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Abstract. In many real-time embedded systems, the choice of values for
the timing delays can crucially affect the safety or quantitative charac-
teristics of their execution. We propose a parameter synthesis algorithm
that finds optimal timing delays guaranteeing that the system satisfies
a given quantitative property. As a modelling framework we consider
networks of Timed Input/Output Automata (TIOA) with priorities and
parametric guards. To express system properties we extend Metric Tem-
poral Logic (MTL) with counting formulas. We implement the algorithm
using constraint solving and Monte Carlo sampling, and demonstrate the
feasibility of our approach on a simplified model of a pacemaker. We are
able to synthesise timing delays that ensure with high probability that
energy usage is minimised, while maintaining the basic safety property
of the pacemaker.
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1 Introduction

Model-based design of safety-critical real-time embedded systems, such as im-
plantable medical devices and automotive airbag controllers, increasingly often
relies on automated verification in order to establish that certain key require-
ments hold for the system model. In many cases, the choice of the timing delays
can crucially affect the safety of the system or its quantitative characteristics
such as energy consumption. Parametric timed automata [4], where parameters
instead of constants can be used to specify such delays, have been proposed to
bypass the need to perform the verification multiple times, for different constant
delays. Instead, the parameter synthesis problem [10] asks whether there ex-
ists a parameter valuation which guarantees the satisfaction of the requirement.
The parameter synthesis problem has been studied in different forms for timed
automata models (see Related Work below), e.g. for reachability and branching-
time logic specifications, but suffers from undecidability when parameters are
real-valued. Most recent work has focused on identifying subclasses of models or
parameter domains where the problem is tractable [17].

In this paper, we target embedded software modelled with parametric de-
lays and develop algorithms to automatically synthesise optimal, robust val-
ues to guarantee the satisfaction of a range of quantitative properties. To this



end, we extend the networks of timed I/O automata (TIOA) that communicate
by matching input and output actions with parametric guards and priorities
(the latter to determinise the system). As a property specification notation, we
propose Counting Metric Temporal Logic (CMTL), an extension of the Metric
Temporal Logic (MTL) with counting, which can express, e.g., constraints on
the number of events occurring in an interval of time and the associated energy
consumption. To address the potential undecidability, we work with finite path
lengths and discretise the parameter space. Our main contribution is a solution
to the optimal parameter synthesis problem for TIOA models with respect to a
given CMTL formula and a quantitative objective function. We implement the
algorithms in Python using constraint solving and Monte Carlo sampling.

We then demonstrate the usefulness of the techniques on an implantable
cardiac pacemaker case study, which has been modelled in [15] using timed
automata, where we automatically synthesise values for certain critical timing
delays for the pacemaker. Counting is necessary in order to express the funda-
mental safety property of a pacemaker, i.e. that it maintains a regular rhythm
of 60-120 heart beats per minute. Such a property cannot be expressed in MTL
since in [21,13] the authors show that MTL is unable to express counting. We
derive a composition of the pacemaker model with the heart model and synthe-
sise the time that the pacemaker waits before delivering a pace (TLRI — TAVI
according to Boston Scientific specification [1]). This value is critical to ensure
the pacemaker safety (i.e. waiting too long can cause patient discomfort or even
death), while at the same time it also affects the energy efficiency of the pace-
maker (i.e. pacing too often will consume more energy). We were additionally
able to confirm that the parameter values that our synthesis algorithm yields
are in line with those recommended by pacemaker manufacturers.

Contributions The contributions of this paper can be summarised as follows:

— We generalise the timed I/O automata model of [18] with priorities and
parametric guards.

— We propose CMTL, an extension of the linear-time logic MTL with counting.

— We formulate a parameter synthesis algorithm which finds all parameter val-
uations such that, when instantiated, the network of TIOAs satisfies a given
CMTL property. Instead of enumerating all possible parameter valuations,
we generate symbolic constraints that satisfy the property, and then find an
optimal, robust parameter valuation with respect to an objective function.

— We demonstrate the usefulness of the methods on a pacemaker case study.

Related work In [14], the authors study the decidability problem for parametric
timed automata. They consider the special case of L/U automata for which
they show that the emptiness problem is decidable. [5,6] describe an approach
to derive the constraints on parameters such that the behaviours of the timed
automata are time-abstract equivalent, starting from a reference valuation rather
than a logic formula. In [10], undecidability for parametric reachability problem
is proved. The parameter synthesis problem for branching-time logic TCTL is



studied in [9], where parameters are given both in the model and the formula.
The authors show the decidability for a fragment of TCTL where equality is
not allowed. In [19], the authors apply the bounded model checking procedure
to solve the synthesis problem for the existential fragment of CTL without the
next operator. In [8], the authors show PSPACE-completeness of the emptiness
problem in parametric L/U timed automata for properties on infinite runs, while
[17] consider the same class of automata for TCTL properties, also showing
PSPACE-completeness. A parametric extension of timed I/O automata is given
in [22], where it is shown how to construct an implementation of the specification
that is robust under a given timed perturbation. In [?] the authors propose a
method to synthesise optimal values of timing parameters for probabilistic timed
automata given a reachability property.

In this paper we present algorithms for parameter synthesis from specifi-
cations given in a generalisation of the linear-time logic MTL, rather than a
branching-time logic or a reference valuation. Our results are akin to bounded
model checking, since MTL formulas impose time bounds, and share similari-
ties with the work of [5]. We also consider a generalisation of timed automata
networks with priority, which are more expressive than L/U timed automata.

2 Problem Formulation

Consider the TIOAs A; and As in Fig. 1. The automata A; and A, form a

VP?, t:=0 x>=P, AS!, x:=0

t>=T, AP!, t:=0  y>=J, VP!, y:=0
(a) A (b) As

Fig. 1. Example network A with two components.

network and they communicate with each other by means of actions Act =
{VP,AP,AS}. We distinguish input (marked with ?) and output actions (marked
with ). For instance, when automaton Ay takes a transition and outputs the ac-
tion VP!, the automaton 4; synchronises by taking the corresponding transition
with the input action VP?. We use numbers 1,...,7 to label the transitions and
Roman numbers for the priorities with the lowest number denoting the highest
priority. In the initial state (g, z), both automata start three clocks ¢, x and y.
There are two ways to take a transition. First, when an input action is enabled.



Second, when the clock satisfies a given condition (guard). For example, automa-
ton Ay has two transitions labelled with the conditions z > P and y > J, where
P and J are parameters of the automaton. As soon as the clock y satisfies the
guard y > J, the automaton takes the corresponding transition and outputs the
action VP!, resetting to zero the value of the clock y (y := 0). When multiple
transitions are enabled in a location, then the one with the highest priority will
be taken.

Consider the finite path p = (q, 2)[2,7](¢, 2)[4, —](¢’, z) of the network N
from the initial state (g, z). Each parenthesised tuple represents a global state
of the network, namely, states of each component automaton. Each bracketed
tuple shows the transitions taken from the respective states of the tuple, with
hyphen meaning that no transition was taken. In the automaton As, y is initially
0 and, after J time units have passed, the guard y > J becomes true and the
corresponding transition (7) is triggered at this point, outputting the action VP
and resetting the clock ¢ to 0. The automaton 4; then synchronises with A,
via the matching input, VP, which moves the automaton to ¢’ through transi-
tion 2. Then A; takes transition 4 and As does not transition. Note that, for
the automata to transition this way, the parameters must be constrained such
that transition 4 triggers before transitions 1 and 3. When we instantiate all
the parameters T', P and J in the network A/, we obtain a single timed path
p=(q,2) (¢, 2) 1 (q,2) 2 (q,2) -, t; € Rsg,i > 0, that describes the
evolution of the network composed of A; and As. This is equivalent to saying
that N is deterministic.

In this paper, we are interested in finding the values of parameters T, P and
J such that the network A satisfies a given property. We consider properties
expressed in counting metric temporal logic, which can count the number of
actions in a given interval of time. For instance, the formula ¢ = #IVP > 1
states that the number of VP actions in the interval of time [5, 7] is greater than
1. There may be more than one set, possibly many sets, of parameter values
that satisfy the set of linear inequalities. In practice, only the parameter values
that are robust or that maximise a given objective function are likely to be of
interest. To allow such interesting values to be found, we partition the set of
parameters into controllable and uncontrollable. Then the objective function is
used to choose the best value for a controllable parameter such that it maximizes
a cost function over the uncontrollable parameter values.

We define the optimal parameter synthesis problem with respect to an ob-
jective function. We do not restrict to a single type of objective function, and
instead admit a family of them, each of which will correspond to ensuring a
particular quantitative property.



Optimal parameter synthesis problem

Input:

A parametric network of Timed I/O Automata
(TIOAs) N, a set of parameters I' = I, U I,
composed of controllable (I.) and uncontrollable (I7,)
parameters, a Counting Metric Temporal Logic (CMTL)
formula ¢ and a path length n.

Problem:

Find the optimal parameter values for I, for any values
of parameters I, with respect to an objective function
O such that ¢ is satisfied on paths of A/ of length n,

if such values exist.

3 Parametric Timed I/O Automata

In this section we introduce the modelling framework used in the paper. We
adopt the timed I/O automata (TIOA) model defined in [18], which we aug-
ment with parametric guards and priority on the transitions in order to impose
determinism. We remark that non-determinism is often viewed as an undesir-
able feature, since it could lead to dangerous behaviours of the system. For such
a reason, we tailor our model to the specific domain in which we operate and
exclude non-determinism by means of prioritised transitions.

Let X = {x1,...,x,} be a set of nonnegative real-valued variables, called
clocks. An X-valuation is a function 1 : X — R>( assigning to each variable = a
nonnegative real value n(x). Let I" = {v1,...,v,} be a set of nonnegative real-
valued parameters taking values respectively in the domains D,, ... D, . Given
a real domain D = [I,u], where [,u € Rxq, we define its d-discretisation to be
the discrete domain of points D = [I,] + 6,1 + 26, ...,1 + kd] where | + ké < u
and Vj > k. 1+ 70 > u, for j,k € N.

A I'—valuation is a function ¢ : I" = R assigning to each parameter v € I
a nonnegative real value ¥(v). Let Y be a set and V(Y) denote the set of all
valuations over Y. A clock constraint on X, denoted by g, is a conjunction of
expressions of the form z >ty for clock € X, comparison operator <1 € {<, <
, >, >} and y € {NUI'}. We write z € g, for x € X, if the guard g contains a
constraint on clock z and g.x := (i, y) with g.z(1) ==and g.x(2) = yif z 1y is
a constraint of g. Let B(X, I') denote the set of clock constraints over X and I
An (X, I')-valuation (n,9) satisfies a constraint x 1y, denoted (,v) = = Xy,
if and only if n(z) >y and y € N, or n(z) < ¥(y) and y € I; it satisfies a
conjunction of such expressions if and only if 7 satisfies all of them. Let 0 denote
the valuation that assigns 0 to all clocks. For a subset X C X, the reset of
X, denoted n[X := 0], is the valuation ' such that Vo € X. n/(z) := 0 and
Ve ¢ X, n'(z):=n(x). For § € Ryg and X-valuation 7, n+¢ is the X-valuation



7’ such that Vo € X. n”(x):= n(x)+0, which implies that all clocks proceed at
the same speed.

Given a set H, let Pr: F(H) — [0, 1] be a probability measure on the measur-
able space (M, F(H)), where F(H) is a o-algebra over H. Let Distr(H) denote
the set of probability measures on this measurable space.

Definition 1 (Deterministic Timed I/O Automaton with Priority). A
deterministic timed I/0 automaton (TIOA) with priority A = (X, I, Q, qo, Xin,
Yout, —,7y) consists of:

— A finite set of clocks X .

— A finite set of real-valued parameters I' = I', U I, where I, and I, are
respectively the set of controllable and uncontrollable parameters.

— A finite set of modes Q, with the initial mode qy € Q.

— A finite set of input actions Xy, and a finite set of output actions Xoyt.

— A transition relation —C Q X (X U Zoue) x B(X, ) x 2% x Q. For any
0, ¢ €Q, X CX,ifa € Yoy thene = (q,a,9,X,q") has g # true. Also, for
any q € Q and any two outgoing transitions of q¢ with guards g1, gs # true,
it holds that g1 N go = @.

— A priority function v : Q X (Xin U Xous) — N that assigns a priority to
an action in a gien location. For any q € Q, ain, € Yin, Gout € Lout and
ai,a2 € (Z‘inU Zout) we 7ﬂequi"f 7((]7 ain) < PY(qa aout) and ’Y(‘L al) 7é 7((17 a2)-

Let e = (q,a,9, X, ¢') be a transition of TIOA A and 7 a clock valuation. We say
that an action a is enabled if either a € X, or a € Yoyt and 1 = g. Observe that
every transition of the TIOA A that has an output action is urgent, i.e., it is
taken when the guard becomes true. The TIOA in the above definition can still
exhibit Zeno behaviour, but one can use the sufficient criteria in ([7], Lem. 9.24)
to check for Zenoness.

The TIOAs as defined above are able to synchronise on matching input and
output actions, thus forming networks A/ of communicating automata. Infor-
mally, the network N evolves as follows. Each component A; of A/ can either
(i) have an output transition with maximum priority enabled, in which case the
component fires the output transition and moves to the next location accord-
ingly, or (ii) if no output transition is enabled then it either synchronises with
an output transition fired by another component, which must have a match-
ing input transition, or lets time pass. Formally, the composition is defined as
follows.

Definition 2 (Network of TIOAs). Let N = {A® | i € {1,...,m}} be a
network of TIOAs AW, i € {1,...,m}. Define the set of modes of the network
by Q = QW x - x QU Let 99 be a parameter instantiation for every i €

{1,...,m}. We say p = qo -2 q1 2 - -- Lty g, (t; <0,5€{0,...,n—1})
is the finite timed path of a network N of m TIOAs if for all j € {0,...,n—1}
there exists an index set Z; C {1,...,m} such that:

I) Foralli € I;, (qj(-i),agi), J(-i)J(](-i)7 ](21) e, 7(q§i)7a§i)) is the maximum

over the set of enabled actions of qy), ay) € E(()fl)t, (nj(-i)—l-tj, 9D) gj(i) and



77521 = (n§i)+tj)[Xj(i) := 0], where 1]]@ is the clock valuation when entering
qéi). We define the set Yoy ; to be the set of output actions ag-i),

II) For allk € {1,..., m}\Z;:

(k) ()

(a) if there exists an i € I; such that a;” = a;’ and agk) € Zi(f) then
k) ,(F) ¢ (k) (k) &) B g, : h
(qj a;", rue7®,qj+1) e v(qj NO ) is the maximum over the

set of enabled actions of qj(-k) and 77;('11)1 = nj(.k)—ktj,
(b) otherwise q§?1 = q§k) and n;@l = n;k)+tj.
We define Xy, ; to be the set of input actions a;k).

We define the set Act; = You; U Xin; of enabled actions at step j. We
write p[j] = Act; for (j < n) and p{j) = t;. Moreover, for t € Ry, pQt :=
o
o, where o is the smallest index such that > p(k) > t. We define p[j] :=
k=0
a; iy qj+1 ity sty g to be the suffiz of the timed path p.

4 Counting MTL

In this section we define the Counting Metric Temporal Logic (CMTL). CMTL
extends MTL with basic counting formulas (BCF), with which one can count
the number of actions (events) in a given interval of time. We use the point-
wise semantics for both MTL and BCF. We refer the reader to a survey of the
differences between MTL and counting variants of MTL in [21,13].

Definition 3. Let p = go %5 qo -2 - - - bqn be the finite timed path of
the network N of TIOAs. The counting function #}a for an action a € (X, U

Yout) and time points £ € Rxq, u € Ryo U {oo}, such that £ < u, is defined as
(p@Qu)—1

#ra= > (acplk]).

k=(pQt)
A basic counting formula (BCF) B is of the form
B = Z cj #Z_j a;j, where J is a finite index set, (1)
jeJ

¢ € Zsg, £j,uj € Ryo (with the usual constraint that ¢; < u; for all j) and
aj € (Ein U Zout)'

We now define our logic CMTL as an extension of MTL, where we replace
atomic propositions with BCF formulas.

Definition 4. The syntaz of the Counting Metric Temporal Logic (CMTL) ¢
1s defined inductively by

pu=BblpAg || Uy,

where < € {>,2,<,<}, b€ Z, and £ € Rxg, u € Ryo U {0} are time points
such that ¢ < u.



The satisfaction relation for CMTL is defined over timed paths of the network
N of TIOAs.

Definition 5. Let p = qo -2+ qo 2 -+ —2=23 q,, be the finite timed path of
the network N of TIOAs and i € N be an index. We say that N satisfies ¢ at 1,
denoted (p,i) =N o, iff

pli]Qu;—1

(p,i) EV Boab it Y ;D> (aj€plk])eab

j€J  k=pli]@t,

(p,i) EN 01 A o iff (p,i) EV @1 A (p,1) BV @2

(p,8) BN =1 iff (p, i) =V o1

(p,i) =N o1 Ut iff 3.0 <i st Y plk) € [4ulA
k=i

(p,i") EN oo AV 0 < i< i A
(p,i//) ):N #1,

where @1, o are CMTL formulas, and i',i" € N.
We define 01p = true Uty and Ol = =0l —p.

5 Parameter Synthesis

In this section we describe the algorithm to find the values for the controllable
parameters such that the instantiated network of TIOAs N satisfies a given
CMTL property ¢.

A naive solution to the problem is to enumerate all possible values I" for the
parameters I, under the assumption of a bounded integer parameter space, and
for each value generate the unique path p in the network of TIOAs A. Observe
that I" is finite. Next, we check the satisfaction of the property ¢ on path p,
which results in a set of parameter values I'" C I such that each value in I/
induces an instantiated network that satisfies the property ¢. The best choice
of the parameter value is the one that maximises the objective function. Note
that, if m is the number of possible values for a parameter, then the size of I is
mlT'l. Given the exponential size of I, the problem of finding the best parameter
values becomes infeasible in practice.

We instead propose an approach based on parameter sampling and con-
straints generation. First, we sample a sufficiently large number of values from
the set I". Second, for each sampled parameter value we generate the discrete
path p in the instantiated network of TIOAs A. Given the untimed path p,
i.e., the discrete path obtained by eliding the time values, we generate a set of
constraints S on the parameter set I'. Therefore, the set S will correspond to
all parameter values that generate the same untimed path p. From here on we
use the notation ¥ € S to say that the parameter value 9, once plugged into



the parameters of S, makes the set of constraints S true. We say that ¢ ¢ S
otherwise. The advantage of the constraint generation approach is that, with
fewer samples, we can cover more values from I

In a nutshell, the synthesis problem can be solved by first generating a set
of constraints S from property ¢ and path p of A/, described in Section 5.1,
and then finding an optimal solution for & with respect to the given objective
function O, described in Section 5.2.

5.1 Constraint generation

We first describe the intuition for how to compute the set S that guarantees the
satisfaction of the property along the path p, and next present Algorithm 1 that
generates S.

The set S is computed with the following simple steps:

1. Sample the domains of the model parameters in order to generate a discrete
path.
2. For each sampled parameter value do:
— If the value does not belong to the set of constraints S
e Generate the untimed path p.
e Generate the set of inequalities which satisfy ¢ in p (Algorithm 2
and 5).

Algorithm 1 generates the constraints S with the help of two main subroutines,
Algorithm 2 and Algorithm 5. We now describe Algorithm 1 and its subroutines
step by step.

Algorithm 1 Constraint generation for A" with m-components, CMTL formula
¢ and path length n
Require: Network A, formula ¢ and path length n
Ensure: Family of linear inequalities S
: Function Sat(NV, ¢, n)
: I := Sample(I)
: for 9 € I' do
if ¥ ¢ S then
p := Gen_path(N, n,9)
(Sp, T) := Path_Constr_Gen (N, p)
S, := Constr_Gen(p,0, ¢, T)
§:=SV(S \S,)
end if
10: end for
11: return S

S IS A o ol e

©

The first step (line 2) of Algorithm 1 samples the domain of I" obtaining the

set of parameter values I". The algorithm then iterates over each point of I and



at every iteration checks whether the value under consideration, say 9, satisfies
the set of constraints S or not. This operation is indicated in Algorithm 1 with
¥ ¢ S. The intuition behind this step is that multiple model parameters will share
the same set of linear constraints S. Thus, instead of generating the constraints
for the discrete path p given by parameter value 1, we check whether ¢ € S. If
this is the case, we then skip this value and therefore save computation time.
The second step of the algorithm generates a discrete path p from the parameter
value 9. The algorithm is based on the semantics of the network of TIOAs (see
technical report [3]). The function Gen_path returns the untimed discrete path p.
Afterwards, Algorithm 1 generates the set of constraints over the parameter set I’
from the the discrete path p of length n. This is accomplished with Algorithm 2,
which is composed of two function calls described in the next paragraph. The
algorithm returns the set of constraints S, and the matrix of time constraints
7. The matrix 7 contains the time constraints ¢; over the parameter set I’
corresponding to every discrete transition j € {0,...,|c| — 1} of p. The set of
constraints S, contains the relationship between time constraints 7, as well as
the clock valuations 7 and guards g. For instance, if there is a transition labelled
with a guard z < 7, where z € & and v € I', then S, will contain the constraint
7(z) < . In this case n(x) is an expression over the parameter set I

The first function call of Algorithm 2 at line 5 (Algorithm 3) iterates over
the set of transition indices Z; that have an enabled output action with maximal
priority and generates the symbolic time constraints T[j,4]. It also generates
the set of constraints S, relating the clock valuations and the guard bounds.
For instance, given the transition e(® := (qj(zl)7 a,g(i),X(i)7q§21), where a is an
enabled output action, S, will contain the expression {n(z) < ¢®.2(2)} if
x < g .x(2) is a constraint in guard g(». Here ¢(¥.2(1) denotes the sign for the
clock z in guard g and ¢(*.z(2) denotes the bound of x. At the end of the cycle
(line 14), the algorithm creates a new clock valuation 7pexs from the symbolic
time constraint 7 [j,4]. The for cycle at lines 7-11 in Algorithm 2 resets all the
clocks that are associated with transitions that have an enabled output or an
input action. The set of enabled output and input actions is given by Z; U Z?.
The last function call of Algorithm 2 at line 13 (Algorithm 4) generates the set of
time constraints S, for the remaining transitions Zf that have no enabled actions.
Finally, line 15 and 16 of Algorithm 2 adds to S the relationships between all
time constrains, namely, T[j, ] = T[4, k| for every transition that has an enabled
output action, and T[j, k'] > Tj,] for the remaining transitions that have no
enabled actions, where i,k € Z; and k' € 75

Ezxample 1. In Table 1 we show a sample execution of Algorithm 2 for the dis-
crete path p = (¢,2)[2,7)(¢, 2)[4, —](¢', z) (parenthesised tuples represent states
and bracketed tuples represent transitions) of the TIOA from Fig. 1, where j
denotes the index of the path. At the beginning of the path, all three clocks, ¢,
x, and y, are set to zero initially (shown by the clock valuations in column 0).
Ay outputs VP and A; synchronizes with it after J time units (time constraints
in column 0). Transition 7 is the first transition taken by Ajg, and therefore it
must occur before other possible transitions, namely, transition 6, meaning that



Algorithm 2 Constraints generation for the path p

Require: Network A and discrete path p

Ensure: Set of constraints S and matrix of time constraints 7 over I

1: Function Path_Constr_Gen(N, p)

2:n:=0,8§:=92

3: for j:=0to |p| —1do

4:  7; - index of transitions that have an enabled output action with maximal pri-

ority

5: (8o, T,m):=Sync_Constr(N, j, p,Z;, T,n) (Alg. 3).

6:  Ij - index of transitions that have an enabled input action

7. forxz € X do . .

8: if z € X® for some e := (q;l), a, gV, x®, qj(;)l) and ¢ € Z; UZ; then

9: n(z) := 0 - reset all the clocks that are associated with a transition that
has an enabled output or an input action

10: end if

11:  end for

12:  Z7 - index of transitions that have no enabled actions

13:  T:=NSync_Constr(N, j,p,Z7,T) (Alg. 4).
14: S :=8AS, - guard constraints

15 S:=8A{ A T[j,z']=’f[j,k]}

i, k€L,

i€T;,kETS
17: end for
18: return (S,7)

y > J must become true before x > P. Since both clocks started at 0, J < P
(S in column 0). Then A; takes transition 4, which is fired when ¢t = T'. Since
t = J before the transition (clock valuation in column 1), the time taken to
fire the transition is T'— J (time constraint in column 1). The time taken to
fire transition 4, T — J, must be less than the time taken to fire transition 1,
P — J (since = J at the beginning of 7 = 1 and transition 1 synchronizes with
transition 6 when z = P), and transition 3, J — 0 (analogously to transition 1).
This is shown in S row in column 1.

The function Constr_Gen from Algorithm 5 generates the set of constraints
S, for the CMTL formula . It uses the function Sum_Gen to generate the set of
constraints for a basic counting formula BCF B (see Definition 1). The function
Sum_Gen creates two sets, L and U, for the lower and upper bounds, respectively,
appearing in B. The sequence w contains the ordered set of elements from LUU
and the function f maps an element of L U U to an element of the sequence
w. The main phase of Sum_Gen involves generating all possible orderings of the
transitions occurring in p, where p is the untimed suffix of length i of p, with
respect to the elements of w. This is achieved with the outer disjunction over the



Algorithm 3 Constraints generation for the path p (components that syncro-
nise)

Require: Network N, path index j, discrete path p, set of transition indices Z, se-
quence of time constraints 7 and clock valuation 7
Ensure: Set of constraints S, matrix of time constraints 7 and clock valuation 7next
1: Function Sync_Constr(N, 7, p,Z,T,n)
2: for i € 7 do
3 Ti:=0,8S:=2
4: e = (qﬁi),a,g(”,X(i),qj(Ql) - is the transition with maximal priority from

location q]@, a is the corresponding action, ¢ is the guard and X is a set of
clocks

5. for z € ¢® do

6: if ¢W.2(1)=" 27 or ¢.z(1) =” > then

7. Tl.i) := max{T[j,il, 9 .2(2) — n(a)}

8: else if ¢).z(1) =” <” then

9: S:=SA{n(z) < gW.x(2)}

10: else

11: S :=SA{nW(x) < g™ .x(2)}

12: end if

13:  end for

14: Thext 1= 1+ T[4, 1]

15: end for

16: return (S, 7T, Nnext)

Algorithm 4 Constraints generation for the path p (components that don’t
syncronise)

Require: Network A, path index j, discrete path p, set of component indices Z and
matrix of time constraints T
Ensure: Sequence of time constraints 7

1: Function NSync_Constr(N,j,p,Z,T)

2: for k € Z do

3 Tlj,kl:=0

4 e® = (g 0,9, XP )

5. for z e g™ do

6: if ¢®.z(1)=">" or g™ .2(1) =" >” then
7 Ty, k] := max{T[j, k],g<k).m(2) —n(z)}

8: end if

9: end for

10: end for

11: return T

set {0,...,|p| — 1}. For every possible ordering, the algorithm checks whether
yf(uj)_l
the formula > ¢; > a; € p[t] >ab holds.

JeJ  =Ypey)



Algorithm 5 Constraints generation for CMTL formulas

Require: Discrete path p, path index i, CMTL formula ¢ and sequence of time con-

straints 7

Ensure: Set of constraints S

1:
2:

Function Constr_Gen(p,,p,T)

case(yp) :
=73 Cj#?jjaj b : S :=Sum_Gen(p,1,¢p)
jes ;
p ="y : § := —Constr_Gen(p, i, 1, T)
© =1 P2 : S := Constr_Gen(p, i, p1,T) A Constr_Gen(p, i, 2, T)
o = oUW, :8:=(\ ConstrGen(p,i',2,T) AN <> T[k] <uA
=i k=i
i'—1
( /\ Constr,Gen(p, 7://5 P1, T)))
return S o
Function Sum_Gen(p,i,,T)
p=pli], L:={lj|j€J}, U:={u;|je J}and @ :=sort(LUU)
f maps an element of L UU to an element of w

Yf(uy) L

p@w<z>—y2>A Se Y ay€pllsab

IS e=Ys(ey)

S =
Uk E{0, =1} \2€{0,. [}

Y1< <Y

8: return S

9: We define (pQw(z) = y.) = (Lyg:o T+ >w(z) A yLZZ;: Tli+14) < u‘)(z)) and

10:

T1j] := T4, ] - to be the sequence of time constraints that correspond to transitions
with an enabled output action for all j < |p| — 1




) 1
To={7},I5={2}, Z6={6}|Th={4}, ITi=2,Z7={6, 7}
L =0 TIL4=T-J
' m)=J
T[0,7)=J,T[0,6]=P [1,6]: —J,T[1,7]
Az|n0(x)=0 m(x)=J
7o (y)=0 m(y) 0
S |J<P T—J<P—JN
T—J<JNJ<P

Table 1. Example constraints for Algorithm 2

Ezample 2. In this example we show the execution of Algorithm 5 (function
Sum_Gen) for the path in Example 1 and formula ¢ = #IVP > 1. The first
column of the table shows all possible ordering of variables y; and y». Note that,
for a path of length 2, y; € {0,1}, i € {1,2}. The second column of the table
shows how the time constraints are generated, while the third column shows
the formula that checks whether there is at least one VP action present in the
interval of time 5 to 7. Here to = 710, 7] and ¢t; = T[1,4] (see Example 1).

Ordering A pAQw(z) =y.| ¢
ze{0,..., ||}
(y1 =0A Y2 = 0) (to > 5) false
(to >5) A

(y1=0Ay2=1) true

(to+t1 >7/\t0<7)
(t0+t1>5/\t0<5)/\
(to+t1 >7/\t0<7)

false

(y1=1Ay2=1)

Table 2. Example constraints for BCF ¢ = #IVP > 1

The remaining steps of Algorithm 5 generate the set of constraints for a
CMTL formula. The algorithm proceeds by induction over the structure of the
formula and generates the set of constraints S over I'. Finally, line 8 of Algo-
rithm 1 adds the generated set of constraints S, for the path p and the set of
constraints S, for the CMTL formula ¢ to S. The set of constraints S is used
to compute the value of an objective function described in the next section.

In this paper we state two main theorems. Theorem 1 deals with the cor-
rectness of the generated set S of constraints. Theorem 2 shows that any CMTL
formula is preserved, even if the domain of the parameter I" is the set of rational
numbers. In order to prove the theorems we define a couple of lemmas below.

Let p = qo 2 qo % - LS IN gn be the timed path of the network N of
TIOAs, i € N an index (i < n) and T[j,-] := t; for all j < n. For every BCF B
and bound b € Z we have the following



Lemma 1.
(pi) EN Brab < (p[i],0) EV Bb.

Proof. The proof follows simply by the definition of the semantics of CMTL. O
Lemma 2.
(p,1) ):N Bb = Sum_Gen(p,i,Br1b, T) = true.
Proof. By Lemma 1 this is equivalent to prove that
(p[i],0) EN Brab =  Sum_Gen(p,i,B<b,T) = true.

Due to the fact that p is a concrete timed path of the system it must be true

Yz _ yz—1 _

that A (Z T+ >wz)N Y, Tli+d < w(z)) for a given vector
z2€{0,...,|w|} \¢=0 =0

w. The vector w is the one obtained by considering the original timed path pQ@ux

where z € {L |J U} with L :={l; | j € J}, U :={u; | j € J} where each [;, u;

is taken from the BCF formula B. )
Yi(uj—

Now consider the constraint (2} ¢ >, aj €pli+fra b) generated by
IS =Yrey)

Algorithm 5 and substitute yg,) and yg,) with p@Qw(z) = y. for the z that

gives you Yy s,y Or yy(¢;)- The constraint thus generated is equivalent to

(pli]@u,)~1

So Y (el

J€J  k=(pli]@L;)
which is true because (p,i) =V B > b holds. O
Lemma 3.
Sum_Gen(p[0],4,B>a b, T) = true =  (p,i) =¥ Bb.
Proof. By Lemma 1 this is equivalent to prove that
Sum_Gen(p[0],4, B> b, T) =true =  (p[i],0) =V Bab.

Let T[j] for all j < n from Algorithm 5 be a sequence of n variables. If
Sum_Gen(p[0],4,B < b, T) = true holds then

Y= y.—1
/\ (ZT[@'+L]>w(z)/\ZT[i+L]<w(2)>:true

2€{0,...,|w|} \¢=0 1t=0

also holds for a given vector w. The vector w defines now a sequence of state to
visit under which it is possible to satisfy the constraint

Ys(uz)—1

ch Z a; € pli+ b

JEJ  =Yre))

The timed path p[i] with 7[j] = ¢; must then satisfy B > b which concludes the
proof. a



Theorem 1. For every CMTL formula ¢ it holds
(p,i) =N ¢ iff Constr_Gen(p,i,p,T) = true.

Proof. The proof proceeds by induction on the length of the formula. As usual
@, 1 and o are CMTL formulas and ¢, u € R.

— ¢ =B pab. The theorem is true by the Lemmas 2 and 3.
— @ =1 A\ s, = Tpp. Trivial just by induction hypothesis.
— ¢ = U p,. The proof follows from the following induction hypothesis

(p,i) =N @1 iff  Constr_Gen(p,i,p1,T) = true
(p,i') EN o iff  Constr_Gen(p,i’, g2, T) = true,

for an i > i.
O

Lemma 4. Let N be a network of TIOAs for which I’ = @ and all guards be
integers. Then for every location q of N' and clock © € X the entering clock
valuation n(x) in location q is an integer.

Proof. Simply follows from the semantics of TIOAs which states that as soon
as a guard becomes true the corresponding transition must be taken. Thus, if
all the guards of the transitions contain integers, it must be the case that the
transition is taken at an integer time point. a

Lemma 5. Let N be a network of TIOAs with a nonempty set of parameter I.

Let 9 be a parameter instantiation for I' and p = qo -2 qo -2+ - - - Aoty qn be
the associated timed path of length n. Then there exist a parameter instantiation
£ tn_1

|9] and an associated timed path p = o —2> qo by st g such that
q; = @; for all j <n, where |-] is the closest integer.

Proof. Let (gj,a,9,X,qj4+1) be a transition of p in some component i taken
at step j and 7; be the entering clock valuation of location ¢;. It holds that
nj +t; = g, where p(j) = t;. Therefore, we get

ni+tiE N\ exga2) if
zeX

/\ n; +t; Exraga(2) iff
zeX

/\ ni(z) +t; > g.2(2)

Due to the fact that every transition of a TIOA is forced we have that
= min{g.x(2) — nj(2)} i Iz € grg.e(1) =2,
z€g

t;=0, otherwise.



Let p be the path corresponding to 9] with 7j; as the entering clock valuation
of p and p(j) = t;. We have

tj:mein{ lg-z(2)] — 7;(z)} if Fz € ghg.x(1) ==,
z€yg
t;=0, otherwise.
First, we prove
(ngn qr :qk) - |r7j—7]j| <0.5/\|Ej—t]‘| < 1,VJ S {0,...,77,—1}.
by induction on j (the base case trivially holds) and we distinguish the following
cases
1. If 3z € gAg.x(1) => then t; = 0 and it must the case that £; = 0 because
Vk < n.qr = qk. Then we have that |¢;—t;| < 1 and given that |7, —n;| < 0.5
we have
j+1 = njal = 105 + 5 — (n; +t5)| = |1 — n;| < 0.5.
2. If 3z € gAg.z(1) == and t; = 0. From the induction hypthesis we know that

|7; —nj| < 0.5 and it must be the case that 77; = [n;]. Given that t; = 0 we
have that

/\ n; = g.x(2) =
zEgNg.z(l)=2=
Al =2 =
zEGNg.z(1)=>
A = lee2] =
zEgNg.z(l)==>
ti = O0A |41 —njra] <05
3. If 3z € gAg.z(1) == and t; > 0. It holds that

z/e\lt — bl =1lgx2)] -1 — (9-2(2) — ny)| =
ze\lt —tj| = lg-2(2)] — g.x(2) +n; — 0] =
A |gt_j —tj| < llg-2(2)] — g.x2)| +Inj — 0] =
v [t; —t;] < 1.

Notice that n; +t; = nj+1 = g.z(2) for some z € g. We also have that
N +t; =141 = Lg x'(2)] for some z’ € g. Now we prove that © = ' when
lg| > 1. If the clock z is the minimum for ¢; there there exists a clock 1 € ¢
such that

9-x(2) = n;(x) < g.x1(2) = nj(z1) and
Lg-2(2) = n;(2)] < g-21(2) — nj(21)]-



In Table 3 we show the difference between |a — b] and |a] — |b] according
to different values of the fractional part of a and b.

Fraction
a | b [(la—b])—(la] —[b])
<0.5|<0.5 0
< 0.5(>0.5 -1
> 0.5|<0.5 1
> 0.5(> 0.5

Table 3. Case distinction table

We want to prove that:

Lg-2(2) = nj(2)] < [g-21(2) —my(21)] = (2)
Lg-2(2)] = 7j(2) < g-21(2)] = 7 (1)

Now we will analyse how the differences (| g.z(2)—n;(z)])—(lg.2(2)] -7, (x))
and (|g.21(2) — n;(z1)]) — (lg.21(2)] — 75(21)) behave.
Three cases are possible according to the fractional part of g.x(2) and n;(z)

— The fractional part of g.(2) and n;(z) is < 0.5 (same if it is > 0.5). In
this case, (|g.2(2)—n;(z)])—(lg.2(2)] —7;(x)) = 0. Moreover, |g.z(2)] —
15(2) < Lo (2)]—75(z1) if (L9.21(2) — 1 (20) ) — (Lg-21 (2)] -3 21)) =
0 or 1. The only critical case would be when (|g.z1(2) — n;(z1)]) —
(lg-x1(2)] — 7;(x})) = —1. However, this case is not possible given the
fact that |g.2(2) —n;(x)] < |g.21(2) — n;(z1)] and the condition on the
fractional part of g.z1(2) < 0.5 and the fractional part of 7;(z1) > 0.5.

— The fractional part of g.z(2) < 0.5 and n;(z) > 0.5. In this case no
matter of the value of (|g.z1(2) — n;(z1)]) — (lg-z1(2)] — 7;(x1)) the
relation is preserved.

— The fractional part of g.(2) > 0.5 and n;(z) < 0.5. Now we have that
(lg-x(2) = n;j(2)]) — (lg-z(2)] — 7;(x)) = 1 and we want to show that
(lg-x1(2) = ni(z1)]) — (lg-z1(2)] — 7j(z1)) = 1 as well. Since we know
that [g.z(2) —n;(z)] < [g.21(2) — n;(x1)] it must be the case that
(a) the integer part of g.z(2) = g.x1(2) and the integer part of n;(z) =

n;(z1). In this case the condition on the fractional parts must hold
otherwise it could not be the case that |g.2(2) —n,(z)] < [g.21(2) —
ni()]. Thus, (Lg.21(2) — ny(21)]) — (g2 )] — 73 (21)) = 1
(b) the integer part of g.(2) < g.z1(2) (or the integer part of n;(x) >
n;(z1)). Then, it also hold that (|g.z1(2) — n;(z1)]) — (lg.-21(2)] —
j(z1)) = 1.
Therefore, we have

[Mj+1 — nj1l = |lg-2(2)] — g.x(2)] <0.5.



Now we prove
by induction on j.
1. j = 0: In this case 9 = 19 = 0 and we have that
to = g.21(2) < g.22(2) <--- < g.x1g), (3)
where z, € g, Vz € {1,...,]9]}. Let eg = (qo,a,9, X, q1) be the first transi-
tion of p. We show that e, = (qo, a, 7, X, ¢1) is also the first transition of p,
where g.z(1) = g.x(1) and g.z(2) = |g.(2)], for all x € g. From Eq.(3) we
get that
to=[g.21(2)] < [g-22(2)] <+ < [gx)q],

which proves the base case.

2. j — j+ 1: It is enough to show that Eq.(2) holds, which was proven above.
O

Let I'™ be the set of all natural numbers and I'" be the set of all rational
numbers representing the parameter set I'. More formally, for every ¥ € I'" we
have [9] € I'™ or [¥] € I'"™. Here we assume that the domain of I" is bounded.

Lemma 6. Let D be a function that given a timed path p it return the untimed
version of it. It holds

{D(p) | p € Gen_path(N,n,9),9 € I""}={D(p) | p € Gen_path(N,n,d),d € I'"}.
Proof. Let ¥ € I'". Then, there is J € I'™ such that ¥ = [9]. The proof holds
from Lemma 5. O

Theorem 2. Let N be a network of TIOAs and n € N. We have that
\/(S/\Constr,Gen(p7 0,0,7)) =\/ (S’ AConstr_Gen(p,0,¢,T")),

vern 9err
where (S,7T) := Path_Constr_Gen(N, Gen_path(N,n,d)) and (S',T") := Path_
Constr_Gen (N, Gen_path(N,n,9")) for all 9 € I'™, and ¥ € I'". Here we say
that two constraints are equal if they share the same solution set.

Proof. The proof holds from previous lemmas. a

Let |I'™| be the size of I'™ and #s = ﬁ ZLQ;' 1(9; € S), where 1(9; € S)
is the characteristic function, be the fraction of the total number of parameter
valuations that satisfy the formula S. Let #% = & Ele 1(¥; € Sk) be the esti-
mator of #gs based on a sample of size k < |[I'™|. Here Sy denotes the constraints
corresponding to k discrete paths. Note that limyg_ pn| #fgk = #s.

Theorem 3 (Finite Population Sampling). Given a sample size of k < |I'™|

k
we have that the standard error of #gk 1§ 0 = U(ﬁ%“) 1-— ﬁ, where o s

standard deviation.
k

1— 557
From the above theorem it follows that error o. decreases with % as the

sample size increases.



5.2 Parameter optimisation

After generating the set of constraints S we are ready to tackle the parameter
synthesis problem, i.e., to find the optimal solution for the set of controllable
parameters I, with respect to an objective function O. The optimal solution
will be the one that maximises ©. We emphasise that there is no single optimal
solution. The optimal solution should be the one that best fits the domain of
the application. For this reason, we present two different choices of the objective
functions that we believe are relevant for the pacemaker case study presented in
the next section. The first consists in maximizing the value of an integral over
the domain V(I3,), i.e.,

opt

v

= argsup / Distrp, (dd,,).

V.eV(Ie)

9w €V(T),(0e,90)ES

Here V(I.) and V(I",) denote the set of all possible values for parameters I, and
I, respectively. The idea of the integral is to find a valuation for the controllable
parameters that satisfies the set of constraints S and that also maximises the
probability mass associated with the uncontrollable parameter set. In the above
objective function, we assume that the set of uncontrollable parameters, I, are
distributed according to Distrp,. If Distrp, is a discrete probability distribu-
tion, then the above objective function can be reduced to a linear programming
problem, for which standard solution algorithms exist. If Distrp, is continuous,
then it is always possible to discretise V(I",) or apply Monte-Carlo simulation
techniques. In the special case when Distrp, is the uniform distribution, the
above objective function becomes a volume integral parametric in V(I%), for
which efficient solutions also exist [20].

In some practical examples it does not suffice to find an optimal solution
unless it is also robust (see [12,11] for various definitions of robustness). Intu-
itively, we say that a set of model parameters is robust if a small variation at
the values of the model parameters does not affect the validity of the formula
under consideration. We explain the concept with an abstract example. For in-
stance, consider the problem of finding optimal parameters for an embedded
device. Running Algorithm 1, we find the optimal controllable parameters opt,,
for which the device satisfies the safety property ¢. Let opt!, be a sub-optimal
solution, i.e., opt! < opt,. Now consider that a small change of € in opt,, inval-
idates o, whereas the same change in opt/, does not affect the validity of ¢. In
this case it makes sense to chose opt/, rather than opt,, because opt/, is more “ro-
bust”. In light of this example, we introduce a new optimal parameter synthesis
problem (opt,.) that captures the concept of robustness:

Be(0) = {0 e V(D) | [|[I — I <€},
opt,. := argsup {sup{e |}, € V(I), Bc((Je, %)) C S}}

ﬁcev(l—‘c) €
where the norm ||/ — ¥||w for ¢,¢ € V(I') and I' = {v1,...,v,} is defined as
max{|d(vy) — ¥ (v1)|,..., |} vn) — ¥ (vn)|}. Note that the above optimisation

problem can be transformed into a linear programming problem.



6 Implementation

We have implemented all the algorithms in Python for the full fragment of
CMTL, using Z3 theorem prover [2] for constraint solving. Just as the synthesis
technique was described in terms of constraints (Section 5.1) and optimization
(Section 5.2), we also describe implementation along the same lines.

Our implementation currently assumes one controlled parameter and one un-
controlled parameter. Each parameter has a lower and an upper bound, which is
encoded as a constraint (in Z3). Even with bounds, the parameter space is too
large, and therefore we sample points from which we synthesize the parameter
values. Namely, for each sampled point (which consists of a controllable value
and an uncontrollable value), a discrete path and the corresponding timed path,
safety and energy constraints are generated. The disjunction of the constraints
generated from each sampled point, conjuncted with the parameter bounds con-
straint, represents a subset of the parameter values within the parameter bounds.
This subset encodes the synthesized parameter values that satisfy the specified
safety and energy constraints.

We determine the volume of a synthesized value by sampling the set of uncon-
trollable parameters and checking with the Z3 SMT solver if the sampled value
of the uncontrollable parameter satisfies the generated constraints. The volume
is the ratio between the total number of values that satisfy the constraints and
the total number of sample points. We choose the controllable parameter value
that gives the largest volume. To synthesise a robust value we first pick a seed
point from the set of parameters values. Then we check to see if points that are
¢ distance away from the seed, in both controlled and uncontrolled directions,
are also valid parameter values, with an increasing ¢ starting from the smallest
possible value of 1 (since parameter values are integers). We use the Z3 SMT
solver to check if all the parameters in the rectangle (defined by the sup norm)
are valid. This process is shown in Fig. 2 as a search for the largest rectangle
centered around the chosen point, y, that is within the triangle. The process
continues until an invalid parameter value is found, i.e. the rectangle goes out-
side of the triangle, or until some upper bound for epsilon is reached. We choose
the controllable parameter value that gives the largest ¢.

7 Case Study

In this section we present a pacemaker case study where we apply the techniques
developed in the paper. The goal is to synthesise one of the parameters of the
pacemaker in order to ensure its correct behaviour, while at the same time
optimising the value of a given objective function.

The pacemaker is a medical device that is implanted under the skin of the
chest and has the purpose of delivering electrical signals to the human heart in
order to maintain a given heart rate. It delivers the electrical signals using two
leads, one for the atrium and one for the ventricle. The pacemaker can pace the
heart as well as read the signal (action potential) generated by the heart.
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Fig. 2. Robustness Example

We solve the pacemaker synthesis problem by modeling the heart, the pace-
maker and the composition using TIOAs.

The heart model is composed of three TIOA components (see Fig. 3): atrium,
conduction and ventricle. The atrium component (Fig. 3a) is responsible for
generating atrial beats. It waits for a signal (action potential) from the SA-
node, which is the natural pacemaker of the heart, or from the pacemaker by
means of action AP. The firing time of the SA-node is modelled by a transition
labelled with the guard t > PP, which defines the natural frequency of the heart.
The atrial component generates atrial beats by means of action Aget. We also
model a blocking period denoted by the paremeter AERP. The purpose of the
period is to deny consecutive stimulation of the atrium from the pacemaker.
That is, a stimulus from the pacemaker is blocked if the time difference between
the previous stimulus and the current one is less than AERP.

The conduction component models the propagation delay of the atrial signal
through the atrium and the AV-node. The delay is given by the parameter TAVD.
When the action potential originating from the atrium reaches the ventricle, the
conduction component notifies the ventricle component by means of action CD.

The ventricle component is responsible for generating ventricle beats. It can
receive a signal VP from the pacemaker or from the conduction component CD.
The ventricle component generates ventricle beats by means of action Vget. Here
we also model a blocking period denoted by the parameter VERP.

We emphasise that the heart model in Fig. 3 can be tailored to individual
patients. For instance, both PP and TAVD can be estimated from the patient
electrocardiogram. The parameters AERP and VERP can be estimated at the
time of the implantation of the pacemaker. We treat PP, TAVD, AERP and
VERP as uncontrollable parameters.

For this case study, we consider the basic pacemaker model introduced in
[16] which consists of five TIOA components: the lower rate interval (LRI) com-
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Fig. 3. Pacemaker and heart components.

ponent (see Fig. 3d), the atrio-ventricular interval (AVI) component, the up-
per rate interval (URI) component, the post ventricular atrial refractory period
(PVARP) component and the ventricular refractory period (VRP) component.
In this case study, we focus only on the LRI component and omit descriptions
of the components for reasons of space; see [16] for more detail.

The LRI component keeps the heart at a given minimal rate, which is denoted
by the parameter TLRI — TAVI. Here the parameter TAVI denotes the atrial-
ventricular delay, which has the same meaning as TAVD. The difference between
TAVI and TAVD is that the former is a controllable parameter which can be
modified in order adjust the pacing rate, whereas the latter is defined by the
heart and varies from patient to patient. The LRI component stops pacing the
atrium as soon as the input action AS is enabled. This occurs when the SA-node
fires.

Now the goal is to synthesise the pacemaker parameter TLRI — TAVI (we
consider the difference as a single parameter), which is the amount of time that
the pacemaker waits before delivering an atrial pace. TLRI—TAVI is a controllable
parameter in our model and its value is critical for the correct functioning of
the pacemaker device. We check the correctness of the pacemaker against the
following CMTL formulas:

1) OL7l(#7vget > By A #]Vget < By) - safety property.
2) 1-#JAP + 2. #JVP < E - energy property.



The first formula states that it is always the case that the heart beats (ventricle
beat) at least By and no more than By times in the interval of time [0, 7]. The
second formula states that the pacemaker consumes no more than E units of
energy in the interval of time [0, 7]. For every atrial beat AP the pacemaker
consumes 1 unit, and for every ventricle beat VP it consumes 2 units.

0.9

0.71

0.6

Volume
o o o
w > 3
T T T

o
M)
T

i

0 o 4 I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
TLRI- TAVI

(a) Maximal volume

250

2001 1

epsilon
I
S
T
|

5]
S
T
N

50r u

I !

I I h
800 800 1000 1200 1400 1600 1800 2000
TLRI- TAVI

(b) Robustness

Fig. 4. The value of the objective function for controllable parameter TLRI — TAVI and
uncontrollable paremeter PP.

In the experimental results we pick PP to be the only uncontrollable param-
eter following a uniform distribution and all other parameters are constant. We



also choose the time bound 7 above from the set {1000, 1500}. Here all the values
of parameters are in milliseconds.

For the safety property we synthesise the TLRI — TAVI parameter. We set
7 := 1000 (milliseconds), B; := 1 and By := 2, meaning that the pacemaker
should maintain a heart rhythm between 60 and 120 beats per minute. We
sample 160 parameter values for PP and TLRI — TAVI and generate discrete
paths of length 15. For all the paths and the formula we generate the set of
constraints §. The task is to synthesise a value for TLRI — TAVI such that the
validity of the safety formula is preserved for any value of PP. As discussed
in Section 5.2, the optimal parameter valuation might not be robust. In this
example, we have that a value for TLRI — TAVI of around 1000 is optimal (we
have used 200 sample points to compute the volume objective function). This
is due to the fact that when TLRI — TAVI is in that range the pacemaker model
satisfies the safety formula ¢ for the largest set of parameter valuations of PP.
However, setting TLRI — TAVI to 1000 is not robust from an implementation
point of view. In fact, if we have a small perturbation of TLRI — TAVI, say from
1000 to 1001, the safety formula ¢ is invalidated. A more robust choice is to pick
values for TLRI—TAVI around 850 (and this is the value returned by Algorithm 1
using the robust objective function). For the robust objective function we have
used 500 sample points. Picking the value of TLRI—TAVI around 850 reduces the
number of PP behaviours that we cover. However, in this case, a small change
of TLRI — TAVI will not invalidate the safety formula ¢. We remark that some
major pacemaker manufacturers, such as Boston Scientific [1], suggest that these
values be set between 750 and 900, which validates the result of our algorithms.

In addition to ensuring the correct number of beats, we can also guarantee
that the pacemaker consumes no more than a given amount of energy in an
interval of time. For the energy property we run three experiments with E = 40.
We pick two time bounds 7 = 1000 and 7 = 1500. In the first two experiments we
compute the volume objective function for TLRI—TAVI parameter (see Fig.4a). In
Fig.4a we can see that the maximal volume increases with the value of TLRI —
TAVI until the time bound 7 (blue plot for 7 = 1000 and red plot for 7 =
1500) and then it remains constant. Intuitively, for a pacemaker to consume the
smallest amount of energy it has to pace as little as possible. Our experimental
result confirms this intuition by synthesising the maximal value of the atrial
pacing parameter TLRI — TAVI. Note that the maximal value of TLRI — TAVI for
7 = 1500 does not make the pacemaker safe. The safe value for TLRI — TAVI is
around 900. In the second experiment we compute the robust objective function
for TLRI — TAVI. In Fig.4b we see that the most robust value for TLRI — TAVI is
around 1000. A safe value for TLRI — TAVI should be less than 1000.

8 Conclusions

We have developed an algorithm to synthesise optimal timing delays for real-
time embedded systems modelled as an extension of TIOA with priorities and
parametric guards. Focusing on medical devices as an application domain, we



propose CMTL, an extension of the Metric Temporal Logic with counting for-
mulas, which can express fundamental safety properties for pacemakers, as well
as quantitative requirements for energy consumption. As future work, we plan
to improve the efficiency of the algorithms in order to tackle the high complexity
of constraint generation algorithms.
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