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Abstract. This year marks the 40" anniversary of Charles Bennett’s seminal
paper on reversible computing. Bennett’s contribution is remembered as one of
the first to demonstrate how any deterministic computation can be simulated by
a logically reversible Turing machine. Perhaps less remembered is that the same
paper suggests the use of nucleic acids to realise physical reversibility. In context,
Bennett’s foresight predates Leonard Adleman’s famous experiments to solve in-
stances of the Hamiltonian path problem using strands of DNA — a landmark
date for the field of natural computing — by more than twenty years. The ensuing
time has seen active research in both reversible computing and natural comput-
ing that has been, for the most part, unrelated. Encouraged by new, experimen-
tally viable DNA computing models, there is a resurgent interest in logically re-
versible computing by the natural computing community. We survey these recent
results, and their underlying ideas, which demonstrate the potential for logically
and physically reversible computation using nucleic acids.
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1 Introduction

By the 1960’s, scientists and mathematicians concerned with the study of computing
had already begun to ask and answer the question: what can be computed efficiently?
Many results emerged showing that seemingly difficult problems could be solved by
algorithms that had time complexity bounded by a polynomial — a criterion Edmonds
advocated as a measure of a (time) efficient algorithm [7]. We can extend this question
to ask: what constitutes an energy efficient algorithm? More generally, can any compu-
tation be performed in an energy efficient manner? By 1961, this question was partially
answered when Landauer proved that it was only logically irreversible operations —
those which cause information loss — that must expend energy [12]. Unfortunately, de-
terministic computation is not necessarily logically reversible and typical programming
is unlikely to be so. Fortunately, it was later shown that any deterministic computation
could be simulated by a logically reversible Turing machine, thus showing that compu-
tation does not, in principle, have a fundamental limit with respect to energy expendi-
ture. The result emerged independently by Lecerf [14] in 1963 and later by Bennett [2]
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in 1973; although Lecerf’s result was little known and Bennett’s is often cited as the
seminal paper for logically reversible Turing machines.

While Turing machine models can be used to reason about theoretical improvements,
any reaped benefit of energy efficient computation must occur in the physical world.
Thus, one must also consider computing with physically reversible systems, whether
they be electronic or quantum circuits, billiard-ball computers [8], or an altogether
different physical system. In his seminal paper, Bennett suggests using the standard
machinery of a cell for the bio-synthesis and bio-degradation of messenger RNA —
a nucleic acid similar to DNA — as a means for physically reversible computation,
where the synthesis and degradation actions are analogous to reading and writing, re-
spectively, to a Turing machine tape. Interestingly, this idea predates the demonstrated
use of nucleic acids for computation by more than twenty years [1], and the field of
DNA nanotechnology in general, by nearly a decade [24].

Using just four bases (A,C,G, and T), DNA acts as a storage device by encoding genes
and other blueprint sequences that can be inherited by future generations. This purpose
of DNA is very much in line with Bennett’s original insight. However, DNA is not
limited to the role of information carrier. Consider the most common shape associated
with DNA — the famous double helix. This structure is formed by two sequences, in
opposite orientation,! that hybridize together by forming bonds between complemen-
tary bases (see Fig. 1 (top left)). The A base will bond with a T base and, similarly,
C will bond with G. The beginning of DNA nanotechnology is largely attributed to a
paper by Seeman [24] in 1982 where he demonstrated the potential for DNA to assume
shapes other than the double helical structure. This is accomplished by a careful design
of strands and, in particular, by a careful design of domains, or subsequences, of those
strands so that when they are added into the same solution, they self-assemble, via hy-
bridization, into the intended shape (see Fig. 1 (top right)). DNA has since proven itself
to be an effective and programmable construction material for engineering arbitrary
shapes at the nanoscale [19].

In addition to self-assembly into static structures, DNA hybridization can be lever-
aged for creating dynamic systems that change over time. This has led to the explo-
ration of using DNA to perform computation. The advantage? A natural interface with
biological systems that can be implemented in vitro and, potentially, in vivo. Many mod-
els of computing with DNA have arisen over the years, including the Adleman-Lipton
model — based on the ideas underlying Adleman’s famous experiments to solve in-
stances of the Hamiltonian path problem [1], the Sticker model [22] — where short
DNA molecules ‘stick’ and ‘unstick’ to a long template strand, analogous to a Turing
machine tape, and the Tile self-assembly model [27] where ‘tiles’ of DNA containing
different types of ‘glue’ on each side can hybridize together and give rise to periodic
shapes such as the Sierpinski triangle [20].

In the remainder of this tutorial, we limit our focus to one natural computing model
that overlaps with the goals of reversible computing. In particular, we concentrate
on a relatively new DNA computing model using so-called DNA strand displacement
systems (DSDs) that provide a natural mechanism to perform physically reversible

" A strand of DNA is oriented and has a 5’ end and a 3’ end. Hybridization can only occur
between two complementary sequences of DNA in opposite orientation.
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Fig. 1. Single stranded DNA molecules, or strands, are polymers over four monomer units called
bases. The strands are oriented and have a 5° end and a 3* end. A sequence of DNA, or substrand,
is complementary to another if their bases are complementary and in opposite orientation. An
A base is complementary to the T base, as the C base is to the G base. When single stranded
DNA molecules are added in solution, complementary sequences will hybridize together to form
stable double stranded structures. For example, when strand 1 and strand 2 are added in the same
solution, a DNA duplex forms (top left). Similarly, when strands 3,4,5 and 6 are added in the same
solution, they form a branched structure (top right). When designing strands to self-assemble into
different shapes, it is common to abstract their sequences into labeled domains which are used to
indicate complementary sequences (bottom).

computation steps. We focus on DSD systems as they are simple, widely studied and
experimentally practical. These systems leverage the fact that an unbound strand A
can still hybridize with a complementary domain on some strand B, even if it is al-
ready hybridized to some other strand C. If A does hybridize to B, strand C' is said
to be displaced and can next be used to displace some other strand [28]. DNA strand
displacement mechanisms have been experimentally implemented and verified to sim-
ulate neural networks [18], Boolean logic circuits [23,5], and even reversible Boolean
logic circuits [9], among numerous other applications. As we will see, they are also
capable, in principle, of physically and logically reversible Turing-universal computa-
tion [16,11].

2 Background

In the natural computing results we study in this tutorial, a distinct notion of logically
reversible computation is used that differs from the standard definition. We begin with
a discussion of this distinction in terms of configuration graphs, as opposed to restric-
tions on Turing machine transitions [2], which will be used to simplify our presentation
of natural computing examples. This is followed by an overview of the DNA strand
displacement model, and stochastic chemical reaction networks.
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Fig. 2. Example configuration graphs, induced on four different inputs, for (a) logically reversible
computation, and (b) logically reversible computation (with symmetric transitions) arising in
some chemical reaction networks. Nodes represent possible states in a computation and directed
edges denote valid state transitions.

2.1 Logical Reversibility

The reversible computing results we will discuss in this tutorial use a slightly differ-
ent notion of logical reversibility. As we will see, this distinction is important as the
physical reversibility of these systems is actively exploited to achieve space efficient
computation. For our purposes here, it suffices to understand the important difference
distinguishing this notion from the standard notion of logically reversible computation.
The intuition of the difference is captured well by considering the configuration graph
of a computation which has a node for every possible state on every possible input for
the underlying Turing machine being modeled. There is a directed edge from node ¢ to
node j if and only if state j is reachable from state ¢ in a single state-transition of the
Turing machine.

Shown in Fig. 2a is a configuration graph of a typical logically reversible compu-
tation, shown for four different inputs (source nodes A-D). Importantly, a logically
reversible computation for a particular input forms a directed path, from its input to its
final state, which is unconnected to any state for any other possible input. This means
any state along the chain can be deterministically reached from the final state, if the en-
tire chain is reversed. Thus, information is not lost. Contrast this with the configuration
graph of a logically reversible computation (with symmetric transitions) for the same
four inputs shown in Fig. 2b. The only difference is that each non-terminal node along
the chain has two possible choices of where to next proceed: its successor state, or its
predecessor state. Therefore, each transition, and the overall computation, is symmet-
ric [15]. As we will see, the state transitions in the systems we consider model reversible
chemical reactions. That is, after each reaction it is possible the reaction is immedi-
ately reversed. The computation is still logically reversible in the following sense. One
choice is always the previous state of the computation. (Retreating to the previous state
is equivalent to the transition never having occurred.) The important point is that at any
given node, the computation cannot proceed to more than one other node that is not the
previous state.
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2.2 DNA Strand Displacement Systems (DSD)

A DNA strand displacement system (DSD) consists of unbound strands and double
stranded complexes consisting of one or more bound strands to a long femplate strand.
For example, in Fig. 3a there is one unbound strand labeled I and one double stranded
complex consisting of the strand labeled F bound to the template strand labeled S.
Strands in the system are composed of two types of strand domains: short foehold do-
mains, and long domains. Distinct domains are assumed to have a distinct sequence
design. The short length of toehold domains is chosen to ensure strands bound together
only by a toehold can spontaneously unbind from one another at the experimental tem-
perature. In contrast, two strands bound by a complementary long domain is considered
a stable binding such that that they cannot spontaneously unbind at the experimental
temperature.

b
t X 3 ® > X t
invading strand [ — e (a) (c) ~
evading strandE—l X t t X
templatestrandS—"tg”””‘*‘””ﬁt« q.mmmmﬁ ;Hmwmuwﬁ ;Huuuuuh t?uuu\*\uuT
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Fig. 3. A successful toehold mediated strand displacement. (a) Toehold ¢ (black subsequence)
of the invading strand I binds with its unpaired complement, ¢*, on the template strand S. (b)
The invading and evading strands share the common long domain x (gray subsequence). They
compete, via a random walk process, to bind with the complementary long domain z* of the
template strand until all bases of the invading strand are paired. (c) Toehold of the evading strand
E detaches from the template strand S, at which point it has been displaced. Since there remains
a free toehold on S, the process is reversible as strand £ could displace strand I.

The fundamental operation in a DSD is strand displacement, whereby a toehold
domain of an unbound strand, called the invading-strand, binds to an unbound comple-
mentary toehold domain of a template strand and, if the adjacent long domain is com-
plementary, it can displace a currently bound signal strand, called the evading strand,
of the same length. We illustrate a simple, reversible version of strand displacement
in Fig. 3. First, the toehold ¢ of the invading strand, I, binds (forms base-pairs) to the
complementary toehold ¢* of the template strand, S. Note that any strand with toehold
t could initially bind here. However, the process only continues if the adjacent long
domain of invading strand I is identical to the long domain of evading strand E. If
and F do share an identical long domain, then in random walk process (often referred
to as three-way branch migration), the bases of the long domain of I compete with
those belonging to the identical long domain of E to form base pairs with the comple-
mentary long domain of the template strand S. Once the long domain of I has bound
to its complement domain on the template strand, strand E remains bound by just its
short toehold domain. Due to their short length, the toehold bonds can break, thereby
releasing signal E. (Of course I may detach from the template before E is released,
in which case the displacement does not happen.) The displacement is physically re-
versible because signal F can next bind to the template strand S to displace strand
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via the same principles. However, the template complex does have an orientation. For
example, after I has displaced E in the original displacement, another strand identical
to I cannot be used to displace another strand identical to E. This will only be possible,
using this same template complex, after some strand E displaces the bound strand 1.
Alternatively, an I strand can displace and E strand if a another copy of the template
complex is present in its original orientation.

2.3 Chemical Reaction Networks (CRN)

Just as a DSD abstracts sequence level details of interacting DNA strands using the con-
cept of domains, stochastic chemical reaction networks (CRN) abstract details about
displacements. CRNs provide a concise language for writing molecular programs and
affords us the opportunity to express complex ideas more succinctly. A chemical reac-
tion equation details a process whereby certain molecule types can be consumed — the
reactants — and others produced — the products — within some reaction volume. A
reaction may also require the presence of catalyst molecules of certain types. A cata-
lyst molecule is neither consumed nor produced by a reaction, but rather it facilitates
a reaction which could not otherwise occur without its presence. We refer to all three
categories of molecules, generically, as signal molecules. For example, the reaction

A+ B & D consumes a signal of type A and a signal of type B and produces a signal
of type D in the presence of the catalyst> signal C. This is an example of an irreversible

reaction; however, A + B g D is an example of a reversible reaction meaning that
both a signal of type A and of type B can also be produced by consuming a signal
of type D in the presence of the catalyst signal C'. A CRN is a set of chemical reac-
tions, in addition to a multiset of signals present within the reaction volume, prior to
any reaction occurring, called the initial signal multiset. The current signal multiset is
the current composition of signals of a given CRN within a reaction volume — in terms
of computation, this specifies the state of the system. From a given state, any reaction
can be applied if both the required reactants and catalysts are in the current signal mul-
tiset. Thus, arbitrary CRNs are not necessarily deterministic. Importantly, it has been
shown that any chemical reaction equation can be realized by a physically reversible
DNA strand displacement cascade [16,3].

Let us consider a concrete example of a 3-bit standard binary counter that should
begin at count 000, advance to 001, and so on, until reaching the count 111. In our
molecular program, we let signal 0; and signal 1; denote that bit ¢ has value 0 and 1,
respectively, for 1 < ¢ < 3. Thus, our 3-bit counter will have the following initial signal
multiset: {03, 02,01 }. Fig. 4a gives three chemical reaction equations for exchanging
signals and thus changing the state, or current signal multiset, of the counter. Initially,
only reaction 1 can be applied in the forward direction. This is because all other re-
actions require at least one of the bits to be set to 1. When reaction 1 occurs, signal
01 is consumed and signal 1; is produced, putting the counter in state {03, 02,11}

% Some reactions require the presence of one or more signals, called catalysts, which they do
not consume. Note how we represent catalysts in our reaction equations. These are not to be
confused with rate constants which do not factor into our current discussion. Catalysts do play
a significant role and this representation was chosen for its succinctness.
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{03,02,11} {03,12,11} {13,02,11} {13,12,11}
1-for 2-for 1-for 3-for 1-for 2-for 1-for
(1) 09 =1

(2) 09 + 17 = 1p 4+ 07 l-rev 2-rev l-rev 3-rev l-rev 2-rev l-rev
(3) 03 +12 + 11 = 13 +02 + 03 103,02,01} 103,12,01} {13,02,01} {13,12,01}
(a) (b)

Fig. 4. (a) Chemical reaction equations for a 3-bit standard binary counter. (b) The configuration
graph of the computation performed by the 3-bit standard binary counter forms a chain and is
logically reversible (with symmetric transitions). The nodes represent the state of the computation
and the edges are directed between states reachable by a single reaction.

From this state, two reactions are next possible. Either the previous reaction is reversed
(i.e., reaction 1 next occurs in the reverse direction), or reaction 2 can occur in the for-
ward direction, resulting in state {03, 12,07 }. Similarly, either reaction 2 is reversed,
or reaction 1 next occurs once again, bringing the counter to state {03, 12,11 }. This
continues until the counter reaches the final state {13, 12,11 }. Fig. 4b represents all
reachable states of the counter as nodes and has edges between states that are reachable
within one reaction step. Notice that this CRN specifies a logically reversible computa-
tion (with symmetric transitions). This 3-bit counter can be extended to a 4-bit counter
by adding signal 04 to the initial signal multiset, and by adding the reversible reaction
04+ 13+ 15+17 = 14+ 03 4 02 + 07. In a similar manner, the CRN can be extended
to simulate any n-digit counter.

3 Reversible and Turing-Complete Natural Computing

Are DNA strand displacement systems capable of logically and physically reversible
Turing-universal computation? This question was answered in the affirmative by Qian
et al. [16] whose work stands as one of the most important theoretical contributions
to the area. In a first major contribution of that work, the authors offer a design for a
reversible DSD reaction cascade that can realise any chemical reaction. An example for
the reversible reaction A + B = C + D is given in Fig. 5. The signal molecules are
represented by the strands in the shaded boxes, consisting of three domains. The other
strands and complexes, which facilitate the reaction, are collectively called the reaction
transformer. Note that for a reversible reaction cascade, the transformer has two orien-
tations — one for each direction of the reaction. In Fig. 5, the forward orientation is
shown top-to-bottom, where the DNA strands for the signals A and B are consumed,
and those for C' and D are produced. The reverse is shown from bottom-to-top. Con-
sider the forward reaction (top-to-bottom) in Fig. 5. Initially, the only available toehold
complement on the template strand is adjacent to a domain complementary to a long
domain of strand A. Once strand A displaces a bound strand, a new toehold is avail-
able for strand B to bind. Next, auxiliary strands are used to displace C' and D — the
intended products of this reaction. Once the transformer is in this orientation, it cannot
be used to consume A and B and produce C' and D. It can however perform the reverse
reaction next.

In their second major contribution, the authors enriched the DSD computing model
by showing how displacement reactions could be used to add and remove strands to
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Fig.5. A strand displacement implementation of the bi-molecular chemical reaction equation
A+ B = C + D using the construction proposed by Qian et al. [16]

a growing polymer. Consider the example in Fig. 6, clockwise from state 1 to state 4,
showing how a signal denoting the value X can be appended to a growing polymer.
Initially, in state 1, the polymer is considered to be an empty list and consists of a single
strand, with one toehold and one long domain, that denotes the head of the list. In state 2,
the domains denoting the head can interact with a transformer, containing the value X,
to form a new extended complex. However, X is only tentatively appended. The process
can continue into state 3 if a signal strand, denoting that value X is present, interacts
with the new extended complex. Finally, the process in finalized in state 4 when the new
extended complex interacts with another transformer resulting in the original exposed
domains denoting the head of the list. At this point a new value could be appended to
the list, or the previous value X could be removed by performing the reaction sequence
in reverse.

Coupled with a clever design of reactions to control state, the authors were able to
simulate a (multi) stack machine using only strands of DNA. As the stack machine could
be used to simulate Bennett’s original reversible Turing machine, and since the reaction
cascades of the stack machine simulation are reversible, the authors demonstrated that
Turing-universal computation could be realized by a logically and physically reversible
DSD sytem enriched with polymers.

One important issue must not be overlooked. As Bennett points out [2], a physi-
cal system performing a computation of length ¢, with no positive drift in the forward
direction, will reach the end state in t? expected steps. However this should not be con-
sidered a computation, as the process can immediately reverse once reaching the output
state — the probability of observing the output in this manner is only % To overcome
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Fig. 6. A reproduction of a figure from Qian ez al. [16] illustrating (clockwise from the top) how
anew signal X can be pushed on to a stack by a reaction cascade for polymer extension

this in the stack machine construction, the authors introduce a small bias in favour of
forward reactions, thus introducing a positive drift in the computation chain towards the
output state. The positive drift is accomplished as follows. DSD reactions are always
bi-molecular reactions between two distinct species types (one invading strand and one
transformer complex). The propensity of a reaction A + B — ... within a well-mixed
solution of size v is ‘A‘Uﬂ, where | X| is the count of molecules of type X . Consider the
reaction X + Ty = Y + T’ and suppose T’ is the transformer for the forward reaction,
and 7, is the transformer for the reverse. The propensity of the forward reaction can be
made to be twice as large as the propensity of the reverse by ensuring |Tr| = 2|Tg|.
Thus, in the stack machine construction, the authors ensure more copies of each reac-
tion transformer is in the forward orientation, rather than the reverse, for the duration
of the computation. To next reverse the computation towards the beginning state, addi-
tional transformers in the reverse orientation could be added to the system to bias the

computation to next reverse.

4 Reversible and Space-Efficient Natural Computing

As with Bennett’s original reversible Turing machine, the stack machine construction
uses space proportional to the length of the computation. This is because a new copy

(10 = 1L {03,02,11} {03,12,01} {13,12,11} {13,02,01}
1y 1-for 2-for 1-rev 3-for 1-for 2-rev 1-rev
(2) 02 = 1o
12+01 l-rev 2-rev 1-for 3-rev l-rev 2-for 1-for
(3)03s = 13 {03,02,01} {03,12,11} {13,12,01} {13,02,11}
(a) (b)

Fig.7. (a) Chemical reaction equations for a 3-bit binary reflecting Gray code counter. (b) The
configuration graph of the computation performed by the 3-bit binary reflecting Gray code
counter forms a chain and is logically reversible (with symmetric transitions).
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of a transformer must be used for every computation step as all reactions of the stack
machine simulation, from the beginning state to the ending state, are in the forward
direction. Condon et al. [6] asked if space-efficient reversible computation is possi-
ble in CRNs and DSDs. They showed that, in principle, it was by demonstrating how
transformers can be actively recycled during a computation. Specifically, the authors
proposed an n-bit binary counter that can perform a logically reversible computation
through 2" states, using only poly(n) strands in a DSD system. Their counter was
based on the binary reflecting Gray code (BRGC) sequence. Due to the symmetric na-
ture of that particular sequence, only one copy of each reaction transformer is necessary
to complete the computation, as each particular reaction is performed alternately in the
forward and reverse direction. An example of a 3-bit BRGC counter is given in Fig. 7.
As with the standard binary counter, only reactions advancing the counter to a successor
state, or to the predecessor state is ever possible.

bs b, by reaction bs b, by reaction recycling of transformers
00 °ZJ 00 0] ! T
001 001 f r
010~ 011~ T: T2
B J(1-reverse) Ty T,
011 010 1 r
:_] T3 <>—0T3
10 O] 110 T.f T
101 111505 Cierce) Yo '
110] 101] -reverse T, T,
11 1;] 10 c.:J(1=reverse) T, T,
(a) (b)

Fig. 8. Comparing two different binary counters over 3 bits. (a) To reach the end state, the standard
binary counter must perform a sequence of reactions that always occur in the forward direction,
thus requiring a new transformer for every reaction as they are not recycled. (b) The binary
reflecting Gray code counter only requires one transformer per reaction equation as each reaction
occurs alternately in the forward and the reverse direction.

Contrast the sequence of reactions required for the standard counter in Fig. 8a with
that of the Gray counter in Fig. 8b. A standard n-bit binary counter, much like the
stack machine, performs only forward reactions when progressing in a computation
and would therefore require 2 — 1 transformers to reach the end state. In the case of
the 3-bit counter, seven transformers are required in total for the standard counter to
reach the end state. However, the Gray counter has a regular symmetry which can be
exploited to use only one transformer per bit of the counter. In the case of the 3-bit
counter, only three transformers are required to reach the end state. In general, the Gray
counter is exponentially more space-efficient than the standard counter.

4.1 Technique: Active Computation Reversal

Interestingly, the recursive nature of the binary reflecting Gray code sequence leads
to a powerful technique for logically reversible computing. To extend the 3-bit BRGC
counter to a 4-bit BRGC counter, all that is required is to add the signal 04 to the initial
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Fig.9. (a) The computation chain of a logically reversible CRN (with symmetric transitions).
(b) The computation chain from (a) doubled by adding one new initial signal, X, and one new

Sn
reaction, X = Y/, that requires the signals of the previous final state as catalysts.

. . . 13+02+0 .
signal multiset and to add the new reaction 04 "2 1,. The new signal molecule

does not affect the reactions for the first 3 bits; furthermore, the new reaction requires
as catalysts the signals of the final state of the 3-bit counter. This means the original
reaction sequence of the 3-bit counter will proceed prior to the new reaction. Once the
3-bit sequence is complete, the new reaction can occur for the first time to produce
14. Other than next reversing this new reaction — stepping back in the computation
chain — the only other possibility is to perform the entire reaction sequence of the 3-
bit counter in reverse. Note that since the 14 signal was not present before, this means
the computation is actually stepping forward towards a new end state. By introducing
one new signal, and one new reaction, we can effectively double the computation chain
length, and ensure active recycling of transformers. The general technique is illustrated
in Fig. 9.

When using active recycling of transformers the computation chain must be unbiased
as reactions are repeated in alternating orientations — thus we cannot force a positive
drift as in the stack machine construction. To ensure the output of the computation can
be witnessed with high probability, this same technique can be used to repeatedly ex-
tend the overall computation chain. For instance, consider a computation for a decision
problem where a special signal is produced to indicate if the input is accepted and an-
other signal is produced to indicate if it is not. This extension technique can be used
to double the overall computation chain length, ensuring the output signal can be ob-
served in strictly more than half of the states. As the computation performs an unbiased
random walk along the logically reversible computation state space, the steady state
probability of observing the output signal is p > 0.5. In this manner, for every new re-
action added to the CRN to double the chain length, the probability of not observing an
output signal is cut in half. Formally, the probability of observing an answer becomes
p’>1- 2~=(14¢) when ¢ > 0 number of new reactions are added to extend the com-
putation chain. Thus, we can make the steady state probability of observing a solution
signal arbitrarily high.

This same chain extension technique was used by Thachuk & Condon who gave a
space-efficient and logically reversible CRN for performing an in-order traversal of a
complete binary tree. Coupled with the ideas for verifying a 3-SAT formula (which we
explore next), and the new tree traversal procedure, the authors demonstrated how any
quantified 3-SAT problem instance could be solved, by giving a logically reversible
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QSAT solver that could be realized as a physically reversible DSD [26]. Thus, any
problem in PSPACE can be solved by a space-efficient and reversible DSD. This result
was later generalized to solve any problem in SPACE — the class of all space bounded
computation [25].

4.2 Designing a 3-SAT Solver

In this section, we will explore, at a high level, how the logically reversible and space-
efficient BRGC counter can be used in conjunction with a 3-SAT verification procedure
to solve 3-SAT instances. We will use a very simple strategy. For a formula with n
variables, an n-bit counter can enumerate every possible variable assignment, and a
verification procedure can be run every time the counter changes. The entire computa-
tion can be made to halt either when a satisfying solution is found, or when all states of
the counter have been exhausted. Furthermore, the entire computation chain will be log-
ically reversible. We do not discuss the specifics of how the counter and the verification
procedure can be coupled, but a set of auxiliary reactions are sufficient to achieve the
desired result [25]. We note that one detail which cannot be overlooked in such a cou-
pling is that the entire verification procedure must be reversed in between invocations
for different variable assignments. Next, we discuss how a 3-SAT formula can be veri-
fied. The procedure illustrates the use of history signals to ensure the overall procedure
is logically reversible.
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Fig. 10. (a) A set of reactions acting as a truth table for clause :. (b) Flow control when verifying
a formula ¢ having m clauses.

Verifying an Arbitrary Clause. Consider an arbitrary 3-SAT clause over three liter-
als, each for a distinct variable. There are exactly eight possible truth assignments to the
three distinct variables. Thus, for each such clause, we create a set of eight reversible re-
actions to determine if the clause is satisfied. The reactions for verifying the i*" clause,
containing literals for variables x;, z}, and x; are given in Fig. 10a. When the clause sig-
nal molecule C; is present, exactly one of the eight reactions can be applied, specified
by the current variable assignment. The variable signals act as catalysts and the C’f sig-
nal is consumed producing either a C signal if the clause is satisfied, or C}* otherwise.
In this example, it is supposed that the variable assignment z; = F,x}, = T,2; = F
does not satisfy the clause, while the first two variable assignments do. Note that for
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a particular variable assignment, only one reaction will apply in both the forward and
reverse direction, ensuring the process is logically reversible.

Verifying the Overall Formula. For the formula to be true, all clauses must be satis-
fied. However, any combination of unsatisfied clauses will result in ¢ being false. To
ensure reversibility, verification of the overall formula must be completed systemati-
cally. A diagram illustrating the flow control of the procedure is given in Fig. 10b. The
verification is initiated by consuming the signal ¢” and will complete either by produc-
ing the signal ¢, if ¢ is satisfied, or by producing the signal ¢*’, otherwise. Note that
the signals for the variable assignment (which are manipulated by the counter) only act
as catalysts in this procedure. Each clause is checked in order. Suppose the formula is
not satisfied. Then the first clause i to be unsatisfied will produce the signal C¥". This is
followed by a reaction that not only produces the ¢! signal, but also produces a unique
history signal which records the first unsatisfied clause. This history signal ensures that
the entire process remains logically reversible. Should the overall formula be satisfied,
the ¢*' signal will be produced. Once ¢*" or ¢” is produced, the verification is complete.

5 Unique Challenges in Natural Computing

Consider the additional challenges of computing with a soup of interacting molecules,
such as DNA. At once the molecules form the hardware and the software of the sys-
tem. The state of the computation is denoted only by the presence or absence of cer-
tain signals, and this in turn fully dictates which reactions can next occur. Despite
this, constructions such as the stack machine and the BRGC counter demonstrate that
not only is logically reversible computation possible in these systems, it can also be
Turing-universal and space-efficient. However, both constructions share a common as-
sumption: certain signal molecules in the initial set must occur as a single copy. The-
oretical results have emerged that suggest these systems will not operate correctly
when this single copy assumption is violated [4,6]. To illustrate this point, we again
consider the 3-bit BRGC counter. Initially, in a single copy of the construction, the
signal molecules {03,02,01} denote the state 03020;. Consider a two-copy network
where the initial multiset of present signal molecules is duplicated, yielding the mul-
tiset {03, 03, 02,02,01,01}. (We also assume a duplicate multiset of transformers is
available.) As in the single copy case, assume reaction (1) occurs in the forward direc-
tion, followed by reaction (2) in the forward direction. The resulting multiset of signal
molecules is {03, 03, 02, 12,01, 11 }. In the single copy case, we intend that reaction (1)
in the reverse direction will occur next; however, given the current multiset of present
signal molecules in the two-copy case, reaction (3) in the forward direction could in-
stead occur, resulting in the multiset {03, 13,02, 12,07, 1;}. At this point, a copy of
every signal molecule is present, and any reaction can occur, in either direction. Fur-
thermore, the single copy case required at least seven reactions to produce the final state
150201, whereas the two-copy case can reach it in three. Crosstalk between the copies
has broken the counter. The intuition as to why the single copy assumption is important
is that it gives us a means to (temporarily) erase information. In a single copy setting,
once a molecule of a particular type is consumed, it is no longer present. In a multi-copy
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setting, once a molecule of a particular type is consumed, there is no guarantee that the
other copies are simultaneously consumed.

While the single copy restriction permitted us to study systems pushing the limits
of computation for a chemical soup, it imposes a significant engineering challenge. All
DSD implementations to-date use concentrations of strands of each type. Producing and
successfully executing a DSD with a single copy restriction is currently challenging, but
feasible. For instance, the first published result on the measurement of a single enzyme
molecule was by Boris Rotman, in 1961 [21]. The experimental techniques developed in
that first paper are still influential and in use, and new advancements in single molecule
studies continue to be made [10].

6 Conclusion

Progress in natural computing, both on the theoretical and experimental side, has been
steady. New, experimentally viable computing models, such as DNA strand displace-
ment systems, have inspired promising results to realize logically and physical reversible
computing systems using nucleic acids. In this brief tutorial, we have highlighted
some of these results and discussed their underlying ideas. These constructions we stud-
ied are theoretical, have not been experimentally realized, and are not without unique,
practical challenges. An underlying assumption in all constructions surveyed is that cer-
tain signal species occur within the reaction volume as a single copy. This contrasts
sharply with DNA based computations that have been experimentally realized — copies
of each type of strand typically number in the millions or billions. While it may be possi-
ble to ensure the single-copy assumption is met, another promising direction is to tether
strands to a surface [17,11], such as a DNA origami tile [19].

Finally, we find the current complexity classes for logically reversible computation
too general to capture the realities of logically reversible chemical reaction networks
(CRNs) and DNA strand displacement systems (DSDs). The class ReversibleSPACE
represents all problems that can be solved by a space-bounded logically reversible Tur-
ing machine. As with any Turing machine, the space bound is with respect to the length
of tape necessary to complete the computation. In CRNs and DSDs, bits of information
are represented with the presence and absence of signal molecules. Thus, the length of
tape required in the Turing machine computation corresponds well with the maximum
quantity of signals required during the CRN computation. However, this does not ac-
count for fuel (transformers) that a CRN may require to complete its computation. The
reaction is the fundamental operation in a CRN just as a state transition is the funda-
mental operation for a Turing machine. However, with current technology, a reaction
in a CRN requires fuel, which in turn requires physical space, whereas a Turing ma-
chine state transition does not. In essence, a logically reversible Turing machine could
perform all state transitions in only one direction, while still using significantly less
space than the number of computation steps. This is not currently possible in molec-
ular programming. It has been demonstrated that any space-bounded computation can
be realized with a logically reversible CRN that requires only one copy of fuel species
(transformers) per reaction equation [25]. It is conceivable this CRN could be simulated
with a logically reversible Turing machine. It is also conceivable that such a simulation
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could be constructed to ensure that each state transition of the Turing machine either
strictly alternates being applied in the forward and reverse direction, or adheres to a
polynomial bound in the difference between forward and reverse transitions, at every
step of the computation. Such a construction would be a logically reversible Turing
machine (with symmetric transitions), capable of simulating any space-bounded Tur-
ing computation, that is semantically restricted to capture the notion of fuel. We let
ReversibleSPACE* denote the class of problems solvable by such a Turing machine. It
has already been shown by Lange et al. [13] that ReversibleSPACE = SPACE. An open
question is whether ReversibleSPACE* = SPACE.
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