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Abstract. We present novel, fully-automated techniques for compositional veri-

fication of synchronous probabilistic systems. First, we give an assume-guarantee

framework for verifying probabilistic safety properties of systems modelled as

discrete-time Markov chains. Assumptions about system components are rep-

resented as probabilistic finite automata (PFAs) and the relationship between

components and assumptions is captured by weak language inclusion. Then, we

develop a fully-automated implementation of this framework, which includes a

semi-algorithm to check language inclusion for PFAs and a new active learn-

ing method for PFAs, which we use to automatically generate assumptions. We

present experimental results from a prototypical implementation of our approach.

1 Introduction

Many real-life systems exhibit stochastic behaviour, for example due to the possibility

of failures, uncertainty with regards to timing or the use of randomisation. In recent

years, there has been a great deal of interest in formal verification techniques that per-

form a rigorous and fully-automated analysis of quantitative properties of stochastic

systems. Probabilistic model checking is one such technique, which has been success-

fully applied in many application domains, from randomised communication protocols

to biological systems. It is based on the exhaustive construction of a probabilistic model,

such as a Markov chain or Markov decision process, and its analysis against properties

specified in probabilistic temporal logics. These logics can express, for example, “the

probability of an airbag failing to deploy within 0.02 seconds is at most 0.0001”.

Like most automated formal verification techniques, one of the principal challenges

in probabilistic model checking is scalability. Models capturing the behaviour of com-

plex systems comprising many interacting components are often huge. This motivates

the development of compositional verification methods, which decompose the task of

analysing a large system model into smaller sub-tasks that analyse each of its compo-

nents separately. We focus on the assume-guarantee paradigm, in which each system

component is analysed under an assumption about the other component(s) it is com-

posed with. After checking that the assumption is indeed satisfied, proof rules are used

to deduce properties of the overall system.

Several assume-guarantee frameworks for probabilistic systems have been proposed,

mainly for probabilistic automata, which model both probabilistic and nondeterministic

behaviour [1,18,11]. The key challenge when developing such a framework is formu-

lating an appropriate notion of assumptions. Fundamentally, of course, these need to



support compositional reasoning, but our goal is to develop assume-guarantee tech-

niques that are practical, efficient and fully-automated. This means that assumptions

should ideally: (i) be expressive enough for practical applications; (ii) allow efficient,

fully-automated verification; (iii) be amenable to automatic generation.

One promising direction is the framework of [18] (and its extensions in [11,10]).

In [18], assumptions are probabilistic safety properties (e.g. “event A always occurs

before event B with probability at least 0.98”) and [11] generalises this to boolean

combinations of ω-regular and reward properties. In both cases, this yields efficiently

checkable assumptions and the approaches were successfully implemented and applied

to some large case studies. Furthermore, [10] showed how to automatically generate

probabilistic safety property assumptions [18] using learning techniques based on L*.

In this work, we continue to develop probabilistic assume-guarantee techniques in

which assumptions can be automatically generated via learning. In particular, our focus

is on using a more expressive class of assumptions. Probabilistic safety properties [18]

can only capture a limited amount of information about a system component, restricting

the cases where assume-guarantee reasoning can be applied. The framework of [18] is

incomplete in the sense that, if the property being verified is true, there does not neces-

sarily exists an assumption that can be used to perform the verification compositionally.

This paper proposes novel techniques for compositional probabilistic verification

in which assumptions are probabilistic finite automata (PFAs). Unlike [18,11], our ap-

proach is complete. Furthermore, in a similar fashion to [11], we are able to use learn-

ing to automatically generate PFAs representing assumptions. PFAs represent weighted

languages, mapping finite words to probabilities. An assumptionA about a system com-

ponentM is represented by a PFA that gives bounds on the probabilities of traces being

observed in M . This is an inherently linear-time relation, which is well-known to be

difficult to adapt to compositional techniques for systems that exhibit both probabilistic

and nondeterministic behaviour [22]. So, in the present work, we restrict our attention

to fully probabilistic systems. We target systems in which several components, each ex-

hibiting probabilistic behaviour, are composed in a synchronous fashion, resulting in a

fully probabilistic model that can be captured as a discrete-time Markov chain (DTMC).

We model components as probabilistic I/O systems (PIOSs), which extend DTMCs

with output actions and (nondeterministic) input actions. The relation between a PIOS

M a PFA A representing an assumption about M is captured by weak language inclu-

sion, which abstracts internal behaviour to produce smaller assumptions. Based on this,

we propose an assume-guarantee framework for verifying probabilistic safety properties

on DTMCs composed of PIOSs. We give an asymmetric proof rule for two-component

systems and show how this allows verification to be performed compositionally using

two separate tasks.

In order to implement our framework, we give an algorithm to check weak language

inclusion, reducing it to the existing notion of (strong) language inclusion for PFAs.

Although checking PFA language equivalence (that each word maps to the same prob-

ability) is decidable in polynomial time [24,8,15], language inclusion is undecidable

[5,19]. We propose a semi-algorithm, inspired by [24], to check language inclusion; in

the case where the check fails, a minimal counterexample is produced.
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We also present techniques, based on algorithmic learning, to automatically gener-

ate assumptions for our framework. This direction of work is influenced by the success-

ful learning-based techniques for (non-probabilistic) compositional model checking, as

pioneered by Pasareanu, Giannakopoulou et al. [20]. They use the L* algorithm [2],

which learns an unknown regular language, to generate assumptions. In the probabilis-

tic setting, these ideas were then adapted in [10] to generate probabilistic safety property

assumptions for the framework of [18].

In this paper, we develop a novel technique for learning PFAs, in the style of L*.

It uses an active learning approach, posing queries in an interactive fashion to gather

information about the PFA representing a probabilistic assumption that is to be learnt.

This is based on so-called white-box learning, where all information about the system

being learnt (in this case, the component for which an assumption is being generated) is

fully available. We do not consider black-box techniques, for example based on statis-

tical techniques, because they yield only approximate results; for compositional verifi-

cation, assume-guarantee proof rules can only be applied if we have guaranteed results

about components. Finally, we incorporate the learning-based assumption generation

into a complete implementation of our assume-guarantee framework and illustrate its

applicability to a selection of benchmark case studies.

In summary, the contributions of this paper are as follows:

(i) a fully-automated assume-guarantee framework for DTMCs, including automatic

generation of probabilistic assumptions represented as PFAs;

(ii) a semi-algorithm for checking language inclusion on PFAs;

(iii) a new L*-style learning method for PFAs.

This paper is an extended version of [9], including additional details and examples,

as well as proofs for the results stated in the paper. All proofs can be found in the

appendix.

Related work. In addition to the probabilistic assume-guarantee techniques mentioned

above [1,18,11,10], compositional techniques have also been proposed for model check-

ing DTMC models of hardware systems, based on conditional probabilities [16]. On the

topic of applying learning to compositional verification, we are only aware of our prior

work [10] in the probabilistic setting, but there are several successful approaches for

non-probabilistic assumption generation [20,6].

Regarding techniques for PFAs, we are not aware of any existing techniques to

check language inclusion, but, as stated above, there are algorithms to check language

equivalence [24,8,15]. There are several existing active learning techniques for PFAs,

e.g. [13,23,4]. The technique of [13] only applies to PFAs representing stochastic lan-

guages (probability distributions over finite words), which cannot represent PIOSs due

to the presence of nondeterminism over input actions. It also only learns PDFAs, a re-

stricted class of PFAs where the model’s underlying structure is a DFA. The approach

of [23] learns a more general class of PFAs, but uses queries that require the size of

the learnt PFA to be known in advance. In [4], the learnt model is in fact a multiplicity

automaton, not a PFA, and the transition weights may have negative values.
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2 Preliminaries

We will use SDist(S) to denote the set of all discrete probability sub-distributions over

a set S, ηs for the point distribution on s ∈ S, and µ1 × µ2 ∈ SDist(S1 × S2) for the

product distribution of µ1 ∈ SDist(S1) and µ2 ∈ SDist(S2).

2.1 Probabilistic Finite Automata

In this paper, we use probabilistic finite automata (PFAs), as proposed by Rabin [21]

to define (non-probabilistic) languages. They are also known as probabilistic automata;

however, we avoid this term to prevent confusion with the identically named model of

Segala [22], used for modelling and verification of concurrent probabilistic systems.

Definition 1 (PFA). A probabilistic finite automaton (PFA) is a tuple A = (S, s, α,P),
where S is a finite set of states, s ∈ S is an initial state, α is an alphabet and P : α →
(S × S → [0, 1]) is a function mapping actions to transition probability matrices. For

each a ∈ α and s ∈ S,
∑

s′∈S P(a)[s, s′] ∈ [0, 1].

A PFA A defines a mapping PrA : α∗ → [0, 1] from finite words to probabilities.

Here, and elsewhere in the paper, we assume that all probabilities are rational values. In

some formulations of PFAs, the probabilities for all finite words sum to one, defining a

stochastic language. In other cases, including our use of PFAs in this paper, this is not

necessarily true. Intuitively, the probability PrA(w) for a word w = a1 · · · an ∈ α∗ is

determined by tracing path(s) through A that correspond to w, with P(a)[s, s′] giving

the probability to move from state s to s′ when reading symbol a. More precisely, we

let: ι be a 0-1 row vector indexed by states S with ι[s] equal to 1 if and only if s = s;
κ be a column vector over S containing all 1s; and P(w) = P(a1)P(a2) · · ·P(an).
Then, we define PrA(w) = ιP(w)κ as the probability that A accepts w.

Our definition of PFAs is slightly non-standard in several respects. Firstly, the clas-

sical definition [21] assumes a set of accepting states; we omit this, effectively making

all states accepting (which is why the vector κ contains all 1s). We adopt this definition

because we restrict our attention to PFAs that correspond to executions of probabilistic

models. Secondly, we allow rows of the matrices P(a) to sum to less than 1. We can

always translate a PFA defined in the manner above to the classical definition by adding

a (non-accepting) sink state and additional incoming transitions.

We will require the following relations between PFAs.

Definition 2 (Language inclusion/equivalence). Given two PFAs A1 and A2 with the

same alphabet α, we say A1 and A2 are related by (strong) language inclusion (resp.

language equivalence), denoted A1 ⊑ A2 (resp. A1 ≡ A2), if for every word w ∈ α∗,

PrA1(w) 6 PrA2(w) (resp. PrA1(w) = PrA2(w)).

2.2 Discrete-time Markov Chains

We focus on fully probabilistic systems, modelled as discrete-time Markov chains.

Definition 3 (DTMC). A discrete-time Markov chain (DTMC) is a tupleD=(S, s, α, δ),
where S is a finite set of states, s ∈ S is an initial state, α is an alphabet of action labels

and δ : S × (α∪ {τ}) → SDist(S) is a (partial) probabilistic transition function, such

that, for any s, δ(s, a) is defined for at most one a ∈ α ∪ {τ}.
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The behaviour of a DTMC D in each state s is represented by the function δ. If

δ(s, a) = µ, then the DTMC makes a transition, labelled with action a, and moves

to each state s′ with probability µ(s′). We write s
a
−→ µ to indicate the existence of such

a transition. Note that µ can be a sub-distribution, in which case the DTMC deadlocks

with probability 1−
∑

s∈S µ(s). The DTMC also deadlocks in the case where δ(s, a)
is not defined for any a, which we denote by s 6→. Following the common convention,

action label τ denotes a “silent’ (or “internal”) transition.

A (finite or infinite) path through D, which represents one possible execution of

the system that it models, is a sequence of transitions θ = s0
a0−−→ s1

a1−−→ · · · where

s0 = s and δ(si, ai)(si+1) > 0 for all i ≥ 0. We use tr(θ) = a0a1 · · · to denote

the word (or trace) of path θ and PathsD to denote the set of all D’s (infinite) paths.1

In standard fashion [14], we can define a probability space PrD over the set of paths

PathsD, which allows us to reason about the probability of certain events occurring.

The class of properties that we will verify on DTMCs in this paper are probabilistic

safety properties. These can express, for example “the probability that no error occurs

is at least 0.99” or “the probability that event A always precedes event B is at least

0.75”. More formally, a probabilistic safety property takes the form 〈G〉>p, where G
is a regular safety property [3], defining a set of “good” executions, and p ∈ [0, 1] is a

probability bound. We write PrD(G) for the probability of a “good” execution occur-

ring inD and say that the property is satisfied, denotedD |= 〈G〉>p, if PrD(G) > p. In

practice, we represent G by an error automaton Gerr , a deterministic finite automaton

(DFA) storing all prefixes of executions that do not satisfy G. Model checking 〈G〉>p,

i.e. computing PrD(G), reduces to building the product D⊗Gerr and solving a linear

equation system [3].

3 Assume-Guarantee for Synchronous Probabilistic Systems

3.1 Probabilistic I/O Systems

We now define a compositional verification framework for synchronous probabilistic

systems. Since these systems are fully probabilistic, they will be modelled as discrete-

time Markov chains (DTMCs). The individual components, however, when considered

in isolation, are nondeterministic in nature since they can respond to inputs from other

components. We will model these components as probabilistic I/O systems (PIOSs).

Definition 4 (PIOS). A probabilistic I/O system (PIOS) is a tuple M = (S, s, α, δ),
where S and s are as for DTMCs, and the alphabet α and transition function δ : S ×
(α ∪ {τ}) → SDist(S) satisfy the following two conditions:

– α is partitioned into three disjoint sets of input, output and hidden actions, which

we denote αI , αO and αH , respectively; input actions αI are further partitioned

into m disjoint bundles αI,i (1 6 i 6 m) for some m;

– the set enab(s) ⊆ α∪{τ} of enabled actions for each state s (i.e. the actions a for

which δ(s, a) is defined) satisfies either |enab(s)| = 1 if enab(s) ∈ αO∪αH ∪{τ}
or enab(s) = αI,i for some input action bundle αI,i.

1 This includes “infinite” paths which reach a deadlock and remain there forever.
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Fig. 1. Running example: two PIOSs M1 and M2.

PIOSs generalise DTMCs by distinguishing between different types of actions and by

allowing multiple input actions to be enabled from the same state. From any state s of

a PIOS, there is either a single transition labelled with an output, hidden or τ action,

or k transitions, each labelled with one action from a particular bundle αI,i comprising

k input actions. In practice, a bundle αI,i will typically represent the set of of possible

values that can be communicated from one component to another. A PIOS with only

hidden or τ actions can be considered to be a DTMC. As we will see below, the intention

is that the parallel composition of PIOSs results in a DTMC.

Transitions and paths in a PIOS are defined as for DTMCs. However, we will

sometimes write transitions labelled with action a as s
a!
−→ µ or s

a?
−→ µ, to indi-

cate that a is an output or input action, respectively. Typically, to reason about the

probability of events in models that exhibit both probabilistic and nondeterministic

behaviour, we need a notion of schedulers (or adversaries) that resolve nondetermin-

ism. For PIOSs, however, we only consider the (maximum) probability PrM (w) of

a particular sequence of actions w ∈ (α ∪ {τ})∗ being observed, which simplifies

this.2 The probability of a finite path θ = s0
a0−−→ s1 · · ·

an−1−−−−→ sn in M is given by

PrM (θ) =
∏n−1

i=0 δ(si, ai)(si+1). Since PIOSs only have nondeterminism on input ac-

tions, the probability for a word w ∈ (α ∪ {τ})∗ is well defined: letting wd(θ) denote

the word a0 . . . an−1 of actions from path θ, we have PrM (w) =
∑

wd(θ)=w PrM (θ).

Then, letting st : (α ∪ {τ})∗α→ α∗ be the function that removes all τs, we define the

probability PrMτ (w′) for a τ -free word w′ ∈ α∗ as PrMτ (w) =
∑

w=st(w′) Pr
M (w′).

Example 1. Fig. 1 depicts two PIOSs M1 and M2. M1 is a data communicator which

chooses (probabilistically) to either send or receive data. This simple example only

models receiving; choosing to send results in a failure. M1 tells M2, a data generator,

that it is ready to receive using action ready .M2 should then send a sequence of packets,

modelled by the alternating actions d0 and d1 . IfM1 has failed, it sends a message fail .

M2 also has an initialisation step (init), which can fail. With probability 0.8, it is ready

to receive signals from M1; otherwise, it just tries to send packets anyway. Input/output

actions for M1,M2 are labelled with ?/! in the figure; all other actions are hidden. Each

PIOS has a single input action bundle: αI,1
1 = {d0 , d1}, αI,1

2 = {ready , fail}.

Parallel composition. Next, we define parallel composition of PIOSs. For simplicity,

we only present a binary parallel composition operator that results in a DTMC (since

this matches the proof rule that we will later define). However, this can be adapted to

more flexible schemes composing multiple PIOSs.

2 In fact, following the sequence of actions w dictates a unique scheduler.

6



Given two PIOSs M1, M2 with alphabets α1, α2, we say that M1 and M2 are

composable if αI
1 = αO

2 , αO
1 = αI

2 and αH
1 ∩ αH

2 = ∅; and we call αI
1 ∪ αO

1 the

external actions. We distinguish the following cases: (1) if both actions are external

actions and they are matching, then they will be performed simultaneously; (2) if both

actions are hidden or τ actions, say b1 ∈ αH
1 ∪ {τ}, b2 ∈ αH

2 ∪ {τ}, then they will be

carried out by a combined action b1 ∗ b2 simultaneously; (3) if a is an external action

(or no actions are enabled) and b is an hidden action, then a will wait (or equivalently

perform an idle action ⊥) and a combined action ⊥ ∗ b will be executed. Formally:

Definition 5 (Parallel composition). The parallel composition of two composable PIOSs

Mi = (Si, si, αi, δi) for i=1, 2 is given by the PIOSM1||M2 = (S1×S2, (s1, s2), α, δ),
where α = αH = αI

1 ∪ αO
1 ∪

(

(αH
1 ∪ {⊥}) ∗ (αH

2 ∪ {⊥})
)

and, for b1 ∈ αH
1 ∪ τ ,

b2 ∈ αH
2 ∪ τ and a ∈ αI

1 ∪α
O
1 , δ is defined such that (s1, s2)

γ−−→µ1 ×µ2 iff one of the

following holds:

– s1
a−→µ1, s2

a−→µ2, and γ = a

– s1
b1−−→µ1, s2

b2−−→µ2 and γ = b1 ∗ b2
– s1

b1−−→µ1, s2
a−→ (or s2 6→), µ2 = ηs2 , and γ = b1 ∗ ⊥

– s1
a−→ (or s1 6→), s2

b2−−→µ2, µ1 = ηs1 , and γ = ⊥ ∗ b2

Note that (αH
1 ∪ {⊥}) ∗ (αH

2 ∪ {⊥}) is defined in a point-wise fashion of ∗ operator. It

is straightforward to check that PIOS M1‖M2 is well-defined and a DTMC.

3.2 Assumptions for PIOSs

We will use PIOSs to develop an assume-guarantee framework for compositional veri-

fication. First, we need to formulate a notion of assumptions about PIOSs. For this, we

will use a specific class of PFAs that satisfy certain additional conditions.

Definition 6 (Assumption). Let M be a PIOS with alphabet α = αI ⊎ αO ⊎ αH

and input action bundles αI =
⊎m

i=1 α
I,i. An assumption A about M is a PFA A =

(S, s, α,P) satisfying, for each state s ∈ S: (i) either all or none of the actions in a

bundle αI,i (1 6 i 6 m) are enabled in s; (ii) pmax(s) ∈ [0, 1], where:

pmax(s)
def

=
∑

a∈αO∪αH

∑

s′∈S

P(a)[s, s′]+

m
∑

i=1

pmax
i (s) and pmax

i (s)
def

= max
a∈αI,i

∑

s′∈S

P(a)[s, s′]

Intuitively, an assumption is a PFA in which, for any state, the sum of all its outgoing

transitions by output or hidden actions and the maximum outgoing probability sums

among all the actions in each bundle is at most 1. For simplicity, in this presentation,

we assume that assumption A contains all actions (except τ ) from PIOS M . As we will

describe below, we first rename all actions in αH to τ , meaning thatA in fact only refers

to actions from αI ∪ αO.

To capture the fact that a PFA represents a valid assumption about a PIOS M , we

introduce the notion of weak language inclusion, which relaxes the definition of lan-

guage inclusion for PFAs introduced earlier by ignoring any occurrences of τ actions.

We also define weak language equivalence.

7



�
�

������

� �
���

���

�
�

�
�

	�AB�

�CD
�ED

	�AB�

�
�

�������	AB�C� �

���

���

��

�
�

D�	E�

��

��

�F�
���

D�	E�

�

�

D

Fig. 2. Assumption A and its PIOS conversion pios(A).

Definition 7 (Weak language inclusion/equivalence). For PIOS M with alphabet α
and an assumption A about M , we say that M and A are related by weak language

inclusion (resp. equivalence), denoted M ⊑w A (resp. M ≡w A), if for every word

w ∈ α∗, PrMτ (w) 6 PrA(w) (resp. PrMτ (w) = PrA(w)).

A valid assumption A for M is one that satisfies M ⊑w A. We can reduce the problem

of checking whether this is true to the problem of checking (strong) language inclusion

between two PFAs, which we discuss in Section 4. This reduction is formalised by the

following proposition.

Proposition 1. Let M = (S, s, α, δ) be a PIOS and A be an assumption about M . We

denote by pfa(M) the (straightforward) translation ofM to a PFA, defined as (S, s, α∪
{τ},P) where P(a)[s, s′] = δ(s, a)(s′) for a ∈ α ∪ {τ}. Then, letting Aτ denote the

PFA derived from A by adding τ to its alphabet and a probability 1 τ -loop to every

state, we have that: M ⊑w A ⇔ pfa(M) ⊑ Aτ .

We can also perform a conversion in the opposite direction, translating an assumption

PFA A into a (weak language) equivalent PIOS, which we denote pios(A). We will use

this technique in the next section when performing compositional verification.

Definition 8 (Assumption-to-PIOS conversion). Given assumption A = (S, s, α,P),
and action partition α = (

⊎m
i=1 α

I,i) ⊎ αO ⊎ αH , its conversion to a PIOS is defined

as pios(A) = (S′, s, α, δ), where S′ = S ⊎ {sa|s ∈ S, a ∈ αH ∪ αO} ⊎ {si|s ∈
S, 1≤i≤m} and δ is constructed as follows. For any transition s a−→ s′, let p denote

P(a)[s, s′] and pmax(s) and pmax
i (s) be as defined in Definition 6. Then:

– if a ∈ αO ∪ αH , then δ(s, τ)(sa) = p
pmax(s) and δ(sa, a)(s′) = pmax(s);

– if a ∈ αI,i (for 16i6m), then δ(s, τ)(si) =
pmax

i (s)
pmax(s) and δ(si, a)(s′) = p·p

max(s)
pmax

i
(s) .

Proposition 2. For assumption A = (S, s, α,P), pios(A) is a well defined PFA.

Example 2. Consider PIOSM1 from Example 1. Fig. 2 shows a valid assumptionA for

M (i.e. M1 ⊑w A) and the corresponding PIOS pios(A). In A, state q0 has two output

actions leading to respective sub-distributions. Thus A is not a PIOS. In pios(A), a τ

transition and the states qready0 and qfail0 (abbreviated to qr0 and qf0 ) are added.

3.3 Assume-Guarantee Verification for PIOSs

Now, we are in a position to describe how to perform compositional verification using

our framework. We focus on verification of a probabilistic safety property 〈G〉>p on a

DTMC constructed as the parallel composition M1‖M2 of a pair of PIOSs. For sim-

plicity, we will assume that the property refers only to input/output actions of M1 and

8



M2. However, it is possible to adapt our approach to allow G to also refer to hidden

actions of either M1 or M2. Furthermore, we will assume that all hidden actions of M1

and M2 have been renamed as τ actions. This affects neither the parallel composition

M1‖M2 nor the probability of satisfying G.

First, we introduce the idea of an assume-guarantee triple 〈A〉M 〈G〉>p, with the

intuitive meaning “whenever component M is part of a system satisfying the assump-

tion A, then the system is guaranteed to satisfy property 〈G〉>p”.

Definition 9 (Assume-guarantee triple). If M is a PIOS with alphabet α, A is an

assumption about M and 〈G〉>p is a probabilistic safety property, then 〈A〉M 〈G〉>p

is an assume-guarantee triple, with the following meaning:

〈A〉M 〈G〉>p ⇔ ∀M ′. (M ′ ⊑w A =⇒ M ′‖M |= 〈G〉>p).

Using the translation pios(A) from PFA to PIOS described above, checking whether a

triple is true reduces to standard probabilistic model checking (see Section 2.2).

Proposition 3. For A, M and 〈G〉>p as given in Definition 9, the assume-guarantee

triple 〈A〉M 〈G〉>p holds if and only if pios(A)‖M |= 〈G〉>p.

We focus on an assume-guarantee proof rule for M1‖M2 that is asymmetric, in that it

only uses an assumption about one of the two components (M1). Despite their simplic-

ity, rules of this form have proved to be widely applicable in both non-probabilistic and

probabilistic contexts [20,18,11].

Theorem 1. LetM1,M2 be PIOSs, andA be an assumption forM1. For a probabilistic

safety property 〈G〉>p, the following proof rule holds:

M1 ⊑w A and 〈A〉M2 〈G〉>p

M1‖M2 |= 〈G〉>p

(ASYM)

Theorem 1 means that, given an appropriate assumption A about M1, we can decom-

pose the verification of M1‖M2 into two sub-problems: checking weak language inclu-

sion between M1 and A; and checking that 〈A〉M2 〈G〉>p. The former, as shown in

Proposition 1, reduces to (strong) language inclusion on PFAs, which we discuss in the

next section. The latter, as shown in Proposition 3, requires construction of the DTMC

pios(A)‖M2 and then application of standard probabilistic model checking techniques.

Example 3. Consider probabilistic safety property 〈G〉>0.9, whereGmeans “fail never

occurs”. We can check this on running example M1‖M2 using assumption A from

Example 2. Since M1 ⊑w A, we just need to check that pios(A)||M2 |= 〈G〉>0.9. As

pios(A)||M2 has a single path (q0t0)
τ∗init,0.08−−−−−−−−→ (q2t1)

fail,1−−−−→ (q4t1) · · · containing

fail with probability 0.08, 〈G〉>0.9 is satisfied (since 1− 0.08 > 0.9) and we are done.

We conclude this section by pointing out that our verification framework is complete

in the following sense: if M1‖M2 |= 〈G〉>p is true, we can always find an assumption

A to verify it using rule (ASYM). This is because we can simply take A to be pfa(M1).
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Algorithm 1 Semi-algorithm of deciding language inclusion for PFAs

Input: PFAs A1 and A2 over the same alphabet α.

Output: true if A1 ⊑ A2; or false and a counterexample w′ ∈ α∗ otherwise.

1: queue := {(ι1, ι2, ε)}, V := {(ι1, ι2, ε)}
2: while queue 6= ∅ do

3: remove (υ1,υ2, w) from the head of queue

4: for all a ∈ α do

5: υ
′

1 := υ1P1(a); υ
′

2 := υ2P2(a); w
′ := wa

6: if υ′

1κ1 > υ
′

2κ2 then return false and counterexample w′

7: else if (υ′

1,υ
′

2, w
′) does not satisfy (C1) or (C2) then

8: add (υ′

1,υ
′

2, w
′) to the tail of queue, V := V ∪ {(υ′

1,υ
′

2, w
′)}

9: return true

4 Deciding Language Inclusion for PFAs

As discussed above, verifying whether a component satisfies an assumption in our

framework reduces to checking language inclusion between PFAs, i.e. deciding whether

two PFAs A1 and A2 over the same alphabet α satisfy A1 ⊑ A2. In this section, we

propose a semi-algorithm for performing this check. IfA1 ⊑ A2 does not hold, then the

algorithm is guaranteed to terminate and return a lexicographically minimal word as a

counterexample; but if A1 ⊑ A2 does hold, then the algorithm may not terminate. The

latter case is unavoidable since, as mentioned previously, the problem is undecidable.3

However, as we will demonstrate in Section 7, the method often works well in practice.

Algorithm 1 shows the semi-algorithm for deciding if A1 ⊑ A2, where Ai =
(Si, si, α,Pi) for i = 1, 2. We also define ιi and κi as in Section 2.1. Inspired by

the language equivalence decision algorithm in [24], our method proceeds by expand-

ing a tree. Each node of the tree is of the form (υ1,υ2, w), where w is a word and

υi = ιiPi(w) (for i = 1, 2) is the vector of probabilities of reaching each state via

word w in Ai . Note that υiκi is the probability of PFA Ai accepting the word w. The

root of the tree is (ι1, ι2, ε), where ε is the empty word. As shown in Algorithm 1,

during the tree expansion we maintain a queue of tree nodes, which helps us to expand

the tree in breadth-first order. In addition, we maintain a set V of non-leaf nodes, which

initially only contains the root. The major contribution of our method, compared to the

work in [24], is that we adopt different criteria to decide when to add a node to the

non-leaf set V . In [24], the set V is maintained by calculating the span of vector space.

However, for the language inclusion check, we cannot simply use the same criteria.

In each iteration, we remove a node (υ1,υ2, w) from the head of queue. We then ex-

pand the tree by appending a set of its child nodes (υ′
1,υ

′
2, w

′), where υ′
1 := υ1P1(a),

υ
′
2 := υ2P2(a), and w′ := wa for all actions a ∈ α. If there is a node (υ′

1,υ
′
2, w

′)
such that Pr1(w

′) = υ
′
1κ1 > υ

′
2κ2 = Pr2(w

′), then the algorithm terminates and

returns w′ as a counterexample for A1 ⊑ A2. Otherwise, we check if we can prune

each child node (υ′
1,υ

′
2, w

′) (i.e. make it a leaf node) by seeing if it satisfies either of

the following two criteria:

3 In fact, existing undecidability proofs [5,19] assume both accepting and non-accepting states,

but it is straightforward to establish a similar result for PFAs with all states accepting.
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(C1) υ′
1κ1 = 0.

(C2) There exist |V | non-negative rational numbers ρi such that, for all (υi
1,υ

i
2, w

i) ∈
V , υ′

1 ≤
∑

0≤i<|V | ρ
i
υ
i
1 and υ

′
2 ≥

∑

0≤i<|V | ρ
i
υ
i
2, where ≤ and ≥ denote point-

wise comparisons between vectors.

Criterion (C1) is included because it is never possible to find a counterexample word

with accepting probability less than υ
′
1κ1 = 0. Criterion (C2) is included because any

node satisfying it would guarantee υ′
1κ1 ≤ υ

′
2κ2; moreover, if the algorithm terminates

and a node satisfies (C2), all of its descendants also satisfy (C2). We can thus make it

a leaf node. Formal proofs of the above argument are in the appendix. In practice, (C2)

can easily be checked using an SMT solver. If a node cannot be pruned, we add it to the

tail of queue and to the non-leaf set V. The algorithm terminates when queue is empty,

concluding that A1 ⊑ A2.

Correctness. An intuitive explanation of the correctness of the semi-algorithm is as fol-

lows. If A1 ⊑ A2 does not hold, then there must exist at least one counterexample w′

such that PrA1
(w′) > PrA2

(w′). By expanding the tree in a breadth-first fashion, we

eventually reach the node corresponding to such a word w′ and terminate the algorithm

(see Line 7 of Algorithm 1). Furthermore, due to the order of traversal, the counterexam-

ple returned will be the lexicographically minimum one. On the other hand, ifA1 ⊑ A2

does hold, the algorithm may not terminate due to the undecidability of the underlying

problem, Algorithm 1 could potentially keep finding nodes that do not satisfy either

(C1) or (C2), and adding them to the queue. A formal proof of correctness is included

in the appendix.

5 L*-Style Learning for PFAs

In this section, we propose a novel learning method that aims to learn a PFA for a target

weighted language generated by an unknown PFA. Our technique operates in a similar

style to the well-known L* algorithm [2], which infers a minimal DFA for an unknown

regular language, in the sense that it constructs a similar observation table which now

contains the accepting probabilities of words. Both L* and our method are active learn-

ing approaches, in which queries are posed to a teacher in an interactive fashion dur-

ing learning. There are two types of queries. The first are membership queries, which

ask the probability of accepting a particular word in the target PFA. The second are

equivalence queries, which ask whether a hypothesised PFA accepts exactly the target

language. Our method is also inspired by [4], where an active learning algorithm was

proposed for learning multiplicity automata.

Given a target weighted language generated by an unknown PFAAwith alphabet α,

our learning algorithm incrementally builds an observation table (P,E, T ), where P is

a non-empty finite prefix-closed set of words, E is a non-empty finite suffix-closed set

of words, and T : ((P ∪P ·α) ·E) → [0, 1] maps each word to its accepting probability

in A. Note that · is the concatenation operator over sets (the concatenation operator ·
over two words will sometimes be omitted). The rows of table (P,E, T ) are labelled

by elements in the prefix set P ∪ P ·α and the columns are labelled by elements in the

suffix set E. Any entry at row u and column e represents a word u · e, and T (u·e) is

11



Algorithm 2 L*-style learning for PFAs

Input: The alphabet α of a target weighted language generated by an unknown PFA.

Output: A PFA accepting the target language.

1: initialise the observation table (P,E, T ), letting P = E = {ε}, where ε is the empty word

2: fill T by asking membership queries for ε and each action a ∈ α

3: while (P,E, T ) is not closed or not consistent do

4: if (P,E, T ) is not closed then find u ∈ P, a ∈ α that make (P,E, T ) not closed

5: add u · a to P , and extend T to (P ∪ P · α) · E using membership queries

6: if (P,E, T ) is not consistent then find a ∈ α, e ∈ E that make (P,E, T ) not consistent

7: add a · e to E, and extend T to (P ∪ P · α) · E using membership queries

8: construct a hypothesised PFA A and ask an equivalence query

9: if answer = no, with a counterexample c then add c and all its prefixes to P

10: extend T to (P ∪ P · α) · E using membership queries, goto Line 4

11: else return PFA A

the value of the entry (the probability of the word u·e). We use row(u) to represent the

|E|-dimensional row vector in the table (P,E, T ) labelled by the prefix u ∈ (P ∪P ·α).
Inspired by [4], we define the notions of closed and consistent observation tables by

establishing linear dependencies between row vectors as follows.

Definition 10. Observation table (P,E, T ) is closed if, for all u ∈ P and a ∈ α, there

exist non-negative rational coefficients φi such that row(u · a) =
∑

ui∈P φirow(ui).

Definition 11. Observation table (P,E, T ) is consistent if, for any rational coefficients

ψi, ∀e ∈ E.
∑

ui∈P ψiT (ui·e) = 0 implies ∀a ∈ α, e ∈ E.
∑

ui∈P ψiT (ui·a·e) = 0.

We require the linear coefficients to be non-negative to make the observation table

closed (for calculating transition probabilities); this is a stronger condition than in [4].

Note that L* also keeps a closed and consistent observation table, whose definitions can

be considered as a special case of ours, when the table is filled with 1s and 0s.

Algorithm 2 summarises the learning algorithm, which maintains the observation

table (P,E, T ). Initially P = E = {ε} (where ε is the empty word). The algorithm

then asks membership queries for ε and each action a ∈ α to fill T . The main part of the

algorithm is a while loop, in which the algorithm checks if the current observation table

(P,E, T ) is closed and consistent. If (P,E, T ) is not closed (resp. consistent), then

the algorithm finds and adds to the table such u ∈ P and a ∈ α (resp. a ∈ α, e ∈ E)

that make it not closed (resp. consistent) as in Definition 10 (resp. Definition 11). The

table is updated accordingly by new membership queries. Note that when (P,E, T ) is

not closed (resp. consistent), such a pair of u and a (resp. a and e) must exist. And

since u (resp. e) is already in P (resp. E), adding u · a (resp. a · e) keeps P (resp. E) a

prefix-closed (resp. suffix-closed) set.

When (P,E, T ) is closed and consistent, the learning algorithm builds a hypothesis

PFA A and asks an equivalence query. If the teacher answers “no”, a counterexample

word c should be provided. The algorithm adds c and all its prefixes to P , updates the

observation table and continues to check if the table is closed and consistent. If the

teacher answers “yes”, the algorithm terminates and returns A.

12



PrM1 (w) ?

word w

Learner Teacher

cex.c

conj.A

prob.pw

Membership query

(analyse conjecture A)

M1 ‖M2 6|= 〈G〉≥p(i) M1 ⊑w A
(+ counterexample)

no
yes

done? M1 ‖M2 |= 〈G〉≥p

(+ assump.A)

(ii) 〈A〉M2 〈G〉≥p

Compute:

Check if A satisfies:

Property true:
〈G〉≥p

M1,M2

Update
table

Membership
query

Update
table

Generate
conjecture

Inputs: Outputs:

Property false:

(analyse word w)

Equivalence query

Fig. 3. L*-style PFA learning loop for probabilistic assumption generation.

Given a closed and consistent observation table (P,E, T ), the learning algorithm

builds a PFA A = (S, s, α,P) as follows. Firstly, it computes a subset of P , denoted

con(P ), such that every element of {row(u)|u ∈ P} can be represented as a conical

combination of elements in {row(v)|v ∈ con(P )}, i.e. there exists a set of non-negative

rational coefficients λi that for all u ∈ P , row(u) =
∑

vi∈con(P ) λirow(vi). Then, it

defines the set of states S = {s0, . . . , sn−1} such that each state si corresponds to a

row vector in {row(v)|v ∈ con(P )}, and the initial state s corresponds to row(ε) (note

that row(ε) ∈ con(P )). To obtain P(a) (for a ∈ α), a set of rational coefficients

γj is computed such that row(si · a) =
∑

sj∈S γjrow(sj), where si ∈ S; and then

P(a)[i, j] := γj · (T (sj · ε)/T (si · ε)). We show in the appendix that A is a well-

defined PFA and that it conforms with the table (P,E, T ), i.e. , ∀u ∈ (P ∪ P · α),
∀e ∈ E, PrA(u · e) = T (u · e).

Correctness. When the learning algorithm terminates, the learnt PFAA accepts the tar-

get language. This is guaranteed by the result of the equivalence query. Unfortunately,

we cannot prove the termination of our method. For L*, the basis for the corresponding

proof is that, for any regular language, there exists a unique minimal accepting DFA.

However, an analogous property does not exist for weighted languages and PFAs. Ac-

cording to [4], the smallest multiplicity automaton can be learnt given a weighted lan-

guage. However, as shown in [7], converting a multiplicity automaton to a PFA (even

for the subclass that define stochastic languages) is not always possible.

6 Learning Assumptions for Compositional Verification

Finally, we build upon the the techniques introduced in Sections 4 and 5 to produce a

fully-automated implementation of the assume-guarantee framework proposed in Sec-

tion 3. In particular, we use PFA learning to automatically generate assumptions to

perform compositional verification.

Fig. 3 summarises the overall structure of our approach, which aims to verify (or

refute) M1 ‖M2 |= 〈G〉>p for two PIOSs M1,M2 and a probabilistic safety property

〈G〉>p. This is done using proof rule (ASYM) from Section 3, with the required as-

sumption PFA A about component M1 being generated through learning. The left-hand

side of the figure shows the learning algorithm of Section 5, which drives the whole

process; the right-hand side shows the teacher.
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The teacher answers membership queries (about word w) by computing the proba-

bility PrM1(w) that M1 accepts word w. It answers equivalence queries (about conjec-

tured PFA A) by checking if A satisfies both premises of rule (ASYM): (i) M1 ⊑w A,

and (ii) 〈A〉M2 〈G〉>p. The first is done using Proposition 1 and the algorithm in Sec-

tion 4. The second is done using Proposition 3, which reduces to probabilistic model

checking of the DTMC pios(A) ‖M2.

If both premises are true, we can conclude that M1 ‖M2 |= 〈G〉>p holds. Other-

wise, the teacher needs to provide a counterexample c for the learning algorithm to

update the observation table and proceed. If premise (i) failed, then c is taken as the

word showing the violation of (weak) language inclusion. If premise (ii) failed, we

try to extract c from the results of model checking. We extract a probabilistic coun-

terexample [12] C: a set of paths showing pios(A)||M2 6|= 〈G〉>p. Following the same

approach as [10], we transform C into a (small) fragment of M1 (denoted MC
1 ) and

check whether MC
1 ||M2 6|= 〈G〉>p. If so, we stop the learning loop, concluding that

M1||M2 6|= 〈G〉>p. If, on the other hand, C is a spurious counterexample, we can al-

ways extract, from C a counterexample (word) c such that the learning algorithm can

update its observation table (full details can be found in the appendix).

From the arguments above, we can show that, when the learning loop terminates, it

always yields a correct result. However, since the loop is driven by the learning algo-

rithm of Section 5, whose termination we cannot prove, we are also unable to guarantee

that the loop finishes. However, as will show next, learning does indeed terminate suc-

cessfully on a variety of real examples.

Example 4. Finally, we illustrate the learning loop described above through an example.

Given PIOSs M1 and M2 as illustrated in Fig. 1, we show how to learn an assumption

A about M1 with the alphabet α = {fail !, ready !, d0?, d1?}. Firstly, we initialise the

observation table (P,E, T ) of the learning algorithm (see Algorithm 2 in Section 5),

where the prefix set P = {ε} and the suffix set E = {ε}. A first membership query

is made with the empty word ε; and the answer is 1, since the accepting probability

PrM1(ε) = 1. Then each action a ∈ α is added to the set P · α and the table is filled

with membership query answers of PrM1(a) The table is closed and consistent, so a

hypothesis PFA H1 is built as shown in Fig. 4.

�
�

������
���

���

� ��

	�AB�

T
E

ε

P ε 1

P · α

fail! 0.1

ready! 0.9

d0? 0

d1? 0

Fig. 4. The first hypothesis PFA H1 and its corresponding observation table.
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Now, an equivalence query is made for H1. A counterexample word c1 = fail! ·
fail! is provided by the teacher since PrM1(c1) = 0.1 > PrH1(c1) = 0.01, indicating

that M1 6⊑w H1. The observation table (P,E, T ) is updated by adding c1 and all its

prefixes to P and extending T to (P ∪ P · α) · E using membership queries as shown

in Fig. 5. Again, this table is closed and consistent. Now a second hypothesis PFA H2

(Fig. 5) is constructed and an equivalence query is made for it. The teacher provides a

counterexample c2 = ready! · d0?, because PrM1(c2) = 0.9 > PrH1(c2) = 0. The

table is updated again using c2 as shown in Fig. 6.

Since this table is also closed and consistent, a hypothesis PFA is built as the A
in Fig. 2 and an equivalence query is asked for it. As described in Example 2, A is a

good assumption about M1 to verify the safety property. Therefore, the learning loop

terminates.

�
�

������
� �

���

���

�

	�AB�

�
�

	�AB�

T
E

ε

P

ε 1

fail! 0.1

fail! · fail! 0.1

P · α

fail! 0.1

ready! 0.9

d0? 0

d1? 0

fail! · fail! 0.1

fail! · ready! 0

fail! · d0? 0

fail! · d1? 0

fail! · fail! · fail! 0.1

fail! · fail! · ready! 0

fail! · fail! · d0? 0

fail! · fail! · d1! 0

Fig. 5. The second hypothesis PFA H2 and its corresponding observation table.

7 Experimental Results

We have built a prototype tool implementing the compositional verification framework

described in this paper. Our prototype uses PRISM [17] to answer queries from the

assumption learning procedure and the SMT solver Yices 2 to solve the linear arithmetic

problems in the language inclusion check (Section 4) and in PFA learning (Section 5).

Experiments were run on a 2.80GHz PC with 32GB RAM running 64-bit Fedora.

We applied our implementation to several benchmark case studies. The first is the

contract signing protocol of Even/Goldreich/Lempel (egl), where two parties are ex-

changing N pairs of secrets and each secret contains L bits. The second and third are

variants of the bounded retransmission (brp) protocol which sends a file in N chunks,
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T
E

ε

P

ε 1

fail! 0.1

fail! · fail! 0.1

ready! 0.9

ready! · d0? 0.9

P · α

fail! 0.1

ready! 0.9

d0? 0

d1? 0

fail! · fail! 0.1

fail! · ready! 0

fail! · d0? 0

fail! · d1? 0

fail! · fail! · fail! 0.1

fail! · fail! · ready! 0

fail! · fail! · d0? 0

fail! · fail! · d1! 0

ready! · fail! 0

ready! · ready! 0

ready! · d0? 0.9

ready! · d1? 0.9

ready! · d0? · fail! 0

ready! · d0? · ready! 0

ready! · d0? · d0? 0.9

ready! · d0? · d1! 0.9

Fig. 6. The third closed and consistent observation table (see its corresponding PFA A in Fig. 2).

Case study Component sizes Compositional Non-compositional

[parameters] |M2⊗Gerr | |M1| |A| |pios(A)| |EQ| Result Time (s) Result Time (s)

egl

[N L]

6 8 8,265,625 433 24 37 5 0.514648 39.8 0.514648 5.39

7 8 48,399,849 505 28 43 5 0.015380 58.6 0.015380 5.58

8 2 31,573,161 193 32 49 5 0.503845 67.6 0.503845 4.24

brp-1

[N Max ]

16 5 642 191 2 3 2 1.121E-8 2.3 1.121E-8 0.50

32 5 1,282 191 2 3 2 2.241E-8 3.8 2.241E-8 0.92

64 5 2,562 191 2 3 2 4.482E-8 4.1 4.482E-8 1.79

brp-2

[N Max ]

2 2 764 50 19 25 9 1.792E-2 55.5 1.792E-2 0.04

2 3 764 63 39 57 7 3.740E-3 172.2 3.740E-3 0.05

4 4 764 146 - - - - - 1.556E-3 0.17

client-server

[N ]

2 72 274 17 17 10 0.079999 61.1 0.079999 0.019

3 372 416 31 31 14 0.079999 325.9 0.079999 0.118

4 1,728 562 49 49 37 0.079999 3,155.5 0.079999 0.247

Fig. 7. Performance of the learning-based compositional verification framework.

but allows only a bounded (Max ) number of retransmissions of each chunk (brp-1 and

brp-2 differ only with regards to which component is M1). The fourth is a synchronous

variant of the client-server model from [10], with N clients requesting resources from

a server. Models, properties and references are available online [25].

Fig. 7 shows experimental results for these case studies. For each model, we first

report the state space of components M1 and M2 (the latter together with the safety
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property’s DFA Gerr ). Then, we show the state space of the learnt assumption A and

its conversion to a PIOS pios(A). To illustrate the performance of the learning loop

(Fig. 3), we also show the number of requested equivalence queries, |EQ|, which cor-

responds to the number of iterations in the loop. Finally, we report the compositional

verification result4 and the total run-time. For comparison, we also include the result

from non-compositional verification using PRISM. A comparison with our earlier work

to learn probabilistic safety properties [10] is not applicable since that framework is

only meaningful for Markov decision processes, not Markov chains.

Our primary concern in these experiments is to investigate the feasibility of auto-

matically generating valid and compact assumptions using our approach. Indeed, we see

that, in all but one case, we successfully learn assumptions that permit compositional

verification to be performed; furthermore, these assumptions are usually considerably

smaller than the components that they represent (even after the PFA-to-PIOS conver-

sion) and the results obtained are exact. One model (brp2) performs less well, including

an instance where the loop does not terminate. Investigations show that this is due to

round-off errors in the numerical computation performed by PRISM being converted

to rationals for the SMT solver. We plan to investigate the use of arbitrary precision

arithmetic to alleviate this problem. Currently our implementation is a prototype and

(unsurprisingly) results in slower run-times than non-compositional verification using

(highly-optimised) PRISM.

8 Conclusion

In this paper, we have presented a novel assume-guarantee framework where multi-

component systems are modelled by discrete-time Markov chains, components are

probabilistic I/O systems and assumptions are probabilistic finite automata. Based on

new techniques for checking PFA language inclusion and active learning of PFAs, we

have built a fully-automated implementation of the framework that generates assump-

tions and then performs compositional verification. Future work in this area will include

exploring ways to extend our techniques to models with nondeterminism and investi-

gating termination conditions for the language inclusion check and PFA learning.
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APPENDIX

This appendix contains proofs for the results stated in the main paper.

A Proofs for Section 3

Proposition 1. Let M = (S, s, α, δ) be a PIOS and A be an assumption about M . We

denote by pfa(M) the (straightforward) translation ofM to a PFA, defined as (S, s, α∪
{τ},P) where P(a)[s, s′] = δ(s, a)(s′) for a ∈ α ∪ {τ}. Then, letting Aτ denote the

PFA derived from A by adding τ to its alphabet and a probability 1 τ -loop to every

state, we have that: M ⊑w A ⇔ pfa(M) ⊑ Aτ .

Proof. For each word w in M , the following holds:

PrM (w)
(1)

6 PrM (st(w))
(2)

6 PrA(st(w))
(3)
= PrA

τ

(st(w))
(4)
= PrA

τ

(w),

where (1) holds because st(w) represents a set of words T = {w′ | st(w′) = st(w)},

and w ∈ T . (2) is due to the definition of M ⊑w A. (3) is true because all the τ actions

in Aτ have self-loops with probability 1. (4) is true because for each word w in Aτ ,

PrA
τ

(w)=PrA
τ

(w̄), where w̄ is the τ -free version of w. This is because every τ is a

self-loop with probability 1. It is also clear that PrM (w) = Prpfa(A)(w). The above

(in)equalities hold from both directions, thus M ⊑w A iff pfa(M) ⊑ Aτ . ⊓⊔

Proposition 2. Given assumptionA = (S, s, α,P), and action partitionα = (
⊎m

i=1 α
I,i)⊎

αO ⊎ αH , pios(A) = (S′, s, α, δ) is well-defined.

Proof. Since the action partition is given, it is to prove that 1) |enab(s)| = 1 if enab(s) ∈
αO ∪ αH ∪ {τ} 2) enab(s) = αI,i for some input action bundle αI,i.

For any state s ∈ S, due to the construction, s has only one action τ , which satisfies

1). Since there can be a unique action with name a ∈ α from any state s in A, for any

state s and action a ∈ αI∪αH , the newly created state sa is unique. Thus, the transition

δ(s, τ)(sa) is well-defined. Since p ∈ [0, 1] and pmax(s) ∈ [0, 1] and p ≤ pmax(s), thus
p

pmax(s) is a probability. For any state sa ∈ S′ \ S, the transition to s′ with action

a is unique, thus δ(sa, a)(s′) is well-defined. pmax(s) ∈ [0, 1] is a probability. The

probability from s to s′ is P(a)[s, s′] = p in A, while in pios(A) the probability is

δ(s, τ)(sa) · δ(sa, a)(s′) = p
pmax(s) · p

max(s) = p.

Likewise, there is at most one input action bundle αI,i from any state s ∈ S, the

newly created state si is unique. Thus, the transition δ(s, τ)(si) is well-defined and
pmax

i (s)
pmax(s) is a probability. For any state si ∈ S \ S, the transition to s′ with action a

is unique, thus δ(si, a)(s′) is well-defined and p·p
max(s)

pmax

i
(s) is a probability. Furthermore,

the probability from s to s′ is p in A, which equals that in pios(A). Besides, due to

Def. 6 the input actions in a bundle will be enabled in the all-or-none fashion, it is thus

guaranteed that enab(s) = αI,i for some input action bundle αI,i. ⊓⊔
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Proposition 3. For A, M and 〈G〉>p as given in Definition 9, the assume-guarantee

triple 〈A〉M 〈G〉>p holds if and only if pios(A)‖M |= 〈G〉>p.

To prove Proposition 3, we require the following two lemmas.

Lemma 1. If M1 ⊑w A, then M1||M2 ⊑w pios(A)||M2.

Proof. Given any word w in M1||M2, w can be uniquely mapped back onto M1 and

M2, as w1 = w⇂M1
and w2 = w⇂M2

, by sequentially taking the synchronous actions

and their respective hidden actions (if not ⊥). We write w = w1||w2 for simplicity.

For a word in a composed model, since only input/output actions are visible and all the

other actions are τ actions in M1, M2 and pios(A), it is easy to see that given a τ -free

word w̄ ∈ α∗, w̄ = w̄1||w̄2.

Given a path θ in M1||M2 with tr(θ) = w, θ can be decomposed into θ1 in M1

with tr(θ1) = w1 and θ2 ∈ M2 with tr(θ2) = w2. We write θ = θ1||θ2 for simplicity.

The probability of the composed path is

PrM1||M2(θ1||θ2) = PrM1(θ1) · Pr
M2(θ2). (1)

Since M1 ⊑w A, we have that PrM1(st(w1)) 6 PrA(st(w1)), which means

∑

tr(θ1)=st(w1)

PrM1(θ1) 6
∑

tr(θ′

1
)=st(w1)

PrA(θ′1). (2)

We have that:

PrM1||M2(w̄)

= PrM1||M2(w̄1||w̄2)

=
∑

st(w′)=w̄1||w̄2

∑

tr(θ1||θ2)=w′

PrM1||M2(θ1||θ2)

=
∑

st(w′)=w̄1||w̄2

∑

tr(θ1||θ2)=w′

PrM1(θ1) · Pr
M2(θ2)

=
∑

st(w′)=w̄1||w̄2,w′=θ1||θ2

∑

tr(θ2)=w̄2

∑

tr(θ1)=w̄1

PrM1(θ1) · Pr
M2(θ2)

=
∑

st(w′)=w̄1||w̄2,w′=θ1||θ2

∑

tr(θ2)=w̄2

PrM1(w̄1) · Pr
M2(θ2)

(2)

6
∑

st(w′)=w̄1||w̄2,w′=θ1||θ2

∑

tr(θ2)=w̄2

Prpios(A)(w̄1) · Pr
M2(θ2)

=
∑

st(w′)=w̄1||w̄2,w′=θ1||θ2

∑

tr(θ2)=st(w2)

∑

tr(θ1)=st(w1)

Prpios(A)(θ1) · Pr
M2(θ2)

= Prpios(A)||M2(w̄1||w̄2)

= Prpios(A)||M2(w̄)

⊓⊔
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Lemma 2. If M1||M2 ⊑w pios(A)||M2 and pios(A)||M2 |= 〈G〉>p, then M1||M2 |=
〈G〉>p.

Proof. Given a DTMC D and DFA Gerr for G, we can build a product D ⊗ Gerr in

standard fashion [3] such that D satisfies 〈G〉≥p iff:

PrD⊗Gerr

{θ ∈ PathsD⊗Gerr

| θ is accepting in D ⊗Gerr} 6 1− p. (3)

Let D1=M1||M2 and D2=pios(A)||M2. Both are DTMCs and D2 |= 〈G〉>p so, by

(3), we have that PrD2⊗G(♦ err) 6 1 − p where ♦ err is a shorthand for the set of

accepting paths in D ⊗ Gerr . Since D1 ⊑w D2, and there is no probability in G, then

D1 ⊗G ⊑w D2 ⊗G. Thus

PrD1⊗G(♦ err ′) 6 PrD2⊗G(♦ err) 6 1− p.

Therefore, M1||M2 |= 〈G〉>p. ⊓⊔

Proof (of Proposition 3). The result follows directly from Lemma 1 and Lemma 2.

Theorem 1. LetM1,M2 be PIOSs, andA be an assumption forM1. For a probabilistic

safety property 〈G〉>p, the following proof rule holds:

M1 ⊑w A and 〈A〉M2 〈G〉>p

M1‖M2 |= 〈G〉>p

(ASYM)

Proof. The result follows directly from Definition 9.

Lemma 3. Given PIOSs M1 and M2, M1||M2 is a DTMC.

Proof. We distinguish three cases for the states in M1||M2. Note that µ1 × µ2 is a

distribution.

1. (s1, s2)
a−→ : Since only one of the states s1 and s2 has more than one input action

and the other state has one output action, the resulting state (s1, s2) will have only

one matching action enabled.

2. (s1, s2)
b1∗b2−−−−→ : Since each states s1 or s2 has exactly one hidden action, there is

only one combined action enabled.

3. (s1, s2)
b1∗⊥−−−−→ or (s1, s2)

⊥∗b2−−−−→ : If one state has a hidden action enabled, then

no matter whether the other state has one or more external states or is an endpoint,

there will be one combined action enabled.

In each case, there is only one action enabled, therefore M1||M2 is a DTMC. ⊓⊔

Lemma 4 (Hiding). If Mτ
1 ||M2 |= 〈G〉>p, then M1||M2 |= 〈G〉>p.

Proof. Since renaming changes neither the structure nor the probabilities on the tran-

sitions in M1, the structure and transition probabilities in Mτ
1 ||M2 and M1||M2 stays

the same. Since model checking MC M1||M2 and 〈G〉>p boils down to computing the

reachability of certain action-related states in their product and the renamed actions are

not in the DFA G, the reachability probability won’t change because of renaming.

⊓⊔
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B Proofs for Section 4

To prove the correctness of Algorithm 1, we first prove the following two lemmas.

Lemma 5. If a node (υ′
1,υ

′
2, w

′) satisfies (C2), then PrA1
(w′) ≤ PrA2

(w′).

Proof. Based on the definitions of PrA1
(w′) and PrA2

(w′), we have

PrA1
(w′) = υ

′
1κ1 ≤

∑

0≤i<|V |

ρiυi
1κ1 =

∑

0≤i<|V |

ρiPrA1
(wi),

and

PrA2
(w′) = υ

′
2κ2 ≥

∑

0≤i<|V |

ρiυi
2κ2 =

∑

0≤i<|V |

ρiPrA2
(wi).

According to Line 10 of Algorithm 1, for every node (υi
1,υ

i
2, w

i) ∈ V , we have

checked that PrA1
(wi) = υ

i
1κ1 ≤ υ

i
2κ2 = PrA2

(wi). Thus, we have

PrA1
(w′) ≤

∑

0≤i<|V |

ρiPrA1
(wi) ≤

∑

0≤i<|V |

ρiPrA2
(wi) ≤ PrA2

(w′).

⊓⊔

Lemma 6. Given a node (υ1,υ2, w) ∈ V , if the node (υ1P1(a),υ2P2(a), wa) satis-

fies (C2) for any action a ∈ α, then the node (υ1P1(u),υ2P2(u), wu) also satisfies

(C2) for any finite words u ∈ α∗.

Proof. Recall that a node (υ1P1(a),υ2P2(a), wa) satisfies (C2) iff there exists a set

of non-negative rational numbers ρ̂i such that



















υ1P1(a) ≤
∑

0≤i<|V |

ρ̂iυi
1,

υ2P2(a) ≥
∑

0≤i<|V |

ρ̂iυi
2,

(4)

And a node (υ1P1(u),υ2P2(u), wu) satisfies (C2) iff there exists a set of non-negative

rational numbers ρi such that



















υ1P1(u) ≤
∑

0≤i<|V |

ρiυi
1,

υ2P2(u) ≥
∑

0≤i<|V |

ρiυi
2,

(5)
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We prove this lemma by induction on the length of |u|. Suppose that (υ1P1(u),υ2P2(u), wu)
satisfying (C2) for some finite word u. We have

υ1P1(ua) = υ1P1(u)P1(a)

I.H.(5)

≤
∑

0≤i<|V |

ρiυi
1P1(a)

(4)

≤
∑

0≤i<|V |

ρi
∑

0≤j<|V |

ρ̂ijυj
1

=
∑

0≤j<|V |

(
∑

0≤i<|V |

ρiρ̂ij)υj
1

Let λj =
∑

0≤i<|V | ρ
iρ̂ij , we get

υ1P1(ua) ≤
∑

0≤i<|V |

λjυj
1

where λj is a set of nonnegative rational numbers. Symmetrically, we can deduce that

υ2P2(ua) ≥
∑

0≤i<|V |

λjυj
2

Therefore, for all a ∈ α, (υ1P1(ua),υ2P2(ua), wua) also satisfies (C2). ⊓⊔

Theorem 2 (Correctness). Algorithm 1 is correct when it terminates.

Proof. If the algorithm terminates in Line 7, then a word w′ is found such that

PrA1
(w′) = ι1P1(w

′)κ1 = υ
′
1κ1 > υ

′
2κ2 = ι2P2(w

′)κ2 = PrA2
(w′).

Therefore, A1 6⊑ A2.

If the algorithm terminates in Line 11, we prove that A1 ⊑ A2 is true, i.e., for any

finite word w ∈ α∗, PrA1
(w) ≤ PrA2

(w). We distinguish three different cases on w:

(1) The node (υ1,υ2, w) is in the non-leaf node set V . Then, it is guaranteed by Line

11 of Algorithm 1 that PrA1
(w) = υ1κ1 ≤ υ2κ2 = PrA2

(w).
(2) (Note that a node is made as a leaf node because it satisfies either (C1) or (C2). )The

word w has a prefix w̄ such that the node (ῡ1, ῡ1, w̄) is a leaf node and satisfies

(C1). We have PrA1
(w̄) = ῡ1κ1 = 0, which implies that PrA1

(w) = 0 since w̄
is a prefix of w. Therefore, PrA1

(w) = 0 ≤ PrA2
(w) is true for any probability

value of PrA2
(w).

(3) The wordw has a prefix w̄ such that the node (ῡ1, ῡ1, w̄) is a leaf node and satisfies

(C2). Let (υ̂1, υ̂2, ŵ) be the parent node of (ῡ1, ῡ2, w̄). Following Line 6 of Al-

gorithm 1, we have ῡ1 = υ̂1P1(a) and ῡ2 = υ̂2P2(a), where a ∈ α. Based

on Lemma 5 and Lemma 6, appending any finite word suffix u after ŵ yields

PrA1
(ŵu) ≤ PrA2

(ŵu). Since the word w can be represented as the word ŵ
concatenating with a finite suffix u, we have PrA1

(w) ≤ PrA2
(w).

Thus, when Algorithm 1 terminates in Line 11, PrA1
(w) ≤ PrA2

(w) for any finite

word w ∈ α∗, i.e. , A1 ⊑ A2 holds. ⊓⊔
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C Proofs for Section 5

Lemma 7. Given (P,E, T ) a closed and consistent observation table, the hypothesis

PFA A = (S, s, α,P) is well-defined.

Proof. First, the initial state s is well-defined because row(ε) is always included the

set con(P ), which contains the rows corresponding to the states set S. Because one

element of row(ε), T (ε · ε) = 1, so that it is an extreme point in the conical hull and

will always be in con(P ).

Now we show that the transition matrices P are well-defined, i.e. ,
∑

j P(a)[i, j] ∈
[0, 1] for all a ∈ α. The row vector of any PFA should satisfy the following: for any

a ∈ α,
row(si.a)(ε)

row(si)(ε)
∈ [0, 1], where row(u)(ε) is the probability of word u (here we

abuse si as its corresponding prefix word). This is true since there is a (sub)distribution

performing action a from state si.

We are to show that
∑

j P(a)[i, j] ∈ [0, 1]. We have that for any j,

T (sj · ε) = row(sj)(ε) (6)

and that

row(si · a) =
∑

j

γjrow(sj) =⇒ row(si · a)(ε) =
∑

j

γjrow(sj)(ε) (7)

Therefore, we have

∑

j

P(a)[i, j]
(†)
=

∑

j

γj ·
T (sj · ε)

T (si · ε)

(6)
=

∑

j

γj ·
row(sj · ε)

row(si · ε)

(7)
=

∑

j

γj ·
row(sj · ε)(ε)

row(si · ε)(ε)

(‡)
=
row(si.a)(ε)

row(si)(ε)
∈ [0, 1]

(†) is because P(a)[i, j] = γj ·
T (sj ·ε)
T (si·ε)

and (‡) is because row(si·a) =
∑

sj∈S γjrow(sj).
⊓⊔

Lemma 8. Given (P,E, T ) a closed and consistent observation table, the hypothesis

PFA A = (S, s, α,P) conforms with the function T , i.e. , ∀u ∈ (P ∪ P · α), ∀e ∈ E,

PrA(u · e) = T (u · e).

Proof. For simplicity, assume that the index of initial state s is 0, so that the initial row

vector ι = [1, 0, · · · , 0]. Also recall that κ is defined as a column vector of 1s. For all
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u ∈ (P ∪ P · α) and for all e ∈ E, we have

PrA(u · e) = ιP(u · e)κ

=
∑

j

P(u · e)[0, j]

=
∑

j

∑

k

P(u)[0, k]P(e)[k, j]

(†1)
=

∑

j

∑

k

γu0,k
T (sk · ε)

T (s0 · ε)
γek,j

T (sj · ε)

T (sk · ε)

(†2)
=

∑

k

γu0,k
(

∑

j

γek,jT (sj · ε)
)

(†3)
=

∑

k

γu0,kT (sk · e)

(†4)
= T (s0 · ue)

= T (u · e).

(†1) is by the definition of P. (†2) is because T (s0 · ε) = T (ε) = 1. (†3) and (†4) are

due to row(sk·e) =
∑

j γ
e
k,jrow(sj), and row(s0·u) =

∑

k γ
u
0,krow(sk), respectively.

⊓⊔
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D Proofs for Section 6

Lemma 9. A learner can always update the observation table if the teacher returns a

counterexample.

Proof. We first define counterexamples in these settings.

Definition 12 (Counterexamples for M1 ⊑w A). A counterexample for M1 ⊑w A is

a word c ∈ α∗ such that PrM1(c) > PrA(c).

This word c will for sure update the learner’s observation table since it violates

language inclusion.

Definition 13 (Counterexamples for pios(A)||M2 |= 〈G〉>p). A counterexample for

pios(A)||M2 |= 〈G〉>p is a setC of paths in pios(A)||M2 such that Prpios(A)||M2(C) >

p, where Prpios(A)||M2(C) =
∑

θ∈C Prpios(A)||M2(θ).

Note that for any path θ in pios(A)||M2, we can map it onto a path in pios(A), de-

noted θ ↾pios(A). Given a counterexampleC, we may derive a setCA and by tr(θ ↾pios(A)

) we obtain a set of words WA. And then we check whether each word tr(θ ↾pios(A))
in WA can be mapped back onto M1 as w̄. If yes, then a word w̄ corresponds to a set of

words (regarding τs) inM1. We denote this set of words asWM1 and the corresponding

set of paths as CM1 . We finally form a fragment ofM1 from CM1 , denoted asMC
1 . The

whole process can be illustrated as follows, where the first line is on the level of paths

or words, and the second line is on the level of their set notations.

θ −→ θ ↾pios(A) −→ tr(θ ↾pios(A)) ⇒ w̄ −→ π
C −→ CA −→ WA ⊇ WM1 −→ CM1

If C is a real counterexample, then MC
1 ||M2 6|= 〈G〉>p. We stop the learning loop

and claim that M1||M2 6|= 〈G〉>p. C can also be a spurious counterexample.

Definition 14 (Spurious counterexamples for pios(A)||M2 |= 〈G〉>p). C is a spuri-

ous counterexample if Prpios(A)||M2(C) > 1− p, but MC
1 ||M2 6|= 〈G〉>p.

If this is the case, then MC
1 is not enough to show the violation. The reason is that

some of the words in pios(A) cannot be mapped back to M1, i.e., WA ⊃ WM1 . For

those w ∈ WA \WM1 , we return w to the learner. Since this word is not in M1 but

currently in A, we can for sure update the observation table. ⊓⊔
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