presented in the chapter) to assess the strengths and weaknesses

of the framework. We were able to find potential drawbacks of the protocols using rPATL

model checking and synthesis, e.g., we found the incentive design problem of the pricing

scheme in the microgrid demand-side management protocol and identified and constructed

a strategy for attack on the reputation mechanism for user-centric networks. Although

PRISM-games was able to handle models having several million states, the scalability

turned out to be the biggest weakness. In the case studies that we addressed, the under-

lying SMG size scaled exponentially with the number of players/agents in the system, and

hence we were able to verify systems consisting of up to 7 agents.

7.2 Future work

The work done in this thesis has raised many interesting research questions. In this section

we discuss several of them.

Multi-objective stochastic games. There are several research directions with respect

to the study of stochastic games with multiple objectives. From the theoretical point of

view, some of the important questions that remain open are the following: providing an

upper bound for complexity of deciding whether a multi-objective rPATL (or conjunctive

7.2. FUTURE WORK 145

rPATL) formula is true; providing guarantees on the accuracy of Pareto set approxima-

tion for non-stopping games; and deciding whether there exists a finite memory winning

strategy to satisfy a given formula.

Techniques for model checking multi-objective MDPs have been successfully applied to

the compositional reasoning about probabilistic models using assume-guarantee rules [79].

It would be interesting to investigate, whether multi-objective games could be used to pro-

vide a similar assume-guarantee-based framework for the compositional reasoning about

stochastic games. This could be a useful approach to tackle the state space explosion

problem, particularly applicable to competitive stochastic systems, because such systems

are often composed of many autonomous components having small (local) state spaces,

and the state-space explosion arises from their composition.

From the practical perspective, it would be important to investigate the implemen-

tation techniques that would allow to efficiently compute the Pareto sets for the multi-

objective rPATL formulae. Another way to address this problem could be to consider

alternative methods to verifying the formulae, e.g., instead of computing the Pareto sets

for the formula, one may find a method to check the satisfiability of the formula without

doing so (as it is done for MDPs). One may also consider providing a model checking algo-

rithm for specific formulae, for example, as it is done for the Rr≤x[F
∞φ] operator in rPATL,

where we require the target set Sat(φ) to be reached with probability one, in addition to

meeting the reward bound. This could be extended to properties other than reachability,

e.g., requiring a strategy to satisfy a CTL formula, in addition to minimising the reward.

Another direction is to extend the reward-bounded properties, presented for rPATL in

Section 4.6, to contain bounds on multiple reward functions, for which the probability of

paths satisfying a CTL or LTL formula could be maximised.

Connection with non-zero-sum games. Using rPATL, competitive scenarios are anal-

ysed to establish worst-case performance guarantees, analyse malicious behaviours and,

to some extent, perform incentive design. However, the setting of zero-sum games is quite

restrictive and the analysis is pessimistic, i.e., the strategy of a player in zero-sum game

could be very different from a game where other agents try to maximise their own (not

necessarily opposing) objectives. For example, in Section 5.6, we showed that if certain

multi-objective rPATL formulae are satisfied in the game, then this implies existence of

winning secure equilibria. This example shows that, in some cases, multi-objective rPATL

can express the existence of equilibria, and the strategy synthesis algorithm could be used

to construct the equilibria strategies for players. However, the exact relationship between

games with multi-objective rPATL goals and non-zero sum solution concepts like Nash or

secure equilibria is yet to be explored and provides a compelling direction for future work.

146 CHAPTER 7. CONCLUSIONS

Specification language. The syntax of the logic rPATL and its multi-objective extension

builds on ATL, PCTL and their extensions. Arguably, this does not provide the easiest

way for people to write and/or read and understand the specifications, especially when

they are meant to imply some other properties of games or contain several levels of nesting.

For instance, in Section 6.6.2 we used multi-objective rPATL formula

¬〈〈{A}〉〉(¬P≥0.9[F GB]) ∧ 〈〈{A}〉〉(P≥0.5[F GA] ∨ ¬P≥0.9[F GB])

to specify that, under some conditions, it implies that there exists a winning secure equi-

libria strategy in the game for player A, but this is not obvious from the specification.

Similarly, in Section 5.6, we used rPATL formula

〈〈C〉〉Pmax=?[F≤n 〈〈C〉〉P>0.9[F≤10
∧|Π|
i=1 pi=k1]]

to express the robustness of the system, but it is not clear what it means without the

additional explanation. This is a common problem for temporal logics, and one of the

ways that could be provided to address this issue could be creating frameworks that ad-

dress specific types of problems and contain property specification templates, e.g., like

Specification Pattern System for LTL [100], where one can construct natural language

statements, which are then translated in corresponding LTL formula, for example, state-

ment AtLeastOneA (where A is a set of n atomic propositions) is transformed into LTL

formula (¬a1∧ · · ·∧¬an) U (a1∨ · · ·∨an); or ProProST [65], which is a tool for generating

PCTL formulae from natural language specifications.

7.3 Conclusion

In this thesis we set out to provide a formal framework, based on model checking for

stochastic games, for the analysis of systems, which incorporate competitive and stochastic

behaviour. We introduced the temporal logic rPATL for specifying properties for such

systems, which incorporates several expected total reward objectives that turn out to be

very important for the analysis of case studies. For this logic we provided efficient model

checking algorithms, based on the solution of two-player stochastic games using value

iteration. We also provided strategy synthesis algorithms that use the results of the model

checking algorithms to efficiently obtain the strategies for players achieving the objective.

We introduced an extension of the logic, which allows specifying that players of the

game have a strategy to achieve several objectives at the same time. A similar problem

has been addressed in a non-competitive setting of MDPs, where going from single to

7.3. CONCLUSION 147

multiple objectives does not increase the complexity of model checking (both problems

are in P). The only change is that memoryless randomised strategies may be needed in-

stead of memoryless deterministic ones required for single objectives [57]. However, the

competitive stochastic setting of games, when going from single to multiple objectives,

the leap in complexity is much bigger. Even though, for single-objective games, memo-

ryless deterministic strategies are also sufficient, for the setting with multiple objectives

both randomisation and (infinite) memory may be required to win the game, and the

model checking problem is PSPACE-hard, whereas for the single-objective problem it is in

NP∩coNP [48]. Also, several other fundamental properties such as determinacy and exis-

tence of optimal strategies are not preserved. Interestingly, non-stochastic multi-objective

games are both determined and optimal strategies exist [27, 35], and hence we show that

combining stochastic and competitive behaviours gives rise to new problems, which were

not present when considering them in isolation.

The implementation of the PRISM-games tool has allowed us to apply the methods

developed in this thesis to competitive stochastic systems. We analysed several case studies

and managed to identify important properties of systems that would otherwise be difficult

to capture using other methods. For example, for the microgrid demand-side management

protocol we identified an incentive related weakness using reward-based rPATL properties;

also, using strategy synthesis for rPATL formulae for the reputation and virtual currency

mechanism, we constructed malicious attacks that can be attempted by users to obtain

unlimited number of unpaid services in the network. This suggests that the techniques

developed in this thesis can be successfully applied to the analysis of competitive stochastic

systems. Also, this work has raised several intriguing research questions that remain open

and provide interesting directions for future research. �

148 CHAPTER 7. CONCLUSIONS

Appendix A

Comparison of strategy models

In this appendix we prove Theorem 5 from Section 3.4, which states that stochastic-update

strategies can be exponentially more succinct than the deterministic-update strategies.

The proof is a special case of a more general result for stopping games showing the sufficient

and necessary conditions for player � to achieve a precise expectation of any linearly

bounded function [39].

To prove this result, we use the game from Figure 3.7 starting in state s1 and consider an

objective, where we want player � to reach a state labelled with t with probability exactly

0.5, i.e., we want to obtain a player � strategy σ� ∈ Σ� such that for all strategies of player

♦ we have Prs1(F t) = 0.5. Note that this effectively encodes two reachability objectives

that a strategy has to satisfy at the same time, that is, to reach st with probability at least

0.5 and to reach sf with probability at least 0.5. We start by proving that exponential

memory is required for player � strategy if deterministic-update representation is used.

Proposition 1 shows that there are exponentially many different distributions that player

� has to use in its sole control state sd in order to achieve the goal. Then, in Theorem 17,

we prove that we can use stochastic-update to encode all of these distributions using a

linear number of memory elements. In addition, the proof also establishes sufficient and

necessary conditions to achieve any precise value for terminal state reachability problem

in stopping games.

Proposition 1 In SMG G from Figure 3.7, player � requires exponential memory for

any deterministic-update strategy in order to make sure that for all player ♦ strategies we

have Prs1(F t) = 0.5.

Proof. Observe that under any strategy of player ♦, the probability of runs that end in

state sti or sfi is exactly
∑n

i=1 xi ·β(i−1), where β(k) =
∏k

j=1(1−xj). We now construct a

deterministic update strategy σ� = 〈M, σu�, σ
n
�, α〉, which ensures that the probability to

149

150 APPENDIX A. COMPARISON OF STRATEGY MODELS

reach a state labelled with t is exactly 0.5. Intuitively, the strategy remembers the exact

history, and upon arriving in sd it identifies which states ai, for 1 ≤ i ≤ n were visited on

a prefix of a history (and hence how much of the probability mass was directed to states

sti), and sets the probability of going to sf so that it “compensates” for these paths to

target states to get the overall probability to reach target equal to 0.5. Formally,

• M = {Prefix(λ, k) | λ ∈ ΩG,s1 , k ∈ {1, . . . , 2n}}

• σu�(m, s) equals [m·s 7→ 1] if m·s ∈M, and [m 7→ 1] otherwise,

• σn�(sd,m) = [st 7→ p, sf 7→ 1− p], s.t. p · β(n) +
∑

ai∈m xi · β(i− 1) = 0.5

• α(s) = [s 7→ 1]

Note that the p above surely exists, because β(n) ≥ β(∞) > 1
2
. We argue that any strategy

needs at least 2n memory elements to achieve probability exactly 0.5. Otherwise, there

are two different histories s1t1s2t2 . . . sntnsd and s1t
′
1s2t

′
2 . . . snt

′
nsd, where ti, t

′
i ∈ {ai, bi},

after which σ� assigns the same distribution [st 7→ y, sf 7→ 1 − y]. Let k be the smallest

number such that tk 6= t′k, and without loss of generality suppose tk = ak. Let σ♦ ∈ Σ♦ be

a deterministic strategy that chooses to go to ti in si, and let σ′♦ ∈ Σ♦ be a deterministic

strategy that chooses to go to t′i in si. Then the probability to reach a target state

under σ� and σ♦ is at least
∑

i<k,ti=ai
xi·β(i − 1) + xk·β(k − 1) + y·β(n), and under

σ� and σ′♦ it is at most
∑

i<k,ti=ai
xi·β(i − 1) +

∑
k<i≤n xi·β(i − 1) + y·β(n). Because

xk·β(k − 1) > (
∑

k<i≤n xi)·β(k − 1) >
∑

k<i≤n xi·β(i− 1), we obtain a contradiction. �

We now prove a general result for stopping games showing that, if there exists a strategy

for player � which makes sure that for any strategy of player ♦ the target set of states

T is reached with probability exactly x, then there exists a compact stochastic-update

strategy with at most 2 · M memory elements. We first identify the states in which the

formula is false for any x. In what follows we denote by Prs(FT) the probability of the

paths that reach a state in T , i.e., Prs(FT)
def
= Prs({λ ∈ ΩG | ∃i ∈ N . λi ∈ T}).

Lemma 6 (Losing states) Given and SMG G, a state s, and a target set T , if

inf
σ�∈Σ�

sup
σ♦∈Σ♦

Prs(FT) > sup
σ�∈Σ�

inf
σ♦∈Σ♦

Prs(FT) ,

then for any x ∈ [0, 1] player � does not have a strategy such that for all strategies of

player ♦ we have Prs(FT) = x.

Proof. For the sake of contradiction assume that there exists a winning strategy for player

�, which achieves precise value for some x from s, and fix such a strategy σ�. Observe

151

that now there are two distinct probability values that player ♦ can ensure to reach a

state in T , namely, infσ�∈Σ�
supσ♦∈Σ♦

Prs(FT) and supσ�∈Σ�
infσ♦∈Σ♦ Prs(FT), and hence

at least one of them has to be different from x. �

Theorem 17 (Precise probability) Given a stopping stochastic two-player game G =

〈{�,♦}, S, (S©, S�, S♦),∆, AP, χ〉 without states satisfying the condition of Lemma 6, a

state s ∈ S and a target set T ⊆ S, for all x such that

inf
σ�∈Σ�

sup
σ♦∈Σ♦

Prs(FT) ≤ x ≤ sup
σ�∈Σ�

inf
σ♦∈Σ♦

Prs(FT)

player � has a winning stochastic-update strategy with 2·|S| memory elements to guarantee

the probability to reach T exactly x.

Proof. We prove the theorem by constructing a winning strategy of the required size.

Let fT be a random variable that to every path assigns 1 if it reaches a state in T and

0 otherwise. Let σ−� and σ+
� be memoryless deterministic strategies achieving, for every

s ∈ S, the minimum and maximum expected value for fT , respectively (such values exist

by Theorem 4). We denote these values by val−(s) and val+(s). It is easy to see that

they correspond to the maximal/minimal reachability probabilities. The winning strategy

σ� = 〈M, σu�, σ
n
�, α〉 that achieves the reachability probability exactly x from state s is

defined as follows:

• M = {(s, val−(s)), (s, val+(s)) | s ∈ S},

• σu�((s, y), t) =



(t, y) if s ∈ S�,

[(t, val−(t)) 7→ β(y, t),

(t, val+(t)) 7→ 1− β(y, t)] if s ∈ S♦,

(t, val−(t)) if s ∈ S© and y = val−(s),

(t, val+(t)) if s ∈ S© and y = val+(s),

• σn�(s, (s, y)) =

σ−�(s) if y = val−(s),

σ+
�(s) otherwise

• α(s) = [〈s, val−(s)〉 7→ β(x, s), 〈s, val+(s)〉 7→ 1− β(x, s)],

for all s, t ∈ S, and (s, y) ∈ M, where β(y, s) = c such that 0 ≤ c ≤ 1 and y =

c · val−(s) + (1 − c) · val+(s). Intuitively, the strategy updates its memory elements in

such a way that the expectation of the second element of the memory tuple is equal to x.

Now we can prove that such a way of updating the memory, together with the stopping

152 APPENDIX A. COMPARISON OF STRATEGY MODELS

game condition and the fact that for all states we have val−(s) ≤ val+(s) by Lemma 6,

ensures that the expectation of this memory element is indeed equal to the expectation of

the function fT representing the reachability probability.

First, note that, for stopping games, there is δ > 0 such that the probability for the

game to end in a terminal state in |S| steps is at least δ. The correctness of the construction

of the strategy σ� now follows from the following steps.

1. Let σ♦ be an arbitrary strategy for player ♦, and let w be a path starting in the

initial state s0 in GC and ending in a state s and memory element of σ� is (s, y) for

some terminal state s. To show fT (Cyl(w)) = y we use induction that for any finite

path w ending in s with σ� memory being (s, y) we have

inf
σ�∈Σ�

sup
σ♦∈Σ♦

Es0 [fT | Cyl(w)] ≤ y ≤ sup
σ�∈Σ�

inf
σ♦∈Σ♦

Es0 [fT | Cyl(w)] .

The claim follows because for paths that reach the terminal states the minimum and

maximum values coincide.

2. In this step we prove that, after every step, the expected value of the second element

of the memory of σ� stays equal to x. Let Xi be the random variable that assigns y

to a path w of GC where wi = s and define mem(w, i) = (s, y) to be the value of the

memory element of σ� in the ith step of that path. We prove that Es0(Xi) = x for

all i ∈ N by induction on i.

Because there are no states identified by Lemma 6, we have that for any mem(w, i) =

(s, y) it holds that val−(s) ≤ y ≤ val+(s).

• Base case. For i = 0 we have that

Es0 [X0] = val−(s0) · β(x, s0) + val+(s0) · (1− β(x, s0)).

If val−(s0) = x = val+(s0), then β(x, s0) = 1 and hence Es0 [X0] = val−(s0) = x.

Otherwise,

Es0 [X0] = val−(s0) · val+(s0)− x
val+(s0)− val−(s0)

+ val+(s0) ·
(

1− val+(s0)− x
val+(s0)− val−(s0)

)
= x

• Inductive case. Assume that Es0 [Xi] = x. Let Ui be the set of all finite paths

153

of length i in GC . By the induction hypothesis,

Es0 [Xi] =
∑
λ·s∈Ui

Prs0(Cyl(λ · s)) · y = x,

where y is defined by mem(λ ·s, i) = (s, y). To show Es0 [Xi+1] = x, we consider

each path λ′ = λ · s ∈ Ui individually, and show that, after an action has been

taken, the expected value of the second component of the memory remains y.

There are three cases.

(a) Case s ∈ S�. From the definition of σ�, it follows that σu�((s, y), t) = (t, y)

for all t ∈ S.

(b) Case s ∈ S♦. From the definition of the memory update function σu�, we

have that for every choice t ∈ ∆(s) of player ♦

val−(t) · β(y, t) + val+(t) · (1− β(y, t))

= val−(t) · val+(t)− y
val+(t)− val−(t)

+ val+(t) ·
(

1− val+(t)− y
val+(t)− val−(t)

)
= y

if val−(t) 6= val+(t), and val−(t) = y, otherwise.

(c) Case s ∈ S©. We know that either y = val−(s) or y = val+(s). By

definition val−(s) =
∑

t∈S ∆(s, t) · val−(t) and val+(w) =
∑

t∈S ∆(s, t) ·
val+(t). From the construction of σ�, we see that if y = val−(s) then y is

set to val−(t) for all successors t and to val+(t) if y = val+(s), and therefore

Es0 [Xi+1 | Cyl(λ′)] = y.

3. Let Uk be the set of all finite paths in GC that reach a terminal state in at most k steps

and have non-zero probability measure under σ� and σ♦. And let p(k) = (1− δ)b
k
|S| c

be an upper bound on the probability not to reach a terminal state in k steps, where

δ is the lower bound on the probability to terminate in |S| steps. For any k ∈ N, we

have:

∑
w∈Uk

Prs0(Cyl(w)) · Es0 [fT | Cyl(w)]− p(k)

≤ Es0 [fT] ≤∑
w∈Uk

Prs0(Cyl(w)) · Es0 [fT | Cyl(w)] + p(k)

154 APPENDIX A. COMPARISON OF STRATEGY MODELS

and as k goes to infinity, p(k) goes to 0, thus

Es0 [fT] = lim
k→∞

∑
w∈Uk

Prs0(Cyl(w)) · Es0 [fT | Cyl(w)] .

Also,

∑
w∈Uk

Prs0(Cyl(w)) ·mem(w, k)− p(k)

≤ Es0 [Xk] ≤∑
w∈Uk

Prs0(Cyl(w)) ·mem(w, k) + p(k)

and again, as k goes to infinity p(k) goes to 0, thus

lim
k→∞

Es0 [Xk] = lim
k→∞

∑
w∈Uk

Prs0(Cyl(w)) ·mem(w, k) .

We have shown in step 2) that mem(w, k) = Es0 [fT | Cyl(w)] for any w ∈ Uk, which

together with the above result gives x = limk→∞ E[Xk] = Es0 [fT] as required.

�

By picking the values xi small enough we ensure that there are no losing states (as per

Lemma 6) in the game from Figure 3.7 and thus by Theorem 17 there exists a stochastic-

update player � strategy that contains exactly 2 · |S| memory elements.

Appendix B

Proof of Theorem 8

The proof consists of two parts. First we prove in that for all k the sets Xk
s contain exactly

the points achievable by some strategy in k steps, then we show that we can find k such

that for all s ∈ S all the points in the Pareto set of Xk
s are within ε from the Pareto points

for ϕ(~r,~v), and vice versa.

We consider the coalition game GC and define a the set of vectors than can be achieved

by player � strategy σ� in k steps as

Rσ�
s,k

def
= {~y ∈ Rn | ∀σ♦ ∈ Σ♦ .Es[rew≤k(~r)] ≥ ~y},

where rew≤k(~r)(λ)
def
=
∑k

j=0 ~r(λj), and we let Rs,k
def
=
⋃
σ�∈Σ�

Rσ�
s,k. For all s ∈ S, let Xk

s be

the k-th iteration of the functional given by the equations from Theorem 8, starting with

X0
s = {~x ∈ Rn | ~x ≤ ~r(s)}.

We start by proving that, for all k ≥ 0, it is the case that Rs,k = Xk
s by induction on

k. The induction hypothesis is ∀s ∈ S .
⋃
σ�∈Σ�

Rσ�
s,k−1 = Xk−1

s ,and we want to show that

∀s ∈ S .
⋃
σ�∈Σ�

Rσ�
s,k = Xk

s .

• Base case. Let k = 0. We have that for all s ∈ S and all strategies σ� ∈ Σ�,

Rσ�
s,0 = {~x ∈ Rn | ∀σ♦ ∈ Σ♦ .Es[rew≤0(~r)] ≥ ~x}

= {~x ∈ Rn | ~x ≤ ~r(s)}

= X0
s .

Hence, ∀s ∈ S .
⋃
σ�∈Σ�

Rσ�
s,0 = X0

s .

• Induction step. Suppose the claim holds for k − 1, i.e. for all s ∈ S we have that⋃
σ�∈Σ�

Rσ�
s,k−1 = Xk−1

s . We suppose without loss of generality that s has exactly

two successors s1 and s2. Furthermore, for ` ∈ {1, 2} we define σ`� to be the strategy

155

156 APPENDIX B. PROOF OF THEOREM 8

σ� conditioned on picking the edge (s, s`), i.e., σ`�(s` · λ)
def
= σ�(s · s` · λ). We now

distinguish several cases for s ∈ S.

– s ∈ S�. For any σ� ∈ Σ� we have that player � picks s1 with some probability

p ∈ [0, 1] and s2 with probability 1 − p. Hence, in s, player � can achieve all

points that can be achieved by some convex combination of some points in the

successors of s. This can be stated formally as

Rσ�
s,k = dwc(

⋃
p∈[0,1]

(p×Rσ1
�
s1,k−1 + (1− p)×Rσ2

�
s2,k−1) + ~r(s)). (B.1)

Further, for any convex sets X` ⊆ Rn for ` ∈ {1, 2}, by the definition of the

convex hull, ⋃
p∈[0,1]

(p×X1 + (1− p)×X2) = conv(
⋃
`

X`). (B.2)

Now, from the induction hypothesis and the definition of Xk
s , we get that⋃

σ�∈Σ�

Rσ�
s,k

(B.1)
=

⋃
σ�∈Σ�

dwc(
⋃

p∈[0,1]

(p×Rσ1
�
s1,k−1 + (1− p)×Rσ2

�
s2,k−1) + ~r(s))

= dwc(
⋃

p∈[0,1]

⋃
σ�∈Σ�

(p×Rσ1
�
s1,k−1 + (1− p)×Rσ2

�
s2,k−1) + ~r(s))

= dwc(
⋃

p∈[0,1]

(p× (
⋃

σ�∈Σ�

R
σ1
�
s1,k−1) + (1− p)× (

⋃
σ�∈Σ�

R
σ2
�
s2,k−1) + ~r(s)))

(B.2)
= dwc(conv(

⋃
`∈{1,2}

⋃
σ�∈Σ�

R
σ`�
s`,k−1) + ~r(s))

IH
= dwc(conv(

⋃
`∈{1,2}

Xk−1
s) + ~r(s))

def
= Xk

s .

– s ∈ S♦. For any σ� ∈ Σ� we have that player ♦ picks s1 with some probability

p ∈ [0, 1] and s2 with probability 1− p. Hence, in s player � can only achieve

points that can be achieved by any convex combination of some points in the

successors of s. This can be stated formally as

Rσ�
s,k = dwc(

⋂
p∈[0,1]

(p×Rσ1
�
s1,k−1 + (1− p)×Rσ2

�
s2,k−1) + ~r(s)). (B.3)

157

Further, for any sets X` ⊆ Rn for ` ∈ {1, 2},⋂
p∈[0,1]

(p×X1 + (1− p)×X2) =
⋂
`

X`, (B.4)

which can be justified as follows:

∗ For any ~x ∈
⋂
p∈[0,1](p×X1 +(1−p)×X2), let p be either 1 or 0, we obtain

that ~x ∈ X1 and ~x ∈ X2 respectively.

∗ For ~x ∈ X1∩X2, we have that for all p ∈ [0, 1], p~x ∈ p×X1 and (1− p)~x ∈
(1− p)×X2, so ~x = p~x+ (1− p)~x ∈ (p×X1 + (1− p)×X2).

We now show that ⋃
σ�∈Σ�

⋂
`

R
σ`�
s`,k−1 =

⋂
`

⋃
σ�∈Σ�

Rσ�
s`,k−1. (B.5)

∗ ⊆. Take ~x ∈
⋂
`∈{1,2}R

σ`�
s`,k−1 for some σ� ∈ Σ�. Then for any ` ∈ {1, 2},

~x ∈ Rσ`�
s`,k−1 ⊆

⋃
σ�∈Σ�

Rσ�
s`,k−1. Hence, ~x ∈

⋂
`

⋃
σ�∈Σ�

Rσ�
s`,k−1.

∗ ⊇. Take ~x ∈
⋂
`

⋃
σ�∈Σ�

Rσ�
s`,k−1. Therefore, for each ` ∈ {1, 2} have a

strategy σ`� such that ~x ∈ Rσ`�
s`,k−1. We construct a strategy σ� from σ1

� and

σ2
� as follows: σ�(s · s` · λ)

def
= σ`�(s` · λ) for all `. Then σ`� = σ`�, and hence

R
σ`�
s`,k−1 = R

σ`�
s`,k−1. Therefore, we have that σ� satisfies ~x ∈

⋂
`∈{1,2}R

σ`�
s`,k−1

and hence ~x ∈
⋃
σ�∈Σ�

⋂
`R

σ`�
s`,k−1.

Now, from the induction hypothesis and the definition of Xk
s , we get that⋃

σ�∈Σ�

Rσ�
s,k

(B.3),(B.4)
=

⋃
σ�∈Σ�

dwc(
⋂
`

R
σ`�
s`,k−1 + ~r(s))

= dwc(
⋃

σ�∈Σ�

⋂
`

Rσ�
s`,k−1 + ~r(s))

(B.5)
= dwc(

⋂
`

⋃
σ�∈Σ�

Rσ�
s`,k−1 + ~r(s))

IH
= dwc(

⋂
`

(Xk−1
s + ~r(s)))

def
= Xk

s .

– s ∈ S©. We have that s` is picked with probability ∆(s, s`). Hence, in s player

� can achieve all points that can be achieved by the convex combination with

coefficients ∆(s, s`) of some points in the successors of s. This can be stated

158 APPENDIX B. PROOF OF THEOREM 8

formally as

Rσ�
s,k = dwc(∆(s, s1)×Rσ1

�
s1,k−1 + ∆(s, s2)×Rσ2

�
s2,k−1 + ~r(s)). (B.6)

Now, from the induction hypothesis and the definition of Xk
s , we get that⋃

σ�∈Σ�

Rσ�
s,k

(B.6)
=

⋃
σ�∈Σ�

dwc((∆(s, s1)×Rσ1
�
s1,k−1 + ∆(s, s2)×Rσ2

�
s2,k−1) + ~r(s))

= dwc(
⋃

σ�∈Σ�

(∆(s, s1)×Rσ1
�
s1,k−1 + ∆(s, s2)×Rσ2

�
s2,k−1) + ~r(s))

= dwc(∆(s, s1)×
⋃

σ�∈Σ�

R
σ1
�
s1,k−1 + ∆(s, s2)×

⋃
σ�∈Σ�

R
σ2
�
s2,k−1 + ~r(s))

IH
= dwc(∆(s, s1)×Xk−1

s1
+ ∆(s, s2)×Xk−1

s2
+ ~r(s))

def
= Xk

s .

To complete the proof we show that given an n-dimensional reward function ~r, and

ε > 0, after k = |S|+ d|S| · ln(ε·(n·M)−1)
ln(1−δ) e iterations of the functional F for any state s ∈ S,

the Pareto set of Xk
s is an ε-approximation of the Pareto set for ϕ(~r,~v) of achievable

vectors.

From the previous part of the proof we know that Xk
s = Rs,k for all k, i.e. the Pareto

set of points achievable by player � in k steps is computed by k iterations of F ; and from

the stopping game assumption we know that, after |S| steps, the game has terminated

with probability at least δ = p
|S|
min, where pmin is the minimum positive probability in GC .

Hence, the maximum change to any dimension to any vector in Xk
s after k steps of the

iteration is less than M · (1− δ)b
k
|S| c, which is also the maximum change that any strategy

can make over a strategy that is optimal for k steps.

Hence, for ε-optimality after k steps, we need to pick a k such that ε > n·M ·(1−δ)b
k
|S| c.

The factor n is because ε-optimality requires that the strategy achieves a point that is

159

ε-close in each of the n dimensions individually. We get that

ε > n·M · (1− δ)b
k
|S| c ⇔ ln(ε) > ln(n·M) +

⌊ k
|S|

⌋
· ln(1− δ)

⇔ ln(ε · (n·M)−1)

ln(1− δ)
<
⌊ k
|S|

⌋
⇐ ln(ε · (n·M)−1)

ln(1− δ)
<

k

|S|
− 1

⇐ |S|+ |S| · ln(ε · (n·M)−1)

ln(1− δ)
< k

Set k = |S|+ d|S| · ln(ε·(n·M)−1)
ln(1−δ) e. Note that the Pareto set for ϕ at state s is defined by

the Pareto set of Rs = {~y ∈ Rn | ∃σ� ∈ Σ� .∀σ♦ ∈ Σ♦ .Es[rew(~r, ∅)] ≥ ~y},, which is the

set whose approximation we aim to compute. We have the following:

• For any point ~x ∈ Rs there is (by definition) a strategy π which achieves ~x, i.e., for

all σ♦ we have Eσ�,σ♦GC ,s [rew(~r, ∅)] ≥ ~x. Above we argued that we can find a player �

strategy σ� that after k steps achieves a point that differs from ~x by at most ε in each

dimension. Hence, there is a player � strategy σ� such that for all player ♦ strategies

σ♦ we have that Eσ�,σ♦GC ,s [rew≤k(~r)] ≥ ~x− ε, which means that ~x− ε ∈ Rs,k = Xk
s .

• For any point ~x ∈ Xk
s = Rs,k, let σ� be the strategy that ensures ~x is achieved in k

steps, i.e. for all σ♦ we have Eσ�,σ♦GC ,s [rew≤k(~r)] ≥ ~x. Again, by the above argument the

point ~x achieved by σ� in k steps may only change by at most ε in each dimension by

any other strategy. Hence we have Es[rew(~r, ∅)] ≥ ~x−ε for all σ♦, and so ~x−ε ∈ Rs.

160 APPENDIX B. PROOF OF THEOREM 8

Appendix C

Proof of Theorem 12

We prove that infinite memory is required for player � to win the game from Figure 5.6.

Let h(k) = s0(s1s2s3s0)k. Every strategy σ� for player � determines (and is uniquely

given by) an infinite sequence of vectors

~pk = (σ�(h(k)s4)(1), σ�(h(k)s4)(s5) · 1

4
, σ�(h(k)s4)(s5) · 3

4
),

~qk = (σ�(h(k)s1s2s8)(s9) · 1

2
, σ�(h(k)s1s2s8)(2), σ�(h(k)s1s2s8)(s9) · 1

2
),

~wk = (
1

3
,
2

3
· σ�(h(k)s1s6s7)(2),

2

3
· σ�(h(k)s1s6s7)(3)),

~zk = (
2

3
· σ�(h(k)s1s2s3s10s11)(1),

1

3
,
2

3
· σ�(h(k)s1s2s3s10s11)(1)).

The intuitive interpretation of vector ~pk (resp. ~qk, ~wk, ~zk) is that it represents the proba-

bility of reaching states (1, 2, 3) from s4 (resp. s8, s6, s10) in the k-th step A (resp. B).

We define a winning strategy σ� by means of the vectors

~pk = (1− 1
3·2k−1 ,

1
3·2k+1 ,

1
2k+1), ~qk = (1

3·2k+1 , 1− 1
3·2k ,

1
3·2k+1),

~wk = (1
3
,+1

6
+ 1

2
− 1

3·2n+2), 1− wk1 − wk2), ~zk = (2
3
− 1

3·2n+1 ,
1
3
, 1− zk1 − zk2).

as follows. First, suppose player ♦ picks a strategy σ♦ which does not take the “check”

transition before the (n+1)st visit to s0. Then the probability of the runs that reach 1

while visiting s0 at most n+1 times is independent of σ♦ and equal to V (1, n) = 1
3
− 1

3·22n+1 ,

161

162 APPENDIX C. PROOF OF THEOREM 12

as can be shown by the straightforward induction on n.

V (1, n) = V (1, n− 1) +
1

22n
· (qn1 +

1

2
· pn+1

1)

= V (1, n− 1) +
1

22n
· (1

3 · 2n+1
+

1

2
(1− 1

3 · 2n
))

= V (1, n− 1) +
1

22n
· (1

3 · 2n+1
+

1

2
− 1

3 · 2n+1
)

= V (1, n− 1) +
1

22n+1

=
1

3
− 1

3
· 1

22n−1
+

1

22n+1
=

1

3
− 1

3 · 22n+1
.

Further, supposing player ♦ picks a strategy σ♦ which does not take the “check” transition

before the (n+1)st visit to s2, the probability of the runs that reach 1 while visiting s2

at most n + 1 times is also independent of σ♦ and equal to V (2, n) = 1
3
− 1

3·22n+2 . This is

again shown by an induction on n.

V (2, n) = V (2, n− 1) +
1

22n+1
· (pn+1

2 +
1

2
qn+1

2)

= V (2, n− 1) +
1

22n+1
· (1

3 · 2n+2
+

1

2
(1− 1

3 · 2n+1
))

= V (2, n− 1) +
1

22n+1
· (1

3 · 2n+2
+

1

2
− 1

3 · 2n+2
))

= V (2, n− 1) +
1

22n+2

=
1

3
− 1

3 · 22n
+

1

22n+2
=

1

3
− 1

3 · 22n+2
.

Now we are ready to show that σ� is winning by showing that the probabilities of

reaching states labelled with 1 and 2 are both 1
3

under any σ♦. By [87] it suffices to

consider deterministic strategies σ♦. First, consider a strategy σ♦, which never takes any

transition labelled “check”. We have Prs0(F 1) = limn→∞ V (1, n) = 1
3

and Prs0(F 2) =

limn→∞ V (2, n) = 1
3
; and for a strategy σ♦ which picks “check” on the (n+1)st visit to s1

we have

Prs0(F 1) = V (1, n) + wn1 =
1

3
− 1

3 · 22n+1
+

1

22n+1
· 1

3
=

1

3
,

Prs0(F 2) = V (2, n)− 1

22n+2
· (1− 1

3 · 2n+1
) +

1

22n+1
· wn2

=
1

3
− 1

3 · 22n+2
− 1

22n+2
· (1− 1

3 · 2n+1
) +

1

22n+1
· wn2 =

1

3
.

163

Finally, for a strategy σ♦ which picks “check” on the (n+1)st visit to s3 we have

Prs0(F 1) = V (1, n) +
1

22n+2
· 1

3 · 2n+1
+

1

22n+2
· zn1

=
1

3
− 1

3 · 22n+1
+

1

22n+2
· 1

3 · 2n+1
+

1

22n+2
· zn1 =

1

3
,

Prs0(F 2) = V (2, n) + zn2 =
1

3
− 1

3 · 22n+2
+

1

22n+2
· 1

3
=

1

3
.

We have shown that σ♦ ensures that each of the states labelled with 1, 2 and 3 is reached

with probability exactly 1
3
. Now we show that there is no finite-memory strategy ensuring

this. Let σ̄� be a finite memory strategy, determined by vectors ~̄pk, ~̄qk, ~̄wi and ~̄zi. Since

σ̄� is finite memory, there must be a k such that ~̄pk 6= ~p or ~̄qk 6= ~q. Let k be the lowest

such number. There are two possibilities:

• ~̄pk 6= ~pk. Then necessarily p̄k1 6= pk1. Also note that wk1 = w̄k1 = 1
3
. We define the

counter-strategy σ♦ to take “check” on the (k+1)st visit to s1 and get (because k is

minimal) that Prs0(F 1) = 1
3

+ 1
22k·+1 (p̄k1 − pk1) 6= 1

3
.

• ~̄qk 6= ~qk. Then necessarily q̄k2 6= qk2 and zk1 = z̄k1 = 1
3

and so we can define the

counter-strategy σ to take “check” on the (k+1)th visit to s3. We get Prs0(F 2) =
1
3

+ 1
22k·+1 (q̄k2 − qk2) 6= 1

3
.

This completes the proof.

164 APPENDIX C. PROOF OF THEOREM 12

Appendix D

Proof of Theorem 15

We prove the result in three steps. In the first we show how to construct a game for a given

two-counter machine using the gadgets from Figure 5.8, then, in the second, we prove that

the have structure to force player � to pick the probability distributions in the required

states according to counter updates, and finally, in the third step, we establish the claim

that player � has a winning strategy in G(M) if and only if M does not terminate.

1. Let M be a two-counter machine. We define the game G(M) incrementally. The

game has two players, � and ♦. For each type of instruction, we have a corre-

sponding gadget, i.e., Init, Terminate, Increment, and Decrement, which are shown

in Figure 5.8. In this figure, player � states with double border are of the form

, which allows player � to simulate any probability distribution with

deterministic strategies.

Note that, for Increment and Decrement gadgets, j ∈ {1, 2} refers to the counter

(c1 or c2) that on which operation is applied in the instruction and i is the other

counter. The game G(M) is then constructed by “gluing” the instructions together.

Namely,

• for the initial instruction “l0 : c1 := c2 := 0 and goto lk;”, we use the Init

gadget and link (init)out to (qk, op)in, if lk is not terminal location where op is

the operation type, and we link (init)out to (term)in if lk is a terminal location;

• for the increment instruction “li : cj := cj+1 and goto lk;”, we use the Increment

gadget and link (qi, incj)out , if lk is not terminal location where op is the

operation type, and we link (qi, incj)out to (term)in if lk is a terminal location;

• for the decrement instruction if “cj = 0 then goto lk else cj = cj − 1 and goto

lk′ ;”, we use the Decrement gadget and link (qi, decj)
=0
out to (qk, opk)in (resp.

165

166 APPENDIX D. PROOF OF THEOREM 15

(qi, decj)
>0
out to (qk′ , opk′)in), if lk (resp. lk′) is not a terminal location where opk

(resp. opk′) is the operation type, and we link (qi, decj)
=0
out (resp. (qi, decj)

>0
out)

to (term)in if lk (resp. lk′) is a terminal location.

Note that the (init)in is also the initial state of the whole game and we use sinit =

(init)in as alias for it. We label the states as “targets” as follows. States atj, aj are

labelled with atomic proposition Taj , states btj, bj are labelled with atomic proposition

Tbj for j ∈ {1, 2}, states c, ct are labelled with Tc, and states at1, a
t
2, b

t
1, b

t
2, c

t are all

labelled with Tt. We consider the following multi-objective rPATL formula

ϕ = 〈〈{�}〉〉 (P≥ 1
6
[F Ta1]∧P≥ 1

6
[F Tb1]∧P≥ 1

6
[F Ta2]∧P≥ 1

6
[F Tb2]∧P≥ 1

3
[F Tc]∧P≥1[F Tt]) .

From now on we denote the player � strategy, which achieves ϕ in the state sinit of

the game G(M) by σ∗�.

2. First observe that, since states labelled with Ta1 , Tb1 , Ta2 , Tb2 , and Tc form a parti-

tion of the terminal states of G(M), and hence for any pair of strategies σ� and σ♦,

Prsinit(F Ta1) + Prsinit(F Ta2) + Prsinit(F Tb1) + Prsinit(F Tb2) + Prsinit(F Tc) = 1; there-

fore it follows that for any winning strategy σ� that achieves ϕ, it must be the case

that for any player ♦ strategy σ♦, Prsinit(F Ta1) = Prsinit(F Ta2) = Prsinit(F Tb1) =

Prsinit(F Tb2) = 1
6

and Prsinit(F Tc) = 1
3
.

We show that, in G(M), the strategy achieving ϕ, σ∗�, must guarantee that, under

any player ♦ strategy σ♦, the following properties hold:

(a) For each state (qk, incj)in, (qk, decj)in, the reachability probability to Tb1 and

the reachability probability to Tb2 both must be exactly 1
6
.

(b) For each state (qk, incj)2 and (qk, decj)
>0
2 , the reachability probability to Ta1

and the reachability probability to Ta2 both must be exactly 1
6
.

To see (a), we examine each gadget, in particular, the “out” states (qk, ?)out, where

? ∈ {decj, incj}. Consider any two different player ♦ strategies σ1
♦ and σ2

♦, which

select, at (qk, ?)out, the horizontal and the vertical edge respectively. As σ∗� has to

guarantee that for any player ♦ strategy the probability to reach Tb1 is the same for

σ1
♦ and σ2

♦ (namely 1
6
), at (qk, ?)out, the strategy pairs σ∗�, σ

1
♦ and σ∗�, σ

2
♦ must give

the same probability to reach Tb1 as well. From the gadget, the probability to reach

Tb1 following σ2
♦ is 1

2
· 1

3
= 1

6
, hence the claim. The same holds for Tb2 .

To see (b), we examine the states (qk, incj)1 and (qk, decj)
>0
1 . By the same argument

as (a), the probability to reach a state labelled with Ta1 must be 1
2
· 1

3
= 1

6
. The same

167

holds for Ta2 .

3. In this step we show that each gadget has a property that forces any winning strategy

σ∗� of player � to pick probability distributions corresponding to the operations on

counters. In the next step we show that the assumptions stated here indeed hold

when the game progresses from one gadget to another.

Init. In player � state s0, σ∗� must select the edge (s0, s1) with probability x =
2
3

= 2
3·20 . To see this, consider the strategy σ♦ for player ♦, which selects s4 at state

(init)out. As the probability of reaching Ta1 under σ∗� and σ♦ is 1
6
, and hence it must

be the case that
1

2
· 1

2
· (1− x) +

1

2
· 1

2
· 1

3
=

1

6
,

yielding that x = 2
3
, as desired. By a similar argument for Ta2 , at state s2, for σ�

the probability of selecting the edge (s2, s3) must be 2
3

= 2
3·20 .

This corresponds to setting both counter values to 0.

Increment. The key property of the gadget is that when the probability of selecting

edge (s5, s6) for σ∗� is 2
3·2cj , then the probability to select the edge (s9, s10) must be

2

3·2cj+1 . To see this, suppose the probability to pick the edge (s9, s10) is x, and

consider a player ♦ strategy σ♦, which selects the vertical edge at (qk, incj)out. By

(a), the reachability probability to Tbj must be 1
6
. This entails that

1

2
· 1

2
· 2

3 · 2cj
· 1

4
+

1

2
· 1

2
· 1

2
· (1− x) +

1

2
· 1

2
· 1

2
· 1

3
=

1

6
,

which implies that x = 2

3·2cj+1 , as desired corresponding to the increase of the counter

value.

Similarly, if the probability of selecting edge (s7, s8) for σ∗� is 2
3·2ci , then the prob-

ability of selecting edge (s11, s12) must be 2
3·2ci as well. To see this, we repeat the

same argument as the previous case and consider the reachability probability to Tbi ,

which yields, by (a), that

1

2
· 1

2
· 2

3 · 2ci
· 1

2
+

1

2
· 1

2
· 1

2
· (1− x) +

1

2
· 1

2
· 1

2
· 1

3
=

1

6
,

where x is the probability of selecting edge (s11, s12) for σ∗�. This implies that

x = 2
3·2ci , corresponding to counter value remaining unchanged.

Decrement. Note that, since player � strategies are restricted to deterministic, it

has to pick either edge labelled by “>0” or “=0”. A basic observation is that when

entering the state (qk, decj)in, suppose that σ∗� selects the edge labelled by “> 0”,

168 APPENDIX D. PROOF OF THEOREM 15

and that the probability of selecting the edge (s13, s14) is 2
2cj

, then the probability of

selecting edge (s17, s18) must be 2

3·2cj−1 . To see this, suppose the probability of the

edge (s17, s18) is x, and consider a player ♦ strategy σ♦ which selects the vertical

edge at (qk, decj)out. It follows that the reachability probability to Tbj must satisfy

1

2
· 1

2
· 1

3
· 2

2cj
+

1

2
· 1

2
· 1

2
· (1− x) +

1

2
· 1

2
· 1

2
· 1

3
· = 1

6
,

which implies that x = 2

3·2cj−1 , which corresponds to the counter decrement.

Similarly, suppose that σ∗� selects the edge labelled by “> 0,” and that the probability

of selecting edge (s15, s16) is 2
3·2ci , then the probability of selecting edge (s19, s20) must

be 2
3·2ci as well. To see this, we repeat the same argument as the previous case and

consider the reachability probability to Tbi , which yields

1

2
· 1

2
· 2

3 · 2ci
· 1

2
+

1

2
· 1

2
· 1

2
· 1

2
· (1− x) +

1

2
· 1

2
· 1

2
· 1

3
=

1

6
.

This implies that x = 2
3·2ci corresponding to the counter value remaining unchanged.

4. As the next step, we shall verify that when two instructions are “glued” together,

the counter values do not change, i.e., the assumptions on probabilities player by σ∗�

that we used in the previous step hold.

Init+Increment. We show that the probabilities of selecting edges (s5, s6) and

(s7, s8) for σ∗� must be x = 2
3·20 . To see this, consider the player ♦ strategy σ♦, which

selects the vertical edge at state (qk, incj)1. Since from (init)in the reachability to

Taj must be 1
6
, we have that

1

2
· 1

2
· 1

3
+

1

2
· 1

2
· 1

2
· (1− x) +

1

2
· 1

2
· 1

2
· 1

3
=

1

6
,

which implies that x = 2
3·20 , as desired.

Init+Decrement. We show that at state (qk, decj)in, σ∗� must choose the edge

labelled by “= 0.” To see this, suppose the opposite, i.e., σ∗� chooses the edge

labelled by “> 0.” The reachability probability to Tbj is

1

2
· 1

2
· 1

3
+

1

2
· 1

2
· 1

2
· (2

3
+

1

3
· x) >

1

6
,

which contradicts (b).

Increment+Increment. The first instruction is lh : cj′ := cj′ + 1, goto lk, and the

second instruction is lk : cj := cj + 1. We show that the probability of selecting edge

169

(s5, s6) for σ∗� must be 2
3·2cj , and the probability for edge (s7, s8) must be x = 2

3·2ci .

By (b), from (qh, incj′)2 the reachability probability to Taj must be 1
6
, which means

1

2
· 1

2
· 2

3 · 2cj
· 1

2
+

1

2
· 1

2
· 1

2
· (1− x) +

1

2
· 1

2
· 1

2
· 1

3
=

1

6
,

yielding that x = 2
3·2cj , as desired.

Increment+Decrement. The first instruction is lh : cj′ := cj′ + 1, goto lk, and the

second instruction is lk : if cj = 0 · · · . If cj > 0 when executing instruction lk, we

show that σ∗� must choose the edge labelled by “> 0.” Assume that this is not the

case, and we immediately have that the probability to reach Taj is

1

2
· 1

2
· 2

3 · 2cj+1
· 1

2
+

1

2
· 1

6
<

1

6
,

which contradicts (b). Hence, the edge labelled by “>0” has to be taken. Then by

(b), from (qh, incj′)2 the probability to reach Taj must be 1
6
, which gives

1

2
· 1

2
· 2

3 · 2cj
· 1

2
+

1

2
· 1

2
· 1

2
· 2

3
+

1

2
· 1

2
· 1

2
· 1

3
· (1− x) +

1

2
· 1

2
· 1

2
· 1

3
=

1

6
,

yielding that the probability of σ∗� to select the edge (s13, s14) is x = 2
2cj

.

For the counter i, again by (b), from (qh, incj′)2 the probability to reach Taj must

be 1
6
, which gives

1

2
· 1

2
· 2

3 · 2ci
· 1

2
+

1

2
· 1

2
· 1

2
· 2

3
+

1

2
· 1

2
· 1

2
· (1− x) +

1

2
· 1

2
· 1

2
· 1

3
=

1

6
,

yielding that x = 2
3·2ci , as desired.

If cj = 0 when executing instruction lk, we have that σ∗� must choose the edge

labelled by =0, by exactly the same argument as for the Init+Decrement case.

Decrement+Decrement. Here we verify two cases: the first case is that (qh, decj′)
=0
out

is linked with (qk, decj)in, which is the same as for the Init+Decrement case; the sec-

ond case is that (qh, decj′)
>0
out is linked with (q, decj)in, which is the same as for the

Increment+Decrement case.

Decrement+Increment. Here we verify two cases: the first case is that (qh, decj′)
=0
out

is linked with (qk, incj)in, which is the same as for the Init+Increment case; the sec-

ond case is that (qh, decj′)
>0
out is linked with (qh, incj′)in, which is the same as for the

Increment+Increment case.

5. We are now in a position to show the main claim which establishes the correctness

170 APPENDIX D. PROOF OF THEOREM 15

of the construction, namely, that player � has a winning strategy in G(M) if and

only if M does not terminate. We show two directions:

“⇐”. Suppose thatM does not terminate, then consider a player � strategy σ∗� for

G(M). We can safely to pick σ∗� such that it follows the counter update (because

we have shown in the previous steps that any winning strategy has to do so), i.e.,

σ∗� must perform the following:

• For the Init gadget, at state s0, the probability of selecting edge (s0, s1) is 2
3·20 ,

and at state s2, the probability of selecting edge (s2, s3) is 2
3·20 .

• For each Increment gadget with index k, if the counter values are c1 and c2

respectively, then

– (s5, s6) is chosen with probability 2
3·2cj ;

– (s7, s8) is chosen with probability 2
3·2ci ;

– (s9, s10) is chosen with probability 2

3·2cj+1 ; and

– (s11, s12) is chosen with probability 2
3·2ci .

• For each Decrement gadget with index k, suppose the counter values are c1 and

c2 respectively. Then, if cj = 0, then at state (qk, decj)in, σ∗� selects the edge

labelled with “= 0,” and if cj > 0, then at state (qk, decj)in, σ∗� selects the edge

labelled with “> 0,” and

– (s13, s14) is chosen with probability 2
2cj

;

– (s15, s16) is chosen with probability 2
3·2ci ;

– (s17, s18) is chosen with probability 2

3·2cj−1 ; and

– (s19, s20) is chosen with probability 2
3·2ci .

It is not difficult to verify that σ∗� achieves the first five objectives (by extending the

argument from the proof of infinite memory requirement in Theorem 12). Further-

more, asM does not terminate, under any σ♦, Tt is reached with probability 1. This

is because the only way to reach terminal states a1, b1, a2, b2 or c, which are not

labelled with Tt, is by reaching the Termination gadget with positive probability.

“⇒”. For the other direction, suppose that there is a winning player � strategy σ∗�.

Then in order to satisfy the first five objectives, σ∗� must follow the counter update,

as described above. However, in order to satisfy the last objective, i.e. reaching Tt

with probability one, σ∗� must ensure that the probability to reach terminals a1, b1,

a1, a2 and c is zero. This is only possible if the Terminal gadget is never reached,

implying that M does not terminate.

This completes the proof.

Appendix E

PRISM-games tool

In this appendix we give a brief overview of the usage of PRISM-games tool described

in Chapter 6. For more details about the tool and download instructions please visit

http://www.prismmodelchecker.org/games/. Here we focus on the features that are

distinct from the existing functionality of PRISM [77].

Figure E.1: PRISM-games model window.

The main modelling window is shown in Figure E.1, where SMGs have to be specified using

171

http://www.prismmodelchecker.org/games/

172 APPENDIX E. PRISM-GAMES TOOL

the modelling language described in Section 6.1. The screenshot shows the specification

of the protocol for user-centric networks analysed in Section 6.6.3.

The property analysis window is shown in Figure E.2. We can see several rPATL

properties listed in the syntax provided in Section 6.2. The screenshot also shows the

strategy menu, which provides access to the strategy synthesis functionality of PRISM-

games. We describe the available functionality below.

Figure E.2: PRISM-games properties window.

• Strategy info - displays the information about the strategy currently held in memory

of the model checker (e.g., see Figure E.3).

Figure E.3: Strategy information window.

173

• Generate strategy - verifies the property and generates the strategy for the selected

property and the model. The optimal strategy is generated for all players in the

game: for the players in coalition it contains optimal actions to satisfy the property,

and actions for the players outside the coalition are the ones trying to falsify the

property. After generation, these strategies can be explored in the simulator window

discussed later.

• Verify under strategy - performs strategy ‘implementation’ discussed in Section 6.4.

In order to use the feature, the strategy needs to be generated using the Generate

strategy option beforehand. When invoked, the action fixes the choices of the coali-

tion players to the ones provided by the strategy (i.e., the product of the SMG and

the strategy is built), and the selected property is then verified on the product game.

• Perform experiment under strategy - similarly to the Verify under strategy option,

the product of the strategy, that has been generated, and the game is built, but, in

this case, we can verify the property for a range of parameter values, e.g., we can

verify the property <<requester1>> Pmax=? [true U<=k nps1=3] for k ∈ {1, . . . , 12},
and plot the resulting values (see graph in Figure E.2).

• Import strategy/Export strategy - imports/exports strategy from/to a given file. Ac-

cepted file formats for different strategy types are given at the beginning of the

export file, e.g., see Figure E.4 for a sample file header describing strategy format

for the step-bounded until formula.

Figure E.4: PRISM-games strategy import/export format.

• Export product - exports the SMG model, where the choices of the coalition players

are fixed according to the strategy that has been generated. This is the same product

game that is constructed when using Verify under strategy feature.

174 APPENDIX E. PRISM-GAMES TOOL

Finally, we describe the PRISM-games functionality available from the simulator win-

dow shown in Figure E.5. After the strategy has been generated using the Generate

strategy option from the strategy menu described earlier, one can explore it in the simu-

lator window. Strategy choices are displayed in the ‘Manual exploration’ section, e.g., in

Figure E.5 we can see that the optimal strategy chooses action ‘[pay11]’ with probability

1. We can step through the model following the choices suggested to manually explore the

strategy (we used this functionality to construct the strategy graphs for the case study

of the user-centric network protocol shown in Figures 6.9c, 6.10b and 6.11c). Also, the

‘Strategy information’ panel on the right displays strategy information and the current

state (i.e., memory element).

Figure E.5: PRISM-games simulator window.

Appendix F

PRISM-games models

F.1 Team formation protocol

In this section we present a sample three-agent PRISM-games SMG model of a team

formation protocol presented in Section 3.5. The full set of models can be found in

http://www.prismmodelchecker.org/files/clima11/.

175

http://www.prismmodelchecker.org/files/clima11/

smg

// parameters
const int n_resources = 3;
const int n_tasks = 2;
const int n_sensors = 3;

// sensor resources
const int resource1=1;
const int resource2=2;
const int resource3=3;
const int resource4=1;

// network configuration
const int e12=1;
const int e13=1;

const int e21=e12;
const int e23=1;

const int e31=e13;
const int e32=e23;

player p0 controller, [str1], [str2], [str3] endplayer
module controller // schedules the algorithm

 // algorithm status
 status : [0..7];

 // task resource indicator variables
 t1_r1 : [0..1];
 t1_r2 : [0..1];
 t1_r3 : [0..1];

 t2_r1 : [0..1];
 t2_r2 : [0..1];
 t2_r3 : [0..1];

 // schedule placeholders
 turn1 : [0..n_sensors];
 turn2 : [0..n_sensors];
 turn3 : [0..n_sensors];

 // selecting schedule uniformly at random
 [] status=0 -> 1/6 : (turn1'=1) & (turn2'=2) & (turn3'=3) & (status'=1)
 + 1/6 : (turn1'=1) & (turn2'=3) & (turn3'=2) & (status'=1)
 + 1/6 : (turn1'=2) & (turn2'=1) & (turn3'=3) & (status'=1)
 + 1/6 : (turn1'=2) & (turn2'=3) & (turn3'=1) & (status'=1)
 + 1/6 : (turn1'=3) & (turn2'=1) & (turn3'=2) & (status'=1)
 + 1/6 : (turn1'=3) & (turn2'=2) & (turn3'=1) & (status'=1);

 // initialising non-empty tasks uniformly at random
 [] status=1 -> 1/49 : (t1_r1'=0) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=0) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=0) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=0) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=0) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=0) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=0) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=0) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=0) & (t2_r2'=0) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=0) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=0) & (t2_r1'=0) & (t2_r2'=0) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=0) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=0) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=0) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=1) & (status'=2)

176

 + 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=0) & (t2_r2'=0) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=0) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=1) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=0) & (status'=2)
 + 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=1) & (status'=2);

 // executing the schedule

 // 1st round
 [str1] status=2 & turn1=1 -> (status'=2);
 [fin1] status=2 & turn1=1 -> (status'=3);
 [str2] status=2 & turn1=2 -> (status'=2);
 [fin2] status=2 & turn1=2 -> (status'=3);
 [str3] status=2 & turn1=3 -> (status'=2);
 [fin3] status=2 & turn1=3 -> (status'=3);

 // 2nd round
 [str1] status=3 & turn2=1 -> (status'=3);
 [fin1] status=3 & turn2=1 -> (status'=4);
 [str2] status=3 & turn2=2 -> (status'=3);
 [fin2] status=3 & turn2=2 -> (status'=4);
 [str3] status=3 & turn2=3 -> (status'=3);
 [fin3] status=3 & turn2=3 -> (status'=4);

 // 3rd round
 [str1] status=4 & turn3=1 -> (status'=4);
 [fin1] status=4 & turn3=1 -> (status'=5);
 [str2] status=4 & turn3=2 -> (status'=4);
 [fin2] status=4 & turn3=2 -> (status'=5);
 [str3] status=4 & turn3=3 -> (status'=4);
 [fin3] status=4 & turn3=3 -> (status'=5);

 [] status=5 -> (status'=6);
 [] status=6 -> true;

endmodule

player p1 sensor1, [fin1] endplayer
module sensor1

 state1 : [0..3];

 // team membership indicators
 m1_t1 : [0..1];
 m1_t2 : [0..1];

 // task scheduling
 turn1_1 : [0..n_tasks];
 turn2_1 : [0..n_tasks];

 // starting turn, selecting order of tasks
 [str1] state1=0 -> (state1'=1);

 // if there is no team and has required skill - initiating the team
 [] state1=1 & !committed & team_size_t1=0 & has_resource_t1 -> (m1_t1'=1);
 [] state1=1 & !committed & team_size_t2=0 & has_resource_t2 -> (m1_t2'=1);

 // if team already exists and one of the neighbours is in it - joining the team
 [] state1=1 & !committed & team_size_t1>0 & can_join_t1 & has_resource_t1 & !resource_filled_t1 -> (m1_t1'=1);
 [] state1=1 & !committed & team_size_t2>0 & can_join_t2 & has_resource_t2 & !resource_filled_t2 -> (m1_t2'=1);

 [fin1] state1>0 -> (state1'=0);

endmodule

player p2 sensor2, [fin2] endplayer
module sensor2 = sensor1
[
 state1=state2,

 str1=str2,
 fin1=fin2,

 m1_t1=m2_t1,

177

 m1_t2=m2_t2,

 m2_t1=m1_t1,
 m2_t2=m1_t2,

 turn1_1=turn1_2,
 turn2_1=turn2_2,

 resource1=resource2,
 resource2=resource1,

 e12=e21,
 e13=e23,
 e14=e24,
 e15=e25,

 e21=e12,
 e23=e13,
 e24=e14,
 e25=e15
]
endmodule

player p3 sensor3, [fin3] endplayer
module sensor3 = sensor1
[
 state1=state3,

 str1=str3,
 fin1=fin3,

 m1_t1=m3_t1,
 m1_t2=m3_t2,
 m3_t1=m1_t1,
 m3_t2=m1_t2,
 turn1_1=turn1_3,
 turn2_1=turn2_3,

 resource1=resource3,
 resource3=resource1,

 e12=e32,
 e13=e31,
 e14=e34,
 e15=e35,

 e31=e13,
 e32=e12,
 e34=e14,
 e35=e15
]
endmodule

// agent is committed to some team
formula committed = (m1_t1+m1_t2) > 0;

// formulae to compute team sizes
formula team_size_t1 = m1_t1+m2_t1+m3_t1;
formula team_size_t2 = m1_t2+m2_t2+m3_t2;

// formulae to check whether the agent can join the team
formula can_join_t1 = e12*m2_t1 + e13*m3_t1 > 0;
formula can_join_t2 = e12*m2_t2 + e13*m3_t2 > 0;

// formulae to check whether agent has the resource required by the task
formula has_resource_t1 = ((t1_r1=1&resource1=1) | (t1_r2=1&resource1=2) | (t1_r3=1&resource1=3));
formula has_resource_t2 = ((t2_r1=1&resource1=1) | (t2_r2=1&resource1=2) | (t2_r3=1&resource1=3));

// formulae to check whether the resource of an agent has been already filled in the team
formula resource_filled_t1 = (m2_t1=1 & resource1=resource2) | (m3_t1=1 & resource1=resource3);
formula resource_filled_t2 = (m2_t2=1 & resource1=resource2) | (m3_t2=1 & resource1=resource3);

// formula to compute team initiation probability (assuming each agent has at least one connection)
formula IP = (e12*(1-((m2_t1+m2_t2)=0?0:1))+e13*(1-((m3_t1+m3_t2)=0?0:1))) / (e12+e13);

// labels and formulae for property specification
formula finished = (status=5);

formula task1_completed = finished
 & ((t1_r1=1)=>((m1_t1=1&resource1=1)|(m2_t1=1&resource2=1)|(m3_t1=1&resource3=1)))
 & ((t1_r2=1)=>((m1_t1=1&resource1=2)|(m2_t1=1&resource2=2)|(m3_t1=1&resource3=2)))
 & ((t1_r3=1)=>((m1_t1=1&resource1=3)|(m2_t1=1&resource2=3)|(m3_t1=1&resource3=3)));

formula task2_completed = finished
 & ((t2_r1=1)=>((m1_t2=1&resource1=1)|(m2_t2=1&resource2=1)|(m3_t2=1&resource3=1)))
 & ((t2_r2=1)=>((m1_t2=1&resource1=2)|(m2_t2=1&resource2=2)|(m3_t2=1&resource3=2)))

178

 & ((t2_r3=1)=>((m1_t2=1&resource1=3)|(m2_t2=1&resource2=3)|(m3_t2=1&resource3=3)));

formula agent1_joins_successful_team = (task1_completed & m1_t1=1) | (task2_completed & m1_t2=1);

formula agent2_joins_successful_team = (task1_completed & m2_t1=1) | (task2_completed & m2_t2=1);

formula agent3_joins_successful_team = (task1_completed & m3_t1=1) | (task2_completed & m3_t2=1);

// rewards
rewards "w_1_total"
 agent1_joins_successful_team : 1;
 agent2_joins_successful_team : 1;
 agent3_joins_successful_team : 1;
endrewards

rewards "w_2_total"
 task1_completed : 1;
 task2_completed : 1;
endrewards

179

180 APPENDIX F. PRISM-GAMES MODELS

F.2 Microgrid demand-side management protocol

In this section we present a sample three-household PRISM-games SMG model of a micro-

grid demand-side management protocol presented in Section 6.6.1. The full set of models

can be found in http://www.prismmodelchecker.org/files/fmsd-smg/.

http://www.prismmodelchecker.org/files/fmsd-smg/

smg

// number of households
const int N = 3;

// number of days
const int D = 3;

// number of time intervals in the day
const int K = 16;

// expected number of jobs per household per day
const int Exp_J = 9;

// cost limits for households
const double price_limit = 1.5;

// initiation probabilities for jobs (uuniform distribution)
const double P_J1 = 1/4;
const double P_J2 = 1/4;
const double P_J3 = 1/4;
const double P_J4 = 1/4;

// probability of starting a task independently of the cost
const double P_start = 0.8;

// distribution of the expected demand across intervals
const double D_K1 = 0.0614;
const double D_K2 = 0.0392;
const double D_K3 = 0.0304;
const double D_K4 = 0.0304;
const double D_K5 = 0.0355;
const double D_K6 = 0.0518;
const double D_K7 = 0.0651;
const double D_K8 = 0.0643;
const double D_K9 = 0.0625;
const double D_K10 = 0.0618;
const double D_K11 = 0.0614;
const double D_K12 = 0.0695;
const double D_K13 = 0.0887;
const double D_K14 = 0.1013;
const double D_K15 = 0.1005;
const double D_K16 = 0.0762;

// time limit
const int max_time = K*D+1;

// ---

// time counter
global time : [1..max_time];

// jobs of households
global job1 : [0..4];
global job2 : [0..4];
global job3 : [0..4];

// scheduling variable
global sched : [0..N];

player p0
 player0
endplayer

// definition of scheduling module
module player0

 [] sched = 0 -> 1/N : (sched'=1) + 1/N : (sched'=2) + 1/N : (sched'=3);

endmodule

// definitions of households
player p1
 player1, [start1], [backoff1], [nbackoff1]
endplayer

module player1

 job_arrived1 : [0..4];

 [] sched=1 & active = 0 & job1 > 0 & time < max_time -> (job1'=new_j1) & (job2'=new_j2) & (job3'=new_j3) & (time'=time+1) & (sched'=0);

 // initiate the job with probability P_init
 [] sched=1 & active = 0 & job1 = 0 & time < max_time -> P_init*P_J1 : (job_arrived1'=1)
 + P_init*P_J2 : (job_arrived1'=2)
 + P_init*P_J3 : (job_arrived1'=3)
 + P_init*P_J4 : (job_arrived1'=4)
 + (1-P_init) : (job1'=new_j1) & (job2'=new_j2) & (job3'=new_j3) & (time'=time+1) & (

 // start job if cost below the limit
 [start1] sched=1 & job_arrived1 > 0 & price <= price_limit & time < max_time-> (job1'=job_arrived1) & (job2'=new_j2) & (job3'=new_j3) & (

 // back-off with probability 1-P_start
 [backoff1] sched=1 & job_arrived1 > 0 & price > price_limit & time < max_time-> P_start : (job1'=job_arrived1) & (job2'=new_j2) & (job3'
 + (1-P_start) : (job1'=new_j1) & (job2'=new_j2) & (job3'=new_j3) & (job_arrived1'=0) & (time'

 // don't back-off
 [nbackoff1] sched=1 & job_arrived1 > 0 & price > price_limit & time < max_time -> (job1'=job_arrived1) & (job2'=new_j2) & (job3'=new_j3

 // finished
 [] sched=1 & time=max_time -> (job1'=new_j1) & (job2'=new_j2) & (job3'=new_j3) & (sched'=0);

181

endmodule

player p2
 player2, [start2], [backoff2], [nbackoff2]
endplayer

module player2

 job_arrived2 : [0..4];

 [] sched=2 & active = 0 & job2 > 0 & time < max_time -> (job1'=new_j1) & (job2'=new_j2) & (job3'=new_j3) & (time'=time+1) & (sched'=0);

 // initiate the job with probability P_init
 [] sched=2 & active = 0 & job2 = 0 & time < max_time -> P_init*P_J1 : (job_arrived2'=1)
 + P_init*P_J2 : (job_arrived2'=2)
 + P_init*P_J3 : (job_arrived2'=3)
 + P_init*P_J4 : (job_arrived2'=4)
 + (1-P_init) : (job1'=new_j1) & (job2'=new_j2) & (job3'=new_j3) & (time'=time+1) & (

 // start job if cost below the limit
 [start2] sched=2 & job_arrived2 > 0 & price <= price_limit & time < max_time-> (job2'=job_arrived2) & (job1'=new_j1) & (job3'=new_j3) & (

 // back-off with probability 1-P_start
 [backoff2] sched=2 & job_arrived2 > 0 & price > price_limit & time < max_time-> P_start : (job2'=job_arrived2) & (job1'=new_j1) & (job3'
 + (1-P_start) : (job1'=new_j1) & (job2'=new_j2) & (job3'=new_j3) & (job_arrived2'=0) & (time'

 // don't back-off
 [nbackoff2] sched=2 & job_arrived2 > 0 & price > price_limit & time < max_time -> (job2'=job_arrived2) & (job1'=new_j1) & (job3'=new_j3

 // finished
 [] sched=2 & time=max_time -> (job1'=new_j1) & (job2'=new_j2) & (job3'=new_j3) & (sched'=0);

endmodule

player p3
 player3, [start3], [backoff3], [nbackoff3]
endplayer

module player3

 job_arrived3 : [0..4];

 [] sched=3 & active = 0 & job3 > 0 & time < max_time -> (job1'=new_j1) & (job2'=new_j2) & (job3'=new_j3) & (time'=time+1) & (sched'=0);

 // initiate the job with probability P_init
 [] sched=3 & active = 0 & job3 = 0 & time < max_time -> P_init*P_J1 : (job_arrived3'=1)
 + P_init*P_J2 : (job_arrived3'=2)
 + P_init*P_J3 : (job_arrived3'=3)
 + P_init*P_J4 : (job_arrived3'=4)
 + (1-P_init) : (job1'=new_j1) & (job2'=new_j2) & (job3'=new_j3) & (time'=time+1) & (

 // start job if cost below the limit
 [start3] sched=3 & job_arrived3 > 0 & price <= price_limit & time < max_time-> (job3'=job_arrived3) & (job1'=new_j1) & (job2'=new_j2) & (

 // back-off with probability 1-P_start
 [backoff3] sched=3 & job_arrived3 > 0 & price > price_limit & time < max_time-> P_start : (job3'=job_arrived3) & (job1'=new_j1) & (job2'
 + (1-P_start) : (job1'=new_j1) & (job2'=new_j2) & (job3'=new_j3) & (job_arrived3'=0) & (time'

 // don't back-off
 [nbackoff3] sched=3 & job_arrived3 > 0 & price > price_limit & time < max_time -> (job3'=job_arrived3) & (job1'=new_j1) & (job2'=new_j2

 // finished
 [] sched=3 & time=max_time -> (job1'=new_j1) & (job2'=new_j2) & (job3'=new_j3) & (sched'=0);

endmodule

// probability to initiate the load
formula P_init = Exp_J *
 (mod(time,K) = 1 ? D_K1 :
 (mod(time,K) = 2 ? D_K2 :
 (mod(time,K) = 3 ? D_K3 :
 (mod(time,K) = 4 ? D_K4 :
 (mod(time,K) = 5 ? D_K5 :
 (mod(time,K) = 6 ? D_K6 :
 (mod(time,K) = 7 ? D_K7 :
 (mod(time,K) = 8 ? D_K8 :
 (mod(time,K) = 9 ? D_K9 :
 (mod(time,K) = 10 ? D_K10 :
 (mod(time,K) = 11 ? D_K11 :
 (mod(time,K) = 12 ? D_K12 :
 (mod(time,K) = 13 ? D_K13 :
 (mod(time,K) = 14 ? D_K14 :
 (mod(time,K) = 15 ? D_K15 :
 D_K16)))))))))))))));

// formula to compute current cost
formula jobs_running = (job1>0?1:0) + (job2>0?1:0) + (job3>0?1:0);

// formula to identify say that only one agent is active
formula active = job_arrived1 + job_arrived2 + job_arrived3 ;

// formula to update job status
formula new_j1 = job1=0?0:job1-1;
formula new_j2 = job2=0?0:job2-1;
formula new_j3 = job3=0?0:job3-1;

formula price = jobs_running+1;

rewards "cost"
 sched!=0 : jobs_running*jobs_running;
endrewards

182

rewards "tasks_started"
 sched!=0 & job1=1 : 1;
 sched!=0 & job2=1 : 1;
 sched!=0 & job3=1 : 1;
endrewards

rewards "value1"
 sched!=0 & job1>0 : 1/jobs_running;
endrewards
rewards "value12"
 sched!=0 & (job1>0|job2>0) : 1/jobs_running;
endrewards
rewards "value123"
 sched!=0 & (job1>0|job2>0|job3>0) : 1/jobs_running;
endrewards

rewards "common_value"
 sched!=0 : jobs_running=0?0:1/jobs_running;
endrewards

rewards "upfront_cost1"

 [start1] true : 1/(job_arrived1*price);
 [backoff1] true : P_start/(job_arrived1*price);
 [nbackoff1] true : 1/(job_arrived1*price);

endrewards

rewards "upfront_tcost"

 [start1] true : 1/(job_arrived1*price);
 [backoff1] true : P_start/(job_arrived1*price);
 [nbackoff1] true : 1/(job_arrived1*price);

 [start2] true : 1/(job_arrived2*price);
 [backoff2] true : P_start/(job_arrived2*price);
 [nbackoff2] true : 1/(job_arrived2*price);

 [start3] true : 1/(job_arrived3*price);
 [backoff3] true : P_start/(job_arrived3*price);
 [nbackoff3] true : 1/(job_arrived3*price);

endrewards

183

184 APPENDIX F. PRISM-GAMES MODELS

F.3 Collective decision making protocol for sensor

networks

In this section we present a sample three-sensor PRISM-games SMG model of a collective

decision making algorithm for sensor networks presented in Section 6.6.2. The full set of

models can be found in http://www.prismmodelchecker.org/files/fmsd-smg/.

http://www.prismmodelchecker.org/files/fmsd-smg/

smg

// number of agents
const int N = 3;

// number of sites
const int K = 3;

// number of confidence levels
const int L = 2;

// model parameters
const double Pexp;
const double eta;
const double gamma;
const double lambda;

// quality of the sites
const double Q1;
const double Q2;
const double Q3;

// confidence levels of agents
global confidence1 : [1..L];
global confidence2 : [1..L];
global confidence3 : [1..L];

// site preferences of agents
global preference1 : [0..K] init 0;
global preference2 : [0..K] init 0;
global preference3 : [0..K] init 0;

// scheduling variable
global sched : [0..N];

// scheduler module
module player0

 [] sched = 0 -> 1/N : (sched'=1) + 1/N : (sched'=2) + 1/N : (sched'=3);

endmodule

// non-deterministic agent definitions
player p1
 player1, [exp1], [com1]
endplayer

module player1

 // exploring sites
 [exp1] sched=1 & !all_prefer_2 -> 0 : true
 // -- evaluating site and changing preference with probability Pswitchxy
 + 1/K * Pswitch1_1 : (preference1'=1) & (confidence1'=1) & (sched'=0)
 + 1/K * (1-Pswitch1_1) : (sched'=0)
 // -- evaluating site and changing preference with probability Pswitchxy
 + 1/K * Pswitch1_2 : (preference1'=2) & (confidence1'=1) & (sched'=0)
 + 1/K * (1-Pswitch1_2) : (sched'=0)
 // -- evaluating site and changing preference with probability Pswitchxy
 + 1/K * Pswitch1_3 : (preference1'=3) & (confidence1'=1) & (sched'=0)
 + 1/K * (1-Pswitch1_3) : (sched'=0)
 ;
 // communicating with other agents in the same site with probability 1-Pexp
 [com1] sched=1 & preference1!=0 & !all_prefer_2 -> 0 : true
 // - trying to communicate with agent
 + Pmeet_p1 * (preference1=preference2?1:0) : (confidence1'=inc_conf1) & (confidence2'=inc_conf2) & (sched'=0) // same site
 + Pmeet_p1 * (preference1=preference2?0:1) * Pwin1_2 : (confidence1'=inc_conf1) & (preference2'=preference1) & (confidence2'
 + Pmeet_p1 * (preference1=preference2?0:1) * (1-Pwin1_2) : (confidence1'=1) & (preference1'=preference2) & (confidence2'

 // - trying to communicate with agent
 + Pmeet_p1 * (preference1=preference3?1:0) : (confidence1'=inc_conf1) & (confidence3'=inc_conf3) & (sched'=0) // same site
 + Pmeet_p1 * (preference1=preference3?0:1) * Pwin1_3 : (confidence1'=inc_conf1) & (preference3'=preference1) & (confidence3'
 + Pmeet_p1 * (preference1=preference3?0:1) * (1-Pwin1_3) : (confidence1'=1) & (preference1'=preference3) & (confidence3'

 ;

 // don't do anything
// [] sched=1 & !all_prefer_2 -> (sched'=0);
[] sched=1 & all_prefer_2-> true;

endmodule

player p2
 player2, [exp2], [com2]
endplayer

module player2

 // exploring sites
 [exp2] sched=2 & !all_prefer_2-> 0 : true
 // -- evaluating site and changing preference with probability Pswitchxy
 + 1/K * Pswitch2_1 : (preference2'=1) & (confidence2'=1) & (sched'=0)
 + 1/K * (1-Pswitch2_1) : (sched'=0)
 // -- evaluating site and changing preference with probability Pswitchxy
 + 1/K * Pswitch2_2 : (preference2'=2) & (confidence2'=1) & (sched'=0)
 + 1/K * (1-Pswitch2_2) : (sched'=0)
 // -- evaluating site and changing preference with probability Pswitchxy
 + 1/K * Pswitch2_3 : (preference2'=3) & (confidence2'=1) & (sched'=0)
 + 1/K * (1-Pswitch2_3) : (sched'=0)
 ;
 // communicating with other agents in the same site with probability 1-Pexp
 [com2] sched=2 & preference2!=0 & !all_prefer_2-> 0 : true

185

 // - trying to communicate with agent
 + Pmeet_p2 * (preference2=preference1?1:0) : (confidence2'=inc_conf2) & (confidence1'=inc_conf1) & (sched'=0) // same site
 + Pmeet_p2 * (preference2=preference1?0:1) * Pwin2_1 : (confidence2'=inc_conf2) & (preference1'=preference2) & (confidence1'
 + Pmeet_p2 * (preference2=preference1?0:1) * (1-Pwin2_1) : (confidence2'=1) & (preference2'=preference1) & (confidence1'

 // - trying to communicate with agent
 + Pmeet_p2 * (preference2=preference3?1:0) : (confidence2'=inc_conf2) & (confidence3'=inc_conf3) & (sched'=0) // same site
 + Pmeet_p2 * (preference2=preference3?0:1) * Pwin2_3 : (confidence2'=inc_conf2) & (preference3'=preference2) & (confidence3'
 + Pmeet_p2 * (preference2=preference3?0:1) * (1-Pwin2_3) : (confidence2'=1) & (preference2'=preference3) & (confidence3'

 ;

 // don't do anything
// [] sched=2 & !all_prefer_2-> (sched'=0);

 [] sched=2 & all_prefer_2-> true;

endmodule

player p3
 player3, [exp3], [com3]
endplayer

module player3

 // exploring sites
 [exp3] sched=3 & !all_prefer_2-> 0 : true
 // -- evaluating site and changing preference with probability Pswitchxy
 + 1/K * Pswitch3_1 : (preference3'=1) & (confidence3'=1) & (sched'=0)
 + 1/K * (1-Pswitch3_1) : (sched'=0)
 // -- evaluating site and changing preference with probability Pswitchxy
 + 1/K * Pswitch3_2 : (preference3'=2) & (confidence3'=1) & (sched'=0)
 + 1/K * (1-Pswitch3_2) : (sched'=0)
 // -- evaluating site and changing preference with probability Pswitchxy
 + 1/K * Pswitch3_3 : (preference3'=3) & (confidence3'=1) & (sched'=0)
 + 1/K * (1-Pswitch3_3) : (sched'=0)
 ;
 // communicating with other agents in the same site with probability 1-Pexp
 [com3] sched=3 & preference3!=0 & !all_prefer_2-> 0 : true
 // - trying to communicate with agent
 + Pmeet_p3 * (preference3=preference1?1:0) : (confidence3'=inc_conf3) & (confidence1'=inc_conf1) & (sched'=0) // same site
 + Pmeet_p3 * (preference3=preference1?0:1) * Pwin3_1 : (confidence3'=inc_conf3) & (preference1'=preference3) & (confidence1'
 + Pmeet_p3 * (preference3=preference1?0:1) * (1-Pwin3_1) : (confidence3'=1) & (preference3'=preference1) & (confidence1'

 // - trying to communicate with agent
 + Pmeet_p3 * (preference3=preference2?1:0) : (confidence3'=inc_conf3) & (confidence2'=inc_conf2) & (sched'=0) // same site
 + Pmeet_p3 * (preference3=preference2?0:1) * Pwin3_2 : (confidence3'=inc_conf3) & (preference2'=preference3) & (confidence2'
 + Pmeet_p3 * (preference3=preference2?0:1) * (1-Pwin3_2) : (confidence3'=1) & (preference3'=preference2) & (confidence2'

;

 // don't do anything
// [] sched=3 & !all_prefer_2-> (sched'=0);
[] sched=3 & all_prefer_2-> true;

endmodule

// deterministic agent definitions

// formulae to increase agents' confidence levels

 formula inc_conf1 = confidence1=L ? L : (confidence1+1);
 formula inc_conf2 = confidence2=L ? L : (confidence2+1);
 formula inc_conf3 = confidence3=L ? L : (confidence3+1);

// formulae to compute probabilities of agents to meet

 // probability for agent to meet another agent independent of its location
 formula Pmeet_p1 = 1/(N-1);
 formula Pmeet_p2 = 1/(N-1);
 formula Pmeet_p3 = 1/(N-1);

// formulae to get qualities of agents' preferred sites
 formula Q_p1 = preference1=1 ? Q1 : (preference1=1 ? Q2 : (Q3)) ;
 formula Q_p2 = preference2=1 ? Q1 : (preference2=1 ? Q2 : (Q3)) ;
 formula Q_p3 = preference3=1 ? Q1 : (preference3=1 ? Q2 : (Q3)) ;

// formulae for evaluating the sites (Pswitchij = prob of to switch from size i to site j).

 formula Pswitch1_1 = preference1=0 ? 1 : (preference1=1 ? 0 : pow(Q1, eta) / (pow(Q1, eta) + pow(Q_p1, eta)));
 formula Pswitch1_2 = preference1=0 ? 1 : (preference1=2 ? 0 : pow(Q2, eta) / (pow(Q2, eta) + pow(Q_p1, eta)));
 formula Pswitch1_3 = preference1=0 ? 1 : (preference1=3 ? 0 : pow(Q3, eta) / (pow(Q3, eta) + pow(Q_p1, eta)));

 formula Pswitch2_1 = preference2=0 ? 1 : (preference2=1 ? 0 : pow(Q1, eta) / (pow(Q1, eta) + pow(Q_p2, eta)));
 formula Pswitch2_2 = preference2=0 ? 1 : (preference2=2 ? 0 : pow(Q2, eta) / (pow(Q2, eta) + pow(Q_p2, eta)));
 formula Pswitch2_3 = preference2=0 ? 1 : (preference2=3 ? 0 : pow(Q3, eta) / (pow(Q3, eta) + pow(Q_p2, eta)));

 formula Pswitch3_1 = preference3=0 ? 1 : (preference3=1 ? 0 : pow(Q1, eta) / (pow(Q1, eta) + pow(Q_p3, eta)));
 formula Pswitch3_2 = preference3=0 ? 1 : (preference3=2 ? 0 : pow(Q2, eta) / (pow(Q2, eta) + pow(Q_p3, eta)));
 formula Pswitch3_3 = preference3=0 ? 1 : (preference3=3 ? 0 : pow(Q3, eta) / (pow(Q3, eta) + pow(Q_p3, eta)));

// formulae for conducting tournaments

 formula Pwin1_2 = (preference2=0?1:(preference1=0?0:((pow(Q_p1, lambda) * pow(confidence1, gamma)) /
 ((pow(Q_p1, lambda) * pow(confidence1, gamma))+(pow(Q_p2, lambda) * pow(confidence2, gamma))))));
 formula Pwin1_3 = (preference3=0?1:(preference1=0?0:((pow(Q_p1, lambda) * pow(confidence1, gamma)) /
 ((pow(Q_p1, lambda) * pow(confidence1, gamma))+(pow(Q_p3, lambda) * pow(confidence3, gamma))))));

 formula Pwin2_1 = 1-Pwin1_2;
 formula Pwin2_3 = (preference3=0?1:(preference2=0?0:((pow(Q_p2, lambda) * pow(confidence2, gamma)) /

186

 ((pow(Q_p2, lambda) * pow(confidence2, gamma))+(pow(Q_p3, lambda) * pow(confidence3, gamma))))));

 formula Pwin3_1 = 1-Pwin1_3;
 formula Pwin3_2 = 1-Pwin2_3;

// labeling states

// -- formulae to generate labels

 // agreement on site
 formula all_prefer_1 = preference1=1 & preference2=1 & preference3=1 ;
 formula all_prefer_2 = preference1=2 & preference2=2 & preference3=2 ;
 formula all_prefer_3 = preference1=3 & preference2=3 & preference3=3 ;

 // compute total confidence
 formula total_confidence = confidence1 + confidence2 + confidence3 ;

 // confidence measures
 formula all_max_conf = total_confidence/N = L;
 formula half_max_conf = ((confidence1=L?1:0 + confidence2=L?1:0 + confidence3=L?1:0)/N) >= 0.5;

// -- labels

 // agreement on particular sites
 label "all_prefer_1" = all_prefer_1;
 label "all_prefer_2" = all_prefer_2;
 label "all_prefer_3" = all_prefer_3;

 // all agents have max confidence
 label "all_max_conf" = all_max_conf;

 label "half_max_conf" = half_max_conf;

 // agreement on a site
 label "decision_made" = all_prefer_1 | all_prefer_2 | all_prefer_3 ;

// -- property constants
const int k;

// -- rewards

const int communication_cost = 10;
const int exploration_cost = 1;

// communication n costs
rewards "ncomm1"
 [com1] true : communication_cost;
endrewards
rewards "ncomm12"
 [com1] true : communication_cost;
 [com2] true : communication_cost;
endrewards
rewards "ncomm123"
 [com1] true : communication_cost;
 [com2] true : communication_cost;
 [com3] true : communication_cost;
endrewards

// communication d costs

// exploration n costs
rewards "nexpl1"
 [exp1] true : exploration_cost;
endrewards
rewards "nexpl12"
 [exp1] true : exploration_cost;
 [exp2] true : exploration_cost;
endrewards
rewards "nexpl123"
 [exp1] true : exploration_cost;
 [exp2] true : exploration_cost;
 [exp3] true : exploration_cost;
endrewards

// exploration d costs

// total n costs
rewards "ntot1"
 [exp1] true : exploration_cost;
 [com1] true : communication_cost;
endrewards
rewards "ntot12"
 [exp1] true : exploration_cost;
 [com1] true : communication_cost;
 [exp2] true : exploration_cost;
 [com2] true : communication_cost;
endrewards
rewards "ntot123"
 [exp1] true : exploration_cost;
 [com1] true : communication_cost;
 [exp2] true : exploration_cost;
 [com2] true : communication_cost;
 [exp3] true : exploration_cost;
 [com3] true : communication_cost;
endrewards

// total d costs

rewards "runtime"
 sched!=0 : 1;
endrewards

187

188

F.4. USER-CENTRIC NETWORK PROTOCOL 189

F.4 User-centric network protocol

In this section we present a sample PRISM-games SMG model with one requester and three

providers of a trust-based reputation and virtual currency mechanism for user-centric net-

works discussed in Section 6.6.3. The model is an extended version of an MDP model of [1].

All models can be found in http://www.prismmodelchecker.org/files/sr13trust/.

http://www.prismmodelchecker.org/files/sr13trust/

smg

// Model parameters
const int K; // upper bound on the number of delivered servuces
const double alpha_all = 0.8; // recommendation influence parameter
const int st_init_all = med; // initial service trust for all providers
const int reduct_all = 1; // trust decrease for all providers
const bool hide_all = false; // allow information hiding
const double cancel = 0.05; // probability to cancel fair request
const bool init_know_all = false; // sharing of initial trust
const double rev_prob = 1.0; // probability to share information
const double die_prob = 0; // probability of provider to die after serving a request
const int cmax = 10; // maximum service cost
const int cmin = 2; // minimum service cost

player requester1
 requester1, [pay11], [nopay11], [pay21], [nopay21], [pay31], [nopay31], [try11], [try21], [try31], [buy]
endplayer

player provider1
 provider1, [accept11], [refuse11], [reveal11], [notreveal11]
endplayer

player provider2
 provider2, [accept21], [refuse21], [reveal21], [notreveal21]
endplayer

player provider3
 provider3, [accept31], [refuse31], [reveal31], [notreveal31]
endplayer

module requester1

 x1 : [0..43] init 0; // states of the module
 //ns1 : [0..K] init 0; // number of requested services
 ps1 : [0..K] init 0; // number of payed services
 nps1 : [0..K] init 0; // number of unpayed services

 unpaid1 : bool init false;

 // nondeterministic choice of the requestee
 [try11] x1=0 & (y1+y2+y3=0) & ps1+nps1 < K -> (x1'=11) & (unpaid1'=false);
 [try21] x1=0 & (y1+y2+y3=0) & ps1+nps1 < K -> (x1'=21) & (unpaid1'=false);
 [try31] x1=0 & (y1+y2+y3=0) & ps1+nps1 < K -> (x1'=31) & (unpaid1'=false);

 // buy the service off-market
 [buy] x1=0 & (y1+y2+y3=0) -> (x1'=41) & (unpaid1'=false);

 // finished sending requests
 [] x1=0 & (y1+y2+y3=0) -> (x1'=1) & (unpaid1'=false);
 [] x1=1 -> true;

 [accept11] x1=11 -> (x1'=12);
 [refuse11] x1=11 -> (x1'=13);
 [pay11] x1=12 -> (x1'=0) & (ps1'=min(K,ps1+1));
 [nopay11] x1=12 -> (x1'=0) & (nps1'=min(K,nps1+1)) & (unpaid1'=true);
 [] x1=13 -> (x1'=0);

 [accept21] x1=21 -> (x1'=22);
 [refuse21] x1=21 -> (x1'=23);
 [pay21] x1=22 -> (x1'=0) & (ps1'=min(K,ps1+1));
 [nopay21] x1=22 -> (x1'=0) & (nps1'=min(K,nps1+1)) & (unpaid1'=true);
 [] x1=23 -> (x1'=0);

 [accept31] x1=31 -> (x1'=32);
 [refuse31] x1=31 -> (x1'=33);
 [pay31] x1=32 -> (x1'=0) & (ps1'=min(K,ps1+1));
 [nopay31] x1=32 -> (x1'=0) & (nps1'=min(K,nps1+1)) & (unpaid1'=true);
 [] x1=33 -> (x1'=0);

 [] x1=41 -> (x1'=0) & (ps1'=min(K,ps1+1));

endmodule

// factor alpha of the cost formula
const double alpha1 = alpha_all;
const double alpha2 = alpha_all;
const double alpha3 = alpha_all;
// trust formula
formula trusteq1 = min(top, !know21 & !know31 ? trust11 : floor(alpha1*trust11 + (1-alpha1)*recommend));
formula recommend = ((know21 ? trust21 : 0) + (know31 ? trust31 : 0)) / ((know21 ? 1 : 0) + (know31 ? 1 : 0));

// initial knowledge parameters
const bool init_know11 = init_know_all;
const bool init_know21 = init_know_all;
const bool init_know31 = init_know_all;

// initial trust parameters
const int dt_init1 = st_init_all; // dispositional trust
const int st_init1 = st_init_all; // service trust level
const int trust_init1 = dt_init1; // initial trust
const int tth_init1 = high; // trust threshold (see the cost formula)

const int dt_init2 = st_init_all;
const int st_init2 = st_init_all;
const int trust_init2 = dt_init2;
const int tth_init2 = high;

const int dt_init3 = st_init_all;
const int st_init3 = st_init_all;
const int trust_init3 = dt_init3;
const int tth_init3 = high;

190

// trust reduction rates (0:NULL; 1:-1; 2:-2)
const int reduct1 = reduct_all;
const int reduct2 = reduct_all;
const int reduct3 = reduct_all;

// enable information withholding
// info about requester 1
const bool hide11 = hide_all;
const bool hide21 = hide_all;
const bool hide31 = hide_all;

module provider1

 alive1 : bool init true;

 y1 : [0..4] init 0; // states of the module
 st1 : [0..level] init st_init1; // service trust level
 dt1 : [0..level] init dt_init1; // dispositional trust
 tth1 : [0..level] init tth_init1; // trust threshold (see the cost formula)

 trust11 : [0..level] init trust_init1; // trust towards the requester
 know11: bool init init_know11; // interaction flag

 // initiate connection with requester
 [try11] alive1 & (y1=0) -> ((trusteq1 < st1) ? 1 : 0) + ((trusteq1 < st1) ? 0 : 1) * cancel : (y1'=4)
 + (1-(((trusteq1 < st1) ? 1 : 0) + ((trusteq1 < st1) ? 0 : 1) * cancel)) : (y1'=3);
 [try11] !alive1 & y1=0 -> (y1'=4);

 // accept or refuse requester1
 [accept11] (y1=3) & (trusteq1 >= st1) -> (y1'=1);
 //[refuse11] (y1=4) & (trusteq1 < st1) -> (y1'=0);
 [refuse11] (y1=4) -> (y1'=0);

 // settle payment with requester1
 [pay11] (y1=1) -> (y1'=2) & (trust11' = (trust11 < top ? trust11+1 : top));
 [nopay11] (reduct1=1) & (y1=1) -> (y1'=2) & (trust11' = (trust11 > null ? trust11-1 : null));
 [nopay11] (reduct1=2) &(y1=1) -> (y1'=2) & (trust11' = (trust11 > null ? trust11-2 : null));
 [nopay11] (reduct1=0) & (y1=1) -> (y1'=2) & (trust11'=null);

 // decide to reveal info about requester to other providers or not
 [reveal11] (y1=2) -> (1-die_prob) * rev_prob : (y1'=0) & (know11'=true)
 + (1-die_prob) * (1-rev_prob) : (y1'=0) & (know11'=false)
 + die_prob : (y1'=0) & (alive1'=false) & (trust11'=trust_init1) & (know11'=false);
 [notreveal11] hide11 & (y1=2) -> (y1'=0) & (know11'=false);

endmodule

module provider2 = provider1 [y1=y2, st1=st2, dt1=dt2, tth1=tth2, trust11=trust21, know11=know21, alive1=alive2,
 alpha1=alpha2, trust21=trust11, know21=know11, // renaming parameters trust formula
 dt_init1=dt_init2, st_init1=st_init2,
 trust_init1=trust_init2, tth_init1=tth_init2, try11=try21, init_know11=init_know21,
 accept11=accept21, refuse11=refuse21, pay11=pay21, nopay11=nopay21,
 reduct1=reduct2, reveal11=reveal21, notreveal11=notreveal21,
 hide11=hide21] endmodule

module provider3 = provider1 [y1=y3, st1=st3, dt1=dt3, tth1=tth3, trust11=trust31, know11=know31, alive1=alive3,
 alpha1=alpha3, trust31=trust11, know31=know11, // renaming parameters trust formula
 dt_init1=dt_init3, st_init1=st_init3,
 trust_init1=trust_init3, tth_init1=tth_init3,try11=try31, init_know11=init_know31,
 accept11=accept31, refuse11=refuse31, pay11=pay31, nopay11=nopay31,
 reduct1=reduct3, reveal11=reveal31, notreveal11=notreveal31,
 hide11=hide31] endmodule

// trust level aliases
const int level = 10;
const int null = 0;
const int low = 2;
const int med = 5;
const int high = 8;
const int top = 10;

// highest price in the market
formula max_price = max((trust11 < tth1) ? cmin + ceil(((cmax - cmin) / tth1) * (tth1 - trust11)) : cmin,
 (trust21 < tth2) ? cmin + ceil(((cmax - cmin) / tth2) * (tth2 - trust21)) : cmin,
 (trust31 < tth3) ? cmin + ceil(((cmax - cmin) / tth3) * (tth3 - trust31)) : cmin);
//formula max_price = cmax;

// maximum difference between trust
formula max_diff = max(max(trust11-trust21,trust21-trust11), max(trust11-trust31,trust31-trust11), max(trust21-trust31,trust31-trust21));

rewards "cost"
 !unpaid1 & y1=2 : (trust11 < tth1) ? cmin + ceil(((cmax - cmin) / tth1) * (tth1 - trust11)) : cmin;
 !unpaid1 & y2=2 : (trust21 < tth2) ? cmin + ceil(((cmax - cmin) / tth2) * (tth2 - trust21)) : cmin;
 !unpaid1 & y3=2 : (trust31 < tth3) ? cmin + ceil(((cmax - cmin) / tth3) * (tth3 - trust31)) : cmin;
 x1=41 : max_price;
endrewards

rewards "cost2"
 !unpaid1 & y1=2 : max_diff + ((trust11 < tth1) ? cmin + ceil(((cmax - cmin) / tth1) * (tth1 - trust11)) : cmin);
 !unpaid1 & y2=2 : max_diff + ((trust21 < tth2) ? cmin + ceil(((cmax - cmin) / tth2) * (tth2 - trust21)) : cmin);
 !unpaid1 & y3=2 : max_diff + ((trust31 < tth3) ? cmin + ceil(((cmax - cmin) / tth3) * (tth3 - trust31)) : cmin);
 x1=41 : max_diff + max_price;
endrewards

rewards "payed"
 !unpaid1 & y1=2 : 1;
 !unpaid1 & y2=2 : 1;
 !unpaid1 & y3=2 : 1;
endrewards
rewards "nopayed"
 unpaid1 & y1=2 : 1;
 unpaid1 & y2=2 : 1;

191

 unpaid1 & y3=2 : 1;
endrewards
rewards "accepted"
 [accept11] true : 1;
 [accept21] true : 1;
 [accept31] true : 1;
endrewards

192

Bibliography

[1] A. Aldini and A. Bogliolo. Model checking of trust-based user-centric coopera-

tive networks. In Proc. International Conference on Advances in Future Internet

(AFIN’12), pages 32–41, 2012.

[2] A. Aldini and A. Bogliolo. Trading performance and cooperation incentives in user-

centric networks. In Proc. International Workshop on Quantitative Aspects in Se-

curity Assurance (QASA’12), 2012.

[3] R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System Design,

15(1):7–48, 1999.

[4] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Jour-

nal of the ACM, 49(5):672–713, 2002.

[5] R. Alur, T.A. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran.

MOCHA: Modularity in model checking. In Proc. International Conference on

Computer Aided Verification (CAV’98), volume 1427 of Lecture Notes in Computer

Science, pages 521–525. Springer, 1998.

[6] S. Andova, H. Hermanns, and J.-P. Katoen. Discrete-time rewards model-checked.

In Proc. Formal Modeling and Analysis of Timed Systems (FORMATS’03), volume

2791 of Lecture Notes in Computer Science, pages 88–104. Springer, 2003.

[7] A. Aziz, V. Singhal, F. Balarin, R.K. Brayton, and A.L. Sangiovanni-Vincentelli.

It usually works: The temporal logic of stochastic systems. In Proc. International

Conference on Computer Aided Verification (CAV’95), volume 939 of Lecture Notes

in Computer Science, pages 155–165. Springer, 1995.

[8] C. Baier, T. Brázdil, M. Größer, and A. Kucera. Stochastic game logic. Acta

Informatica, 49(4):203–224, 2012.

193

194 BIBLIOGRAPHY

[9] C. Baier, F. Ciesinski, and M. Größer. PROBMELA: A modeling language for

communicating probabilistic processes. In Proc. International Conference on Formal

Methods and Models for Co-Design (MEMOCODE’04), pages 57–66. IEEE, 2004.

[10] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[11] P. Ballarini, M. Fisher, and M.J. Wooldridge. Automated game analysis via prob-

abilistic model checking: A case study. Electronic Notes in Theoretical Computer

Science, 149(2):125 – 137, 2006.

[12] T. Basar and G.J. Olsder. Dynamic noncooperative game theory. SIAM, 1995.

[13] G. Behrmann, A. David, K.G. Larsen, J. H̊akansson, P. Pettersson, W. Yi, and

M. Hendriks. Uppaal 4.0. In Proc. International Conference on the Quantitative

Evaluation of Systems (QEST’06), pages 125–126. IEEE, 2006.

[14] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic

systems. In Proc. Conference on Foundations of Software Technology and Theoret-

ical Computer Science (FSTTCS’95), volume 1026 of Lecture Notes in Computer

Science, pages 499–513. Springer, 1995.

[15] A. Bogliolo, P. Polidori, A. Aldini, W. Moreira, P. Mendes, M. Yildiz, C. Ballester,

and J. Seigneur. Virtual currency and reputation-based cooperation incentives in

user-centric networks. In Proc. International Wireless Communications and Mobile

Computing Conference (IWCMC’12), pages 895–900. IEEE, 2012.

[16] A. Bohy, V. Bruyère, E. Filiot, and J.-F. Raskin. Synthesis from LTL specifications

with mean-payoff objectives. In Proc. International Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems (TACAS’13), volume 7795 of

Lecture Notes in Computer Science, pages 169–184. Springer, 2013.

[17] R.H. Bordini, M. Fisher, C. Pardavila, and M.J. Wooldridge. Model checking

AgentSpeak. In Proc. International Conference on Autonomous Agents and Multi-

agent Systems (AAMAS’03), pages 409–416. ACM, 2003.

[18] R.H. Bordini, M. Fisher, W. Visser, and M.J. Wooldridge. Verifying multi-agent pro-

grams by model checking. Autonomous Agents and Multi-Agent Systems, 12(2):239–

256, 2006.

[19] T. Brázdil, V. Brožek, V. Forejt, and A. Kučera. Stochastic games with branching-

time winning objectives. In Proc. Symposium on Logic in Computer Science

(LICS’06), pages 349–358. IEEE, 2006.

BIBLIOGRAPHY 195

[20] T. Brázdil, V. Brozek, K. Chatterjee, V. Forejt, and A. Kucera. Two views on

multiple mean-payoff objectives in Markov decision processes. In Proc. Symposium

on Logic in Computer Science (LICS’11), pages 33–42. IEEE, 2011.

[21] T Brázdil, K. Chatterjee, V. Forejt, and A. Kucera. Trading performance for stability

in Markov decision processes. In Proc. Symposium on Logic in Computer Science

(LICS’13), pages 331–340. IEEE, 2013.

[22] N. Bulling and W. Jamroga. What agents can probably enforce. Fundamenta In-

formaticae, 93(1–3):81–96, 2009.

[23] A. Chakrabarti, L. de Alfaro, T.A. Henzinger, and M. Stoelinga. Resource interfaces.

In Proc. International Conference on Embedded Software (EMSOFT’03), volume

2855 of Lecture Notes in Computer Science, pages 117–133. Springer, 2003.

[24] K. Chatterjee. Concurrent games with tail objectives. Theoretical Computer Science,

388(13):181–198, 2007.

[25] K. Chatterjee, L. de Alfaro, and T.A. Henzinger. The complexity of stochastic Rabin

and Streett games. In Proc. International Colloquium on Automata, Languages and

Programming (ICALP’05), volume 3580 of Lecture Notes in Computer Science, pages

878–890. Springer, 2005.

[26] K. Chatterjee and L. Doyen. Energy and mean-payoff parity Markov decision pro-

cesses. In Proc. International Symposium on Mathematical Foundations of Computer

Science (MFCS’11), volume 6907 of Lecture Notes in Computer Science, pages 206–

218. Springer, 2011.

[27] K. Chatterjee, L. Doyen, T.A. Henzinger, and J.-F. Raskin. Generalized mean-payoff

and energy games. In Proc. Conference on Foundations of Software Technology

and Theoretical Computer Science (FSTTCS’10), volume 8 of Leibniz International

Proceedings in Informatics, pages 505–516, 2010.

[28] K. Chatterjee and T.A. Henzinger. Strategy improvement for stochastic Rabin

and Streett games. In Proc. International Conference on Concurrency Theory

(CONCUR’06), volume 4137 of Lecture Notes in Computer Science, pages 375–389.

Springer, 2006.

[29] K. Chatterjee and T.A. Henzinger. Value iteration. In 25 Years of Model Checking,

volume 5000 of Lecture Notes in Computer Science, pages 107–138. Springer, 2008.

196 BIBLIOGRAPHY

[30] K. Chatterjee, T.A. Henzinger, B. Jobstmann, and A. Radhakrishna. Gist: A solver

for probabilistic games. In Proc. International Conference on Computer Aided Verifi-

cation (CAV’10), volume 6174 of Lecture Notes in Computer Science, pages 665–669.

Springer, 2010.

[31] K. Chatterjee, T.A. Henzinger, and M. Jurdzinski. Mean-payoff parity games. In

Proc. Symposium on Logic in Computer Science (LICS’05), pages 178–187. IEEE,

2005.

[32] K. Chatterjee, T.A. Henzinger, and M. Jurdziński. Games with secure equilibria.

Theoretical Computer Science, 365(1-2):67–82, 2006.

[33] K. Chatterjee, M. Jurdzinski, and T.A. Henzinger. Quantitative stochastic parity

games. In Proc. Symposium on Discrete Algorithms (SODA’04), pages 121–130.

SIAM, 2004.

[34] K. Chatterjee, R. Majumdar, and T.A. Henzinger. Stochastic limit-average games

are in EXPTIME. International Journal of Game Theory, 37(2):219–234, 2008.

[35] K. Chatterjee, M. Randour, and J.-F. Raskin. Strategy synthesis for multi-

dimensional quantitative objectives. In Proc. International Conference on Concur-

rency Theory (CONCUR’12), volume 7454 of Lecture Notes in Computer Science,

pages 115–131. Springer, 2012.

[36] T. Chen, V. Forejt, M.Z. Kwiatkowska, D. Parker, and A. Simaitis. Automatic

verification of competitive stochastic systems. In Proc. International Conference on

Tools and Algorithms for the Construction and Analysis of Systems (TACAS’12),

volume 7214 of Lecture Notes in Computer Science, pages 315–330. Springer, 2012.

[37] T. Chen, V. Forejt, M.Z. Kwiatkowska, D. Parker, and A. Simaitis. Automatic

verification of competitive stochastic systems. Formal Methods in System Design,

43(1):61–92, 2013.

[38] T. Chen, V. Forejt, M.Z. Kwiatkowska, D. Parker, and A. Simaitis. PRISM-games:

A model checker for stochastic multi-player games. In Proc. International Conference

on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’13),

volume 7795 of Lecture Notes in Computer Science, pages 187–193. Springer, 2013.

[39] T. Chen, V. Forejt, M.Z. Kwiatkowska, A. Simaitis, A. Trivedi, and M. Ummels.

Playing stochastic games precisely. In Proc. International Conference on Concur-

rency Theory (CONCUR’12), volume 7454 of Lecture Notes in Computer Science,

pages 348–363. Springer, 2012.

BIBLIOGRAPHY 197

[40] T. Chen, V. Forejt, M.Z. Kwiatkowska, A. Simaitis, and C. Wiltsche. On stochastic

games with multiple objectives. In Proc. International Symposium on Mathemati-

cal Foundations of Computer Science (MFCS’13), volume 8087 of Lecture Notes in

Computer Science, pages 266–277. Springer, 2013.

[41] T. Chen, M.Z. Kwiatkowska, D. Parker, and A. Simaitis. Verifying team formation

protocols with probabilistic model checking. In Proc. International Workshop on

Computational Logic in Multi-Agent Systems (CLIMA’11), volume 6814 of Lecture

Notes in Computer Science, pages 190–207. Springer, 2011.

[42] T. Chen, M.Z. Kwiatkowska, A. Simaitis, and C. Wiltsche. Synthesis for multi-

objective stochastic games: An application to autonomous urban driving. In Proc.

International Conference on Quantitative Evaluation of Systems (QEST’13), volume

8054 of Lecture Notes in Computer Science, pages 322–337. Springer, 2013.

[43] T. Chen and J. Lu. Probabilistic alternating-time temporal logic and model checking

algorithm. In Proc. International Conference on Fuzzy Systems and Knowledge

Discovery (FSKD’07), pages 35–39. IEEE, 2007.

[44] C.-H. Cheng, A. Knoll, M. Luttenberger, and C. Buckl. GAVS+: An open platform

for the research of algorithmic game solving. In Proc. International Conference on

Tools and Algorithms for the Construction and Analysis of Systems (TACAS’11),

volume 6605 of Lecture Notes in Computer Science, pages 258–261. Springer, 2011.

[45] F. Ciesinski and C. Baier. LiQuor: A tool for qualitative and quantitative linear

time analysis of reactive systems. In Proc. International Conference on Quantitative

Evaluation of Systems (QEST’06), pages 131–132. IEEE, 2006.

[46] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons

using branching time temporal logic. In Proc. Workshop on Logics of Programs,

volume 131 of Lecture Notes in Computer Science, pages 52–71. Springer, 1982.

[47] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state

concurrent systems using temporal logic specifications. ACM Transactions on Pro-

gramming Languages and Systems, 8(2):244–263, 1986.

[48] A. Condon. The complexity of stochastic games. Information and Computation,

96(2):203–224, 1992.

[49] C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite state

probabilistic programs. In Proc. Symposium on Foundations of Computer Science

(FOCS’88), pages 338–345. IEEE, 1988.

198 BIBLIOGRAPHY

[50] C. Courcoubetis and M. Yannakakis. Markov decision processes and regular

events. In Proc. International Colloquium on Automata, Languages and Program-

ming (ICALP’90), volume 443 of Lecture Notes in Computer Science, pages 336–349.

Springer, 1990.

[51] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.

Journal of the ACM, 42(4):857–907, 1995.

[52] L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford

University, 1997.

[53] L. de Alfaro. Computing minimum and maximum reachability times in probabilistic

systems. In Proc. International Conference on Concurrency Theory (CONCUR’99),

volume 1664 of Lecture Notes in Computer Science, pages 66–81. Springer, 1999.

[54] K. Deb. Multi-objective optimization using evolutionary algorithms. John Wiley &

Sons Hoboken, NJ, 2001.

[55] M. Duflot, M.Z. Kwiatkowska, G. Norman, and D. Parker. A formal analysis of

Bluetooth device discovery. Journal on Software Tools for Technology Transfer,

8(6):621–632, 2006.

[56] S. Dziembowski, M. Jurdzinski, and I. Walukiewicz. How much memory is needed to

win infinite games? In Proc. Symposium on Logic in Computer Science (LICS’97),

pages 99–110. IEEE, 1997.

[57] K. Etessami, M.Z. Kwiatkowska, M.Y. Vardi, and M. Yannakakis. Multi-objective

model checking of Markov decision processes. Logical Methods in Computer Science,

4(4), 2008.

[58] K. Etessami, D. Wojtczak, and M. Yannakakis. Recursive stochastic games with

positive rewards. In Proc. International Colloquium on Automata, Languages and

Programming (ICALP’08), Part I, volume 5125 of Lecture Notes in Computer Sci-

ence, pages 711–723. Springer, 2008.

[59] J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.

[60] V. Forejt, M.Z. Kwiatkowska, G. Norman, and D. Parker. Automated verification

techniques for probabilistic systems. In Proc. International School on Formal Meth-

ods for the Design of Computer, Communication and Software Systems (SFM’11),

volume 6659 of Lecture Notes in Computer Science, pages 53–113. Springer, 2011.

BIBLIOGRAPHY 199

[61] V. Forejt, M.Z. Kwiatkowska, and D. Parker. Pareto curves for probabilistic model

checking. In Proc. International Symposium on Automated Technology for Verifica-

tion and Analysis (ATVA’12), volume 7561 of Lecture Notes in Computer Science,

pages 317–332. Springer, 2012.

[62] M.E. Gaston and M. desJardins. Agent-organized networks for dynamic team forma-

tion. In Proc. International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS’05), pages 230–237. ACM, 2005.

[63] H. Gimbert, Y. Oualhadj, and S. Paul. Computing optimal strategies for Markov

decision processes with parity and positive-average conditions. Technical report,

LaBRI, Universite de Bordeaux II, 2011.

[64] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial

Optimization. Springer, 2nd edition, 1993.

[65] L. Grunske. Specification patterns for probabilistic quality properties. In Proc.

International Conference on Software Engineering (ICSE’08), pages 31–40. ACM,

2008.

[66] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal

Aspects of Computing, 6(5):512–535, 1994.

[67] D. Harel. Effective transformations on infinite trees, with applications to high un-

decidability, dominoes, and fairness. Journal of the ACM, 33(1):224–248, 1986.

[68] H. Hildmann and F. Saffre. Influence of variable supply and load flexibility on

demand-side management. In Proc. International Conference on the European En-

ergy Market (EEM’11), pages 63–68, 2011.

[69] J. Hillston. PEPA: Performance enhanced process algebra. PhD thesis, University

of Edinburgh, Department of Computer Science, 1993.

[70] G.J. Holzmann. Design and validation of protocols: A tutorial. Computer Networks

and ISDN Systems, 25(9):981–1017, 1993.

[71] G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-

neering, 23(5):279–295, 1997.

[72] J.-P. Katoen, E. M. Hahn, H. Hermanns, D. Jansen, and I. Zapreev. The ins and outs

of the probabilistic model checker MRMC. Performance Evaluation, 68(2):90–104,

2011.

200 BIBLIOGRAPHY

[73] M. Kattenbelt, M.Z. Kwiatkowska, G. Norman, and D. Parker. A game-based

abstraction-refinement framework for Markov decision processes. Formal Methods

in System Design, 36(3):246–280, 2010.

[74] J.G. Kemeny, J.L. Snell, and A.W. Knapp. Denumerable Markov chains. Van

Nostrand Princeton, 1966.

[75] M.Z. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. In In-

ternational School on Formal Methods for the Design of Computer, Communication

and Software Systems: Performance Evaluation (SFM’07), volume 4486 of Lecture

Notes in Computer Science, pages 220–270. Springer, 2007.

[76] M.Z. Kwiatkowska, G. Norman, and D. Parker. Stochastic games for verification of

probabilistic timed automata. In Proc. International Conference on Formal Mod-

elling and Analysis of Timed Systems (FORMATS’09), volume 5813 of Lecture Notes

in Computer Science, pages 212–227. Springer, 2009.

[77] M.Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of prob-

abilistic real-time systems. In Proc. International Conference on Computer Aided

Verification (CAV’11), volume 6806 of Lecture Notes in Computer Science, pages

585–591. Springer, 2011.

[78] M.Z. Kwiatkowska, G. Norman, and D. Parker. Probabilistic verification of Hermans

self-stabilisation algorithm. Formal Aspects of Computing, 24(4):661–670, 2012.

[79] M.Z. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Assume-guarantee verifica-

tion for probabilistic systems. In International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS’10), volume 6105 of Lecture

Notes in Computer Science, pages 23–37. Springer, 2010.

[80] M.Z. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance analysis

of probabilistic timed automata using digital clocks. Formal Methods in System

Design, 29:33–78, 2006.

[81] M.Z. Kwiatkowska, D. Parker, and A. Simaitis. Strategic analysis of trust models

for user-centric networks. In Proc. International Workshop on Strategic Reasoning

(SR’13), volume 112 of Electronic Proceedings in Theoretical Computer Science,

pages 53–60, 2013.

[82] M. Lahijanian, J. Wasniewski, S.B. Andersson, and C. Belta. Motion planning and

control from temporal logic specifications with probabilistic satisfaction guarantees.

BIBLIOGRAPHY 201

In Proc. International Conference on Robotics and Automation (ICRA’10), pages

3227–3232. IEEE, 2010.

[83] F. Laroussinie, N. Markey, and G. Oreiby. On the expressiveness and complexity of

ATL. Logical Methods in Computer Science, 4(2), 2008.

[84] D. Lehmann and S. Shelah. Reasoning with time and chance. Information and

Control, 53(3):165–198, 1982.

[85] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A model checker for the verifica-

tion of multi-agent systems. In Proc. International Conference on Computer Aided

Verification (CAV’09), volume 5643 of Lecture Notes in Computer Science, pages

682–688. Springer, 2009.

[86] R.T. Marler and J.S. Arora. Survey of multi-objective optimization methods for

engineering. Structural and Multidisciplinary Optimization, 26(6):369–395, 2004.

[87] D. Martin. The determinacy of Blackwell games. Journal of Symbolic Logic,

63(4):1565–1581, 1998.

[88] A. McIver and C. Morgan. Results on the quantitative mu-calculus qMu. ACM

Transactions on Computational Logic, 8(1), 2007.

[89] G.L. Nemhauser and L.A. Wolsey. Integer and combinatorial optimization. Wiley

New York, 1988.

[90] G. Norman and V. Shmatikov. Analysis of probabilistic contract signing. Journal

of Computer Security, 14(6):561–589, 2006.

[91] M.J. Osborne and A. Rubinstein. Bargaining and markets. San Diego: Academic

press, 1990.

[92] Christos H Papadimitriou. Computational complexity. John Wiley and Sons Ltd.,

2003.

[93] D. Parker. Implementation of Symbolic Model Checking for Probabilistic Systems.

PhD thesis, University of Birmingham, 2002.

[94] D.C. Parkes and S.P. Singh. An MDP-based approach to online mechanism design.

In Advances in Neural Information Processing Systems (NIPS’03). MIT Press, 2003.

[95] A. Pnueli. On the extremely fair treatment of probabilistic algorithms. In Proc.

Symposium on Theory of Computing (STOC’83), pages 278–290. ACM, 1983.

202 BIBLIOGRAPHY

[96] M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming. Wiley, 1994.

[97] J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in

CESAR. In Proc. International Symposium on Programming, volume 137 of Lecture

Notes in Computer Science, pages 337–351. Springer, 1982.

[98] T.E.S. Raghavan and J.A. Filar. Algorithms for stochastic games - A survey.

Zeitschrift für Operations Research, 35(6):437–472, 1991.

[99] F. Saffre and A. Simaitis. Host selection through collective decision. ACM Trans-

actions on Autonomous and Adaptive Systems, 7(1):4, 2012.

[100] S. Salamah, A.Q. Gates, V. Kreinovich, and S. Roach. Verification of automatically

generated pattern-based LTL specifications. In Proc. International Symposium on

High Assurance Systems Engineering (HASE’07), pages 341–348. IEEE, 2007.

[101] A. Sesic, S. Dautovic, and V. Malbasa. Dynamic power management of a system with

a two-priority request queue using probabilistic-model checking. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 27(2), 2008.

[102] L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences

of the United States of America, 39(10):1095, 1953.

[103] A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logics.

Journal of the ACM, 32(3):733–749, 1985.

[104] B. Suman and P. Kumar. A survey of simulated annealing as a tool for sin-

gle and multiobjective optimization. Journal of the Operational Research Society,

57(10):1143–1160, 2005.

[105] C.-K. Tham and R. Buyya. Sensorgrid: Integrating sensor networks and grid com-

puting. CSI Communications, 29(1):24–29, 2005.

[106] Wolfgang Thomas. Languages, automata, and logic. Springer, 1997.

[107] M. Ummels and D. Wojtczak. The complexity of Nash equilibria in simple stochastic

multiplayer games. In Proc. Internatilonal Collogquium on Automata, Languages

and Programming (ICALP’09), Part II, volume 5556 of Lecture Notes in Computer

Science, pages 297–308. Springer, 2009.

BIBLIOGRAPHY 203

[108] M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs.

In Proc. Symposium on Foundations of Computer Science (FOCS’85), pages 327–

338. IEEE, 1985.

[109] Y. Velner, K. Chatterjee, L. Doyen, T.A. Henzinger, A. Rabinovich, and J.-F.

Raskin. The complexity of multi-mean-payoff and multi-energy games. CoRR,

abs/1209.3234, 2012.

	Introduction
	Related Work
	Probabilistic model checking
	Strategy synthesis and stochastic games
	Multi-objective verification
	Tools and applications
	Summary

	Background Material
	Probabilistic models
	Discrete-time Markov chains
	Markov decision processes
	Stochastic games

	Properties of probabilistic models
	Problem definitions
	Model checking properties of DTMCs
	Model checking properties of MDPs
	Model checking properties of stochastic games

	Logics
	Strategy models
	Example
	Summary

	The Logic rPATL
	Syntax and semantics
	Model checking
	Model checking algorithm
	Computation of probabilities
	Computation of rewards

	Complexity
	Strategy synthesis
	rPATL*
	Reward-bounded properties
	Summary

	Multi-Objective rPATL
	Syntax and semantics
	Model checking
	Reduction to maximisation of expected reward
	Reduction to conjunctive rPATL
	Computation of Pareto sets

	Complexity
	Determinacy and optimal strategies
	Memory requirements
	Complexity bounds

	Strategy synthesis
	Multi-objective rPATL*
	Summary

	Tool Implementation and Applications
	Modelling language
	Property specification
	Model checking
	Strategy synthesis
	Experimental results
	Case studies
	Microgrid demand-side management
	Collective decision making for sensor networks
	Reputation protocol for user-centric networks

	Summary

	Conclusions
	Summary and evaluation
	Future work
	Conclusion

	Comparison of strategy models
	Proof of Theorem 8
	Proof of Theorem 12
	Proof of Theorem 15
	PRISM-games tool
	PRISM-games models
	Team formation protocol
	Microgrid demand-side management protocol
	Collective decision making protocol for sensor networks
	User-centric network protocol

