
Quantitative Verification
of Real-Time Properties

with Application to Medical Devices

Marco Diciolla
Trinity College,

Oxford

A Thesis submitted for the degree of
Doctor of Philosophy in Computer Science

Hilary Term 2014

Abstract

Probabilistic model checking is a powerful technique used to ensure the correct functioning

of systems which exhibit real-time and stochastic behaviours. Many such systems are

embedded and used in safety-critical situations, to mention implantable medical devices.

This thesis aims to develop a formal model-based framework that is tailored for the analysis

and verification of cardiac pacemakers. The contributions are novel approaches for the

automatic verification and validation of real-time properties over continuous-time models,

which are applicable to software embedded in medical devices.

First, we address the problem of model checking continuous-time Markov chain (CTMC)

models against real-time specifications given in the form of temporal logic, namely, metric

temporal logic (MTL) and linear duration properties (LDP), or as timed automata (TA).

The main question that we address is “given a continuous-time Markov chain, what is the

probability of the set of timed paths that satisfy the real-time property under considera-

tion?”. We provide novel algorithms to approximate the probability through generating

systems of linear inequalities over variables that represent the waiting times in system

states, and then solving multidimensional integrals over this set.

Second, we present a model-based framework to support the design and verification

of pacemakers against real-time properties. The pacemaker is modelled as a network

of timed automata, whereas the human heart is modelled either as a network of timed

automata or as a network of hybrid automata. Our framework can be instantiated with

personalised heart models whose parameters can be learnt from patient data, and we have

done so [LB13] to validate our approach. We introduce property patterns and the counting

metric temporal logic (CMTL) in order to specify the properties of interest. We provide

new verification algorithms for networks of timed or hybrid automata against property

patterns and CMTL. Finally, we pose and solve the parameter synthesis problem, i.e.,

given a network of timed automata containing model parameters, an objective function

and a CMTL formula, find the set of parameter valuations, whenever existing, which

satisfy the CMTL formula and maximise the objective function.

The framework has been implemented using Simulink, Matlab and Python code. Ex-

tensive experimental results on pacemaker models have been carried out and discussed in

detail. The techniques developed in this thesis can assist in the design and verification of

software embedded in medical devices.

Acknowledgements

This work would not have been possible without the help of many people.

First, I would like to thank my supervisor, Professor Marta Kwiatkowska. Marta

has provided invaluable guidance, support and critique throughout the three years of my

DPhil in Oxford. She had confidence in me when I doubted myself and brought the good

ideas out of me. She has been constantly helpful and spent a lot of her valuable time to

generously guide me with this research project. She gave me a chance of pursuing a DPhil

in one of the most prestigious University in the world. I will always be grateful to her for

that. Without my supervisor this thesis would simply not exist.

I would also like to express my appreciation to my colleagues and friends Alexandru

Mereacre and Taolue Chen. With them I spent many sleepless nights working on academic

problems (and not only). Taolue has showed me that working hard and perseverance

almost always pay off in the end. Alexandru has been more than a colleague; he has been

a real friend. I have spent with him most of the time of my DPhil. We have worked hard,

coded, written papers, but also had many crazy nights and parties together. I hope our

friendship continues even after my DPhil.

My thanks also go to all the colleagues and collaborators inside and outside the de-

partment which made sure that my time spent working (and not) was fun.

Of course, I cannot conclude the acknowledgements section without mentioning my

partner, Anastasia. She has been understanding like no others. She spent days and nights

in my office while I was working on research topics with my colleagues. She has sacrificed

many of her weekends for the sake of my DPhil. Thank you for being so supportive and

patient.

Last but not least, I would like to express my gratitude to my family. Each member of

my family has contributed to this thesis in his/her own way. Thank you all for believing

in me.

This work was supported by ERC advanced grant VERIWARE (http://www.veriware.

org).

http://www.veriware.org
http://www.veriware.org

Alla mia famiglia

Questa tesi e’ dedicata alla mia famiglia,

fidati compagni del mio campo di battaglia.

Il campo di battaglia, per chi non l’avesse capito,

e’ il mio dottorato ... hai recepito?

Mamma, papa’ e fratelli

son stati a me vicino in momenti brutti e belli.

Seppur la strada non sempre rosea e’ stata

con la lor compagnia la corsa fu meno affannata.

A ciascun di loro meriti furon attribuiti,

il minimo che posso far e’ che i loro nomi sian ben scanditi

Padre Raimondo e madre Maria,

fecero da balia a questa vita mia.

Da mio padre appresi che calma, sacrificio ed impegno,

son le virtu’ che di esser uomo ti fan degno.

Lui che da umili origini il cammin fu segnato,

mi insegno’ che nella vita non bisogna dar nulla per scontato.

Non ti rassegnar difronte alle difficolta’, un giorno mi disse,

la vita e’ bella perche’ ti stupisce.

Non giudicare gli altri tuoi pari,

cerca di comprenderli invece che marcarli come tuoi avversari.

Che dire ora di della donna che in grembo mi porto’ per nove mesi

per lei saro’ sempre il cuore di mamma ... ci siamo intesi??

Le sue cure, le sue attenzioni e le sue carezze,

han piu’ di una volta scacciato via le mie amarezze.

Se di conforto avevo bisogno di cercare,

le sue braccia erano li, pronte ad aspettare.

Il suo gentile abbraccio e’ stato per me riparo,

sai? nei momenti difficili, questo e’ un dono raro.

Giuseppe e Gianluca so’ i nomi dei due fratelli,

entrambi loro a me serviron da modelli.

Il loro incoraggiamento ed il loro grande cuore,

han fatto di me un uomo migliore.

Per concluder, permettetemi di lasciare un messaggio banale ...

lo so, un semplice grazie non sembra davvero nulla di speciale.

Abbiate pazienza pero’, nato non fui per esser scrittore,

accettate questa modesta poesia ... vi assicuro che e’ stata scritta con amore.

Marco

Oxford

30/01/2014

Contents

1 Introduction 1

1.1 Contribution . 4

1.2 Structure of the dissertation . 6

1.3 Published papers and contribution to joint-authored articles 7

2 Literature review 9

2.1 Probabilistic model checking . 9

2.2 Real-time temporal logics . 10

2.3 Parameter synthesis . 11

2.4 Model checking continuous-time Markov chains 12

2.5 Model checking medical devices . 14

2.6 Summary . 15

3 Preliminaries 17

3.1 Models . 17

3.1.1 Discrete-time Markov chains . 17

3.1.2 Continuos-time Markov chains . 20

3.2 Real-time specifications . 25

3.2.1 Linear temporal logic . 25

3.2.2 Metric temporal logic . 26

3.2.3 Linear duration properties . 28

3.2.4 Timed automata . 30

3.3 Summary . 32

4 Model checking real-time properties over continuous-time Markov chains 33

4.1 Verifying continous-time Markov chains against MTL 34

4.1.1 Complete algorithm and correctness results 51

4.2 Verifying continuous-time Markov chains against TAs 55

4.2.1 Complete algorithm and correctness results 58

4.3 Verifying continuous-time Markov chains against LDPs 59

4.3.1 Relationship to MRMs . 61

CONTENTS

4.3.2 Verification of EDP . 63

4.3.3 Verification of IDP . 82

4.4 Summary . 90

5 A framework for the verification of real-time properties of medical devices 93

5.1 The heart and its electrical activity . 95

5.1.1 SA node . 95

5.1.2 Action potential . 96

5.2 Models . 97

5.2.1 Timed I/O automata . 97

5.2.2 Hybrid I/O automata . 100

5.3 Hybrid heart models . 104

5.3.1 The cardiac cell heart model . 104

5.3.2 The ECG heart model . 107

5.3.3 Switching between different heart behaviours 109

5.4 Pacemaker model . 110

5.4.1 Enhanced pacemaker model . 112

5.5 Real-time properties . 114

5.5.1 Property Patterns . 115

5.5.2 Counting metric temporal logic . 116

5.6 Verification of pacemakers over hybrid heart models 117

5.6.1 The framework . 118

5.6.2 Approximate quantitative verification 120

5.6.3 Experimental results . 121

5.7 Synthesising parameters for pacemakers using TIOAs 125

5.7.1 Constraint generation . 128

5.7.2 Parameter optimisation . 140

5.7.3 Parameter synthesis case study . 141

5.8 Summary . 144

6 Conclusions and future work 147

6.1 Conclusions . 147

6.2 Future work . 149

List of Figures

1.1 Automaton of the thermostatically-controlled room 3

3.1 An example of DTMC . 20

3.2 An example CTMC and its associated infinitesimal generator matrix . . . 21

3.3 An example TA . 32

4.1 Set of linear inequalities returned by Algorithm 1 49

4.2 Complete set of linear inequalities . 49

4.3 Matrix representation of S . 49

4.4 Example of Robot in a hotel . 56

4.5 Automaton property . 56

4.6 An example MRM . 62

4.7 Example of BSCC decomposition to demonstrate CTMC conversion in

Definition 4.3.7 . 86

5.1 Electrical conduction system of the heart. 95

5.2 Action potential [YEGS08]. 96

5.3 Example network N with two components. 100

5.4 Example hybrid I/O automaton. 102

5.5 Example of a network of HIOAs. 104

5.6 Hybrid automaton for a ventricular cardiac cell. 105

5.7 Electrical conduction system (ECS) model. 106

5.8 Example electrocardiogram [MCTS03]. 108

5.9 ECG hybrid automaton. 109

5.10 LRI, PVARP, AVI components used for basic analysis 111

5.11 URI, VRP components used for basic analysis. Interval, Counter and Dur-

ation components used for PMT analysis . 112

5.12 Atrium pacing. 112

5.13 Simulink models . 119

5.14 Bradycardia correction experiment. 122

5.15 Bradycardia experiment . 122

LIST OF FIGURES

5.16 AV node block experiments . 123

5.17 Noise experiment . 124

5.18 Battery charge in 1 min period . 124

5.19 PMT correction. 126

5.20 Example network N with two components. 129

5.21 Heart components. 142

5.22 Constraint generation algorithms . 143

List of Tables

5.1 Example Algorithm 14 . 132

5.2 Constraint generation for BCF . 133

5.3 Case distinction table . 138

LIST OF TABLES

List of Algorithms

1 Constraints generation for continuous semantics 44

2 Constraints generation for pointwise semantics 46

3 Time-bounded verification of a CTMC C against an MTL formula ϕ 52

4 Constraints generation for TA . 58

5 Time-bounded verification of a TA specification A against a CTMC C . . . 59

6 Generate a set of linear constraints S induced by ϕ, ς and T 71

7 Compute F̃wN
s′

s (t,y) . 74

8 Generate a set of linear constraints S induced by ϕ, ς and T 82

9 Compute P̃robN (C |=?
G,T ϕ) . 84

10 Compute P̃rob(C |=? ϕ) . 88

11 Compute P̃rob(C |=? Φ) . 90

12 Mode switching algorithm . 110

13 Constraint generation for N with m-components, CMTL formula ϕ and

path length n . 128

14 Constraints generation for the path σ . 130

15 Constraints generation for the path σ (First for cycle) 130

16 Constraints generation for the path σ (Second for cycle) 131

17 Constraints generation for the path σ (Third for cycle) 131

18 Constraints generation for basic counting formulas (BCFs) 132

19 Constraints generation for CMTL formulas 134

LIST OF ALGORITHMS

Chapter 1

Introduction

The aim of this dissertation is to provide a theoretical framework which enables formal

verification of medical devices with respect to real-time properties. In this chapter we

introduce the main concepts that are relevant for the thesis, such as model checking,

stochasticity, hybrid systems, real time and medical devices. We also state in Section 1.1

the main contribution with respect to the literature and highlight the structure of the

thesis in Section 1.2. We conclude the chapter with Section 1.3, where we present a brief

summary of the contributions of the author of this thesis to published joint-authored

papers.

Model checking

Our reliance on the correct functioning of electronic systems is growing rapidly. High speed

trains, autonomous cars, Internet banking, aeroplanes and smartphones are just a few

examples of the myriad of complex systems that surround our daily life. We expect them to

function flawlessly and we heavily rely on their outputs. A failure in our Internet banking

system could result in severe financial loss. A glitch in the code employed by financial firms

to perform high-frequency algorithmic transactions could make millions of pounds vanish

in just a few seconds. It is not all about money though. Financial losses and personal

disappointments, although annoying, do not constitute a threat to our lives. In some

cases, errors in the software could be catastrophic. Think, for example, of the software

embedded in medical devices, such as pacemakers. Pacemakers must work correctly 24

hours per day, seven days per week. A fault in the device could cause patient discomfort

and in the most pessimistic case even death. For such a reason, researchers have focused

their attention on formal verification techniques to gain trust in the software embedded in

such complex systems. Formal verification aims to establish system correctness through

mathematical rigour.

A very successful formal verification technique is model checking. Model checking is an

automated technique that, given a finite-state model of a system and a formal property

1

statement, systematically checks whether this property is true in the model of the system.

A model checker, the tool that performs model checking, explores all possible system states

in a brute-force manner, essentially checking all possible system scenarios to determine

whether the property holds or not. Using clever algorithms and tailored data structures,

very large state spaces, up to even 1020 states and beyond, have been model checked

[BK08, BCM+90].

Stochasticity

The term stochastic is related to anything pertaining to chance and comes from the Greek

word “stokhastikos”. It is used to describe subjects that contain randomness or uncer-

tainty. The difference between a deterministic system and a stochastic one is that, in the

former case, for any given input the system returns the same output; in the latter case,

the same input may produce different outputs distributed according to some probability

distribution. Stochastic systems are ubiquitous in physics (any physical system is subject

to uncertainty), biology (e.g., binding and unbinding of RNA polymerase to a promoter),

artificial intelligence (to solve problems such as simulated annealing, stochastic neural

networks and stochastic optimization), medicine (e.g., stochastic effect, or “chance effect”

is one classification of radiation effects that refers to the random, statistical nature of

the damage) and computer science (e.g., randomised Internet protocols and Bluetooth

technology).

Hybrid systems

Hybrid systems [ACHH92] combine discrete events and continuous-time dynamics and

can serve as models of a variety of systems. Their expressiveness is powerful enough to

describe highway systems [LGS96], air traffic management systems [PJ08], unmanned aer-

ial vehicles [KHM+98], manufacturing and embedded systems [CPW01]. For example,

hybrid systems arise in embedded control when digital controllers, computers and subsys-

tems modelled as finite-state machines are coupled with controllers and plants modelled

by partial or ordinary differential equations. Thus, such systems arise whenever one com-

bines logical decision making with the generation of continuous-valued control laws. We

show here one of the real-world examples of hybrid systems, taken from [Bra05], namely

a thermostatically-controlled room.

Thermostatically-controlled room. A thermostatically-controlled room can be mod-

elled as the hybrid automaton (see Section 5.2.2 for the definition of a hybrid automaton)

in Figure 1.1. We write x for the variable representing the actual temperature of the

room and we write ẋ to express its first derivative. The dynamics of the system evolves as

follows. It starts with the furnace turned on and the temperature of 10 degrees (the initial

condition x = 10 is omitted in the automaton). The temperature starts increasing at con-

2

stant rate of 1 unit per time from the point when the furnace is turned on. When the room

reaches 30 degrees, the furnace is turned off and the temperature decreases at constant

rate of −1 unit per time. If the value of the temperature drops down to 10 degrees, the

system re-activates the furnace. The notation !(x ≥ c) denotes that the transition must

be taken when enabled.

ẋ = +1start ẋ = −1

!(x ≥ 30)

!(x ≤ 10)

Figure 1.1: Automaton of the thermostatically-controlled room

Real time

According to the definition given in [Hen91] real-time systems are:

(A) Pertaining to the processing of data by a computer in connection with another

process outside the computer according to the time requirements imposed by the

outside process (this term is also used to describe systems operating in conversational

mode and processes that can be influenced by human intervention while they are in

progress); or

(B) Pertaining to the actual time during which a physical process evolves, for example,

the performance of a computation during the actual time that the related physical

process takes place, in order that results of the computation can be used in guiding

the physical process.

Some real-world systems meet the task they have been designed to accomplish only if they

relate properly with the passage of time.

Consider, for instance, the thermostatically-controlled room in Figure 1.1. An example

of a real-time property that one may want to check in the system of Figure 1.1 is that in

the next 3 hours the temperature in the room never drops to 10 degrees.

Predicting the behaviour of real-time systems by mere inspection is difficult and often

impossible. Therefore, real-time systems are a prime target for formal verification.

Logical formalisms, e.g., Temporal Logic, have provided crucial help in analysing real-

time systems and their behaviours. However, one shortcoming of conventional temporal

logic is that it admits only the treatment of qualitative timing requirements, such as the

demand that an event occurs “eventually”. Due to this limitation, standard temporal logic

is inadequate for the study of real-time systems, whose correctness depends crucially on the

actual times at which events occur. More powerful real-time formalisms must generalise

3

1.1. CONTRIBUTION

the temporal logic methodology to encompass the analysis of real-time behaviour. In this

thesis we consider specifications that achieve this goal, namely, Metric Temporal Logic

(MTL) and variants.

Medical devices

A medical device is an instrument that is used to diagnose, treat or prevent a disease.

The difference between a medical device and a drug is the way in which medical devices

operate. Specifically, medical devices act by physical, mechanical or thermal means, rather

than achieving their purpose through chemical actions within or on the body.

Medical devices vary greatly in complexity and application. Examples range from

simple tongue depressors and medical thermometers to more complex pacemakers and

neurostimulators. The global medical device market is nowadays estimated to be around

150bn dollars and it will expand to reach 250bn dollars by 2017 [Wik].

It is clear that one feature shared across most of medical devices is that a fault in the

system or in the embedded software could be dangerous. Thus, the benefits of effective

verification and validation activities in the medical device domain would include: increased

usability and reliability; decreased failure rate and recalls; and reduced risks to patients

and users.

In this thesis we focus our attention on implantable medical devices. Implantable

medical devices, such as cardiac pacemakers, must be designed and programmed to the

highest levels of safety and reliability. Unfortunately, according to the US Food and Drug

Administration (FDA), errors in embedded software have led to a substantial increase in

safety alerts, costly device recalls or even patient death. Combined with the relative lack

of standardisation in the field of medical devices, there is an urgent need to develop meth-

odologies for ensuring correct behaviour of embedded pacemaker software. The goal of this

thesis is to provide a framework which is capable of performing automated quantitative

verification of pacemaker software.

1.1 Contribution

The technical contribution of this thesis can be summarised as follows.

• We propose approximate verification algorithms for continuous-time Markov chains

(CTMC) against real-time properties specified either as Metric Temporal Logic

formulas, as Timed Automata, or as Linear Duration Properties. Our algorithms use

a new technique consisting of generating systems of linear inequalities over variables

which represent the waiting times in system states and then solving multidimensional

integrals over this set. Each verification algorithm is presented with complexity

analysis, error bounds on the probability of satisfaction of a given formula in the

system and a prototype implementation in Matlab [MAT13].

4

1.1. CONTRIBUTION

• We propose a model-based framework to support the design and validation of im-

plantable medical devices such as cardiac pacemakers. The components of the frame-

work are: a model of the human heart, a model of the pacemaker and a property

specification to check. The pacemaker is modelled as a network of Timed Automata,

whereas the human heart is modelled either as a network of Timed Automata or as a

network of Hybrid Automata. Our framework can be instantiated with personalised

heart models, whose parameters can be learnt from real data [LB13]. We introduce

property patterns and a generalisation of MTL called Counting Metric Temporal

Logic (CMTL) in order to specify properties of interest such as average beat rate

of the human heart and energy consumption of the pacemaker. We provide new

verification algorithms for networks of Timed or Hybrid Automata against property

patterns and CMTL. Finally, we pose and solve the parameter synthesis problem,

i.e., given a network of Timed Automata containing model parameters, an object-

ive function and a CMTL formula, find the parameter valuations which satisfy the

CMTL formula and maximise the objective function.

• We implement the framework using Simulink [SIM13], Matlab and Python code and

present extensive experimental results on pacemaker models.

Both theoretical and practical contribution can impact the research community in

the longer term in the following way. The algorithms presented in Chapter 4 to model

check continuous-time Markov chains against real-time specifications can be optimised in

order to deal with real-life examples. For instance one could introduce clever Monte-Carlo

techniques, such as important sampling, in order to deal with the state space explosion

originated from the path enumeration. Once the complexity of the verification algorithms

is reduced, similar techniques to the one presented in this thesis could be applied to

different real-time models to solve real-life problems.

Chapter 5 constitutes the basis of what the author sees as first attempt to generate

a model based framework tailored for the verification of medical devices. We recognise

that from a medical perspective, pacemakers (which are main focus of Chapter 5) are

very simple devices which work correctly in most cases. For such a reason, the medical

community is usually interested in more complex medical devices and/or problems, such

as defibrillators and ablation (which is not considered in this thesis). We emphasise here

that the techniques introduced in Chapter 5 still apply with minor modifications to the

verification and design of such complex medical devices. More specifically, the framework

in Chapter 5 can be instantiatied with a model of a defibrillator (once such model is

defined) and verify real-time properties of defibrillators rather than pacemakers. Thus,

in the longer term, researchers can reuse the framework presented in this thesis, or an

augmented version of it, and work alongside to doctors in order to improve the quality

and trust of medical devices.

5

1.2. STRUCTURE OF THE DISSERTATION

1.2 Structure of the dissertation

This dissertation is organised as follows.

• Chapter 2. The chapter provides a broad overview of the literature which is closely

related to the contents of this thesis. Specifically, we summarise related work on

probabilistic model checking, real-time logics, continuous-time Markov chains and

parameter synthesis.

• Chapter 3. The chapter introduces the background material necessary to under-

stand this dissertation. We describe the models that we use in later chapters, such

as discrete-time Markov chains and continuous-time Markov chains. We also present

the real-time formalisms that we use to specify properties in this thesis, namely, Lin-

ear Temporal Logic, Metric Temporal Logic, Linear Duration Properties and Timed

Automata.

• Chapter 4. The chapter describes model checking techniques for continuous-time

Markov chains over properties specified either as Metric Temporal Logic formulas,

as Timed Automata, or as Linear Duration Properties. The central question that

we address is: given a CTMC C and a real-time property ϕ, “what is the probab-

ility of the set of timed paths of C that satisfy the property ϕ over a time interval

of fixed, bounded length?”. The link between this chapter and the next chapter

on medical devices is twofold. First, the models analysed in the two chapters are

continuous-time models. Second, there is a strong connection between the solution

techniques that we use in both chapters. In particular, the techniques developed in

Chapter 4 have proved a valuable tool for model checking medical devices, in that

they were adopted with minor changes to tackle problems specific to their safety

and energy efficiency. Although Chapter 4 and Chapter 5 share multiple similarity,

they also have substantial differences. The techniques presented in Chapter 4 are by

far analytical. The reason for that is principally the choice of the model formalism.

CTMCs are models with nice mathematical properties, such as the exponential res-

idence time in system states and the memoriless property, which are amenable for

analytical solutions. It is not the case for the more complex models of networks

of Timed I/O Automata and Hybrid I/O Automata introduced in Chapter 5 for

which already back in the 90’s it was shown that the simple reachability property

is undecidable for Hybrid Automata, see Henzinger et al. in [HKPV95] for details.

For such a reason, in this thesis, we resort to approximation techniques in order to

answer the model checking questions of interest.

• Chapter 5. The chapter tackles two main problems: model checking networks of

Hybrid I/O Automata; and synthesising model parameters for networks of Timed

6

1.3. PUBLISHED PAPERS AND CONTRIBUTION TO JOINT-AUTHORED
ARTICLES

I/O Automata. The model checking problem takes as input a network of Hybrid

I/O Automata which represents the human heart, a network of Timed I/O Auto-

mata which represents a pacemaker specification, a property pattern which repres-

ents a safety property that we want to verify, and applies approximate verification

algorithms to determine the probability of the property being satisfied in the com-

posed system. The parameter synthesis problem takes as input a network of Timed

I/O Automata for modelling the human heart and the pacemaker, a Counting Metric

Temporal Logic formula and an objective function. The algorithms then finds the

parameter valuations such that the objective function is maximised and the Count-

ing Metric Temporal Logic formula is satisfied in the system. As mentioned earlier,

some of the techniques developed in Chapter 4 are reused here in Chapter 5. We em-

phasise here that we needed new logic formalisms different from the ones introduced

in the previous chapter. The logic formalisms that we consider are purely driven

by the application domain in which we operate. It is clear that when talking about

pacemakers, the simplest features that one needs to monitor is that the number of

heart beats is within a given safety bound. Such a property already hints for the

need of a logics which is capable of counting, and hence the introduction of Counting

Metric Temporal Logic and property patters.

• Chapter 6. The chapter summarises the contributions of this dissertation and

suggests some future research directions.

1.3 Published papers and contribution to joint-authored art-

icles

The two core chapters of the thesis, namely Chapter 4 and Chapter 5, are based on a

series of published and submitted conference and journal papers which are joint work with

my colleagues in Oxford.

• Chapter 4. The contents of this chapter is based on two conference papers [CDKM11,

CDKM12b] and one journal publication [CDKM13b]. The author of this thesis has

worked jointly with the other authors of [CDKM11, CDKM12b, CDKM13b] to de-

velop algorithms and proofs. The Matlab implementation of [CDKM11] has been

entirely developed and coded by the author of this thesis and likewise the numerical

examples in [CDKM11] have also been designed and solved by the author. The ex-

tension to prefix-accumulation assertions of [CDKM13b] is mainly the work of the

author of this thesis.

• Chapter 5. The contents of this chapter is based on two published conference

papers [CDKM12a, CDKM13c], one report awaiting submission [DKM13] and one

7

1.3. PUBLISHED PAPERS AND CONTRIBUTION TO JOINT-AUTHORED
ARTICLES

journal publication [CDKM13a]. The author of this thesis has worked jointly with

the other authors of [CDKM12a, CDKM13c, CDKM13a] to develop the algorithms

and proofs. The Matlab implementation and experimental results of [CDKM12a]

are joint work of the author of this thesis and his colleague Alexandru Mereacre.

The Simulink implementation and experimental results of [CDKM13c, CDKM13a]

are joint work of the author of this thesis and his colleague Alexandru Mereacre.

The author of this thesis has worked jointly with the other authors of [DKM13] to

develop the parameter synthesis algorithms. The technical proofs of [DKM13] are

mainly the work of the author of this thesis, whereas the Python implementation is

the work of his colleague Alexandru Mereacre.

8

Chapter 2

Literature review

In this chapter we give a broad overview of the literature that is closely related to the topics

of this thesis. More specifically, the chapter is divided into five sections: probabilistic model

checking (see Section 2.1), real-time specifications (see Section 2.2), parameter synthesis

(see Section 2.3), model checking continuous-time Markov chains (see Section 2.4) and

model checking medical devices (see Section 2.5). In each section we describe the main

results in the field, highlighting the main contributions of this thesis.

2.1 Probabilistic model checking

Model checking [BK08, CES86, CGP99] is an automated technique to determine whether

a model of a system satisfies a property specification, which is usually provided as a

temporal logic formula. The model checking algorithm explores all possible system states

in a brute-force manner [BK08]. As a result, it is possible to show that a given system

model satisfies a certain property or produces a counterexample if it does not. In the

past, much attention has been focused on model checking for qualitative properties. For

instance, model checking temporal logics has been addressed in [CES86] and [SC85]. In

[CES86] the authors give an efficient procedure for verifying that finite-state systems

meet specifications expressed as Computational Tree Logic (CTL). In [SC85] the authors

propose model checking algorithms for Linear Temporal Logic (LTL) formulas. CTL

and LTL are capable of expressing respectively, branching and linear-time properties that

system executions should satisfy.

The success of model checking techniques for temporal specifications has driven re-

searchers to extend the model checking algorithms to probabilistic models, i.e., models in

which the jumps between system states happen according to given probability distribu-

tions. This field is known as probabilistic model checking. Probabilistic model checking is

an automatic technique that provides a means to model and analyse systems that exhibit

probabilistic behaviours against a range of quantitative properties usually expressed in

9

2.2. REAL-TIME TEMPORAL LOGICS

variants of temporal logics, such as the Probabilistic Computational Tree Logic (PCTL)

[HJ94], the Continuous Stochastic Logic (CSL) [BHHK03], and their extensions. The

simplest probabilistic models are Discrete-Time Markov Chains (DTMCs). DTMCs are

basically labelled transition systems augmented with discrete probability distribution on

the transitions. The problem of model checking DTMCs against temporal specifications

has been addressed in [Var85, CY95, LS83, CY88, HJ94]. Slightly more complex probab-

ilistic models are Continuous-Time Markov Chains (CTMCs). CTMCs are essentially

DTMCs whose residence times in system states are exponentially distributed. Algorithms

for model checking linear and branching time temporal logics over CTMCs have been

presented in [ASSB00, BHHK03].

Probabilistic model checking tools, e.g., PRISM [PRI], use a high-level modelling lan-

guage (reactive modules for PRISM [KNP11]) to describe the system and then check

it against specifications expressed in a probabilistic temporal logic, for example CSL

[BHHK03]. For instance, the model checker PRISM has been successfully used to analyse

systems modelled as DTMCs, such as Hermans self-stabilisation algorithm [KNP12] for

ring networks and the Bluetooth device discovery protocol [DKNP06], as well as systems

that can be modelled as CTMCs, such as the DNA walkers of [DHK13, DKTT13].

2.2 Real-time temporal logics

As discussed in [Hen91], a vast range of real systems meet the task they have been de-

signed to accomplish only if they relate properly with the passage of time. Examples of

such systems are pacemaker devices which need to send their electric impulses within a

certain time delay from the last sensed event, as otherwise their correct behaviour is com-

promised; circuits and communication protocols whose correctness depends on gate delays

and message delays; and aeroplanes that need to react quickly to pilots’ manoeuvres in

order to avoid possible dangerous collisions. Therefore, researchers have been developing

real-time temporal logics.

The main difficulty when analysing real-time systems is the dense nature of time. In

fact, it is impossible to directly explore every possible system state at any given time due

to the fact that there would be infinitely many time points to analyse. For this reason,

symbolic verification techniques are typically employed for real-time systems. The problem

of model checking real-time temporal logics becomes even more challenging when dealing

with probabilistic real-time systems, such as the model of continuous-time Markov chains.

Researchers have already proposed different algorithms to model check the validity of

real-time specifications on probabilistic and non-probabilistic systems. For example, the

authors of [BHHK03] introduce CSL, which is a branching-time temporal logic similar

to CTL, with state and path formulas, where the CTL universal and existential path

quantifiers are replaced by a probabilistic operator. In [BHHK03] the authors show how

10

2.3. PARAMETER SYNTHESIS

to evaluate CSL formulas on CTMCs. In [Koy90] the authors introduce Metric Temporal

Logic (MTL), an extension of LTL that allows one to express time constraints at which

events happen. For example, with the logic MTL one can express the property that “every

pacemaker beat is followed by a natural heart beat within 1 second unless a new pacemaker

beat happens before”. Metric Temporal Logic formulas have been evaluated against non-

probabilistic systems [AFH96], such as Timed Automata (TA) [AD94]. Timed automata

are labelled transition systems augmented with clocks, i.e., real-time variables that track

the passage of time, and guards on transitions which constrain the time at which jumps

between system states can happen.

Many important properties, however, depend on the cumulated time that the system

spends in certain states, possibly intermittently. Such duration properties, following the

terminology of Duration Calculus (DC) [CHR91], have been studied in the context of

Timed Automata [ACH97, BES93, KPSY99]. When evaluated on probabilistic real-time

models, duration properties can express, e.g., that “the probability of an alarm bell ringing

whenever the button has been pressed, possibly intermittently, for at least 2 seconds in

total is at least 95% ”.

In this thesis we study different classes of real-time temporal logics. More precisely, we

start from the work of [CHKM09] that considers the verification of CTMCs against Timed

Automata specifications and extend it by considering, in addition, non-deterministic TAs

that were not analysed in [CHKM09]. Non-deterministic TAs differ from determin-

istic TAs only in the fact that they allow non-deterministic transitions between states.

Moreover, we develop model checking algorithms for CTMCs against MTL formulas and

Linear Duration Properties (LDPs), i.e., properties involving linear constraints over cumu-

lated residence time in system states, which to our knowledge were not addressed before.

In Chapter 5 we also define a logic that we call Counting Metric Temporal Logic

(CMTL), which extends MTL with basic counting formulas. Counting formulas are used

to count the number of actions (events) in a given interval of time.

2.3 Parameter synthesis

Sometimes the model or the specification under consideration cannot be fully determined,

i.e., it could contain parameters for which possible different values are all admissible. When

a model contains parameters that can take values in a discrete or continuous domain, a

general question that one wants to address is whether some of the parameters’ values are

better than others, in the sense of optimising some objective function.

Much effort has been devoted to developing efficient techniques for parameter synthesis.

We cite here works that are related and share similarities with the parameter synthesis

algorithms presented in this dissertation. Most of the work on parameter synthesis that

we cite is related to parametric Timed Automata. Parametric TAs are essentially TAs

11

2.4. MODEL CHECKING CONTINUOUS-TIME MARKOV CHAINS

enriched with parameters on the guards of the transitions.

In [HRSV01], the authors study the decidability problem for parametric Timed Auto-

mata. They consider a special case of Timed Automata, L/U automata, for which they

show that the emptiness problem is decidable. L/U automata are parametric Timed

Automata with the further constraint that the parameters on the guards of the trans-

itions appear either as lower bounds or as upper bounds of clocks, but not both. In

[Doy07], undecidability for parametric reachability problem on TAs is proved. The para-

metric reachability problem asks whether there exists a set of parameters of the system

that allows one to reach a given system state.

In [ACFE08, AF10] the authors describe an approach to derive the constraints on

parameters of the TAs such that the behaviours of the TAs are time-abstract equivalent,

starting from a reference valuation rather than a logic formula. In words, the parameters’

values in the time-abstract equivalence class produce the same time behaviour of the

system.

The parameter synthesis problem for branching-time logic parametric timed CTL

(PTCTL) is studied in [BR07], where parameters are given both in the model and the

formula. They show the decidability for a fragment of CTL where equality is not allowed.

In [KP12], the authors apply the bounded model checking procedure to solve the synthesis

problem for the existential fragment of PTCTL without the next operator.

In this thesis we concentrate on parameters in the model and not in the specification.

In fact, we perform parameter synthesis for a subclass of parametric Timed Automata. In

contrast to all the works cited above, we present in Chapter 5 algorithms for parameter

synthesis from specifications given in a generalisation of the linear-time logic MTL, rather

than a branching-time logic or a reference valuation.

2.4 Model checking continuous-time Markov chains

The focus of model checking for Continuous-Time Markov Chains (CTMCs) has primarily

been on algorithms for specifications expressed in stochastic temporal logics, including

branching-time variants, such as CSL [BHHK03, ASSB00], as well as linear-time temporal

logic (LTL). The verification of LTL properties reduces to applying well-known algorithms

[Var85, CY95] to embedded discrete-time Markov chains (DTMCs). Like CTL model

checking, CSL model checking of finite CTMCs proceeds by a recursive descent over the

parse tree of the CSL formula. One of the key ingredients is that time-bounded reachability

probabilities can be approximated arbitrarily closely by a reduction to transient analysis in

CTMCs (see [BHHK03] for more details). In [BCH+07] the authors define the logic asCSL

where path properties are characterised by (time-bounded) regular expressions over actions

and state formulas. In order to evaluate path formulas of asCSL one has to consider also

state formulas in intermediate states. Thus, asCSL is strictly more expressive than CSL

12

2.4. MODEL CHECKING CONTINUOUS-TIME MARKOV CHAINS

[BCH+07]. The model checking algorithm for asCSL transforms the regular expression

into an automaton, computes the product between the CTMC and this automaton and as

the last step calculates time-bounded reachability probabilities in the product obtained.

As expressive as asCSL is CSLTA introduced in [DHS09]. There, a timed automaton

with a single clock is used to specify time constraints of until modalities. Model checking

CSLTA is reduced to computing the reachability probabilities in a DTMC whose transition

probabilities are given by subordinate CTMCs.

Linear-time properties equipped with timing constraints have only recently been con-

sidered. For example, in [CHKM09, CHKM11, BCH+11] the authors consider the problem

of model checking real-time properties given as Deterministic Timed Automata (DTAs)

over CTMCs. DTAs can express properties of the form “what is the probability to reach a

given target state within the deadline, while avoiding unsafe states and not staying too long

in any of the dangerous states on the way?”. Such properties cannot be expressed in CSL

nor in its dialects [BCH+07, DHS09]. Model checking DTA properties can be achieved by

a reduction to computing the reachability probabilities in piecewise-deterministic Markov

processes (PDMPs, [Dav93]). The approach is based on the product construction between

the CTMC and the DTA.

For duration calculus (DC), which is based on interval temporal logic that differs from

the setting considered in this thesis, the focus has been on so called linear durational invari-

ants (LDI, see [CJLX94]). Again, TA (and their subclasses or extensions) are considered,

and different techniques are proposed, for instance, reduction to linear programming or

CTL, discretisation, etc. We mention the work in [LHZ97, TH04, ZHL08], which are

specific to TA and cannot be adapted to CTMCs. There is only scant work address-

ing probabilistic/stochastic extensions of DC [HZ99, GH10, HZ07]. However, algorithmic

verification is not addressed.

Linear Duration Properties are closely related to Markovian Reward Models (MRM,

see [BHHK00]), which are CTMCs augmented with multiple reward structures assigning

real-valued rewards to each state in the model. Properties of MRMs can be expressed

in continuous stochastic reward logic (CSRL, see [BHHK00]). CSRL model checking

for MRMs [HCH+02, Clo06] involves timed-bounded and/or reward-bounded reachability

problems. In this thesis we will establish a link between LDPs over CTMCs and rewards

in MRM.

Part of the work in this thesis builds on [CHKM09] with the distinction that we consider

properties expressed in MTL or general TAs (see Chapter 4), which allow nondetermin-

ism. Approximation algorithms are proposed, based on paths exploration of the CTMC,

constraints generation and reduction to volume computation. We are mostly interested in

“time-bounded” verification. By time-bounded we refer to the fact that only timed paths

over a fixed interval of time are considered, for example, the probability of an alarm bell

ringing whenever the button has been pressed for at least 2 seconds continuously. How-

13

2.5. MODEL CHECKING MEDICAL DEVICES

ever, it was shown in [ACH97] that the expressiveness of TA/MTL is limited and cannot

express duration-bounded causality properties which constrain the accumulated satisfac-

tion times of state predicates along an execution path, visited possibly intermittently.

We overcome this limitation in Chapter 4, where we present an algorithm for verifying

CTMCs against LDP, i.e., properties stated as conjunctions of linear constraints over the

total duration of time spent in states that satisfy a given property.

2.5 Model checking medical devices

As mentioned in Chapter 1, implantable medical devices, such as cardiac pacemakers,

must be designed and programmed to the highest levels of safety and reliability. For these

reasons, researchers in recent years have focused their attention on developing formal

techniques aimed at deepening our understanding and improving the functioning of such

devices. For example, Jiang et al. in [JPM+12b] developed a model-based framework

for automatically verifying cardiac pacemakers in the real-time setting. Working from

descriptions by Boston Scientific, a leading manufacturer, [JPM+12b] develop a detailed

model of a basic pacemaker as a network of Timed Automata (see [AD94] for a detailed

presentation on TAs). A network of TAs is essentially a group of TAs enriched with

input and output actions which allow communication with other TAs in the network. The

authors of [JPM+12b] also provide a model of the human heart as a TA, and perform

verification using the model checker UPPAAL [LPY97].

In [JPC+10, JPM12a] the authors develop a real-time Virtual Heart Model (VHM),

which can be used for simulation and testing, whereas in [JPM12a] they devise a framework

for testing and validation of implantable cardiac devices. Tuan et al [TZT10] propose a

real-time formal model for a pacemaker and its environment. The authors use the PAT

model checker to verify a number of time constraints. The main difference between all

these works and the content of this thesis is that probabilities are not considered.

There is an extensive literature that formulates human heart models. In [GJM93,

LKM10], the authors develop a model of the cardiac conduction system of the human heart

that addresses the stochastic behaviour of the heart, validated via simulation. Grosu et

al. in [GSC+09] carry out automated formal analysis of a realistic cardiac cell model. The

cardiac cell is modelled with a hybrid automaton (see Section 5.2.2). Hybrid automata are

TAs enriched with more general variables that can update their values at any rate. Grosu

et al. in [GBF+11] propose a method to learn and to detect emergent behaviours that

may lead to diseases of the heart, such as the one called ventricular fibrillation. The main

difference between all these works and the content of this thesis is that the composition

with the pacemaker is not considered.

More work on verifying medical devices has come from the theorem proving community

[MLF08, GO09, MS09]. Theorem proving is a technique that uses a combination of two

14

2.6. SUMMARY

disciplines: mathematics and logics. Implementation and specification are expressed as

formulas in predicate logic and then axioms and rules of inference are used to derive

properties of the system. Again, probabilities were not considered.

Our work presented in Chapter 5 builds on [GSC+09, GBF+11] and on [JPM+12b].

We, in fact, reuse the cardiac cell model introduced in [GSC+09, GBF+11] and the pace-

maker model of [JPM+12b], which we also enhance to analyse energy consumption and

pacing noise. We formulate a generic model-based framework for pacemaker software

which can be instantiated with human heart models, potentially different from the ones

that we have analysed in this thesis, and is amenable to verification.

2.6 Summary

In this chapter we reviewed the work related to the research presented in this thesis. In

Section 2.1, we provide a general overview of the research area of probabilistic model check-

ing. Then, in Section 2.2, we discuss real-time logics and Timed Automata, which are the

formalisms that we use in this thesis to specify real-time system properties. In Section 2.3

we talk about parameter synthesis. Parameter synthesis is addressed in Chapter 5. Sec-

tion 2.4 presents a brief summary of the work on continuous-time Markov chains, which is

the main focus of Chapter 4. The chapter is concluded with Section 2.5 which describes

recent advances in modelling and analysis of medical devices. More specifically, we discuss

the importance of formal verification for medical devices and present relevant publications

to show the differences with the work in this thesis. Formal verification of medical devices

is the main focus of Chapter 5.

15

2.6. SUMMARY

16

Chapter 3

Preliminaries

This chapter presents an overview of the background material needed to understand the

rest of the thesis.

In Section 3.1, we introduce the probabilistic models of discrete-time Markov chains

and continuous-time Markov chains. We conclude the chapter with Section 3.2, where

we present an overview of relevant real-time specification notations, including, Metric

Temporal Logic, Linear Duration Properties and Timed Automata.

3.1 Models

In this section we formally introduce the main models that we use in this dissertation. As

mentioned in the introduction we are interested in real-time models. Real-time models can

be divided into non-probabilistic models and probabilistic models. The difference between

probabilistic and non-probabilistic models lies in the fact that in probabilistic models

jumps among transitions happen following a probability distribution. We will introduce

the probabilistic models of Discrete-Time Markov Chains DTMCs (see Section 3.1.1)

and Continuous-Time Markov Chains CTMCs (see Section 3.1.2). Briefly, DTMCs are

labelled transition systems augmented with probability distributions on transitions. On

the other hand, CTMCs are DTMCs in which the residence times in system states are

exponentially distributed.

3.1.1 Discrete-time Markov chains

Discrete-time Markov chains (DTMCs) [BK08] is one of the simplest probabilistic models.

DTMCs are basically labelled transition systems in which successor states are chosen

according to a probability distribution. Systems that evolve in a fully defined deterministic

or probabilistic fashion can both be modelled by DTMCs. For instance, DTMCs have

been used to analyse Herman’ self-stabilisation algorithm [KNP12] for ring networks, the

Bluetooth device discovery protocol [DKNP06], and many others.

17

3.1. MODELS

Definition 3.1.1 (DTMC) A (labelled) discrete-time Markov chain DTMC is a tuple

D = (S,AP, α, L,P) where :

• S is a finite set of states;

• AP is a finite set of atomic propositions;

• α is the initial distribution over S;

• L : S → 2AP is the labelling function;

• P : S × S → [0, 1] is a stochastic matrix.

The stochastic matrix P specifies for each state s ∈ S the probability P(s, s′) of moving

from s to s′ in one step, namely in one transition. In order for P to be a stochastic

matrix we impose that P(s, s′) > 0 for every s, s′ ∈ S and for all states s we have that
∑
s′∈S

P(s, s′) = 1. The labelling function assigns atomic propositions to states to label them

with properties of interest.

An infinite path in D is an infinite sequence of states

ς = s0 −→ s1 −→ s2 · · · −→ sn . . . ,

for which P(si, si+1) > 0 for all i.

A finite path is a finite sequence of states

ς = s0 −→ · · · −→ sn,

for which P(si, si+1) > 0 for all i < n.

We define |ς| := n to be the length of a finite path ς. We write ς[0..n] for the discrete

path ς ′ of length n obtained from ς. For a finite or infinite path ς, ς[n] := sn is the

(n + 1)-th state of ς. Moreover, we indicate with ς i the prefix of length i of ς. We also

define PathsD to be the set of all infinite paths of the DTMC D. For more details about

DTMCs refer to [BK08].

A DTMC D yields a probability measure PrDα on PathsD as follows. Let s0, . . . , sk ∈ S
with P(si, si+1) > 0 for 0 6 i < k. Let C(s0, . . . , sk) denote the basic cylinder set

consisting of all ς ∈ PathsD such that ς[i] = si (0 6 i 6 k). F(PathsD) is the smallest σ-

algebra on PathsD, which contains all sets C(s0 . . . , sk) for all state sequences (s0, . . . , sk) ∈
Sk+1 with P(si, si+1) > 0 for (0 6 i < k). The probability measure PrDα on F(PathsD) is

the unique measure defined by induction on k by PrDα (C(s0)) = α(s0) and for k > 0:

PrDα (C(s0, . . . , sk)) =

PrDα (C(s0, . . . , sk−1)) ·P(sk−1, sk).

Sometimes we write Pr instead of PrDα when D and α are clear from the context.

18

3.1. MODELS

Example 3.1.1 Consider the DTMC in Figure 3.1 and the simple cylinder set C(s0, s1, s2).

The probability of C in D can be calculated as:

PrD(C(s0, s1, s2)) = P(s0, s1) ·P(s1, s2)

= 1 · 1

5

The next definitions that we introduce, i.e., Definition 3.1.2 and Definition 3.1.3, can

be applied to any directed graph and for such a reason are shared between DTMCs and

CTMCs (see Section 3.1.2).

Definition 3.1.2 (SCC) Let D = (S,AP, α, L,P) be a DTMC. A set of states S′ ⊆ S

is a strongly connected component (SCC) of D if, for any two states s, s′ ∈ S′, there

exists a path ς = s0 → s1 → . . .→ sn such that si ∈ S′ for 0 6 i 6 n, s0 = s and sn = s′.

Definition 3.1.3 (BSCC) An SCC B is a bottom strongly connected component (BSCC)

if no state outside B is reachable from any state in B.

Example 3.1.2 A simple example of a DTMC pacemaker model is pictured in Figure 3.1.

The role of the pacemaker is to deliver electric impulses to the human heart in order to

induce a heart beat. The pacemaker starts in the state “start”. In “start” the pacemaker

is ready to deliver a beat via an electric impulse and the system evolves by moving to state

“try”. Once in “try” the electric impulse can either be delivered with probability 4
5 and the

system moves to “delivered” or lost with probability 1
5 moving the system to state “lost”.

The pacemaker tries to send the electric impulse again if it was lost while proceeding to

state “try”, or moves back to “start” if the electric impulse was delivered.

The DTMC D = (S,AP, α, L,P) of the pacemaker described above is shown in

Figure 3.1. The set of states is S = {s0, s1, s2, s3}, the set of atomic propositions is

AP = {start , try , lost , delivered} and the initial distribution is α(s0) = 1 and α(si) = 0

for i ∈ {1, 2, 3}. The stochastic matrix P is:

P =




0 1 0 0

0 0 1
5

4
5

0 1 0 0

1 0 0 0




The labelling function L is as follows: L(s0) = “start”, L(s1) = “try”, L(s2) = “lost” and

L(s3) = “delivered”. An example of an infinite path corresponding to the system trying

unsuccessfully to deliver an electric impulse is ς = s0 −→ s1 −→ s2 −→ s1 −→ s2 −→
s1 . . . whereas an example of a finite path representing the system that delivers the electric

19

3.1. MODELS

s0start

{start}

s1

{try}

s2

{lost}

s3

{delivered}

1

1
5

4
5

1

1

Figure 3.1: An example of DTMC

impulse is ς = s0 −→ s1 −→ s3 −→ s0. In the DTMC of Figure 3.1 the whole state space,

namely S = {s0, s1, s2, s3}, is a strongly connected component, as well as S′ = {s1, s2}
and S′′ = {s0, s1, s3}. The DTMC has no bottom strongly connected components apart

from its own state space S.

3.1.2 Continuos-time Markov chains

The second model that we consider is that of Continuous-Time Markov Chains (CTMCs).

CTMCs allow the modelling of real-time passage in conjunction with stochastic evolution

governed by exponential distributions. They can be thought of as state transition systems,

in which the system resides in a state on average for 1/r time units, where r is the exit rate,

and transitions between the states are determined by a discrete probability distribution.

Definition 3.1.4 (CTMC) A (labelled) continuous-time Markov chain (CTMC) is a

tuple C = (S,AP, L, α,P, E) where :

• S is a finite set of states;

• AP is a finite set of atomic propositions;

• L : S → 2AP is the labelling function;

• α is the initial distribution over S;

• P : S × S → [0, 1] is a stochastic matrix; and

• E : S → R>0 is the exit rate function.

In a CTMC C, state residence times are exponentially distributed. More precisely,

the residence time of the state s ∈ S is a random variable governed by an exponential

20

3.1. MODELS

s0start

{Busy}

10

s1

{Idle}

6

s2

{Sleep}

0.7

s3 {Standby}

10

1

0.2

0.3
0.5

1

1

Q =




−10 10 0 0

3 −6 1.2 1.8

0 0.7 −0.7 0

0 5 0 −5




Figure 3.2: An example CTMC and its associated infinitesimal generator matrix

distribution with parameter E(s). Hence, the probability to exit state s in t time units is

given by
∫ t

0 E(s) · e−E(s)τdτ ; and the probability to take the transition from s to s′ in t

time units equals P(s, s′) ·
∫ t

0 E(s) · e−E(s)τdτ . A state s is absorbing if P(s, s) = 1.

Example 3.1.3 As a concrete example of a system and property studied, consider the dy-

namic power management system (DPMS) from [QQM01], analysed in [NPK+05] against

properties such as average power consumption. The DPMS includes a queue of requests,

which have an exponentially distributed inter-arrival time, a power management controller

and a service provider. The power management controller issues commands to the service

provider depending on the power management policy, which involves switching between

different power-saving modes. Figure 3.2 depicts a CTMC model of the service provider

for a Fujitsu disk drive. The service provider model in Figure 3.2 is composed of four

states: Busy , Idle,Sleep and Standby. The system makes a transition from Idle to Busy

whenever a request arrives for service. Similarly, it makes a transition from Busy to Idle

whenever it finishes the service of a request. Transitions between Sleep, Standby and Idle

are controlled by the power management. The power management switches the service

provider on, i.e., the service provider moves to Idle, when the service request queue is full

and the service provider is in Sleep or Standby.

Formally, the CTMC in Figure 3.2 can be given as C = (S,AP, L, α,P, E) where: the

set of states is S = {s0, s1, s2, s3}; the set of atomic propositions is AP = {Busy , Idle,

Sleep,Standby}; the labelling function L is L(s0) =“Busy”, L(s1) =“Idle”, L(s2) =“Sleep”,

L(s3) =“Standby”; and the initial distribution is α(s0) = 1 (in this case, a Dirac distri-

bution). The exit rates are indicated at the states, whereas the transition probabilities are

attached to the transitions, characterising E and P respectively.

Example 3.1.4 Consider the CTMC in Figure 3.2 and suppose that the system is in state

s1 at a given time. The probability of leaving s1 in 5 time units is equal to:
∫ 5

0 6 ·e−6τdτ =

1− e−30 (which is almost 1). Similarly, the probability to take the transition from s1 to s3

in 5 time units, given that the system is in s1, is equal to 0.3 · (1− e−30).

21

3.1. MODELS

We also define the infinitesimal generator Q of C as

Q = E ·P−E,

where E is the diagonal matrix with exit rates on the diagonal. Figure 3.2 shows the

infinitesimal generator matrix for the CTMC of Example 3.1.3. Occasionally we use X(t)

to denote the underlying stochastic process of C.
We write π(t) for the transient probability distribution, where, for each s ∈ S,

πs(t) = Pr ({X(t) = s})

is the probability to be in state s at time t. It is well known that π(t) completely depends

on the initial distribution α and the infinitesimal generator Q [BHHK03], i.e., it is the

solution of the Chapman-Kolmogorov equation

dπ(t)

dt
= π(t)Q, π(0) = α .

Similarly to DTMCs, an infinite timed path in C is an infinite sequence of states and

residence times

ρ = s0
t0−→ s1

t1−→ s2 · · ·
tn−1−→ sn . . . ,

for which P(si, si+1) > 0 for all i.

A finite timed path is a finite sequence of states and residence times

σ = s0
t0−→ s1 · · ·

tn−1−→ sn,

for which P(si, si+1) > 0 for all i < n.

Intuitively, a timed path ρ suggests that the CTMC C starts in state s0 and stays in

this state for t0 time units, and then jumps to state s1, staying there for t1 time units,

and then jumps to s2, and so on.

In the rest of the thesis we follow the convention to let ρ (resp. σ) range over infinite

(resp. finite) timed paths, unless otherwise stated. We define |σ| := n to be the length of

a finite timed path σ. In both cases we assume that ti ∈ R>0 for each i > 0; moreover,

we write ρ[0..n] for the discrete timed path σ of length n obtained from ρ. For a finite

or infinite path θ, θ[n] := sn is the (n + 1)-th state of θ and θ〈n〉 := tn is the time spent

in state sn, and let θ@t denote the state occupied in θ at time t ∈ R>0, i.e., θ@t := θ[n],

where n is the smallest index such that
n∑
i=0

θ〈i〉 > t. Moreover, we indicate with θi the

prefix of length i of θ.

An example timed path is ρ = s0
3−→ s1

2−→ s0
1.5−→ s1

3.4−→ s2 . . . with ρ[2] = s0 and

ρ@4 = ρ[1] = s1.

We say that the DTMC D, denoted by

D = (S,AP, α, L,P),

22

3.1. MODELS

defined according to Definition 3.1.1 is the embedded DTMC of the CTMC C. Given a

finite discrete path ς = s0 → · · · → sn of length n and x0, . . . , xn−1 ∈ R>0, we define

ς[x0, . . . , xn−1] to be the finite timed path σ such that σ[i] := si and σ〈i〉 := xi for each

0 6 i < n. Let Γ ⊆ Rn>0, then

ς[Γ] = {ς[x0, . . . , xn−1] | (x0, . . . , xn−1) ∈ Γ}.

Given a finite (resp. infinite) discrete path ς and a finite (resp. infinite) timed path ρ,

we say ς is the skeleton of ρ if, for each i > 0, ς[i] = ρ[i]. We write S(ρ) for the skeleton

of ρ, and, for a set of (finite or infinite) timed paths Ξ, we write S(Ξ) = {S(ρ) | ρ ∈
Ξ}. Moreover, given a finite discrete path ς, we define Cd(ς) = {ςς ′ | ς ′ is an infinite

discrete path} to be the set of all infinite discrete paths with the same common prefix ς.

Let PathsC denote the set of infinite timed paths in C, with abbreviation Paths when C is

clear from the context.

The definition of a Borel space on timed paths of CTMCs follows [BHHK03]. A

CTMC C yields a probability measure PrCα on PathsC as follows. Let s0, . . . , sk ∈ S

with P(si, si+1) > 0 for 0 6 i < k and I0, . . . , Ik−1 be nonempty intervals in R>0. Let

C(s0, I0, . . . , Ik−1, sk) denote the basic cylinder set consisting of all ρ ∈ Paths such that

ρ[i] = si (0 6 i 6 k) and ρ〈i〉 ∈ Ii (0 6 i < k). F(Paths) is the smallest σ-algebra on

Paths, which contains all sets C(s0, I0, . . . , Ik−1, sk) for all state sequences (s0, . . . , sk) ∈
Sk+1 with P(si, si+1) > 0 for (0 6 i < k) and I0, . . . , Ik−1 ranging over all sequences

of nonempty intervals in R>0. The probability measure PrCα on F(Paths) is the unique

measure defined by induction on k by PrCα(C(s0)) = α(s0) and for k > 0:

PrCα(C(s0, I0, . . . , Ik−1, sk)) =

PrCα(C(s0, I0, . . . , Ik−2, sk−1)) ·
∫

Ik−1

P(sk−1, sk)E(sk−1) · e−E(sk−1)τdτ.

Sometimes we write Pr instead of PrCα when C and α are clear from the context. As the

reader can see, the probability measure of CTMCs extends the probability measure of

DTMCs with integrations over the residence times in system states.

Example 3.1.5 Consider, the CTMC C in Figure 3.2 and the simple cylinder set C(s0, I0,

s1, I1, s2) where I0 = [0, 3] and I1 = [0, 5]. The probability of C in C can be calculated as:

PrC(C(s0, I0, s1, I1, s2)) = P(s0, s1)P(s1, s2)E(s0)E(s1)

×
∫

I0

∫

I1

e−E(s0)τ1−E(s1)τ2dτ2dτ1

= 1 · 0.2 · 10 · 6
×
∫ 3

0

∫ 5

0
e−10τ1−6τ2dτ2dτ1

23

3.1. MODELS

Elements of the σ-algebra denote events in the probability space. We now define two

such events that will be needed later in Section 4.3.

Definition 3.1.5 Given a CTMC C and B ⊆ S, we define:

• ♦6TB =

{
ρ ∈ PathsC | ∃n.ρ[n] ∈ B and

n−1∑
i=0

ρ〈i〉 6 T
}

, i.e., ♦6TB denotes the set

of (infinite) timed paths which reach B in time interval [0, T]. Note that PrC(♦6TB)

can be computed by a reduction to the computation of the transient probability dis-

tribution; see [BHHK03].

• ♦B = {ρ ∈ PathsC | ∃n.ρ[n] ∈ B}, i.e., ♦B denotes the set of (infinite) timed

paths which reach B. (This is the unbounded variant of ♦6TB.) Note that PrC(♦B)

is essentially the reachability probability of B in the embedded DTMC of C; see

[BHHK03].

Example 3.1.6 Consider the CTMC in Figure 3.2. The set ♦65s2 denotes the set of all

the timed paths that reach the “Sleep” state in no more than 5 time units. On the other

hand, the set ♦s3 denotes the set of all the timed paths which eventually go into “Standby”

mode.

In general, the probability of reaching a given set of states can be computed as a

solution of a system of linear equalities [BK08]. The procedure, which is shared between

DTMCs and CTMCs, is the following. Let C = (S,AP, L, α,P, E) be a CTMC and

B ⊆ S a set of goal states. Let the variable xs denote the probability of reaching B from

an arbitrary s ∈ S. The goal is to compute xs = Pr (s |= ♦B) for all the states s ∈ S.

It should be clear that if B is not reachable from s then xs = 0. Similarly, if s ∈ B

then xs = 1. A simple graph analysis suffices to identify the states that fall in the above

mentioned two categories, namely the ones that either have xs = 0 or xs = 1. For all the

other states we can write:

xs =
∑

s′∈S\B

P(s, s′) · xs′ +
∑

s′′∈B
P(s, s′′) (3.1)

Intuitively, Equation 3.1 states that either the set B is reached in one step, i.e., from

s we jump to s′′ which belongs to B, or in more than one step, i.e., from s we jump to s′

and then we reach B from s′.

We show how to compute the reachability probabilities with Example 3.1.7.

Example 3.1.7 Let C = (S,AP, L, α,P, E) be the CTMC in Figure 3.2. Let B = {s3}
and suppose we want to find the probability of the system being eventually in “Standby”

mode, i.e., we are looking to compute PrC(♦B). In this case we obtain the following system

24

3.2. REAL-TIME SPECIFICATIONS

of linear equalities:

xs0 = xs1

xs1 =
1

2
xs0 +

1

5
xs2 +

3

10
xs3

xs2 = xs1

xs3 = 1

Solving the system of linear equalities one finds that the probability of eventually reach-

ing s3 from any other state in C is equal to 1. In fact, the results are confirmed by the fact

that the CTMC in Figure 3.2 is a BSCC, which in turn yields that all its states will be

visited infinitely often with probability 1.

3.2 Real-time specifications

As described in the introduction, a vast range of real systems meet the task they have been

designed to accomplish only if they relate properly with the passage of time. Standard

temporal logic, such as the linear time temporal logic (LTL) described in Section 3.2.1, is

inadequate for the study of real-time systems, whose correctness depends crucially on the

actual time at which events occur. More powerful real-time formalisms must generalise

the temporal logic methodology to encompass the analysis of real-time behaviour. For

such a reason, in this thesis, we use three distinct formalisms which can be used to specify

real-time properties: Metric Temporal Logic (MTL) described in Section 3.2.2, the Linear

Duration Properties (LDPs) introduced in Section 3.2.3, and Timed Automata (TAs)

discussed in Section 3.2.4.

3.2.1 Linear temporal logic

The Linear Temporal Logic LTL was first introduced in [Pnu77]. LTL is capable of

expressing linear-time properties that system executions should satisfy. With LTL, users

can specify the property that, for example, “eventually in the future, a pacemaker beat

will happen”. LTL is not a real-time temporal logic in the sense that it does not allow

users to specify the actual time at which events occur. In fact, it is not possible to say

with LTL that “every pacemaker beat is followed by a natural heart beat within 1 second

unless a new pacemaker beat happens before”.

We recall now here the syntax and semantics of LTL [SC85]:

Definition 3.2.1 (Syntax of LTL) Let AP be an arbitrary non-empty, finite set of

atomic propositions. The logic LTL can be inductively defined as:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1Uϕ2

where p ∈ AP and ϕ1, ϕ2 are LTL formulas.

25

3.2. REAL-TIME SPECIFICATIONS

In Definition 3.2.2 we define a variant of acceptance condition for an infinite discrete

word and an LTL formula ϕ. The reason why we introduce a bounded semantics for LTL,

and not the standard unbounded semantics, is because in Chapter 4 we will relate LTL

formulas to MTL formulas (see Section 3.2.2), for which we define a bounded semantics

as well.

In the reminder of this section we assume a CTMC C = (S,AP, L, α,P, E). However,

the concepts can be easily generalised to any transition system model as long as we define

a labelling function L for the states of the model.

Definition 3.2.2 (Bounded Semantics of LTL) Given an LTL formula ϕ, a finite

discrete path ς and i ∈ N, the satisfaction relation (ς, i) |= ϕ is inductively defined as

follows:

(ς, i) |= p ⇔ p ∈ L(ςi) and i 6 |ς|
(ς, i) |= ¬ϕ1 ⇔ (ς, i) 6|= ϕ1

(ς, i) |= ϕ1 ∧ ϕ2 ⇔ (ς, i) |= ϕ1 ∧ (ς, i) |= ϕ2

(ς, i) |= ϕ1Uϕ2 ⇔ ∃i′. i 6 i′ 6 |ς| s.t. (ς, i′) |= ϕ2 ∧
∀i′′. i 6 i′′ < i′ ⇒ (ς, i′′) |= ϕ1

where p ∈ AP, ϕ1, ϕ2 are LTL formulas and i′, i′′ ∈ N. For an infinite discrete path ς,

we define ς |= ϕ if there exists some k > 0 such that the finite discrete path (ςk, 0) |= ϕ.

Definition 3.2.3 (Positive normal form) We say that an LTL (MTL) formula ϕ is

in normal form if negations appear only in front of atomic propositions. Any LTL (MTL)

formula ϕ can be transformed into an equivalent LTL (MTL) formula in positive normal

form. We refer the reader to [BK08] for a detailed algorithm which transforms any LTL

formula into an equivalent LTL formula in positive normal form.

Example 3.2.1 Consider two sample discrete paths, ς1 = s0 −→ s1, ς2 = s1 −→ s2, and

the LTL formula ϕ = aUb. Moreover, consider that the atomic proposition “a” belongs

to the labelling of state s0, i.e., a ∈ L(s0), but not to s1 and s2, i.e., a 6∈ L(s1) and

a 6∈ L(s2), and that the atomic proposition “b” belongs to the labelling of s1, b ∈ L(s1),

but b 6∈ L(s0) and b 6∈ L(s2). Following the semantics introduced in Definition 3.2.2 we

obtain that ς1 |= ϕ, but ς2 6|= ϕ. Since ϕ does not contain any negation, ϕ is in positive

normal form.

3.2.2 Metric temporal logic

The Metric Temporal Logic (MTL) was first introduced in [Koy90]. MTL is a linear-time

temporal logic which allows to specify the exact time at which events occur. An example

of MTL property, as mentioned in Section 3.2.1, is the following: “every pacemaker beat

26

3.2. REAL-TIME SPECIFICATIONS

is followed by a natural heart beat within 1 second unless a new pacemaker beat happens

before”.

We start by defining the syntax of MTL.

Definition 3.2.4 (Syntax of MTL) Let AP be an arbitrary, non-empty, finite set of

atomic propositions. Let I = [a, b] be an interval such that a, b ∈ N ∪ {∞}. The Metric

Temporal Logic [AH93, Koy90] is inductively defined as:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2

where p ∈ AP and ϕ1, ϕ2 are MTL formulas.

We introduce as usual the ♦,� operators defined as follows: ♦Iϕ = ¬trueU Iϕ and

�I = ¬♦I¬ϕ, where ϕ is a MTL formula. The ♦ operator is usually referred to as the

“eventuality” operator since it expresses the possibility of something happening in the

future. The � operator is usually referred to as the “always” operator since it expresses

the possibility of an event that continuously happens in the future.

In the reminder of this section we assume a CTMC C = (S,AP, L, α,P, E). However,

the concepts can be easily generalised to any transition system model as long as we define

a labelling function L for the states of the model.

We introduce two time-bounded semantics for MTL, as follows.

Definition 3.2.5 (Continuous Semantics) Given an MTL formula ϕ, a time bound

T , a timed path ρ and a variable t ∈ R≥0, the satisfaction relation (ρ, t) |=c
T ϕ is inductively

defined as follows:

(ρ, t) |=c
T p ⇔ p ∈ L(ρ@t) ∧ t 6 T

(ρ, t) |=c
T ¬ϕ1 ⇔ (ρ, t) 6|=c

T ϕ1

(ρ, t) |=c
T ϕ1 ∧ ϕ2 ⇔ (ρ, t) |=c

T ϕ1 ∧ (ρ, t) |=c
T ϕ2

(ρ, t) |=c
T ϕ1UIϕ2 ⇔ ∃t′. t 6 t′ 6 T s.t. t′ − t ∈ I ∧ (ρ, t′) |=c

T ϕ2 ∧
∀t′′. t 6 t′′< t′ ⇒ (ρ, t′′) |=c

T ϕ1

where p ∈ AP and ϕ1, ϕ2 are MTL formulas.

Definition 3.2.6 (Pointwise Semantics) Given an MTL formula ϕ, a time bound T ,

a timed path ρ and i ∈ N, the satisfaction relation (ρ, i) |=p
T ϕ is inductively defined as

follows:

(ρ, i) |=p
T p ⇔ p ∈ L(ρ[i]) ∧

i∑
k=0

ρ〈k〉 6 T

(ρ, i) |=p
T ¬ϕ1 ⇔ (ρ, i) 6|=p

T ϕ1

(ρ, i) |=p
T ϕ1 ∧ ϕ2 ⇔ (ρ, i) |=p

T ϕ1 ∧ (ρ, i) |=p
T ϕ2

(ρ, i) |=p
T ϕ1UIϕ2 ⇔ ∃i′. i 6 i′ s.t.

i′∑
k=i

ρ〈k〉 ∈ I ∧ (ρ, i′) |=p
T ϕ2 ∧

∀i′′. i 6 i′′ < i′ ⇒ (ρ, i′′) |=p
T ϕ1

27

3.2. REAL-TIME SPECIFICATIONS

where p ∈ AP, ϕ1, ϕ2 are MTL formulas and i′, i′′ ∈ N.

Example 3.2.2 Consider two sample timed paths, ρ1 = s0
2.5−→ s1, ρ2 = s0

4.5−→ s1,

and the MTL formula ϕ = aU [2,3]b. Moreover, consider that the atomic proposition “a”

belongs to the labelling of state s0, i.e., a ∈ L(s0), but not to s1, i.e., a 6∈ L(s1), and

that the atomic proposition “b” belongs to the labelling of s1, b ∈ L(s1), but b 6∈ L(s0).

Following the two semantics introduced in Definition 3.2.5 and Definition 3.2.6, we can

obtain that ρ1 |= ϕ, but ρ2 6|= ϕ.

3.2.3 Linear duration properties

Although LTL and MTL are powerful logics that allow users to define real-time properties,

as pointed out in [ACH97] their expressiveness is limited and cannot express duration-

bounded causality properties which constrain the accumulated satisfaction times of state

predicates along an execution path, visited possibly intermittently. An example of such a

property is that “the accumulated time spent in unsafe states must be less than or equal

to one tenth of the accumulated time spent in safe states”. Linear Duration Properties

(LDPs) first introduced in [CDKM12b, CDKM13b] overcome this limitation.

We first introduce a language which includes the propositional calculus augmented

with the duration function
∫

and linear inequalities. In the reminder of this section we

assume a CTMC C = (S,AP, L, α,P, E). However, the concepts can be easily generalised

to any model as long as we define a labelling function L for the states of the model.

State formulas are defined inductively as

sf ::= ap | ¬sf | sf1 ∧ sf2,

where ap ∈ AP. Given a state formula sf and a state s ∈ S we say that s satisfies the

state formula sf, denoted s |= sf, iff

s |= ap ⇔ ap ∈ L(s)

s |= ¬sf ⇔ s 6|= sf

s |= sf1 ∧ sf2 ⇔ s |= sf1 and s |= sf2

The duration function
∫

is interpreted over a finite timed path. Let sf be a state

formula and σ = s0
t0−→ . . .

tn−1−→ sn.

The value of
∫

sf for σ, denoted JsfKσ, is defined as
∑

06i<n,
σ[i]|=sf

ti. That is, the value of
∫

sf

equals the sum of durations spent in states satisfying sf.

A linear duration property (LDP) is of the form:

ϕ =
∧

j∈J


∑

k∈Kj

cjk

∫
sfjk 6Mj


 , (3.2)

where cjk,Mj ∈ R, sfjk are state formulas, and J,Kj for j ∈ J are finite index sets.

28

3.2. REAL-TIME SPECIFICATIONS

Definition 3.2.7 Given a finite timed path σ = s0
t0−→ s1

t1−→ . . .
tn−1−→ sn and an LDP ϕ

of the form defined in Equation (3.2), we write σ |= ϕ if, for each j ∈ J ,

∑

k∈Kj

cjk · JsfjkKσ 6Mj .

Example 3.2.3 For the CTMC in Figure 3.2, the LDP ϕ =
∫

Idle − 1
3

∫
Busy 6 0

expresses the constraint that during the evolution of the CTMC the accumulated time

spent in the “Idle” state must be less than or equal to one third of the accumulated time

spent in the “Busy” state.

Inspired by the notation of [CJLX94], we shall also work wit a slight extension of LDP,

i.e., formulas of the form:

Φ :=

∫
1 6 T → ϕ,

where 1 denotes a label belonging to any state, → denotes “implication”, T ∈ R>0 ∪{∞},∫
1 denotes the total time spent on a finite timed path σ. Note that,

∫
1 6 T → ϕ is a

single formula. Hence σ |= Φ if ϕ holds whenever the total time of σ is less or equal than

T . The LDP formula Φ degenerates in ϕ if T =∞.

Definition 3.2.8 Let ρ = s0
t0−→ s1

t1−→ . . . be an infinite timed path and ϕ (or Φ) be an

LDP. We introduce the following two satisfaction conditions:

• Finitary satisfaction condition. Given a set of goal states G ⊆ S, we write ρ |=G ϕ

if there exists some i ∈ N such that:

(1) ρ[i] ∈ G and for any 0 6 j < i, ρ[j] /∈ G; and

(2) ρ[0..i] |= ϕ (see Definition 3.2.7).

Furthermore, we write ρ |=G
T ϕ for a given T ∈ R>0 if, in addition to (1) and (2),

i−1∑
j=0

ρ〈j〉 6 T holds.

• Infinitary satisfaction condition. We write ρ |=? ϕ if, for any n > 0, ρ[0..n] |= ϕ (cf.

Definition 3.2.7).

Intuitively the finitary satisfaction condition represents the fact that the LDP formula

ϕ is satisfied in the timed path ρ. The infinitary satisfaction condition is much stronger.

A path ρ satisfies the LDP ϕ if, at any instant of time, ϕ is valid in ρ. We illustrate the

meaning of the two definitions with an example.

Example 3.2.4 Consider the CTMC in Figure 3.2, the LDP ϕ =
∫

Idle − 1
3

∫
Busy 6 0

and the finite timed path σ = s0
2−→ s1

0.3−→ s0
3−→ s1

0.4−→ s2. Moreover, consider that the

29

3.2. REAL-TIME SPECIFICATIONS

set of goal states is G = {s2} and that T = 10. We have ρ |=G
T ϕ but ρ 6|=? ϕ since there

is an index n > 0 where ρ[0..n] 6|= ϕ, namely, n = 1.

3.2.4 Timed automata

Timed Automata (TAs) were first introduced in [AD94]. TAs are essentially labelled

transition systems augmented with clocks, i.e., real-time variables that track the passage

of time, and guards on transitions which constraints the time at which jumps between

system states can happen.

TA specifications are useful for two reasons:

1. Some of the properties that can be expressed with TAs cannot be expressed in MTL

(or LTL and LDP). See Example 4.2.1 in Section 4.2 for a concrete example of such

a property.

2. TAs allow one to perform product constructions between the model and the spe-

cification, which is often a useful technique to enable model checking.

Before describing TAs in detail we introduce some definitions and notations.

Let X = {x1, . . ., xn} be a set of nonnegative real-valued variables, called clocks. An

X -valuation is a function η : X → R>0 assigning to each variable x a nonnegative real

value η(x).

A clock constraint on X , denoted by g, is a conjunction of expressions of the form

x ./ y for clock x ∈ X , comparison operator ./ ∈ {<,6, >,>} and y ∈ {N}. We write

x ∈ g, for x ∈ X , if the guard g contains a constraint on clock x and g.x := (./, y) with

g.x(1) = ./ and g.x(2) = y if x ./ y is a constraint of g.

Let B(X) denote the set of clock constraints over X . An (X)-valuation η satisfies a

constraint x ./ y, denoted η |= x ./ y, if and only if η(x) ./ y and y ∈ N; it satisfies a

conjunction of such expressions if and only if η satisfies all of them.

Let 0 denote the valuation that assigns 0 to all clocks. For a subset X ⊆ X , the

reset of X, denoted η[X := 0], is the valuation η′ such that ∀x ∈ X. η′(x) := 0 and

∀x /∈ X. η′(x) := η(x). For δ ∈ R>0 and X -valuation η, η+δ is the X -valuation η′′ such

that ∀x ∈ X . η′′(x) := η(x)+δ, meaning that all clocks proceed at the same speed.

Given a set H, let Pr: F(H)→ [0, 1] be a probability measure on the measurable space

(H,F(H)), where F(H) is a σ-algebra over H. Let Distr(H) denote the set of probability

measures on this measurable space.

Formally, a TA can be defined as follows.

Definition 3.2.9 (Timed Automaton) A timed automaton [AD94] is a tuple A =

(Σ,X , Q, q0, QF, →) where:

• Σ is a finite alphabet;

30

3.2. REAL-TIME SPECIFICATIONS

• X is a finite set of clocks;

• Q is a non-empty finite set of modes with initial mode q0 ∈ Q;

• QF is a set of final modes; and

• the relation →⊆ Q×Σ × B(X)× 2X ×Q is an edge relation.

We refer to q
a,g,X−−−→ q′ as an edge, where a ∈ Σ is an input symbol, the guard g is a

clock constraint on the clocks of A, X is the set of clocks that must be reset and q′ is the

successor mode. Intuitively, the edge q
a,g,X−−−→ q′ asserts that the TA A can move from

mode q to mode q′ when the input symbol is a and the guard g holds, while the clocks in

X should be reset when entering q′. In case no guard is satisfied in a mode for a given

clock valuation, time can progress. For the sake of simplicity we omit invariants from the

definition of TAs.

Definition 3.2.10 Given a timed automaton A, we define the following notions.

• A discrete path of A is a sequence of states ς = q0 → q1 . . . → qn . . . where each

qi ∈ Q and the edge between qi and qi+1 exists for all i.

• A timed path of A is of the form θ = q0
a0,t0−−−→ q1

a1,t1−−−→ . . . qn−1
an−1,tn−1−−−−−−→ qn . . . such

that ηi is the clock evaluation when entering qi and η0 = 0. For all i > 0 with ai ∈ Σ

it holds that ti > 0, ηi + ti |= gi where gi is the guard on the i-th transition. For

all i > 0 we have that the clock evaluation of step i + 1 is updated according to the

following rule: ηi+1 = (ηi + ti)[Xi := 0]. We say that θ is accepting if there exists

some n > 0 such that qn ∈ QF. As for CTMCs we write ρ (respectively σ), instead

of θ, for infinite (respectively finite) timed paths.

Definition 3.2.11 (Time-bounded Acceptance) Assume a TA A = (Σ,X , Q, q0, QF,

→) and a time bound T ∈ R>0. A timed path θ = q0
a0,t0−−−→ q1

a1,t1−−−→ . . . is accepted by

A according to the time-bounded acceptance condition if there exists i ∈ N>0 such that

qi ∈ QF and
n−1∑
i=0

ti 6 T . We write θ |=T A to denote that the timed path θ is accepted by

A within the time bound T .

Example 3.2.5 As an example consider the TA A = (Σ,X , Q, q0, QF,→) in Figure 3.3

where: Σ = {a, b}, X = {x}, Q = {q0, q1}, QF = {q1}. Intuitively, A expresses the

property that the first “a” is seen within 5 time units. Moreover, consider two finite timed

paths σ1 = q0
b,0.3−−−→ q0

a,2−−→ q1
a,7−−→ q1, σ2 = q0

b,7.5−−−→ q0
a,3.9−−−→ q1

a,2.8−−−→ q1 and the time bound

T = 3. According to Definition 3.2.11 we have that σ1 |=T A, whereas σ2 6|=T A.

31

3.3. SUMMARY

q0start q1

a, x 6 5; x := 0

b Σ

Figure 3.3: An example TA

3.3 Summary

In this chapter we have introduced the background material that is needed to understand

the content of this thesis. We have overviewed the probabilistic models of discrete and

continuous-time Markov chains and their applications in Section 3.1. The chapter con-

cludes with Section 3.2, where we have presented the formalisms of Metric Temporal Logic,

Linear Duration Properties and Timed Automata that are used in this thesis to specify

real-time properties.

32

Chapter 4

Model checking real-time

properties over continuous-time

Markov chains

In recent years researchers have focused their attention on developing model checking

algorithms for CTMCs against a variety of different temporal logics (see Section 2.4 of

Chapter 2 for details). However, the verification of CTMCs against real-time specifica-

tions such as MTL, LDP or TAs has not been addressed before. In many real-life examples

it is not possible to ignore the real-time constraints that a system must obey in order to

function correctly. Think, for instance, to the software embedded in medical devices, such

as pacemakers. Pacemakers must work correctly 24 hours per day, seven days per week.

We show the importance of real-time properties with Example 4.0.1.

Example 4.0.1 We recall the dynamic power management system (DPMS) CTMC of

Figure 3.2 presented in Example 3.1.3 and refer the reader to Section 3.1.2 for a detailed

description of the system. From a performance perspective it would be important to check

that the system deals with its requests in a timely manner. One might wish to verify

that with high probability it is always the case that, once a request has been accepted

(the system is in Busy), it is served within 60 seconds (the system goes back to Idle).

This property, known also as “bounded response”, can be expressed in MTL as: ϕ =

�(Busy ⇒ ♦[0,60]Idle). Similarly, a good performance indicator would be to ensure that

during an entire day the system spends most of its time being busy serving requests. More

specifically, one might want to check that, with high probability, the system spends at least
3
4 of time in Busy during the whole day of 24 hours. This property can be specified as LDP

Φ =
∫

1 6 24→ ϕ, where ϕ =
∫

Busy > 3
4

∫
(Busy + Idle +Sleep +Standby), or with some

simplifications as ϕ =
∫

Busy > 3
∫

(Idle + Sleep + Standby).

33

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

In light of Example 4.0.1, in this chapter we study the time-bounded verification of

a finite continuous-time Markov chain (CTMC) C against a real-time specification. The

real-time specification can be provided as a:

• metric temporal logic (MTL) property ϕ;

• timed automaton (TA) A; or

• linear duration property (LDP) ϕ.

The key question that we address is the following.

Model checking problem

Input: A CTMC C and a real-time property ϕ (or A)

Problem: Find the probability of the set of timed paths of C that

satisfy ϕ (or are accepted by A) over a time interval of fixed,

bounded length.

The model checking algorithms for the real-time specifications mentioned above share

several similarities with each other. In particular, we provide approximation algorithms

to approximate the solution of these problems. We first derive a bound N such that

timed paths of C with at most N discrete jumps are sufficient to approximate the desired

probability up to ε. Then, for each discrete path ς of length at most N , we generate timed

constraints over variables determining the residence time of each state along ς, depending

on the real-time specification under consideration. The probability of the set of timed

paths, determined by the discrete path and the associated timed constraints, can thus be

formulated as a multidimensional integral. Summing up all such probabilities yields the

result.

The content of this chapter is based on two conference papers [CDKM11, CDKM12b]

and one journal publication [CDKM13b].

The chapter is divided into three sections. Section 4.1 tackles the model checking

problem for specifications given as MTL formulas. In Section 4.2 we present algorithms

to address the model checking problem when specifications are given as Timed Automata.

The algorithms for MTL and TAs in Section 4.1 and Section 4.2 are very similar. We

conclude the chapter with Section 4.3, where we solve the model checking problem for

real-time specifications given as LDPs.

4.1 Verifying continous-time Markov chains against MTL

In this section we study the problem of model checking CTMCs against MTL properties.

The content of this section is based on a published conference paper [CDKM11] by the

34

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

author of this thesis and his colleagues at Oxford.

The problem, as mentioned in the introduction of this chapter, can be summarised as

follows.

Model checking problem

Input: A CTMC C and a MTL property ϕ

Problem: Find the probability of the set of timed paths of C that

satisfy ϕ over a time interval of fixed, bounded length.

We start off with some definitions that we will use throughout the section. First,

recall that the syntax and semantics of the real-time temporal logic MTL was defined in

Section 3.2.2. Let PrCT (ϕ) := PrC({ρ ∈ PathsCT | (ρ, 0) |=c
T ϕ}) denote the probability that

the CTMC C satisfies the MTL formula ϕ, for a given time bound T . In words, PrCT (ϕ)

is the probability of the set of timed paths ρ of C which satisfy ϕ. Note that here the

definition of PrCT (ϕ) is for the continuous semantics of MTL, but we present an algorithm

to deal also with MTL in pointwise semantics later. Instead of computing PrCT (ϕ), we

give a procedure to compute PrCT,<N (ϕ) := PrC(PathsCT,<N (ϕ)), where PathsCT,<N (ϕ) is

the set of timed paths of length less than N which satisfy the MTL formula ϕ, for a

given time bound T . The number N should be chosen sufficiently large in order to ensure

that PrCT (ϕ)−PrCT,<N (ϕ) < ε for arbitrarily small ε ∈ R>0. This yields an approximation

algorithm. The measurability of the set of PathsCT,<N (ϕ) := {ρ ∈ PathsCT,<N | (ρ, 0) |=c
T ϕ}

can be shown as in [SK11]. In this section we present a detailed algorithm to compute

PrCT,<N (ϕ). The algorithm can be decomposed into five steps:

Step 1. Bound the number of jumps N in the interval of time [0, T] in order to get the

desired error ε;

Step 2. Transform the MTL formula ϕ to the untimed linear-time temporal logic formula

(LTL, see Section 3.2.1) form ϕ̃ to reduce the complexity of the model checking

algorithm;

Step 3. Construct the non-deterministic finite automaton Aϕ̃ out of ϕ̃;

Step 4. Build the product C × Aϕ̃;

Step 5. Search for all the discrete paths ς in C × Aϕ̃ of length at most N and, for each

of those, generate the set of linear inequalities S and calculate the probability of ς

under the constraints in S.

In the rest of the Section 4.1 we will discuss each of the five steps above separately.

35

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

Step 1: A bound on the number of discrete jumps

We give a bound, N , on the number of discrete jumps that occurs between [0, T], where T

is a time bound. The intuition here is that, for a given time interval [0, T], the probability

of the set of timed paths which “jump” very frequently is actually very small. Thus, in

our algorithm, we do not need to consider paths that jump very often. Throughout this

section we assume a CTMC C = (S,AP, L, α,P, E).

Remark 4.1.1 The procedure of finding a bound on the number of discrete jumps on the

CTMC is shared with Section 4.2. The reason is that a bound on the number of jumps that

occur in [0, T] is equivalent to restricting the number of timed paths of the CTMC that we

need to consider and it is independent from the chosen property specification formalism.

Our goal here is to find the integer N , also referred as a step bound, such that the set

of timed paths which jump more than N times in [0, T] has a very small probability. We

introduce now some lemmas which will help finding the right step bound N .

We start with Lemma 4.1.1, which gives an integral form to the probability of all the

paths that have more than N jumps in [0, T]. Theorem 4.1.3 then demonstrates how to

bound analytically the integral form previously given in Lemma 4.1.1. At this point we

have proved that the probability of all the timed path that have more than N jumps

between [0, T] is always smaller than a given upper bound. Finally, Proposition 4.1.4

shows how to choose a natural number N such that the probability of all the timed paths

that have more than N jumps in [0, T] is smaller than a given ε, where ε is the desired

error bound.

For any n ∈ N, we define V n(s, x) : S × R>0 → [0, 1] as follows: V 0(s, x)=1 and

V n+1(s, x) =

∫ x

0
E(s)e−E(s)τ ·

∑

s′∈S
P(s, s′) · V n(s′, x− τ)dτ .

Lemma 4.1.1 For all N ∈ N, PrC(PathsCT,>N (s)) = V N (s, T).

Proof By induction on N .

1. N = 0: V 0(s, T) = 1. This is exactly the probability of all paths {ρ ∈ PathsC(s) |
ρ〈0〉 6 T}, that is, PrC(PathsCT,>0(s)). PrC(PathsCT,>0(s)) is the probability to have

0 jumps in the interval of time [0, T], which is equal to e−E(s)T , plus the probability

of having more than one jump in [0, T], that is, 1 − e−E(s)T . Summing up the two

probabilities yields 1 as the result.

36

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

2. Induction step.

V N+1(s, T) =

∫ T

0
E(s)e−E(s)τ ·

∑

s′∈S
P(s, s′)V N (s, T − τ)dτ

=

∫ T

0
E(s)e−E(s)τ ·

∑

s′∈S
P(s, s′)PrC(PathsCT,>N (s))dτ

= PrC(PathsCT,>N+1(s))

Next, in Lemma 4.1.2, we show how to bound V N (s, T) analytically. Given a CTMC

C, let Λ = max
s∈S

E(s) and ε(T,N) = e−ΛT ·
(∞∑

i=N

(ΛT)i

i!

)
.

Lemma 4.1.2

ε(T,N + 1) =

∫ T

0
Λe−Λτ · ε(T − τ,N)dτ .

Proof

∫ T

0
Λe−Λτ · ε(T − τ,N)dτ

=

∫ T

0
Λe−Λτ · e−Λ(T−τ) · (

∑

i>N

(Λ(T − τ))i

i!
)dτ

= e−ΛT

∫ T

0
Λ · (

∑

i>N

(Λ(T − τ))i

i!
)dτ

= e−ΛT
∑

i>N

∫ T

0
Λ · ((Λ(T − τ))i

i!
)dτ

= e−ΛT
∑

i>N

−(Λ(T − τ))i+1

(i+ 1)!
|T0

= e−ΛT
∑

i>N

(ΛT)i+1

(i+ 1)!

= e−ΛT
∑

i>N+1

(ΛT)i

(i)!

= ε(T,N + 1).

We are now ready for the main result of this section, Theorem 4.1.3. Theorem 4.1.3

gives an error bound to the probability of the all timed paths which jump more than N

times in [0, T]. The bound is obtained combining Lemma 4.1.1 and Lemma 4.1.2 together.

More specifically, we have the following

Theorem 4.1.3 Given a CTMC C, a time bound T and N ∈ N, we have that

PrC(PathsCT,>N) 6 ε(T,N).

37

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

Proof By induction on N . The base case (i.e., N = 0) is straightforward. For N + 1 we

have

PrC(PathsCT,>N+1) =

∫ T

0
E(s)e−E(s)τ ·

∑

s′∈S
P(s, s′) · PrC(PathsCT−τ,>N (s′))dτ

6
∫ T

0
E(s)e−E(s)τ ·

∑

s′∈S
P(s, s′) · ε(T − τ,N)dτ

6
∫ T

0
Λe−Λτ ·

∑

s′∈S
P(s, s′) · ε(T − τ,N)dτ

From Lemma 4.1.2 we have that
∫ T

0
Λe−Λτ ·

∑

s′∈S
P(s, s′) · ε(T − τ,N)dτ

=
∑

s′∈S
P(s, s′) ·

∫ T

0
Λe−Λτ · ε(T − τ,N)dτ

=
∑

s′∈S
P(s, s′) · ε(T,N + 1)

= ε(T,N + 1).

It follows that PrC(PathsCT,>N+1) 6 ε(T,N + 1), which completes the induction step.

Proposition 4.1.4 shows how to pick the right step bound N given a CTMC C, a time

bound T and a maximum error tolerance ε.

Proposition 4.1.4 Let ε ∈ R>0 and T ∈ R>0. For any N > ΛTe2 + ln(1
ε) we have that

ε(T,N) < ε.

Proof We have that

ε(T,N) = e−ΛT ·
(∞∑

i=N

(ΛT)i

i!

)

= e−ΛT · eΛT · (ΛT)N

N !

6
(ΛT)N

(N/e)N
=

(
ΛTe

N

)N

6

(
1

e

)ln(1/ε)

= ε

.

Remark 4.1.2 Readers who are familiar with Poisson distributions will immediately no-

tice that the bound we obtained is actually the probability that there are at least N Poisson

arrivals in an interval of time [0, T], with rate Λ. If the CTMC C is uniform (i.e., each

38

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

state of C has the same exit rate), then one could obtain the bound in a straightforward

way. However, for the general case, this cannot be achieved directly. Moreover, we point

out here that, in order to verify an MTL formula ϕ or a TA A, one cannot apply the

uniformisation technique, which is ubiquitous in CTMC model checking. The reason for

that is that uniformisation is used for reachability properties. MTL properties are more

expressive than simple reachability.

Step 2: Transform the MTL formula ϕ to the untimed linear-time temporal

logic formula (LTL, see Section 3.2.1) form ϕ̃

The basic idea of this step is to exclude those CTMC timed paths which definitely fail

ϕ. We define an LTL formula ϕ̃ such that, if a discrete path of C fails ϕ̃, then any

timed path with the discrete path as skeleton must fail ϕ. This is formally stated in

Lemma 4.1.5. Notice that, since we consider the time-bounded semantics of MTL, we

need a variant of acceptance for an infinite discrete word and an LTL formula ϕ̃, which is

given in Definition 3.2.2. We then construct a non-deterministic finite automaton (NFA)

out of ϕ̃, such that only those finite discrete CTMC paths which are accepted by the

NFA are the prefixes of the potential skeletons of timed paths satisfying ϕ. Then we apply

the standard product construction, which suffices to identify those finite discrete paths

analysed in the next step.

Remark 4.1.3 We remark again here that the following is an optimisation step and it can

actually be skipped if one is not concerned with the complexity of the verification algorithm.

Now we show how it is possible to transform an MTL formula ϕ to its untimed LTL

version ϕ̃. Given any MTL ϕ in positive normal form (see Definition 3.2.3), we define an

(untimed) LTL formula ϕ̃ as follows:

ϕ = p ⇒ ϕ̃ = p

ϕ = ¬p ⇒ ϕ̃ = ¬p
ϕ = ϕ1 ∨ ϕ2 ⇒ ϕ̃ = ϕ̃1 ∨ ϕ̃2

ϕ = ϕ1 ∧ ϕ2 ⇒ ϕ̃ = ϕ̃1 ∧ ϕ̃2

ϕ = ϕ1UIϕ2 ⇒ ϕ̃ = ϕ̃1U ϕ̃2

ϕ = �Iϕ1 ⇒ ϕ̃ = true U ϕ̃1

where ϕ1 and ϕ2 are MTL formulas and ϕ̃1 and ϕ̃2 are LTL formulas.

Before reading further, we remind the reader that the transformation is a purely prac-

tical step used for optimisation purposes. Transforming ϕ to ϕ̃ allows us to eliminate

those CTMC paths for which we are 100% sure that the original MTL formula ϕ is not

satisfied. Once we eliminate the paths that fail ϕ̃, we check the timed formula ϕ on the

remaining paths, see Algorithm 1.

39

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

Example 4.1.1 Consider, for example, the CTMC in Figure 3.2 and the MTL formula

ϕ = Idle U [0,5]Busy. The formula represents the set of all timed paths that stay between

0 and 5 time units in “Idle” before moving to “Busy”, without going first to Sleep or

Standby. The MTL formula ϕ is transformed into the equivalent untimed LTL ϕ̃ =

Idle UBusy. It should be clear that, if a path never satisfies the condition that the system

stays in Idle continuously before moving to Busy, then the same path cannot satisfy the

same condition constrained to the case of that happening between 0 and 5 time units.

In the transformation from the MTL formula ϕ to LTL formula ϕ̃ we only define the

¬ operator for atomic propositions because ϕ is already in positive normal form. Notice

that we transform �[a,b]ϕ into true U ϕ̃ instead of a seemingly more natural �ϕ̃, because

otherwise in the next step we would not consider timed paths ρ such that (ρ, 0) |= ϕ while

S(ρ) 6|= ϕ̃. Recall here that S(ρ) is the skeleton of the timed path ρ (see Section 3.1.2 for

more details). Such paths do exist. For instance, consider the MTL formula �[0,2]p and

the path ρ = s0
2.5−→ s1 · · · with L(s0) = {p} and L(s1) = {¬p}. Then (ρ, 0) |=c

T �
[0,2]p

and S(ρ) 6|= �p (but S(ρ) |= true Up as we defined). To conclude, one cannot transform

�[a,b] by simply removing the time constraints [a, b].

The next lemma that we introduce, Lemma 4.1.5, proves that our transformation from

an MTL formula ϕ to its untimed version ϕ̃ is correct. In words, Lemma 4.1.5 says that if

the MTL formula ϕ is satisfied in a timed path ρ then it must be the case that the same

timed path ρ satisfies ϕ̃, where ϕ̃ is the untimed version of ϕ.

Lemma 4.1.5 Let ϕ be an MTL formula and ρ be a timed path in C. We have that

(ρ, t) |=c
T ϕ⇒ (S(ρ), x) |= ϕ̃

where ρ@t = ς[x].

Proof For the rest of the proof, we assume t, t′, t′′ ∈ R and x, i, j ∈ N. The proof of

the lemma for the base case (ϕ = p = ϕ̃) and the cases with the untimed modalities

ϕ = Φ = ϕ̃, where (Φ = ¬p) ∨ (Φ = ϕ1 ∧ ϕ2), are trivial. The only interesting cases are:

(ρ, t) |=c
T ϕ1UIϕ2 ⇒ (S(ρ), x) |= ϕ̃1U ϕ̃2 (4.1)

(ρ, t) |=c
T �

Iϕ1 ⇒ (S(ρ), x) |= true U ϕ̃1 (4.2)

1. By the semantics of MTL :

(ρ, t) |=c
T ϕ1UIϕ2 ⇒





∃t′ > t ∧ t′ 6 T such that.

t′ − t ∈ I ∧ (ρ, t′) |=c
T ϕ2 ∧

∀t′′. t 6 t′′ < t′. (ρ, t′′) |=c
T ϕ1

(4.3)

40

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

Let ρ@t = ς[x] and ρ@t′ = ς[i]. By induction hypothesis on the second and third

row of Equation 4.3:

(S(ρ), x) |= ϕ̃1U ϕ̃2 ⇐





∃i > x such that.

(S(ρ), i) |= ϕ̃2 ∧
∀j. 0 6 j < i. (S(ρ), j) |= ϕ̃1

which concludes the proof for Equation 4.1.

2. By the semantics of MTL :

(ρ, t) |=c
T �

Iϕ1 ⇒
{
∀t′ > t ∧ t′ 6 T.

t′ − t ∈ I ∧ (ρ, t′) |=c
T ϕ1

(4.4)

Let ρ@t = ς[x].By induction hypothesis on the first row of Equation 4.4:

(S(ρ), x) |= true U ϕ̃1 ⇐





∃i > x such that.

(S(ρ), i) |= ϕ̃1 ∧
∀j. 0 6 j < i. (S(ρ), j) |= true

which concludes the proof for Equation 4.2.

Step 3: Construct the non-deterministic finite automaton Aϕ̃ out of ϕ̃

As the next step, we construct an NFA Aϕ̃ which accepts all the prefixes of infinite paths

satisfying the formula ϕ̃ according to Definition 3.2.2.

We propose here two possible ways to build Aϕ̃:

1. Use the construction in [GH01]. The authors give a modification of the Vardi-Wolper

algorithm for finite-trace (or bounded in other words) semantics of LTL.

2. Use the construction in [KV01]. In [KV01] there is an automata construction for

detecting bad prefixes of LTL formulas. Starting from ϕ̃, we build ϕ̂ = ¬ϕ̃. Then

we construct an automaton to detect the bad prefixes of ϕ̂ following [KV01]. The

bad prefixes of ϕ̂ coincide with the good prefixes of ϕ̃.

Step 4: Build the product C × Aϕ̃;

We then build the product of C and Aϕ̃.

Definition 4.1.1 (Product C ⊗ Aϕ̃) Given a CTMC C = (S,AP, L, s0,P, E) and an

NFA Aϕ̃ = (Q, 2AP, δ, q0, F), we define the product C ⊗ Aϕ̃ to be the tuple C ⊗ Aϕ̃ =

(Loc, l0, LocF,) where:

• Loc = S ×Q;

41

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

• l0 = 〈s0, q0〉;

• LocF = S × F ;

• ⊆ Loc× Loc such that

P(s, s′) > 0 ∧ q L(s)−→ q′

〈s, q〉 〈s′, q′〉 .

A path of the product C ⊗ Aϕ̃ is a sequence of locations l0 → . . . → ln for which

(li, li+1) ∈ . The set of accepted paths in C ⊗ Aϕ̃ is defined by ♦LocF. Notice that we

are only interested in the discrete paths of C⊗Aϕ̃. Therefore, we do not assign probabilities

to the transition relation when computing the product. The product is used to check

which discrete paths in the CTMC verify the formula ϕ̃.

Recall that, given a CTMC C, we write Cd(ς) for the set of all infinite discrete paths

of C with the same common prefix ς (see Section 3.1.2).

The next proposition that we introduce, i.e., Proposition 4.1.6, proves that the follow-

ing operations are correct:

• Transform an MTL formula ϕ into the untimed equivalent LTL formula ϕ̃;

• Construct the NFA Aϕ̃;

• Build the product C ⊗ Aϕ̃;

• Compute the set of accepted timed paths of C ⊗ Aϕ̃ defined as ♦LocF;

• Project back the set of accepted timed paths of the product onto CTMC timed

paths LocF �1, where LocF �1 is the projection of LocF onto its first component.

In words, Proposition 4.1.6 states that, given a CTMC C and an MTL property ϕ,

the following statement must be true. The skeleton of all the timed paths of C that satisfy

ϕ, i.e., S(PathsCT (ϕ)) is a subset of the set of all the infinite discrete paths which have ς

as a prefix, i.e., Cd(ς), where ς are all the accepted discrete paths of C ⊗Aϕ̃, i.e., ♦LocF,

projected onto the first component of the product.

Proposition 4.1.6 For any CTMC C and NFA Aϕ̃, S(PathsCT (ϕ)) ⊆ {Cd(ς) | ς ∈
♦LocF �1}.

Proof Let ρ = s0
x0−→ s1

x1−→ s2
x2−→ . . . be a timed path in PathsCT (ϕ). Note that, for

each i > 0, P(si, si+1) > 0. From Lemma 4.1.5 we have that (S(ρ), 0) |= ϕ̃.

Aϕ̃ accepts all the prefixes of infinite words that satisfy ϕ̃. Let w be the word generated

by ρ, that is, w = L(ρ[0])L(ρ[1])L(ρ[2]) Obeserve that w is an accepting word for Aϕ̃
and it produces an accepting run θ on Aϕ̃ such that:

θ = q0
L(s0)−→ q1

L(s1)−→ q2
L(s2)−→ . . .

L(sn−1)−→ qn . . .

42

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

where qn ∈ F . Combining θ with the condition that in ρ, for each i > 0, P(si, si+1) > 0,

we can construct a path ν in C ⊗ Aϕ̃ such that:

ν = 〈s0, q0〉 −→ 〈s1, q1〉 −→ 〈s2, q2〉 −→ . . . −→ 〈sn, qn〉 . . .

where again qn ∈ F , and consequently 〈sn, qn〉 ∈ LocF. This is an accepting path for

C ⊗ Aϕ̃, which means that ν ∈ ♦LocF. It must be the case then, for any ρ ∈ PathsCT (ϕ),

that S(ρ) ⊆ {Cd(ς) | ς ∈ ♦LocF �1}, where ς = ν �1 for the first n terms of ν, which

concludes the proof.

Step 5: Compute all the discrete paths of C ⊗ Aϕ̃ of length at most N and

calculate probabilities.

We divide this step into further four substeps.

Step 5.1. Search the graph C ⊗Aϕ̃ to get all the discrete accepting paths ς of C of length

at most N ;

Step 5.2. Generate constraints. Run Algorithm 1 on each discrete path ς of length n 6 N

to obtain the system of linear inequalities S;

Step 5.3. Compute the probability of ς[S];

Step 5.4. Sum up all the probabilities for each discrete path to obtain PrCT,<N (ϕ).

Step 5.1: Search for discrete paths of length at most N

The step can be accomplished by standard graph search techniques, such as depth-first or

breadth-first.

Step 5.2: Constraints generation

The set of linear constraints is generated by means of Algorithm 1. Algorithm 1 takes

as input a discrete path ς of length n and an MTL formula ϕ which in Algorithm 1 is

evaluated for the continuous semantics. We will show later in Algorithm 2 how to generate

the same set of constraints when the formula ϕ is evaluated considering the pointwise

semantics. Algorithm 1 returns a family of linear constraints S =
∨
i∈I

∧
j∈Ji

cij where cij is a

linear inequality over the set of variables t0, . . . , tn−1. Intuitively, the variables t0, . . . , tn−1

will be associated with state residence times in the CTMC path under consideration.

Given a system of linear constraints S we define the set of feasible solutions to be the

tuples (x0, . . . , xn−1) ∈ Rn such that (x0, . . . , xn−1) ∈ S.

First, the algorithm executes the function Constr Gen(ς,0,ϕ). The result is a set of

constraints S ′ in first-order theory of (R,+,−, 0, 1,6). Second, the algorithm executes the

Fourier-Motzkin procedure in order to eliminate all existential and universal quantifiers.

This results in a family of linear constraints containing only the variables t0, . . . , tn−1.

43

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

Algorithm 1 Constraints generation for continuous semantics

Require: A finite discrete path ς of length n > 0, an MTL formula ϕ and a time bound

T

Ensure: Family of linear inequalities S over t0, . . . , tn−1

1: S ′ :=Constr Gen(ς,0,ϕ)

2: S :=Fourier Motzkin(S ′,t0,. . .,tn−1)

3: return S
4:

5: Function Constr Gen(ς,t,ϕ)

6: case(ϕ) :

ϕ = p : return
(n∨
k=0

p ∈ L(ς[k]) ∧
k∑
i=0

ti > t ∧
k−1∑
i=0

ti < t
)
∧

t < T

ϕ = ¬ϕ1 : S ′ := ¬Constr Gen(ς,t,ϕ1)

ϕ = ϕ1 ∧ ϕ2 : S ′ := Constr Gen(ς,t,ϕ1) ∧ Constr Gen(ς,t,ϕ2)

ϕ = ϕ1U [a,b]ϕ2 : S ′ := ∃t′.
(
t 6 t′ < T ∧ t′−t>a ∧ t′−t<b ∧

Constr Gen(ς,t′,ϕ2) ∧
∀t′′. t 6 t′′ < t′ ⇒ Constr Gen(ς,t′′,ϕ1)

)

7: return S ′

Although Algorithm 1 returns a set of linear inequalities S over the time at which

jumps occur in the input discrete path ς, according to the input MTL formula ϕ, we have

no certainty that the set of linear inequalities returned is actually correct. In order for S
to be correct we need that any solution of the system must satisfy the formula ϕ when

plugged back into the discrete path ς. Moreover, if there is a sequence of time jumps for

ς that satisfies ϕ then that sequence must be a solution to S. Theorem 4.1.7 proves the

correctness of the system of linear inequalities returned by Algorithm 1.

Theorem 4.1.7 Given a discrete path ς of length n, an MTL formula ϕ and a time bound

T , we have that (ς[x0, . . . , xn−1], 0) |=c
T ϕ iff (x0, . . . , xn−1) ∈ S, where S is returned by

Algorithm 1. Recall here that the notation (x0, . . . , xn−1) ∈ S indicates that the values of

(x0, . . . , xn−1) are solutions to the set of linear inequalities S.

Proof We show the theorem in two directions, as follows.

(ς[x0, . . . , xn−1], 0) |=c
T ϕ⇒ (x0, . . . , xn−1) ∈ S. The proof proceeds by induction on the

length of the formula ϕ. Let σ = ς[x0, . . . , xn−1].

• Base Case. ϕ = p. By the semantics of MTL (ς[x0, . . . , xn−1], t) |=c
T p ⇒ p ∈

σ[k]∧ t < T , where σ[k] = σ@t for the smallest index k such that
k∑
i=0

σ〈i〉 > t. Since

44

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

k is the smallest index such that
k∑
i=0

σ〈i〉 > t, it follows that
k−1∑
i=0

σ〈i〉 < t. Combining

all together we obtain: p ∈ σ[k]∧ t < T ∧
k∑
i=0

ρ〈i〉 > t∧
k−1∑
i=0

σ〈i〉 < t. Giving as input

ς, p, T to Algorithm 1 yields:
(n∨
k=0

p ∈ L(ς[k]) ∧
k∑
i=0

ti > t ∧
k−1∑
i=0

ti < t
)
∧ t < T . The

conjunction is satisfied for ς[k] = ρ[k].

• Induction Step. For ϕ = ¬ϕ1 ∨ ϕ = ϕ1 ∧ ϕ2, the proof follows by induction

hypothesis.

For ϕ = ϕ1U [a,b]ϕ2 we have that:

(σ, t) |=c
T ϕ1U [a,b]ϕ2 ⇒

{
∃t′. t 6 t′ < T ∧ a 6 t′ − t < b ∧ (σ, t′) |=c

T ϕ2

∀t′′. t 6 t′′ < t′ ⇒ (σ, t′′) |=c
T ϕ1

Constr Gen(ς, t, ϕ1U [a,b]ϕ2)⇒





∃t′. t 6 t′ < T ∧ a 6 t′ − t < b ∧
Constr Gen(ς, t′, ϕ2) ∧
∀t′′. t 6 t′′ < t′ ⇒ Constr Gen(ς, t′′, ϕ1)

By induction hypothesis (σ, t′) |=c
T ϕ2 ⇒ Constr Gen(ς, t′, ϕ2) and (σ, t′′) |=c

T ϕ1 ⇒
Constr Gen(ς, t′′, ϕ2), concluding the proof.

(x0, . . . , xn−1) ∈ S ⇒ (ς[x0, . . . , xn−1], 0) |=c
T ϕ. The proof proceeds in a way similar to

the opposite direction.

We now show the functioning of Algorithm 1 by means of an example.

Example 4.1.2 Let C be a CTMC and let ς be the following finite discrete path on

C: ς = s0 → s1 → s2 → s3. Let a, b ∈ AP, let L(s0) = {a}, L(s1) = {a}, L(s2) =

{a, b}, L(s3) = {∅} and let ϕ = a U [1,2]b. The first step of Algorithm 1 consists of

computing Constr Gen(ς,0,ϕ), which returns the following family of linear constraints

S ′:

∃t′. 0 6 t′ < T ∧ t′ > 1 ∧ t′ < 2 ∧
{
t0 + t1 + t2 > t′

t0 + t1 < t′
∧ (4.5)

∀t′′. 0 6 t′′ < t′ ⇒
(
t0 > t

′′ ∨
{
t0 + t1 > t′′

t0 < t′′
∨
{
t0 + t1 + t2 > t′′

t0 + t1 < t′′

)
. (4.6)

The constraints in Equation (4.6) can always be verified given the constraints in Equa-

tion (4.5). Moreover, after the Fourier Motzkin elimination for t′, t′′ in S ′ we obtain as

a result the family of constraints S:

S =

{
t0 + t1 < 2

t0 + t1 + t2 > 1
.

45

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

The system S can be represented using the matrix notation: S := {t ∈ Rn>0 | A · t E b},
for a given matrix A ∈ Rm×n, vector b ∈ Rm and E ∈ {<,6}. The notation R>0 stands

for the semi-closed interval (0,∞) ⊂ R. The matrices A, t and b in S are: A ∈ R2×3,

t ∈ R3
>0 and b ∈ R2. More specifically:

A =

[
1 1 0

−1 −1 −1

]
; t =




t0

t1

t2


 ; b =

[
2

−1

]
.

In Algorithm 2 we also present a procedure that generates a family of linear constraints

from a given MTL formula ϕ under the pointwise semantics. Notice that we do not need

to use the Fourier Motzkin elimination procedure, as the family of constraints obtained

from Constr Gen(ς,0,ϕ) contains no quantifiers.

Algorithm 2 Constraints generation for pointwise semantics

Require: A finite discrete path ς of length n > 0, an MTL formula ϕ and a time bound

T

Ensure: Family of linear inequalities S over t0, . . . , tn−1

1: return Constr Gen(ς,0,ϕ)

2:

3: Function Constr Gen(ς,i,ϕ)

4: case(ϕ) :

ϕ = p : if p ∈ L(ς[i]) return
i∑

k=0

tk ≤ T else return false

ϕ = ¬ϕ1 : S := ¬Constr Gen(ς,i,ϕ1)

ϕ = ϕ1 ∧ ϕ2 : S := Constr Gen(ς,i,ϕ1) ∧ Constr Gen(ς,i,ϕ2)

ϕ = ϕ1U [a,b]ϕ2 : S :=
(n∨
i′=i

Constr Gen(ς,i′,ϕ2) ∧ a ≤
i′∑
k=i

tk ≤ b ∧

(
i′−1∧
i′′=i

Constr Gen(ς,i′′,ϕ1))
)

5: return S

Let S be the family of linear constraints obtained from Algorithm 1 and Algorithm 2.

S is always defined as a union of convex polyhedra in Rn, i.e., S =
∨
i∈I

∧
j∈Ji

cij where, for

each i ∈ I,
∧
j∈Ji

cij is a convex polyhedron.

Step 5.3: Computing probabilities

Given a CTMC C, a discrete path ς of length N and the family of linear constraints

S(t0, . . . , tN−1) obtained from Algorithm 1, the main task here is to compute the probab-

ility of ς[S], i.e., PrC(ς[S]). To this end, we first add more constraints to S, namely, for

46

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

S =
∨
i∈I

∧
j∈Ji

cij we obtain

S =
∨

i∈I


∧

j∈Ji

cij ∧ (t0 + . . .+ tN−1 > T ∧ t0 + . . .+ tN−2 < T) ∧
∧

06k<N

tk > 0


 . (4.7)

These new constraints are used to ensure that there are exactly N discrete jumps during

the time interval [0, T], and that each residence time is positive.

Now we have N random variables t0, · · · , tN−1 corresponding to the residence time of

each state ς[i] for i 6 N . The probability PrC(ς[S]) is thus formulated as the joint probabil-

ity PrC(S(t0, · · · , tN−1)), where ti ∼ Exp(E(ς[i])) for each 0 6 i < N , and t0, · · · , tN−1 are

bounded by the obtained family of linear constraints S. The value of the joint probability

can be computed through the following multidimensional integration:

PrC(ς[S]) =

∫
· · ·
∫

︸ ︷︷ ︸
N

S(τ0,...,τN−1)

N−1∏

i=0

E(si) · P (si, si+1)× e−E(si)τidτi . (4.8)

The efficient algorithm that we will present shortly to compute PrC(ς[S]) requires that

the domain of integration is a convex polytope. We must be sure then, that we can express

the set of linear inequalities S as a convex polytope (or disjoint union of convex polytopes).

Now we introduce Proposition 4.1.8 which shows a sufficient condition under which a

set of linear inequalities defines a convex polyhedron.

Proposition 4.1.8 ([HUL94]) Given any family of linear inequalities S =
∨
i∈I

∧
j∈Ji

cij.

For each i ∈ I, we can write
∧
j∈Ji

cij in matrix form Ai · tE bi where E ∈ {<,6}, and it

is a polyhedron.

Proof The proof can be found in [HUL94].

From Proposition 4.1.8, we have that S =
k∨
`=0

C` where each C` = {t ∈ Rn>0|A` · tEb`}

defines a convex set. In general, we have no certainty that the union
k∨
`=0

C` is convex as

well. In case that the union
k∨
`=0

C` is not convex, we use the inclusion-exclusion principle

to compute PrC(ς[S]) as follows:

PrC(ς[S]) =

k∑

`=0

PrC(ς[C`])−
∑

i,j:06i<j6k

PrC(ς[Ci ∧ Cj]) +

∑

i,j,h:06i<j<h6k

PrC(ς[Ci ∧ Cj ∧ Ch])− · · ·+ (−1)k−1PrC(ς[C0 ∧ · · · ∧ Ck])

47

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

Remark 4.1.4 In our case, the difference between < and 6 in the constraints is marginal,

as they would yield the same probability, which can be seen from Equation (4.8).

For an index set L ⊆ {0, . . . , k} we write D =
∧
`∈L

C`, where C` defines a polyhedron.

By Proposition 4.1.8, D defines a polyhedron as well. We rewrite PrC(ς[D]) as:

PrC(ς[D]) =

N−1∏

i=0

E(si) · P (si, si+1) ·
∫
· · ·
∫

︸ ︷︷ ︸
N

D

N−1∏

i=0

e−E(si)τidτi

=
N−1∏

i=0

E(si) · P (si, si+1) ·
∫
· · ·
∫

︸ ︷︷ ︸
N

D

e−
~E·~τd~τ , (4.9)

where ~E = [E(s0), . . . , E(sN−1)], ~τ = [τ0, . . . , τN−1] and ~E · ~τ =
N−1∑
i=0

E(si) · τi. We use

the algorithm of [LZ01] (see Example 4.1.3) to compute efficiently the multidimensional

integral
∫
·· ·
∫
D e
− ~E·~τd~τ based on the Laplace transform.

Remark 4.1.5 We remark here that on the positive side, the algorithm in [LZ01] is

an exact algorithm. It does not approximate the value of the multidimensional integral
∫
·· ·
∫
D e
− ~E·~τd~τ but it calculates the exact value of the integral.

On the negative side, the algorithm in [LZ01] is not general and cannot be used for

arbitrary probability distributions. The reason for that is that the algorithm in [LZ01]

is based on Laplace transform to compute volume integrals. Laplace transforms remain

basically unchanged, other than a shift, when multiplied by an exponential function. Thus,

due to the CTMCs property of exponential residence time in system states we can reuse the

algorithm of [LZ01] directly to compute the probability of timed-paths of the CTMC under

consideration. The same would not apply if the probabilistic jumps would follow a different

probability distribution. In such cases, one would need to approximate the integrals using

sampling techniques, such as Monte Carlo, which have not been explored in this thesis.

An example of how to compute the integral
∫
·· ·
∫
D e
− ~E·~τd~τ for a convex set D is given

in Example 4.1.3 below.

Example 4.1.3 We now show a concrete example of how it is possible to compute the

truth value of MTL formulas over finite paths of a CTMC. Let C = (S,AP, L, α,P, E)

be the CTMC in Figure 3.2. Let ϕ = aU [1,2]b be an MTL formula, let ς = s0 −→ s1 −→
s2 −→ s3 be a finite discrete path of length three in C, and let T = 3 be the time bound for

the verification of ϕ. The first step consists of running Algorithm 1 to find the family of

linear constraints S.

System of linear inequalities. We have already seen in Example 4.1.2 that Algorithm 1

on ς, T, ϕ on the CTMC in Figure 3.2 returns:

48

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

S ′ =
{
t0 + t1 < 2

t0 + t1 + t2 > 1

Figure 4.1: Set of linear inequalities returned by Algorithm 1

Adding the two inequalities which ensure that there are exactly three jumps in T and

after simplifications we get the system in Figure 4.2.

S =

{
t0 + t1 < 2

t0 + t1 + t2 > 3

Figure 4.2: Complete set of linear inequalities

Changing all the inequalities with a “>” to their equivalent with “6”, it is possible to

express the system in matrix form S = At 6 b, where: A ∈ R2×3, t ∈ R3 and b ∈ R2

(see Figure 4.3).

A =

[
1 1 0

−1 −1 −1

]
; t =




t0

t1

t2


 ; b =

[
2

−3

]
.

Figure 4.3: Matrix representation of S

The example continues now showing the algorithm in [LZ01] for computing the integra-

tion of an exponential over S. Let λ ∈ R3 be the vector of rates associated to the states s0,

s1 and s2 of C. In other words, λ0 = E(s0), λ1 = E(s1) and λ2 = E(s2). Fix E(s0) = 2,

E(s1) = 1 and E(s2) = 2. We must calculate:

z(b) :=

∫

S(b)
e−(λ0τ0+λ1τ1+λ2τ2)dτ0dτ1dτ2

with Laplace transform given by:

Z(δ) =
1

δ1δ2(δ1 − δ2 + 1)(δ1 − δ2 + 2)(−δ2 + 2)
<(δ) > 0 ∧ <(A′δ + λ) > 0

where Z(δ) : C2 → C and <(δ) indicates the real part of δ.

The inverse Laplace transform of Z(δ) is:

z(b) =
1

(2πı)2

∫ c2+ı∞

c2−ı∞

∫ c1+ı∞

c1−ı∞

e(2δ1−3δ2)

δ1δ2(δ1 − δ2 + 1)(δ1 − δ2 + 2)(−δ2 + 2)
dδ1dδ2

The real vector c ∈ R2 must satisfy c > 0, A′c− λ > 0

49

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

To make calculations easier we evaluate h(p) = z(pb) at the point p = 1.

h(p) = z(pb) =
1

(2πı)2

∫ c2+ı∞

c2−ı∞

∫ c1+ı∞

c1−ı∞

e(2δ1−3δ2)p

δ1δ2(δ1 − δ2 + 1)(δ1 − δ2 + 2)(−δ2 + 2)
dδ1dδ2(4.10)

In order to calculate the value in Equation 4.10 we need to follow the steps below.

• Determining the vector c. Before computing the integration, we must find suitable

values for the elements of the real vector c such that: c > 0, A′c− λ > 0. It is left

to the reader to verify that c1 = 4 and c2 = 1/2 satisfy the set of constraints.

• Integration of the exponential function over S(b). The first step of the integ-

ration consist of integrating the function h(p) with respect to δ1; that is, evaluate the

residues at the poles δ1 = 0, δ1 = δ2 − 2 and δ1 = δ2 − 1. Since the argument of the

exponential function (with respect to δ1) is positive, we must consider the left-hand

side of the line c1 ± ı∞ [Con78]. More specifically, in this example, all the poles

must be considered since they lie to the left of the line c1± ı∞. In fact, the real part

of δ1, i.e., <(δ1) = c1 = 4, lies on the right side of the value obtained by substituting

to the variable δ2, in each pole, the value <(δ2) = c2 = 1/2.

We obtain:

h(p) =
1

(2πı)

∫ c2+ı∞

c2−ı∞
(I1 + I2 + I3)dδ2 (4.11)

where

I1(δ2) = − e−3δ2p

δ2(δ2 − 2)2(δ2 − 1)
(4.12)

I2(δ2) =
e(−δ2−4)p

δ2(δ2 − 2)2
(4.13)

I3(δ2) = − e(−δ2−2)p

δ2(δ2 − 2)(δ2 − 1)
(4.14)

We must integrate now I1, I2 and I3 with respect to δ2. We start with I1 and its

poles, which are: δ2 = 0, δ2 = 2 (multiple pole) and δ2 = 1. The coefficient of

the exponential function (with respect to δ2) is negative. Thus, this time, we must

consider the poles at the right side of the line c2± ı∞ and take the negative value of

the residues (the path of integration has a negative orientation). Since <(δ2) = 1/2

the poles δ2 = 2 and δ2 = 1 lie on the right side of the line, whereas δ2 = 0 does not.

The simple pole δ2 = 1 is computed in the usual way and it yields:

I12 =
e−3p

1
(4.15)

The multiple pole of degree two, δ2 = 2, is computed using the Cauchy residue formula

for poles of degree greater than one [Con78]. It returns:

I13 = −9e−6p

4
(4.16)

50

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

Consider now I2 and its poles, which are δ2 = 0 and δ2 = 2. The coefficient of the

exponential function (with respect to δ2) is negative. We must consider the poles that

lie on the right side of the line c2 ± ı∞, in this case only δ2 = 2. After calculating

the residue we get:

I21 =
3e−6p

4
(4.17)

Finally, when integrating I3 (with respect to δ2) we must consider the poles on the

right side of the line c2 ± ı∞, i.e., δ2 = 2 and δ2 = 1.

I31 =
e−4p

2
(4.18)

and

I32 = −e
−3p

2
(4.19)

Hence, adding up the above three partial results yields:

h(p) =
e−3p

1
− 9e−6p

4
+

3e−6p

4
+
e−4p

2
− e−3p

1
(4.20)

Evaluating h(1) gives us the desired result, which is approximately 0.00544.

The reader should notice that the result does not change if we choose different values

for c1 and c2 (for instance c1 = 3 and c2 = 1/2). The only restriction is that, at

each step i of the integration, no poles must lie on the line ci± ı∞. However, [LZ01]

gives an algorithm to choose the values for the ci in such a way that no ci will be on

the integration line during each step of integration.

Admittedly, it is costly to apply the inclusion-exclusion principle to compute the prob-

abilities. In the worst case, any union of two components is not convex. However, in

practice one could expect that the union of some components is still convex, so they can

be computed as a whole. We emphasise that efficient algorithms to decide whether the

union of two polyhedra is convex do exist, see e.g., [BFT01].

Step 5.4.: Sum up all the probabilities for each discrete path to obtain PrCT,<N (ϕ)

The last step of the algorithm is to sum up all the probabilities in order to obtain the

final value of PrCT,<N (ϕ), namely the probability of all the timed paths of the CTMC C
of length at most N that satisfy the MTL formula ϕ in between [0, T].

4.1.1 Complete algorithm and correctness results

We summarise the time-bounded verification algorithm for a CTMC C against an MTL

formula ϕ in Algorithm 3. Recall that Λ is the maximal exit rate appearing in C.

51

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

Algorithm 3 Time-bounded verification of a CTMC C against an MTL formula ϕ

Require: A CTMC C, an MTL formula ϕ, a time bound T and an error ε

Ensure: Compute the probability of the formula ϕ being satisfied in the CTMC C within

the time bound T and in at most N steps, namely PrCT,<N (ϕ)

1: Choose an integer N > ΛTe2 + ln(1
ε)

2: Transform the MTL formula ϕ into its untimed LTL version ϕ̃ and generate NFA

Aϕ̃ out of ϕ̃

3: Compute the product C ⊗ Aϕ̃
4: for each discrete path ς of (C ⊗ Aϕ̃) �1 of length n < N do

5: Generate the family of linear constraints S(t0, . . . , tn−1) using Algorithm 1 (or Al-

gorithm 2)

6: Calculate the probability p of ς[S]

7: PrCT,<N (ϕ) := PrCT,<N (ϕ) + p

8: end for

9: return PrCT,<N (ϕ)

We now introduce some lemmas that are useful in order to prove the correctness of

Algorithm 3.

The first lemma, Lemma 4.1.9, shows that the probability of all the timed paths of

length less than N that satisfy the MTL formula ϕ in the interval [0, T] can be obtained

as the sum of the probability of the set of all timed paths that satisfy ϕ and have length

exactly 1, 2, . . . , N−1. In other words, Lemma 4.1.9 states that the set of linear inequalities

returned from paths of length exactly i must be disjoint from the set of linear inequalities

returned from paths of length exactly j when j 6= i.

Lemma 4.1.9

PrCT,<N (ϕ) :=

N−1∑

i=0

PrCT,=i(ϕ),

where PrCT,=i(ϕ) expresses the probability to satisfy the formula ϕ in a path with exactly i

jumps.

Proof The proof works by induction on the length of the path. The base case is trivial.

For N + 1 we have:

PrCT,<N+1(ϕ) =
N+1∑
i=0

PrCT,=i(ϕ)

=
N∑
i=0

PrCT,=i(ϕ) + PrCT,=N+1(ϕ) .

By induction hypothesis, PrCT,=N (ϕ) =
N∑
i=0

PrCT,=i(ϕ) defines disjoint families of linear

inequalities. It remains to prove that the probability of a path with exactly N+1 jumps in

52

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

T defines a family of linear constraints that is disjoint from the family of linear constraints

defined by the paths of length exactly N . After running Algorithm 1 (or Algorithm 2) we

always add the constraints in Equation 4.7. In particular, considering a path of length N

and a path of length N + 1, we have that:

(1)

{
t0 + . . . tN > T

t0 + . . . tN−1 < T
(2)

{
t0 + . . . tN+1 > T

t0 + . . . tN < T

The system of linear inequalities (1) represents the constraint of having exactly N jumps

in T (similarly for (2)). The first inequality in (1) and the second inequality in (2) can

never be satisfied at the same time. Hence, the systems (1) and (2) define two disjoint

sets, and this concludes the proof.

For the correctness, we first note that the error is bounded by PrCT,>N (ϕ), which is in

turn bounded by the probability of the set of timed paths with at least N discrete jumps

in [0, T]. Then Theorem 4.1.3 yields the bound, as follows.

Lemma 4.1.10 Given a CTMC C, an MTL formula ϕ, a time bound T and N ∈ N

PrCT (ϕ)− PrCT,<N (ϕ) 6 ε(T,N).

Proof Observe that PrCT (ϕ) − PrCT,<N (ϕ) = PrCT,>N (ϕ) 6 PrC(PathsCT,>N). The claim

then follows from Theorem 4.1.3.

Theorem 4.1.11 Algorithm 3 computes PrCT,<N (ϕ).

Proof We provide a sketch here. Observe the following facts:

1. PrCT,<N (ϕ) = PrC(PathsCT,<N (ϕ));

2. For all infinite timed paths ρ ∈ PathsCT,<N (ϕ), S(ρ) ∈ (C ⊗Aϕ̃) �1. This follows from

Proposition 4.1.6;

3. Using Algorithm 1 (or Algorithm 2) we generate the family of linear constraints S
such that (ςi[x0, . . . , xn−1], 0) |=c

T ϕ iff (x0, . . . , xn−1) ∈ S;

4. Each ςi[x0, . . . , xn−1] corresponds to a timed path ρ ∈ PathsCT,<N (ϕ);

5. We calculate the probability of ςi[S], i.e., the probability of any possible timed path

of length less than N ;

6. From Lemma 4.1.9 we can then sum up the values of probabilities obtained from

each path of length i (for 0 6 i < N);

7. Therefore, Algorithm 3 computes PrCT,<N (ϕ).

53

4.1. VERIFYING CONTINOUS-TIME MARKOV CHAINS AGAINST MTL

4.1.1.1 Complexity

The main complexity of Algorithm 3 comes from the following factors:

• Enumerate all the paths of length up to N . This step is exponential in N ;

• Generate the system of linear constraints for the MTL formula ϕ. This is exponential

in the number of nested formulas of ϕ. However, we remark here that usually the

formula under consideration will be small compared to the length N of the paths to

generate;

• Compute the probability of the timed paths that satisfy the MTL formula ϕ through

the algorithm of [LZ01]. This is in turn reduced to compute a volume integral over

a convex polytope which can be expressed in matrix notation as S := {t ∈ Rn>0 |
A · t E b}, for a given matrix A ∈ Rm×n, vector b ∈ Rm and E ∈ {<,6}. The

complexity of the Algorithm in [LZ01] is exponential in m. In our case, n is related

to the path length and m to the complexity of the formula. Thus, one can assume

that m is much smaller than n.

Summarising, the main bottle neck of the algorithm is the enumeration of all paths

of length up to N , which has complexity of O(2N).

In this section we have provided an algorithm, Algorithm 3, that takes as input a

CTMC C, an MTL formula ϕ, a time bound T and a maximum tolerable error ε, and

computes the probability of ϕ being true in C in the interval [0, T], namely PrCT,<N (ϕ). We

approximate the real probability PrCT (ϕ) with PrCT,<N (ϕ) bounding to N the maximum

number of jumps that happen in the interval [0, T]. The approximated value of probability,

PrCT,<N (ϕ), is ε-close to the real value PrCT (ϕ).

The algorithm of [LZ01] to compute the complex integral of Equation 4.9 has been

implemented in Matlab [MAT13] using the symbolic toolbox.

To our knowledge we are the first to propose a solution to the problem of model

checking MTL formulas on CTMCs. Our algorithm needs to perform a vast range of

transformations and calculations in order to compute the final value of probability. The

main drawbacks of our approach are the following.

1. We need to enumerate all the possible paths of length up to N and this is exponential

in N ;

2. The Matlab implementation of the algorithm of [LZ01] runs quite slowly due to the

use of the symbolic toolbox.

Thus, in order to use Algorithm 3 for real-life examples we need to optimise the Matlab

implementation by eliminating the use of symbolic variables, and avoiding the enumeration

of all the paths of length up to N . Although not yet explored, we believe that the use

54

4.2. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST TAS

of random algorithms to explore the CTMC could help avoid the enumeration of all the

paths of length up to N . We leave this as future work.

4.2 Verifying continuous-time Markov chains against TAs

In this section, we show how the procedure outlined in Section 4.1 can be adapted to

verify TA specifications on CTMCs. The content of this section is based on a published

conference paper [CDKM11] by the author of this thesis and his colleagues at Oxford.

The reason why we want to include properties expressed as TAs is simple. Some real-time

properties cannot be expressed as MTL but they can be expressed as a timed automaton.

In fact, in [BRP13] the authors show that counting modalities, i.e., operators to count the

number of events, enrich the expressiveness of MTL. On the other hand, TAs allow us to

express some counting properties (see [BHHK03] page 286).

We illustrate the concept with an example.

Example 4.2.1 Consider the case in which we want to model a robot that walks in a hotel

and has to accomplish multiple tasks. The robot can move freely between different rooms

of the hotel. The waiting time of the robot in any room is exponentially distributed. The

hotel is modelled as a CTMC in which each room is represented as a CTMC state. Each

time the robot decides whether to stay in the same room or to visit a new one. If the robot

chooses to change room the next room is chosen probabilistically according to a discrete

probability distribution. In other words, if the robot decides to move to another room then

it must follow the transition relation of the CTMC from the current state in which the

robot resides to a successor state.

The situation is pictorially represented in Figure 4.4.

We would like to study the reliability of the robot, i.e, we want to determine the tasks

that the robot successfully completes with probability of at least 95%. The tasks are rep-

resented as real-time properties. One of the tasks is to reach one of the red rooms in

less than 2 seconds passing first from one of the green rooms. This seems to be a fairly

simple real-time property. However, it is not possible to express the latter property as an

MTL formula. On the other hand, it is trivial to define an automaton which checks the

above-mentioned property. The automaton is shown in Figure 4.5.

Example 4.2.1 shows that including TAs as a specification formalism would enrich

the real-time properties that one can express, making the model checking problem more

relevant.

This section is dedicated to the following problem. Given a CTMC C, a TA A and a

timed bound T , find the probability of all the timed paths ρ of C which are accepted by

A.

55

4.2. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST TAS

Figure 4.4: Example of Robot in a hotel

Figure 4.5: Automaton property

Model checking problem

Input: A CTMC C and a TA A
Problem: Find the probability of the set of timed paths of C that

are accepted by A over a time interval of fixed, bounded length.

Formally, we intend to compute PrCT (A) := PrC({ρ ∈ PathsCT | ρ |=T A}). As in

the case of MTL specifications, we bound PrCT (A) by PrCT,<N (A) := PrC(PathsCT,<N (A)),

such that PrCT (A) − PrCT,<N (A) < ε for ε > 0. The measurability of the set of paths

PathsCT,<N (A) := {ρ ∈ PathsCT,<N | ρ |=T A} can be shown as in [CHKM11].

The algorithm is very similar to the one described in Section 4.1 and can be summarised

in the following four steps:

Step 1. Bound the number of jumps N in the interval of time [0, T] in order to get the

desired error ε;

Step 2. Build the product C × A;

56

4.2. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST TAS

Step 3. Search for all the discrete paths ς in C ×A of length at most N , and, for each of

those, generate the set of linear inequalities S;

Step 4. Calculate the probability of ς under the constraints in S;

Step 5. Sum up all the probabilities.

Step 1: Bound the number of jumps N in the interval of time [0, T] in order to

get the desired error ε

The bound is the same as Step 1 of Section 4.1.

Step 2: Build the product C × A
We remove all the guards, clocks and invariants from the timed automaton A and then

follow the construction of the product in Step 4 Section 4.1.

Step 3: Search for all the discrete paths ς in C × A of length at most N , and,

for each of those, generate the set of linear inequalities S
The main difference between specifications given as MTL formulas or as TAs lies in the

set of linear constraints generated. In order to derive the set of linear constraints, we first

need to generate a graph G according to the construction from Alur et. al. in [AKV98].

There, the authors show how to, given a discrete path π of TA A, construct a graph G
such that A has a run over π if and only if G has no negative cost cycle. The graph G
has exactly n nodes and the number of edges of G depends on the numbers of guards and

invariants in A (see [AKV98] for details). Each edge e = (i, j) (connecting node i to node

j) is labelled with a value c such that c ∈ H, where

H = {. . .− 2,−1, 0, 1, 2, . . .} ∪ {. . .− 2−,−1−, 0−, 1−, 2−, . . .} ∪ {−∞,∞}

The set H is used to characterise strict and non-strict constraints in A.

For each discrete path ς of the CTMC C we define Πς = {π | πi
L(ς[i])−→ πi+1 for all 0 6

i 6 n− 1}.

Theorem 4.2.1 Given a discrete path ς of length n, a TA A and a time bound T , we

have that ς[t0, . . . , tn−1] is accepted by A iff (t0, . . . , tn−1) ∈ S, where S is returned by

Algorithm 4.

Proof The proof follows from Proposition 1 of [AKV98].

Step 4: Calculate the probability of ς under the constraints in S
Same algorithm as in Step 5.3 of Section 4.1.

57

4.2. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST TAS

Algorithm 4 Constraints generation for TA

Require: A finite discrete path ς of length n > 0, a TA A, and a time bound T

Ensure: Family of linear constraints S
1: For the discrete path ς compute the set Πς

2: for each π ∈ Πς do

3: Generate the graph G
4: Sπ := ∅
5: for each edge e(i, j) ∈ G labeled with c do

6: Sπ := Sπ ∧ ti − tj < c

7: end for

8: S := S ∨
(
Sπ ∧ (t0 + . . .+ tn−1 > T ∧ t0 + . . .+ tn−2 < T) ∧ ∧

06k<n
tk > 0

)

9: end for

10: return S

Step 5: Sum up all the probabilities

The last step of the algorithm is to sum up all the probabilities in order to obtain the final

value of PrCT,<N (A), namely, the probability of the timed paths in the CTMC C of length

at most N that are accepted by the TA A in the interval [0, T].

4.2.1 Complete algorithm and correctness results

Given a timed automaton A, we write Ā to denote the NFA obtained by removing all

the guards, clocks and invariants from A. The product C ⊗ Ā follows Definition 4.1.1.

Similarly to Proposition 4.1.6, we have the following.

Proposition 4.2.2 For any CTMC C and NFA Ā, S(PathsCT (A)) ⊆ {Cd(ς) | ς ∈
♦LocF �1}, where LocF is the set of final locations in C ⊗ Ā.

Proof The proof follows similar reasoning of the proof of Proposition 4.1.6.

The approximation algorithm for time-bounded verification of a TA specification A is

given in Algorithm 5.

Now we present two lemmas, Lemma 4.2.3 and Lemma 4.2.4, which will be used to

prove the correctness of Algorithm 5. The lemmas are the equivalent of the lemmas that

we have presented in Section 4.1.1 in order to prove the correctness of Algorithm 3.

Lemma 4.2.3

PrCT,<N (A) :=
N−1∑

i=0

PrCT,=i(A),

where PrCT,=i(A) expresses the probability to satisfy the specification A in a path with

exactly exactly i jumps.

58

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

Algorithm 5 Time-bounded verification of a TA specification A against a CTMC C
Require: C, A, T and ε

Ensure: PrCT,<N (A)

1: Choose an integer N ≥ ΛTe2 + ln(1
ε)

2: for each discrete path ς of (C ⊗ Ā) �1 of length n < N do

3: Calculate the family of linear constraints S(t0, . . . , tn−1) with Algorithm 4

4: Calculate the probability p of ς[S]

5: PrCT,<N (A) := PrCT,<N (A) + p

6: end for

7: return PrCT,<N (A)

Proof The proof is the same as the one presented for Lemma 4.1.9.

Lemma 4.2.4 Given a CTMC C, a TA specification A, a time bound T and N ∈ N, we

have that

PrCT (A)− PrCT,<N (A) 6 ε(T,N).

Proof The proof is exactly the same of the one presented for Lemma 4.1.10.

Finally, Theorem 4.2.5 proves the correctness of Algorithm 5.

Theorem 4.2.5 Algorithm 5 computes PrCT,<N (A).

Proof The proof is exactly the same of the one presented for Theorem 4.1.11.

4.2.1.1 Complexity

Algorithm 5 follows the same steps of Algorithm 3 from a complexity point of view. Thus,

the main bottle neck of Algorithm 5 is the path enumeration which yields a complexity of

O(2N).

4.3 Verifying continuous-time Markov chains against LDPs

In this section we study the problem of verifying CTMCs against Linear Duration Prop-

erties (LDP), i.e., properties stated as conjunctions of linear constraints over the total

duration of time spent in states that satisfy a given property. The content of this section

is based on a journal paper [CDKM13b] by the author of this thesis and his colleagues at

Oxford.

As mentioned in the introduction to this chapter, the problem can be summarised as

follows.

59

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

Model checking problem

Input: A CTMC C and an LDP ϕ

Problem: Find the probability of the set of timed paths of C that

satisfy ϕ over a time interval of fixed, bounded length.

We identify two classes of LDP properties, eventuality duration properties (EDP) and

invariance duration properties (IDP), respectively referring to the reachability of a set of

goal states within a time bound; and the continuous satisfaction of a duration property

over an execution path. In this section we are interested to address the question of how

to compute the probability of the set of infinite timed paths of the CTMC that satisfy

a given LDP. We design algorithms that approximate these probabilities up to a given

precision, stating their complexity and showing how to bound the approximation error.

The algorithms mainly employ an adaptation of uniformisation and the computation of

volumes of multi-dimensional integrals under systems of linear constraints, together with

different mechanisms to bound the errors.

More specifically, we identify the following classes of LDP problems.

Problem statement. Corresponding to Definition 3.2.8, we focus on algorithmic veri-

fication problems for two classes of LDP, i.e., Eventuality Duration Property (EDP) and

Invariance Duration Property (IDP), given below.

• Verification of EDP. Formally, given a CTMC C, a set of goal states G ⊆ S, and

an LDP Φ =
∫

1 6 T → ϕ, compute the probability of the set of infinite timed

paths of C satisfying Φ under the finitary satisfaction condition, see Definition 3.2.8.

Depending on T , we distinguish two cases:

– Time-bounded case: T < ∞, for which we denote the desired probability by

Prob(C |=G Φ)

– Unbounded case: T = ∞, for which we denote the desired probability by

Prob(C |=G ϕ). Note that this is valid as, in this case, Φ is simply equivalent

to ϕ.

The algorithms for these two cases are given in Section 4.3.2.1 and Section 4.3.2.2,

respectively.

• Verification of IDP. Formally, given a CTMC C and an LDP Φ =
∫

1 6 T → ϕ,

compute the probability of the set of infinite timed paths of C satisfying Φ under

the infinitary satisfaction condition, see Definition 3.2.8. We also have two cases,

i.e., the time-bounded case and unbounded case, which we denote by Prob(C |=? Φ)

and Prob(C |=? ϕ), respectively. The algorithms for these two cases are given in

Section 4.3.3.2 and Section 4.3.3.1, respectively.

60

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

We start in Section 4.3.1 where we establish a link between the EDP of CTMC and

the model of Markovian reward model (MRM). In Section 4.3.2 we address the verification

of EDP over CTMCs. More precisely, in Section 4.3.2.1 we present an algorithm which

solves the time-bounded verification problem for EDP over CTMCs, as well as giving

error bounds and complexity results. In Section 4.3.2.2 we tackle the time-unbounded

EDP verification problem. We conclude the chapter with Section 4.3.3, where we present

a solution to the model checking problem for IDP over CTMCs, again addressing error

bounds and complexity results.

4.3.1 Relationship to MRMs

In this section, we establish a link between the EDP of CTMC and the model of MRM.

We start with some definitions.

Definition 4.3.1 (MRM) A (labelled) Markovian reward modelM is a pair (C, r), where

C is CTMC and r : S → Rd is a reward structure which assigns to each state s ∈ S a

vector of rewards (r1(s), · · · , rd(s)).

Remark 4.3.1 The MRM defined in Definition 4.3.1 is more general than the one in

[BHHK00], in the sense that we have multiple reward structures, and, more importantly,

we allow arbitrary (instead of nonnegative) rewards associated with the states.

In [BHHK00] the authors study the model checking problem for the logic CSRL (in-

troduced in [BHHK00]) and MRM models. The problem that [BHHK00] addresses is the

reward bounded verification problem (which we extend to the multiple-reward setting, con-

forming to Definition 4.3.1), namely: given a set of goal states G and a vector of reward

bounds Mj , compute the probability of the paths which reach G and in which the j-th

accumulated reward does not exceed Mj for each j. Below we show that this problem is

essentially the same as EDP for CTMCs.

Let C be a CTMC and ϕ =
∧
j∈J

(
∑
k∈Kj

cjk
∫

sfjk 6Mj

)
be an LDP, where cjk,Mj ∈ R,

sfjk are state formulas, and J,Kj for j ∈ J are finite index sets. We show how to construct

an MRM C[ϕ] that can be used to check whether ϕ is satisfied in C or not.

For every state si ∈ S, we define

rji =
∑

t∈Kj ,
si|=sfjt

cjt

for all j ∈ J . This yields a multiple reward structure r with r(si) = (r0i, · · · , r(|J |−1)i).

Hence C[ϕ] = (C, r). It is straightforward to see that the constraint expressed by LDP can

be alternatively formulated as the “reward-bounded” constraint for MRMs, since
∑
k∈Kj

cjk

61

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

s0start

{Busy}

−1
3

s1

{Idle}

1

s2

{Sleep}

s3 {Standby}

1

0.2

0.3
0.5

1

1

Figure 4.6: An example MRM

∫
sfjk essentially denotes the accumulated rewards along a finite timed path, and hence

each Mj can be regarded as the bound of the reward.

On the other hand, given an MRM and a vector of reward bounds Mj for each reward

structure, we construct an LDP ϕ as

∧

j∈J

∑

s∈S
rj(s)

∫
@s 6Mj ,

where @s is an atomic proposition which holds exactly at state s. Hence, the reward-

bounded verification problem for MRMs can be encoded into the verification of Linear

Duration Properties in CTMCs.

It is straightforward to see that this correspondence, stated in the (time) unbounded

case, can be adapted to the time-bounded case without any difficulties.

We illustrate the relationship between LDPs and MRMs with an example.

Example 4.3.1 Consider the CTMC C in Figure 3.2 and the LDP example formula

ϕ =
∫

Idle − 1
3

∫
Busy 6 0 introduced in Example 3.2.4. Moreover, suppose that we are

interested in checking the validity of ϕ in C with a time bound of T = 10 time units.

Now consider the MRM model in Figure 4.6, which closely resembles the CTMC C in

Figure 3.2. In the MRM model in Figure 4.6 the number below a given state is the reward

associated with that state. We omit zero rewards for simplicity. In the transformation, we

have assigned the coefficients of the LDP formula ϕ as rewards to the states.

It should be clear that the problem of model checking the LDP formula ϕ =
∫

Idle −
1
3

∫
Busy 6 0 in the CTMC in Figure 3.2 is equivalent to performing transient analysis

of the MRM model in Figure 4.6 and checking whether the reward accumulated up to time

T is positive or negative. If the accumulated reward is negative, the formula ϕ is satisfied

in the C of Figure 3.2. The opposite is true if the reward is positive.

62

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

4.3.2 Verification of EDP

In this section, we show how to verify EDP formulas. Throughout this section, we fix a

CTMC C = (S,AP, L, α,P, E), a set of goal states G ⊆ S, and an LDP

Φ =

∫
1 6 T →

∧

j∈J
(
∑

k∈Kj

cjk

∫
sfjk 6Mj

︸ ︷︷ ︸
ϕ

).

4.3.2.1 Time-bounded verification of EDP

Our task is to compute Prob(C |=G Φ). In words, we want to compute the probability

of the set of infinite timed paths ρ of C that reach the set of goal states G and satisfy

Φ. First observe that the probability that we wish to calculate, Prob(C |=G Φ), can be

decomposed into three different terms (see Proposition 4.3.1). Thus, instead of computing

Prob(C |=G Φ), one can compute the probability of all the paths that reach the set of goal

states G and from this subtract the probability of all the paths that reach G in less than

T time units. Basically, we are left with the probability of all the timed paths that reach

the set of goal states G in more than T time units. The last step consists in adding to

the latter probability the probability of all the timed paths that satisfy ϕ in [0, T] and

reach the set of goal states G, namely Prob(C |=G
T ϕ). The reason why we need to keep

the probability of all the timed paths that reach the set of goal states G in more than T

time units might seem counter-intuitive at first. However, note that the premise of the

formula Φ =
∫

1 6 T → ∧
j∈J

(
∑
k∈Kj

cjk
∫

sfjk 6 Mj) becomes false if we wait more than T

time units, making the whole formula Φ true. Thus, one has to consider also those paths

that reach G in more than T time units.

Proposition 4.3.1 proves formally the decomposition of Prob(C |=G Φ) into the three

terms that we have mentioned above, i.e., Pr(♦G), Pr(♦6TG) and Prob(C |=G
T ϕ).

Proposition 4.3.1 Given a CTMC C and an LDP Φ, we have:

Prob(C |=G Φ) = Pr(♦G)− Pr(♦6TG) + Prob(C |=G
T ϕ).

Proof We have that

Prob(C |=G Φ) = Pr({ρ ∈ PathsC | ρ |=G Φ})

= Pr

({
ρ ∈ PathsC | ρ |=G ¬

(∫
1 6 T

)
∨ ϕ
})

,

where ϕ =
∧
j∈J

(
∑
k∈Kj

cjk
∫

sfjk 6Mj). We know that

¬
(∫

1 6 T

)
∨ ϕ = ¬

(∫
1 6 T

)
∨
(
ϕ ∧

∫
1 6 T

)
.

63

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

Therefore, we have

Prob(C |=G Φ) = Pr

({
ρ ∈ PathsC

∣∣∣ρ |=G ¬
(∫

1 6 T

)
∨
(
ϕ ∧

∫
1 6 T

)})

= Pr

({
ρ ∈ PathsC

∣∣∣ρ |=G ¬
(∫

1 6 T

)
∨
(
ρ |=G ϕ ∧

∫
1 6 T

)})

= Pr

({
ρ ∈ PathsC

∣∣∣ρ |=G ¬
(∫

1 6 T

)})

+ Pr

({
ρ ∈ PathsC

∣∣∣ρ |=G ϕ ∧
∫

1 6 T

})

= Pr(♦G)− Pr(♦6TG) + Prob(C |=G
T ϕ).

This completes the proof.

Recall that Pr(♦G) and Pr(♦6TG) can be easily computed (cf. Definition 3.1.5).

Hence, our task is now to calculate:

Prob(C |=G
T ϕ) := Pr({ρ | ρ |=G

T ϕ}),

i.e., the probability of the set of paths of the CTMC C which reach G in time interval

[0, T] and satisfy the LDP ϕ before that happens; see Definition 3.2.8.

PDE and Integral Equation Formulations

In order to compute Prob(C |=G
T ϕ), we shall use the link to MRMs established in Sec-

tion 4.3.1. Essentially, we will reduce the problem of checking ϕ in C to the problem of

accumulated reward on a MRM. The claim is formally stated in Theorem 4.3.2.

Recall that C[ϕ] is the MRM obtained from C and ϕ. We need an extra transformation

over C[ϕ], namely, making each state s ∈ G absorbing and setting r(s) = (0, · · · , 0) (i.e.,

the rewards associated with s are all 0). We denote the resulting MRM C[ϕ,G]. Recall

that X(t) is the underlying stochastic process of the CTMC C. We denote by Y(T) the

vector of accumulated rewards in the MRM C[ϕ] (see Section 4.3.1) up to time T , i.e.,

Y(T) = (Y0(T), . . . , Y|J |−1(T)) =

∫ T

0
r(X(τ))dτ

and thus each Yj(T) (j ∈ J) corresponds to a reward structure in C. The vector of

stochastic processes Y(T) is fully determined by X(T) and the vector of reward structures

of the state si is r(si) = (r0i, . . . , r(|J |−1)i).

Define F(T,y) to be the matrix of the joint probability distribution of state and rewards

with entries F(T,y)[s, s′] = F s
′
s (T,y) for s, s′ ∈ S and

F s
′
s (T,y) = Pr





X(T) = s′,

∧

j∈J
Yj(T) 6 yj | X(0) = s






 ,

64

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

where y = (y0, · · · , y|J |−1). Note that we define F(T,y) over the induced MRM C[ϕ,G].

Next, Theorem 4.3.2 proves that the problem of computing the probability of the set

of timed paths that satisfy ϕ in C in [0, T] is equivalent of computing the probability of

accumulated reward in the induced MRM C[ϕ,G].

Theorem 4.3.2 Given a CTMC C, an LDP ϕ, a vector M = (M0, . . . ,M|J |−1), where

each Mj is defined as in ϕ (cf. Equation (3.2)), and a set of goal states G, we obtain the

induced MRM C[ϕ,G], and we have:

Prob(C |=G
T ϕ) =

∑

s∈S

∑

s′∈G
α(s)F s

′
s (T,M). (4.21)

Proof Let s′ ∈ G be an absorbing state with r(s) = (0, · · · , 0). The probability to be in

s′ at time T is the same as the probability to reach s′ before T (see [BHHK03]). Therefore,

we have that:

Pr({ρ ∈ PathsC(s) | ρ |={s
′}

T ϕ}) = Pr





X(T) = s′,

∧

j∈J
Yj(T) 6Mj | X(0) = s






 ,

which directly follows from the construction in Section 4.3.1.

Theorem 4.3.2 suggests a reduction to F(t,y), which we now characterise in terms of

a system of PDEs.

Theorem 4.3.3 For an MRM C[ϕ,G] the function F(t,y) is given by the following sys-

tem of PDEs:

∂F(t,y)

∂t
+
∑

j∈J
Dj ·

∂F(t,y)

∂yj
= Q · F(t,y), (4.22)

where Dj is a diagonal matrix such that Dj(s, s) = rj(s).

Proof We want to calculate F s
′
s (t,y). Assume that we are in state z at time ∆t, for some

small ∆t. We consider three possible scenarios, and calculate the probability of each of

them:

• No jumps before ∆t;

• One jump before ∆t;

• More than one jump before ∆t.

65

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

No jumps before ∆t.

The probability of this scenario is:

(1 +Q(s, s)∆t) · F s′s (t,y − r(s)∆t).

Here we indicate with y − r(s)∆t the vector operation resulting in:

y − r(s)∆t = (y0 − r0(s)∆t, . . . , y|J |−1 − r|J |−1(s)∆t).

One jump before ∆t.

We denote the probability of being in state z at time ∆t by gz(∆t). In order to derive the

probability of this scenario we split it into three different cases:

1. All rewards positive. Let

rmax = (max
s∈S
{r0(s)}, . . . ,max

s∈S
{r|J |−1(s)})

and

rmin = (min
s∈S
{r0(s)}, . . . ,min

s∈S
{r|J |−1(s)}).

The accumulated reward in ∆t is at most rmax∆t and at least rmin∆t. It follows

that:

Q(s, z)∆t · F s′z (t,y − rmax∆t) 6 gz(∆t) 6 Q(s, z)∆t · F s′z (t,y − rmin∆t).

2. All rewards negative. Let

rmax = (max
s∈S
{|r0(s)|}, . . . ,max

s∈S
{|r|J |−1(s)|})

and

rmin = (min
s∈S
{|r0(s)|}, . . . ,min

s∈S
{|r|J |−1(s)|}).

It follows that:

Q(s, z)∆t · F s′z (t,y − rmax∆t) 6 gz(∆t) 6 Q(s, z)∆t · F s′z (t,y − rmin∆t).

3. Mixed rewards. Let

rmax = (max
s∈S
{r0(s)|r0(s) ≥ 0}, . . . ,max

s∈S
{r|J |−1(s)|r|J |−1(s) ≥ 0})

and

rmin = (min
s∈S
{r0(s)|r0(s) < 0}, . . . ,min

s∈S
{r|J |−1(s)|r|J |−1(s) < 0}).

It follows that:

Q(s, z)∆t · F s′z (t,y − rmax∆t) 6 gz(∆t) 6 Q(s, z)∆t · F s′z (t,y − rmin∆t).

In all three cases above, note that

lim
∆t→0

gz(∆t)

∆t
= Q(s, z)F s

′
z (t,y).

66

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

More than one jump before ∆t.

The probability of this scenario is negligible i.e., o(∆t). Note that lim
∆t→0

o(∆t)
∆t = 0.

The joint distribution is given by

F s
′
s (t+ ∆t,y) = (1 +Q(s, s)∆t) · F s′s (t,y − r(s)∆t) +

∑

z 6=s
gz(∆t) + o(∆t).

From here on we derive the equations for F s
′
s (·) only for nonzero rewards. Let |y| = |J |

be the cardinality of y. We rewrite F s
′
s (t,y) as F s

′
s (t, y0, . . . , y|J |−1) to ease the notation

and proofs. Given the above notation we can add and subtract terms from the joint

distribution of X(t) and Y(t) as follows:

F s
′
s (t+ ∆t,y) = F s

′
s (t,y − r(s)∆t) +Q(s, s)∆t · F s′s (t,y − r(s)∆t) +

∑

z 6=s
gz(∆t) + o(∆t)

=
(
F s
′
s (t,y)− F s′s (t,y)

)
+ F s

′
s (t,y − r(s)∆t) +Q(s, s)∆t · F s′s (t,y − r(s)∆t)

+
∑

z 6=s
gz(∆t) + o(∆t)

Let D̂(s) be a diagonal matrix such that D̂(s)[i, i] = ri(s), for all i ≤ |J | − 1 such that

ri(s) 6= 0. Note that D̂(s) is invertible. We observe that

F s
′
s (t+ ∆t,y)− F s′s (t,y)

= F s
′
s (t,y − r(s)∆t)− F s′s (t,y) +Q(s, s)∆t · F s′s (t,y − r(s)∆t)

+
∑

z 6=s
gz(∆t) + o(∆t)

= D̂(s)
−1 · D̂(s)

(
F s
′
s (t,y − r(s)∆t)− F s′s (t,y)

)
+Q(s, s)∆t · F s′s (t,y − r(s)∆t)

+
∑

z 6=s
gz(∆t) + o(∆t),

and

F s
′
s (t+ ∆t,y)− F s′s (t,y)

∆t

= D̂(s)
−1 · D̂(s)

(
F s
′
s (t,y − r(s)∆t)− F s′s (t,y)

∆t

)
+Q(s, s) · F s′s (t,y − r(s)∆t)

+
∑

z 6=s

gz(∆t)

∆t
+ o(∆t).

Notice that all the three cases result in the same outcome. Taking the limit lim
∆t→0

and

renaming the variables we obtain that

67

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

∂F s
′
s (t,y)

∂t
+
∑

j∈J
rj(s)

∂F s
′
s (t,y)

∂yj
=
∑

z∈S
Q(s, z)F s

′
z (t,y).

In matrix notation, one has

∂F(t,y)

∂t
+
∑

j∈J
Dj ·

∂F(t,y)

∂yj
= Q · F(t,y),

which completes the proof.

Remark 4.3.2 The system of PDEs from Theorem 4.3.3 is a special case of the system of

PDEs given in [HKNT98, GT07], which is presented for stochastic Petri nets. We remark

here that efficient solutions of system of PDEs exist only when the PDEs have dimension

less or equal than four. In any other case, the system of PDEs cannot usually be solved

and one should resort to sampling techniques such as Monte Carlo.

Example 4.3.2 For the CTMC depicted in Figure 3.2, with r(s0) = 1 and r(s1) = −1,

we can derive the following system of PDEs:

∂F s1s0 (t, y)

∂t
+
∂F s1s0 (t, y)

∂y
= 10F s1s1 (t, y)− 10F s1s0 (t, y),

∂F s0s1 (t, y)

∂t
− ∂F s0s1 (t, y)

∂y
= −6F s0s1 (t, y) + 3F s0s0 (t, y)

+1.2F s0s2 (t, y) + 1.8F s0s3 (t, y).

Note that trivial equations like 0 = 0 are simply omitted.

Next we provide an alternative characterisation of the joint probability distribution in

terms of a system of integral equations, as follows.

Theorem 4.3.4 The solution of the system of PDEs in Equation (4.22) is the least fix-

point of the following system of integral equations:

F s
′
s (t,y) = eQ(s,s)tF s

′
s (0,y−r(s)t) +

∫ t

0

∑

z 6=s
eQ(s,s)xQ(s, z)F s

′
z (t−x,y−r(s)x)dx.

Proof One possible solution for the hyperbolic system of PDEs obtained is the method

of characteristics proposed in [Pat93]. The method consists in finding the characteristic

curves y(t) on which PDEs reduce to ODEs. Let y(t) be an arbitrary curve and consider

the derivative of F s
′
s (t,y(t)) in t. More specifically,

dF s
′
s (t,y(t))

dt
=
∂F s

′
s (t,y(t))

∂t

dt

dt
+
∂F s

′
s (t,y(t))

∂y

dy(t)

dt
.

Note that dt
dt = 1, then considering those curves y(t) such that dy(t)

dt = r(s) yields

68

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

dF s
′
s (t,y(t))

dt
=
∂F s

′
s (t,y(t))

∂t
+
∑

j∈J

∂F s
′
s (t,y(t))

∂yj
rj(s) (4.23)

Note here that the right-hand side of Equation (4.23) is the left-hand side of Equa-

tion (4.22), which implies that:

dF s
′
s (t,y(t))

dt
=
∑

z∈S
Q(s, z)F s

′
z (t,y(t)). (4.24)

Equation (4.24) defines a system of ordinary differential equations that can be solved if

we fix an initial value for F s
′
s (0,y(0)). The solution is given by:

F s
′
s (t,y(t)) = eQ(s,s)t



∫ t

0
e−Q(s,s)x

∑

z 6=s
Q(s, z)F s

′
z (x,y(x))dx+ F s

′
s (0,y(0))


 . (4.25)

The curve y(t) defined by the ODE dy(t)
dt = r(s) has as solution:

y(t) = r(s)t+ C.

We can calculate the value of C, given a time t∗ and the value y∗ of the accumulated

reward, by

C = y∗ − r(s)t∗.

In order to find the solution for the PDE in Equation (4.22) at a given t∗ and y∗, we

solve the ODE in Equation (4.24) on the curve given by

y(t) = r(s)t+ y∗ − r(s)t∗ = y∗ − r(s)(t∗ − t),

and more specifically, by substituting x = t∗ − x:

F s
′
s (t∗,y∗) = eQ(s,s)t∗F s

′
s (0,y∗ − r(s)t∗) +

∫ t∗

0

∑

z 6=s
eQ(s,s)xQ(s, z)F s

′
z (t∗ − x,y∗ − r(s)x)dx.

This completes the proof.

For readers who are familiar with Piecewise-deterministic Markov processes (PDMPs)

[Dav93], Equation (4.22) can also be obtained as follows. For every state s of the CTMC

we assign the system of differential equations: for each j ∈ J ,

dxj(t)

dt
= rj(s), xj(t) ∈ R.

Note that xj(t) will denote the total accumulated reward at time t for the reward structure

j. This results in a PDMP with the state space S×R|J |. The function F s
′
s (t,y) represents

the probability to reach the set of states {s′} × (−∞, y0]× · · · × (−∞, y|J |−1] at time t.

Theorem 4.3.3 and Theorem 4.3.4 imply that, to solve the bounded-time EDP verific-

ation problem, we need to solve (first-order) PDEs or integral equations. However, this is

usually costly and numerically unstable [Hig02]. We present solutions in the next section,

based on uniformisation.

69

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

Uniformisation

We present a uniformisation-based algorithm to compute F s
′
s (t,y). The uniformisation

method [Jen53] involves transforming the CTMC C into a behaviorally equivalent DTMC

D. The state space and initial distribution of D are the same as for C. The probability

matrix P̂ of D is constructed by P̂ = I + 1
ΛQ, where Λ is the maximal exit rate of C. We

obtain:

π(t) = e(P̂−I)Λt =

∞∑

n=0

P̂n (Λt)n

n!
e−Λt, (4.26)

where with π(t) we indicate the transient probability distribution vector.

We now apply the uniformisation technique to efficiently compute F s
′
s (t,y). First, we

note that the infinite sum in Equation (4.26) is equal to the probability (Λt)n

n! e−Λt that

exactly n Poisson arrivals occur in an interval of time [0, t] multiplied with the probability

P̂n to take the state transitions corresponding to the arrivals. Then using Equation (4.26)

we obtain:

F s
′
s (t,y) =

∞∑

n=0

e−Λt (Λt)
n

n!
·


∑

|ς|=n

Pr({ς | X(0) = s}) · Pr
(
{X(n) = s′,Y(t) 6 y | ς}

)

 ,

where for a given path ς = s→ s1 → · · · → sn−1 → sn,

Prob(ς) := Pr ({ς | X(0) = s}) = P̂(s, s1)× · · · × P̂(sn−1, sn).

If |ς| = 0 then Prob(ς) := 1. Pr ({X(n) = s′,Y(t) 6 y | ς}) denotes the conditional prob-

ability that given the path ς at step n the state is s′ and the total accumulated reward

until time t is less than y. The above equation can also be written as:

F s
′
s (t,y)=

∞∑

n=0

e−Λt (Λt)
n

n!

∑

|ς|=n,
ς[0]=s,
ς[n]=s′

Prob(ς) · Pr ({Y(t) 6 y | ς}) . (4.27)

Note that

Prob(ς) · Pr ({Y(t) 6 y | ς}) = Pr ({Y(t) 6 y ∧ ς}) . (4.28)

Now the task is to compute Pr ({Y(t) 6 y ∧ ς}), for which we resort to the computation

of an integration over a convex polytope. The basic idea is to generate timed constraints

over variables determining the residence time of each state along ς to make Y(t) 6 y hold.

The desired probability can thus be formulated as a multidimensional integral, which can

be computed by the efficient algorithm given in [LZ01].

Given a discrete finite path ς of length k, an LDP ϕ, and a time bound T , we define

the set of linear constraints S generated in Algorithm 6.

In Algorithm 6, line 3 generates the set of constraints from each conjunct in formula

ϕ. In line 5 we add one more constraint to ensure that in the interval of time [0, T] we

will reach the last state of ς.

70

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

Algorithm 6 Generate a set of linear constraints S induced by ϕ, ς and T

Require: LDP ϕ, a path ς of length k and a time bound T

Ensure: A set of linear constraints S
1: S = ∅
2: for j ∈ J do

3: S = S ∪




∑
i∈Kj

cji ·
∑

0≤`≤k,
ς[`]|=sfji

x` 6Mj





4: end for

5: S = S ∪
{
k−1∑
i=0

xi ≤ T
}
∪
{

k∑
i=0

xi ≥ T
}

6: S = S ∪ {xi > 0} for all xi

7: return S

We show the functioning of Algorithm 6 with the following example.

Example 4.3.3 Assume the LDP ϕ =
∫

Idle − 1
3

∫
Busy 6 0∧

∫
Idle − 1

4

∫
Sleep 6 0, the

discrete path ς = s0 → s1 → s2 → s1 → s3 and the time bound T = 6. The set of linear

constraints S generated by Algorithm 6 induced by ς, ϕ and T is:

S =





−1
3 · x0 + x1 + 0 · x2 + x3 6 0

0 · x0 + x1 − 1
4 · x2 + x3 6 0

x0 + x1 + x2 + x3 ≤ 6

x0, x1, x2, x3 > 0

Similarly to Section 4.1, we need to prove that Algorithm 6 is correct, i.e., that Al-

gorithm 6 returns the right set of linear inequalities S. In order for S to be correct we

need that any solution of the system must satisfy the formula ϕ when plugged back into

the discrete path ς. Moreover, if there is a sequence of time jumps for ς that satisfies ϕ

then that sequence must be a solution to S. Lemma 4.3.5 proves the correctness of the

system of linear inequalities returned by Algorithm 6 .

Lemma 4.3.5 Assume a discrete path ς of the CTMC C, an LDP ϕ and a time bound

T . Let S be the set of linear constraints obtained by Algorithm 6. Then

ς[x0, . . . , xk−1] |=
(
ϕ ∧

∫
1 ≤ T

)
iff (x0, . . . , xk−1) satisfies the constraints in S.

Proof Let ϕj be the j-th conjunct of ϕ. It is easy to see that:

ς[x0, . . . , xk−1] |= ϕj iff (x0, . . . , xk−1) satisfies the constraints in S,

which follows from the definition of |= (see Definition 3.2.7). Note that ς[x0, . . . , xk−1] |=
∫

1 ≤ t iff
k−1∑
i=0

xi ≤ t (see Definition 3.2.8), which proves the lemma.

71

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

We define

Prob(ς[S]) := PrC(ς[0])({ς[x0, . . . , xk−1] | (x0, . . . , xk−1) satisfies the constraints in S}).

For future use, declare the function V olume int(α, ς,S) which, given an initial distri-

bution α, a finite discrete path ς = s0 → · · · → sk of length k and a set of linear constraints

S over x0, · · · , xk−1, returns

α(s0) ·
k−1∏

i=0

E(si) · P (si, si+1) ·
∫
· · ·
∫

︸ ︷︷ ︸
k

S

k−1∏

i=0

e−E(si)τidτi. (4.29)

Evidently, Prob(ς[S]) is equal to V olume int(α, ς,S). In [LZ01] an algorithm based on the

Laplace transform is proposed to compute certain multidimensional integrals over poly-

topes. In Equation 4.29, the integration is over S, which is the intersection of hyperplanes

(in terms of linear inequalities). Hence, the algorithm of [LZ01] can be applied directly.

The time complexity of solving the multidimensional integral is O(|J |k). Recall that |J |
is the number of constraints and k is the number of variables. Note that we omit the

simple constraints from Algorithm 6, line 5 and 6, when computing the complexity of the

algorithm. The simple constraints denote a constant term in the overall complexity and

can safely be removed.

Remark 4.3.3 The reader should note that we have again reduced the problem to com-

puting certain multidimensional integrals over polytopes, as in Section 4.1 and Section 4.2.

The following theorem concludes this section, showing that, in order to compute

Pr ({Y(t) 6 y ∧ ς}), one only needs to compute Prob(ς[S]), where S is generated from

Algorithm 6.

Theorem 4.3.6 Let ς be a discrete path of the CTMC C ending in G, C[ϕ,G] be the

MRM induced by C and LDP ϕ, and S the set of linear constraints generated by ς, ϕ and

time bound t. We have that:

PrC(s)[ϕ,G] ({Y(t) ≤ y ∧ ς}) = Prob(ς[S]),

where y = M = (M0, ...,M|J |−1).

Proof Let C(s) be the CTMC C such that, for a given state s ∈ S, α(s) = 1. From

Theorem 4.3.2 we know that:

PrC(s)[ϕ,G] ({Y(t) ≤ y}) = PrC(s)({ρ ∈ PathsC(s) | ρ |=G
t ϕ}).

72

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

Let ς be a discrete path of length k such that ς[0] = s. We have that:

PrC(s)[ϕ,G] ({Y(t) ≤ y ∧ ς}) =

PrC(s)[ϕ,G]

(
{X(t) = ς[k],Y(t) ≤ y ∧

∃z0, . . . , zk−1, 0≤z0<z1< · · ·<zk−1<t,X(0) = s,
k−1∧

i=0

X(zi) = ς[i]}
)

=

PrC(s)[ϕ,G]

(
{ρ ∈ PathsC(s) | ρ |=ς[k]

t ϕ,

k−1∧

i=0

ρ[i] = ς[i]}
)
.

From Lemma 4.3.5 we obtain:

Prob(ς[S]) = PrC(ς[0])

({
ρ ∈ PathsC | ς[ρ〈0〉, . . . , ρ〈k − 1〉] |= ϕ ∧

∫
1 ≤ t

})
.

One can easily see that:

PrC(s)[ϕ,G]

({
ρ ∈ PathsC(s) | ρ |=ς[k]

t ϕ,

k−1∧

i=0

ρ[i] = ς[i]

})
=

PrC(ς[0])

({
ρ ∈ PathsC | ς[ρ〈0〉, . . . , ρ〈k − 1〉] |= ϕ ∧

∫
1 ≤ t

})
.

This completes the proof.

Complete algorithm for the time-bounded verification of EDP

In order to compute the joint probability distribution of states and rewards, F s
′
s (t,y)

(see Equation 4.21), we must pick a finite set P of paths from PathsD, where D is the

embedded DTMC of the CTMC under consideration. Following [QS94], we introduce a

threshold w ∈ (0, 1) such that ς ∈ P only if Prob(ς) > w. This is mainly for efficiency

considerations. We also fix a maximum length N for the paths in P. Now we define

P(s, s′, w,N) := {ς ∈ PathsD | |ς| = N, ς[0] = s, ς[N] = s′,Prob(ς) > w}.

We can approximate F s
′
s (t,y) as

F̃wN
s′

s (t,y) =

N∑

n=0

e−Λt (Λt)
n

n!

∑

ς∈P(s,s′,w,n)

Prob(ς) Pr ({Y(t) 6 y | ς}) ,

where w and N are chosen as stated in Theorem 4.3.8. The approximation algorithm to

compute Prob := F̃wN
s′

s (t,y) is given in Algorithm 7. In Algorithm 7 we define ◦ to be the

concatenation operator and we indicate with ς[|ς|] the last state of ς.

73

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

Algorithm 7 Compute F̃wN
s′

s (t,y)

1: Prob = 0

2: Paths = {s}
3: while Paths 6= ∅ do

4: choose ς ∈ Paths
5: Paths = Paths \ {ς}
6: if Prob(ς) > w and |ς| ≤ N then

7: if ς[|ς|] = s′ then

8: Prob+ =e−Λt (Λt)|ς|

|ς|! Prob(ς) Pr ({Y(t)6y | ς})
9: else

10: for s′′ ∈ S do

11: insert (ς ◦ s′′) into Paths

12: end for

13: end if

14: end if

15: end while

16: return Prob

A bound on the approximation error of Algorithm 7

We give a bound for the truncation of the infinite sum to a finite one, considering only the

discrete paths whose probability is greater than w. We start with the following technical

lemma.

Lemma 4.3.7 shows how to truncate the Poisson series
∞∑
i=0

e−ΛT (ΛT)i

i! for a sufficiently

large integer N , such that the tail of the series, i.e.,
∞∑

i=N+1

e−ΛT (ΛT)i

i! , is smaller than a

given ε, where ε is the maximum error that we are willing to tolerate.

Lemma 4.3.7 Let ε ∈ R>0 and T ∈ R≥0. For any N > ΛTe2 + ln(1
ε), we have that

∞∑

i=N+1

e−ΛT (ΛT)i

i!
6 ε.

Proof We have that

74

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

∞∑

i=N+1

e−ΛT (ΛT)i

i!
= e−ΛT ·

(∞∑

i=N+1

(ΛT)i

i!

)

6 e−ΛT · eΛT · (ΛT)N

N !
(Taylor expansion)

6
(ΛT)N

(N/e)N
=

(
ΛTe

N

)N
(Stirling’s approximation)

6

(
1

e

)N
(N > ΛTe2)

6

(
1

e

)ln(1/ε)

= ε. (N > ln(
1

ε
))

The following theorem states the error bound, which also suggests how to choose N

and w for Algorithm 7 for a given ε.

Theorem 4.3.8 Given ε > 0, for N > Λte2 + ln
(

1
ε

)
, and w < ε

N∑
n=0

e−Λt (Λt)n

n!

, we have that

∣∣∣∣F s
′
s (t,y)− F̃wN

s′

s (t,y)

∣∣∣∣ 6 2ε.

Proof

∣∣∣∣F s
′
s (t, y)− F̃wN

s′

s (t,y)

∣∣∣∣

=

∣∣∣∣∣
∞∑

n=0

e−Λt (Λt)
n

n!
·
∑

|ς|=n,
ς[0]=s,
ς[n]=s′

Pr({ς}) · Pr ({Y(t) 6 y | ς})−

N∑

n=0

e−Λt (Λt)
n

n!
·
∑

ς∈P(s,s′,w,n)

Pr({ς}) Pr ({Y (t) 6 y | ς})
∣∣∣∣∣

=

∣∣∣∣∣
∞∑

n=N+1

e−Λt (Λt)
n

n!
·
∑

|ς|=n,
ς[0]=s,
ς[n]=s′

Pr({ς}) · Pr ({Y(t) 6 y | ς})

︸ ︷︷ ︸
(?)

75

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

+
N∑

n=0

e−Λt (Λt)
n

n!
·
∑

|ς|=n,
ς[0]=s,
ς[n]=s′

Pr({ς}) · Pr ({Y(t) 6 y | ς})−

︸ ︷︷ ︸
(??)

N∑

n=0

e−Λt (Λt)
n

n!
·

∑

ς∈P(s,s′,w,n)

Pr({ς}) Pr ({Y (t) 6 y | ς})

︸ ︷︷ ︸
(??)

∣∣∣∣∣

We bound term (?) and term (??) separately.

• First, for N > Λte2 + ln
(

1
ε

)
and by Lemma 4.3.7:

(?) 6
∞∑

n=N+1

e−Λt (Λt)
n

n!
6 ε

• Second:

(??) =
N∑

n=0

e−Λt (Λt)
n

n!
·

∑

ς 6∈P(s,s′,w,n)

Pr({ς}) Pr ({Y (t) 6 y | ς})

6
N∑

n=0

e−Λt (Λt)
n

n!
· w ·

∑

ς 6∈P(s,s′,w,n)

Pr ({Y (t) 6 y | ς})

6 w ·
N∑

n=0

e−Λt (Λt)
n

n!
.

It follows that: ∣∣∣∣F s
′
s (t, y)− F̃wN

s′

s (t,y)

∣∣∣∣ 6
∣∣∣∣∣ε+ w ·

N∑

n=0

e−Λt (Λt)
n

n!

∣∣∣∣∣ .

Taking w 6 ε
N∑
n=0

e−Λt (Λt)n

n!

, we obtain:

∣∣∣∣F s
′
s (t, y)− F̃wN

s′

s (t,y)

∣∣∣∣ 6 2ε.

This completes the proof.

Complexity

We analyse the complexity of Algorithm 7. Recall that |S| is the number of states of C.
Algorithm 7 is composed of two main steps: (1) find all paths of length at most N ; and

(2) for each of those paths, ς, compute Pr ({Y(t) 6 y | ς}).

Theorem 4.3.9 The complexity of Algorithm 7 is O(|S|N · (|J |+ |J |N)).

76

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

Proof The number of paths of length less than N − 1, from standard graph theory, is

at most |S|N (in case of fully connected CTMCs). Subsequently, for each of those |S|N

paths, say ς, we have to compute Pr ({Y(t) 6 y | ς}). Using the approach that generates

the set of linear constraints we have that the complexity to compute the volume of convex

polytopes defined over N variables is |J |N (see [LZ01]), whereas the complexity to generate

the set of linear constraints is linear in the cardinality of J . Therefore, the total complexity

of Algorithm 7 is O(|S|N · (|J |+ |J |N)).

4.3.2.2 Time-unbounded verification of EDP

In this section we show how to compute Prob(C |=G ϕ). The main idea is that we

approximate Prob(C |=G ϕ) by Prob(C |=G
T ϕ) for a sufficiently large T ∈ R≥0. Hence,

we reduce the problem to time-bounded verification of EDP, which has been solved in

Section 4.3.2.1.

For this purpose, we first introduce some background from linear algebra and matrix

theory. We write A for a square matrix, with aij ∈ R the element of the i’th row and j’th

column of A. A is a nonnegative matrix if for any i, j, aij ≥ 0. We write eig(A) to be

the set of all eigenvalues of matrix A, and ρ(A) = max{|λ| | λ ∈ eig(A)} be the spectral

radius of A, i.e., the maximum module of the eigenvalues of A.

Definition 4.3.2 Let A be a square matrix. The logarithmic norm of A, denoted by

µ(A), is defined as

µ(A) = max

{
λ
∣∣∣λ ∈ eig

(
A + A>

2

)}
.

Note that this is well defined; as A+A>

2 is a symmetric matrix, all the eigenvalues are

reals.

Note that µ(A) ≤ ρ
(
A+A>

2

)
and ρ(A) = ρ(A>).

Definition 4.3.3 Let A be a square matrix of dimension m. We call the graph GA of A

the dependency graph where:

• the nodes of the graph are {1, · · · ,m}, and

• there is an edge from i to j iff aij > 0.

Let GA be a dependency graph. Recall from Section 3.1.2 that GA is called strongly connec-

ted if there is a path from each vertex in GA to every other vertex. The strongly connected

components (SCCs) of GA are its maximal strongly connected subgraphs. Moreover, a mat-

rix A is irreducible iff GA is strongly connected.

Next we introduce a series of lemmas and proposition that will help to prove the main

result of this section, i.e., Theorem 4.3.16. The end goal is to find a suitable time bound

T such that we can approximate Prob(C |=G ϕ) with Prob(C |=G
T ϕ).

77

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

Proposition 4.3.10 ([Dah58]) Let || · || be the spectral matrix norm, α be a vector with

its associated Euclidean vector norm, and T ≥ 0. It holds that:

||α · eQT || ≤ ||α|| · eµ(Q)T .

Proposition 4.3.11 ([HJ90]) Let A be an arbitrary matrix and ε > 0, then there exists

some induced matrix norm || · || such that:

||A|| ≤ ρ(A) + ε.

Definition 4.3.4 An m × m substochastic matrix A is a nonnegative matrix with the

following properties:

• for any 0 6 i 6 m,
∑

1≤j6m
aij 6 1; and

• there exists some 0 6 i 6 m, such that
∑

16j6m
aij < 1.

Lemma 4.3.12 Let A be an m×m irreducible substochastic matrix. It holds that ρ(A) <

1.

Proof For any 1 6 i 6 m let r
(n)
i =

m∑
k=1

An
ik be the i-th row sum of An. For n = 1 we

write ri instead of r
(1)
i . Since A is substochastic we have that 0 6 ri 6 1 for any 1 6 i 6 m

and rj < 1 for at least one 1 6 j 6 m. Note that for n ≥ 1:

r
(n)
j =

m∑

k=1

An
jk =

m∑

k=1

Ajkr
(n−1)
k 6

m∑

k=1

Ajk = rj < 1.

By irreducibility of A, for any i there is l such that Al
ij > 0. In fact, given that A is

a m×m matrix and i 6= j then we can assume l < m. Thus, we have that:

r
(m)
i =

m∑

k=1

Al
ikr

(m−l)
k < r

(l)
i 6 1.

By the Gershgorin circle theorem [HJ90], we have that ρ(Am) < 1. Hence ρ(A) < 1.

Lemma 4.3.13 Suppose that ρ(A) < 1, then µ(A) < 1.

Proof We know that µ(A) ≤ ρ
(
A+A>

2

)
. For any induced matrix norm || · ||, it holds

that:

ρ

(
A + A>

2

)
≤ 1

2
(||A + A>||) ≤ 1

2
||A||+ 1

2
||A>||.

Let ε > 0 then from Proposition 4.3.11 it holds that for some matrix norm || · ||:

78

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

µ(A) ≤ ρ
(

A + A>

2

)

≤ 1

2
||A||+ 1

2
||A>||

≤ 1

2
ρ(A) +

1

2
ε+

1

2
ρ(A>) +

1

2
ε

= ρ(A) + ε.

From Lemma 4.3.12 we know that ρ(A) < 1 and so we can pick an ε such that

ρ(A) + ε < 1. It follows that µ(A) < 1.

Now fix the CTMC C and the set of goal states G ⊆ S with |G| = m. Recall that Q

is the infinitesimal generator of C. As the first step, we identify the set of states S>0 ⊆ S
starting from which there is positive probability to reach G. This can be done through a

graph analysis in a standard way, see [BK08, Ch. 10]. We still write Q>0 for the principal

submatrix of the infinitesimal generator Q corresponding to S>0. We partition Q>0 as

follows

Q>0 =

[
Q1 Q2

0 0

]
, (4.30)

where Q1 is the square matrix of size (|S>0| − m) × (|S>0| − m) denoting transitions

between the set of transient states s ∈ S>0 \G, Q2 is the matrix of size (|S>0| −m)×m
denoting transitions from the transient states to the set of goal states G and 0 is a matrix

composed of zeros. The reader should note that, given any infinitesimal generator Q, it is

always possible to express Q = Λ(P− I), where Λ is the maximal exit rate of C, I is the

identity matrix and P = (I + Q
λ) is a stochastic matrix. In the sequel we indicate with P1

the principal submatrix of P corresponding to Q1. Abusing notation we indicate with I1

the identity matrix of the same size as P1.

We define a random variable TG : PathsC → R≥0 that will denote the first entrance

time of G. More specifically, given a path ρ:

TG(ρ) =





∞ ∀j ∈ N. ρ[j] /∈ G
k−1∑
j=0

ρ〈j〉 o/w, where k = min{l | ρ[l] ∈ G} .

The following proposition states a helpful property of the “transient part” of the infin-

itesimal generator of C, relying on Lemma 4.3.12 and Lemma 4.3.13. Note that [ESY12]

contains a similar argument showing essentially the same result, although in a different

context.

Proposition 4.3.14

µ(Q1) < 0.

79

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

Proof We first focus our attention on P1, which is a substochastic matrix. Let GP1 be

the dependency graph of P1. We consider the SCC-decomposition of GP1 , and assume a

topological ordering among SCCs {B1, · · · , Bk} such that, for i ∈ Bm and i′ ∈ Bm′ , the

existence of an edge from i to i′ implies that m < m′. By Lemma 4.3.12, we have the

following property: for any ` ∈ {1, · · · , k} and the principal submatrix corresponding to

B`, written as P1[B`],

ρ(P1[B`]) < 1. (4.31)

Since P1 is a nonnegative matrix, we have that there exists a nonnegative eigenvector v

associated with ρ(P1), i.e.,

P1v = ρ(P1)v

We observe that, for any index 1 6 i 6 n, if vi > 0 then, for any j such that there is an

edge from j to i, we have that:

(P1v)j =
∑

16k6n

pjkvk

=
∑

16k6n,
k 6=i

pjkvk + pjivi

≥ pjivi
> 0.

Since (P1v)j = ρ(P1)vj , we obtain that vj > 0. Repeating the same argument, we

have that, for each SCC, if for some index i we have vi > 0, then for any index i in this

SCC, vi > 0.

It follows that there must exist some SCC such that, for any index i in this SCC,

we have vi > 0. Let ~ be the maximum index for such an SCC. Consider the principal

submatrix corresponding to B~. For each index i ∈ B~, we have that:

(P1v)i =
∑

16j6n

pijvj

=
∑

16j6n,
j∈B~

pijvj +
∑

16j6n,
j /∈B~

pijvj

=
∑

16j6n,
j∈B~

pijvj

= ρ(P1)vi.

80

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

It follows that ρ(P1[B~]) ≥ ρ(P1). However, we also have ρ(P1[B~]) 6 ρ(P1) as

P1[B~] is a principal submatrix. Hence ρ(P1[B~]) = ρ(P1). Therefore, ρ(P1) < 1 by

Equation (4.31).

Now note that by Lemma 4.3.13 if ρ(P1) < 1 then µ(P1) < 1. Moreover, µ(Q1) =

µ(Λ(P1 − I1)) which in turn yields that µ(Q1) ≤ Λ(µ(P1) − 1) since µ(I1) = 1. Thus,

µ(P1) < 1 implies that µ(Q1) < 0, which concludes the proof.

Next we present Proposition 4.3.15 which relates the probability of all the timed paths

ρ of C that reach the set of goal states G for the first time in more than T time units to

an exponential function over the infinitesimal generator Q of C.

Proposition 4.3.15 For any T ∈ R≥0 it holds that:

PrC({ρ ∈ PathsC | ρ |= ♦G ∧ TG(ρ) > T}) = α̂ · eQ1Te,

where α̂ = α[1,|S>0| −m] and e is a vector assigning 1’s to the goal states and 0’s to

all the other states.

Proof Proof can be found in [NNN10].

Now we are in a position to state the main result of this section. Theorem 4.3.16 shows

how to approximate time-unbounded EDPs with time-bounded EDPs. More precisely,

Theorem 4.3.16 states that, given a maximum error tolerance ε, we can choose a time

bound T

(
T >

ln(ε/
√
|G|)

µ(Q1)

)
such that the probability of all the timed paths that satisfy

the formula ϕ
(
Prob(C |=G ϕ)

)
is ε-close to the probability of all the timed paths that

satisfy the formula ϕ in T time units
(
Prob(C |=G

T ϕ)
)
.

Theorem 4.3.16 Given 0 < ε < 1 and T >
ln(ε/
√
|G|)

µ(Q1) :

Prob(C |=G ϕ)− Prob(C |=G
T ϕ) ≤ ε.

Proof We have

Prob(C |=G ϕ)− Prob(C |=G
T ϕ)

6PrC({ρ ∈ PathsC | ρ |= ♦G ∧ TG(ρ) ≥ T})
=α̂ · eQ1Te = ||α̂ · eQ1Te|| (by Proposition 4.3.15)

6||α̂|| · eµ(Q1)T · ||e|| (by Proposition 4.3.10)

≤ε

The correctness of the bound is guaranteed by Proposition 4.3.14.

81

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

Due to this theorem, given an error bound ε and a set of goal states G, we can pick

a time bound T such that T ≥ ln(ε/
√
|G|)

µ(Q1) and compute Prob(C |=G
T ϕ). For computing

µ(Q1), we note that it only requires computing eigenvalues of the symmetrisation of Q1

for which efficient numerical algorithms exist.

4.3.3 Verification of IDP

In this section, we tackle the problem of verification of IDPs. Recall that IDPs are different

from EDPs in the sense that they require the formula to hold at any instant of time along

the path under consideration. Again, we fix a CTMC C = (S,AP, L, α,P, E) and an

LDP

Φ =

∫
1 6 T →

∧

j∈J


∑

k∈Kj

cjk

∫
sfjk 6Mj




︸ ︷︷ ︸
ϕ

.

As highlighted in Section 3.1.2, we shall distinguish two cases according to whether T is

finite or infinite. We firstly give some definitions and algorithms that are common to both

cases.

Given ϕ, a discrete finite path ς of length k and a time bound T < ∞, we define the

set of linear constraints S as generated in Algorithm 8. Note that this is different from

the constraints obtained from Algorithm 6 in the previous section.

Algorithm 8 Generate a set of linear constraints S induced by ϕ, ς and T

Require: LDP ϕ, a path ς of length k and a time bound T

Ensure: A set of linear constraints S
1: S = ∅
2: for z = 0; z < k; z++ do

3: for j ∈ J do

4: S = S ∪




∑
i∈Kj

cji ·
∑

0≤`≤z,
ς[`]|=sfji

x` 6Mj





5: end for

6: end for

7: return S

We show in Example 4.3.4 a concrete example of the set of constraints generated by

Algorithm 8 for a given discrete path ς.

Example 4.3.4 Let ϕ =
∫

Busy −
∫

Idle 6 0 be an LDP and ς = s0 → s1 → s0 → s1 →

82

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

s3. The set of linear constraints S induced by ς and ϕ is:

S =





x00 6 0

x00 − x01 6 0

x00 − x01 + x02 6 0

x00 − x01 + x02 − x03 6 0

x00, x01, x02, x03 > 0

In order to show the correctness of Algorithm 8 we need to prove that, given a discrete

path ς of length k of C, then any solution of the set of linear constraints S returned

by Algorithm 8, say (x0, . . . , xn−1), must satisfy the following condition: the timed path

obtained by plugging the solution (x0, . . . , xn−1) of S into ς, namely ς[x0, . . . , xn−1], must

verify ϕ. This is proved in Lemma 4.3.17.

Lemma 4.3.17 Let ς be a finite path of the CTMC C, ϕ be an LDP and T be a time

bound. Moreover, let S be the set of linear constraints obtained by Algorithm 8. Then

ς[x0, . . . , xn−1] |=?

(
ϕ ∧

∫
1 ≤ T

)
iff (x0, . . . , xn−1) ∈ S.

Proof Let ϕj be the j-th conjunct of ϕ. From Definition 3.2.8 we have that

ς[x0, . . . , xn−1] |=? ϕj iff (x0, . . . , xn−1) ∈ S =
n−1⋃

z=0





∑

i∈Kj

cji ·
∑

0≤`≤z,
ς[`]|=sfji

x` 6Mj




.

Note that ς[x0, . . . , xn−1] |=
∫

1 ≤ t iff
n−1∑
i=0

xi ≤ t (see Definition 3.2.8), which proves the

lemma.

We define Prob?(ς[S]) to be

PrC({ρ ∈ PathsC | ∃ (x0, . . . , xn−1) ∈ S. ρ[0..n] ∈ ς[x0, . . . , xn−1] ∧ ρ[0..n] |=? ϕ}),

which can be computed by the function V olume int(α, ς,S) (cf. Equation (4.29)), where

S is the set of constraints generated from Algorithm 8. We now introduce an auxiliary

definition for paths of CTMCs.

Definition 4.3.5 Given an infinite timed path ρ, an absorbing set of states G of the

CTMC C, and a time bound T < ∞, we write ρ |=?
G,T ϕ if there exists some n ∈ N such

that:

• ρ[n] ∈ G and
n∑
i=0

ρ〈i〉 6 T , and

• for each 0 6 i 6 n, ρ[0..i] |= ϕ.

83

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

Remark 4.3.4 Note that, as we assume that G is absorbing, the only difference between

ρ |=?
G,T ϕ and ρ |=G

T ϕ given in Definition 3.2.8 lies in that, here, we require that, for

each 0 6 i 6 n, ρ[0..i] |= ϕ, whereas in Definition 3.2.8 we require that ρ[0..n] |= ϕ. This

reflects the distinction between EDP and IDP.

Our task now is to approximate the probability Prob(C |=?
G,T ϕ). For this purpose, we

present Algorithm 9 which computes an approximation P̃robN (C |=?
G,T ϕ) of Prob(C |=?

G,T

ϕ) for a given N .

Algorithm 9 Compute P̃robN (C |=?
G,T ϕ)

Require: A CTMC C, an LDP formula ϕ, set of goal states G, time bound T , and N

1: Prob = 0

2: for ς ∈ PathsD s.t. ∃i. ς[i] ∈ G and |ς| ≤ N do

3: Generate S from ϕ, ς and T , with Algorithm 8

4: Prob = Prob + V olume int(α, ς,S)

5: end for

6: return Prob

4.3.3.1 Verification of unbounded IDP

This section is devoted to computing Prob(C |=? ϕ). For this purpose, we need to perform

a graph analysis of C. We start with some standard definitions.

Definition 4.3.6 Given a BSCC B of the CTMC C and an LDP ϕ, we say

• B is bad w.r.t. the j-th conjunct in ϕ, ϕj, if

∃s ∈ B. ∃i ∈ Kj . s |= sfji ∧ cji > 0

and otherwise B is good w.r.t. ϕj.

• B is good w.r.t. ϕ (written B |= ϕ) if B is good for each conjunct of ϕ; otherwise

B is bad (written B 6|= ϕ).

Our next step is to prove that, given a CTMC C, an LDP ϕ and a bad BSCC B, then

the probability of all the timed paths ρ that reach B and satisfy ϕ is equal to zero. This is

formally proved in Lemma 4.3.18. Intuitively, this is due to one of the following two facts:

• The formula was false before reaching B; or

• The formula was true before reaching B but then it will become false once B is

reached. Moreover, since B is a bad BSCC, it will stay there forever and the formula

will stay false forever.

84

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

Lemma 4.3.18 Given a CTMC C = (S,AP, L, α,P, E), an LDP ϕ and a BSCC B, we

have that, if B is bad, then PrC ({ρ | ρ |=? ϕ} | ♦B) = 0.

Proof We have the following basic facts, which follow from ergodicity theorems related

to stochastic processes (see [MT09]):

1. Given a BSCC B, every state s ∈ B is visited infinitely often with probability 1.

2. Any path ρ ∈ PathsC eventually reaches one of the BSCCs of C.

Given the second fact we only need to prove that for a bad BSCC B it holds that

PrC ({ρ | ρ |=? ϕ} | ♦B) = 0. We note that:

PrC({ρ | ρ |=? ϕ} | ♦B) =
PrC({ρ | ρ |=? ϕ} ∩ ♦B)

PrC(♦B)
.

Therefore, in order to prove that PrC({ρ | ρ |=? ϕ} | ♦B) = 0, it is enough to show that

{ρ | ρ |=? ϕ} ∩ ♦B = ∅. We prove it by contradiction. First, observe that

{ρ | ρ |=? ϕ} ∩ ♦B =
⋂

j∈J
({ρ | ρ |=? ϕj} ∩ ♦B) ,

where ϕj is the j-th conjunct of ϕ. Therefore, we will only show that {ρ | ρ |=? ϕj}∩♦B =

∅ for some j ∈ J . Let ρ ∈ {ρ | ρ |=? ϕj} ∩ ♦B. Then ρ ∈ ♦B. Given that B is bad it

holds that ∃s ∈ B. ∃i ∈ Kj . sfji ∈ L(s) ∧ cji > 0. From the first fact we know that there

exist infinitely many n such that ρ[n] = s. Therefore, we have that cji
∫

sfji → ∞. We

also know that ρ |=? ϕj iff ∀n.ρ[0 . . . n] |= ϕ or

∀n.
∑

k∈Kj

cjk
∑

0≤i′<n,
ρ[0...n]|=sfjk

ρ[0 . . . n]〈i′〉 ≤Mj . (4.32)

Given that i ∈ Kj and cji
∫

sfji →∞, Equation (4.32) does not hold. Therefore, we have

that ρ 6|=? ϕj , which is a contradiction.

Let BSCC be the set of all BSCCs in C and B̃SCC be the set of all good BSCCs.

Definition 4.3.7 Given a CTMC C = (S,AP, L, α,P, E) and an LDP ϕ, we define a

new CTMC Ca = (S,APa, La, α,Pa, E) as follows:

• APa = AP ∪ {⊥}, where ⊥ is fresh;

• for all s ∈ B and B ∈ B̃SCC make s absorbing and let La(s) = L(s) ∪ {⊥}; and

• for all other states s /∈ B, B ∈ B̃SCC and s′ ∈ S, let Pa(s, s′) = P(s, s′), La(s) =

L(s).

85

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

s4

s5 s1 s2 s3

s0

start

s4

s5 s1 s2 s3

s0

start

Figure 4.7: Example of BSCC decomposition to demonstrate CTMC conversion in Defin-

ition 4.3.7

Example 4.3.5 Consider the left CTMC C from Figure 4.7, in which there are two

BSCCs B1 = {s4, s5} and B2 = {s1, s2, s3}. Moreover, assume that B1 6|= ϕ and B2 |= ϕ

for a given LDP ϕ. After applying Definition 4.3.7 to C we get Ca shown on the right,

where the labels of the states s1, s2 and s3 are augmented with the label {⊥} and all the

other labels are left unchanged.

We now introduce an auxiliary definition, which, roughly, is the counterpart of (the un-

bounded version of) Definition 4.3.5.

Definition 4.3.8 Given an infinite timed path ρ and G ⊂ S, we write ρ |=?
G ϕ if there

exists some n ∈ N such that:

• ρ[n] ∈ G, and

• for each 0 6 i 6 n, ρ[0..i] |= ϕ.

The following proposition, Proposition 4.3.19, states that in order to compute Prob(C |=?

ϕ), one can first make good BSCCs absorbing while removing bad BSCCs, and then reduce

to computing Prob(C |=?
G ϕ) for a suitable G, which, in turn, uses Algorithm 9.

Proposition 4.3.19 Given a CTMC C = (S,AP, L, α,P, E) and an LDP ϕ, we have

that

Prob(C |=? ϕ) = PrC
a
({ρ | ρ |=?

G ϕ}),

where G = {s ∈ S |⊥∈ L(s)}.

86

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

Proof Applying the law of total probability we have that

PrC({ρ | ρ |=? ϕ})
=

∑

B∈BSCC

PrC ({ρ | ρ |=? ϕ} | ♦B) · PrC(♦B)

=
∑

B∈B̃SCC

PrC ({ρ | ρ |=? ϕ} | ♦B) · PrC(♦B) (by Lemma 4.3.18)

=
∑

B∈B̃SCC

PrC ({ρ | ρ |=? ϕ ∧ ({ρ[0 . . . n− 1] 6|= ϕ} ∪ {ρ[0 . . . n− 1] |= ϕ})} | ♦B)

·PrC(♦B),

where for all i < n, ρ[i] /∈ B. We have

PrC({ρ | ρ |=? ϕ})
=

∑

B∈B̃SCC

PrC ({ρ | ρ |=? ϕ ∧ ρ[0 . . . n− 1] 6|= ϕ} | ♦B) · PrC(♦B)

+
∑

B∈B̃SCC

PrC ({ρ | ρ |=? ϕ ∧ ρ[0 . . . n− 1] |= ϕ} | ♦B) · PrC(♦B).

By definition of |=∗, PrC ({ρ | ρ |=? ϕ ∧ ρ[0 . . . n− 1] 6|= ϕ} | ♦B) = 0. Using similar reas-

oning as in Lemma 4.3.18, one can show that

PrC ({ρ | ρ |=? ϕ ∧ ρ[0 . . . n− 1] |= ϕ} | ♦B) = 1,

for any B ∈ B̃SCC. Therefore, we obtain that

PrC({ρ | ρ |=? ϕ})
=

∑

B∈B̃SCC

PrC(♦B) =
∑

B∈B̃SCC

PrC({ρ | ρ |=?
B ϕ})

= PrC


 ⋃

B∈B̃SCC

{ρ | ρ |=?
B ϕ}




= PrC
a
({ρ | ρ |=?

G ϕ}),

where G =
⋃

B∈B̃SCC

{s ∈ B} = {s ∈ S |⊥∈ L(s)} by Definition 4.3.7.

Complete algorithm for the time-unbounded verification of IDP

The general algorithm for computing time-unbounded IDP verification is given in Al-

gorithm 10.

Algorithm 10 computes P̃rob(C |=? ϕ), which is an approximation of Prob(C |=? ϕ). Lines

4-9 obtain Ca and the goal states G, according to Definition 4.3.7, and then the algorithm

calls the function P̃robN (C |=?
G,T ϕ), given by Algorithm 9 (on page 84), by choosing T

and N according to the specified error bounds ε1 and ε2 respectively.

87

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

Algorithm 10 Compute P̃rob(C |=? ϕ)

Require: A CTMC C, an LDP formula ϕ, ε1 and ε2

1: Identify all BSCCs B in C
2: G = ∅
3: Prob = 0

4: for each BSCC B do

5: if B |= ϕ then

6: Make every state in B absorbing

7: G = G ∪B
8: end if

9: end for

10: Choose T =
ln

(
ε

2
√
|G|

)
µ(Q1) and N =

Λe2 ln

(
ε

2
√
|G|

)
µ(Q1) + ln(

2
√
|G|
ε) (see Remark 4.3.5)

11: Prob = P̃robN (C |=?
G,T ϕ)

12: return Prob

13: Recall that µ(Q1) denotes the logarithmic norm of Q1 (cf. Definition 4.3.2)

A bound on the approximation error of Algorithm 10

Intuitively, there are two factors that contribute to the error introduced by Algorithm 10:

• the error introduced by approximating PrC
a
({ρ | ρ |=?

G ϕ}) with Prob(Ca |=?
G,T ϕ),

which can be obtained in a similar way as for Theorem 4.3.16, denoted by ε1; and

• the error introduced by approximating Prob(Ca |=?
G,T ϕ) with P̃robN (Ca |=?

G,T ϕ),

denoted by ε2.

Theorem 4.3.20 Given ε1 and ε2, we have that:

Prob(C |=? ϕ)− P̃rob(C |=? ϕ) ≤ ε1 + ε2.

where P̃rob(C |=? ϕ) can be computed by Algorithm 10.

Proof The claim follows from Theorem 4.3.8, 4.3.16, and Proposition 4.3.19.

Remark 4.3.5 Given ε a priori, one possibility is to let ε1 = ε2 = ε

2
√
|G|

, and hence

T =
ln

(
ε

2
√
|G|

)
µ(Q1) and N =

Λe2 ln

(
ε

2
√
|G|

)
µ(Q1) + ln(

2
√
|G|
ε) suffice.

4.3.3.2 Verification of time-bounded IDP

In this section we show how to deal with the time-bounded variant of IDP.

A well-known fact regarding CTMCs is that the set of Zeno paths is of probability 0.

88

4.3. VERIFYING CONTINUOUS-TIME MARKOV CHAINS AGAINST LDPS

Lemma 4.3.21 Given a CTMC C and a time bound T <∞, we have that:

PrC
({

ρ | ρ |=?

∫
1 6 T

})
= 0.

We refer the readers to [BHHK03] for a proof.

For a CTMC C, we write C[s] for the CTMC obtained from C by making the state s

absorbing. The following theorem plays a pivotal role.

Theorem 4.3.22 Given a CTMC C and an LDP Φ it holds that:

Prob(C |=? Φ) =
∑

s∈S
Prob(C[s] |=?

{s},T ϕ).

Proof By the law of total probability we have that:

PrC({ρ | ρ |=? Φ}) =
∑

s∈S
PrC({ρ | ρ |=? Φ} | {ρ | ρ@T = s}) · PrC({ρ | ρ@T = s}),

since
∑
s∈S

PrC({ρ | ρ@T = s}) = 1. Observe that:

PrC({ρ | ρ |=? Φ} | {ρ | ρ@T = s}) =

=
PrC({ρ | ρ |=? Φ}⋂{ρ | ρ@T = s})

PrC({ρ | ρ@T = s})

=
PrC{{ρ | ∀i.ρ[0..i] |=

∫
1 6 T → ϕ and ρ@T = s}}

PrC({ρ | ρ@T = s})

=
PrC[s]({ρ | ρ |=?

{s},T ϕ)

PrC({ρ | ρ@T = s})
.

Note that, for the last step, we use Lemma 4.3.21 and Definition 4.3.5. It follows that:

PrC({ρ | ρ |=? Φ})

=
∑

s∈S

PrC[s]({ρ | ρ |=?
{s},T ϕ)

PrC({ρ | ρ@T = s})
· PrC({ρ | ρ@T = s})

=
∑

s∈S
Prob(C[s] |=?

{s},T ϕ).

This completes the proof.

The solution boils down to the computation of Prob(C[s] |=?
{s},T ϕ) for each state s,

for which we can apply Algorithm 9 for approximations. A detailed description is given

in Algorithm 11.

Complete algorithm for the time-bounded verification of IDP

The general algorithm for computing time-bounded IDP verification is given in Algorithm 11.

89

4.4. SUMMARY

Algorithm 11 Compute P̃rob(C |=? Φ)

Require: A CTMC C, an LDP Φ and ε

1: Prob = 0

2: Chose N ≥ ΛTe2 + ln
(
|S|·|
√
G|

ε

)

3: for s ∈ S do

4: Prob+ = P̃robN (C[s] |=?
{s},T ϕ)

5: end for

6: return Prob

A bound on the approximation error of Algorithm 11

We also have the following error bound.

Theorem 4.3.23 Given ε and N ∈ N, it holds that

Prob(C |=? Φ)− P̃rob(C |=? Φ) < ε.

Proof For each s, we compute Prob(C[s] |=?
{s},T ϕ) up to ε

|S|·
√
|G|

. Namely, we choose N

such that N ≥ ΛTe2 + ln

(
|S|·
√
|G|

ε

)
. It follows that

Prob(C |=? Φ)− P̃rob(C |=? Φ) 6 |S| · ε|S| 6 ε.

This completes the proof.

4.4 Summary

In this chapter we have introduced model checking algorithms for CTMCs against multiple

property specification formalisms, such as MTL (see Section 4.1), Timed Automata (see

Section 4.2) and LDPs (see Section 4.3). Note that all the above mentioned problems

can be solved using variants of the algorithm described in Section 4.1. In all the cases,

the key idea is to generate an appropriate set of linear constraints over the variables that

determine the residence time of each state along the discrete path under consideration.

Then, the problem reduces to computing multidimensional integrals over those sets of

linear constraints. We reuse a Matlab [MAT13] implementation, mentioned at the end of

Section 4.1, of the algorithm of [LZ01] to compute multidimensional integrals over sets of

linear constraints.

The verification of LDPs and TAs over CTMC share the same drawbacks as the

verification of MTL formulas over CTMCs, namely

1. We need to enumerate all the possible paths of length up to N and this is exponential

in N ;

90

4.4. SUMMARY

2. The Matlab implementation of the algorithm of [LZ01] runs quite slowly due to the

use of the symbolic toolbox.

Thus, improving the two bottlenecks above would speed up the verification time for all

the classes of problems analysed in this chapter, i.e. MTL, TAs and LDPs. As described

at the end of Section 4.1, one possible solution would be to eliminate the use of symbolic

variables from the Matlab implementation and to avoid having to enumerate all the paths

of length up to N via random algorithms.

Generating sets of linear constraints and solving multidimensional integrals over those

sets is a powerful technique. In fact, we can always use sets of linear constraints to

characterise the validity of a property in a timed path, independently from the formalism

chosen or the model considered, as long as the property under consideration can be related

to the residence time in system states. This technique is a central focus of this thesis, since

it becomes a valuable tool to solve a vast class of CTMC-related problems, and beyond.

In fact, in the next chapter, Chapter 5, we show how similar techniques can be applied to

synthesising model parameters for networks of HIOAs (see Section 5.2.2 for the definition

of HIOAs and network of HIOAs). Although the problem that we tackle is different from

model checking, i.e., parameter synthesis, and the systems that we analyse seem to be

incomparable with CTMCs, HIOAs also allow for continuous dynamics and the solution

techniques will share many similarities with the algorithms presented in this chapter.

91

4.4. SUMMARY

92

Chapter 5

A framework for the verification of

real-time properties of medical

devices

The general aim of this chapter is to provide a model-based framework supporting the

formal verification and validation of medical devices, with particular emphasis on cardiac

pacemakers. The components of the framework are: a model of the human heart, a model

of the pacemaker and a property specification to check. The pacemaker is modelled as net-

work of Timed Automata (see Section 5.2.1), whereas the human heart is modelled either

as network of Timed Automata or as network of Hybrid Automata (see Section 5.2.2). The

framework can be instantiated with personalised heart models in which parameters can be

learnt from real data. We use specific real-time properties which we call property patterns

(see Section 5.5.1) and the Counting Metric Temporal Logic (CMTL, see Section 5.5.2) in

order to specify the properties of interest, such as average beat rate of the human heart

and energy consumption of the pacemaker.

We show examples of how the framework can be instantiated with hybrid human heart

models and a TA pacemaker model in order to perform formal verification. However, the

long term goal is to use the framework for different medical devices such as neurostimu-

lators and defibrillators.

This chapter tackles two main verification problems. Section 5.6 addresses the model

checking problem for real-time properties over two different kinds of human heart mod-

els, whereas Section 5.7 gives an algorithm to solve the parameter synthesis problem for

pacemakers.

More specifically, Section 5.6 answers the following question.

93

Model checking problem

Input: A network of Hybrid I/O Automata (HIOAs) N and a real-time

property pattern

Problem: Find the probability that the property pattern is satisfied in N .

On the other hand, Section 5.7 addresses the question below.

Optimal parameter synthesis problem

Input: A parametric network of timed I/O automata TIOAs N , a set of

parameters Γ = Γu ∪ Γc composed of controllable (Γc) and

uncontrollable (Γu) parameters, a Counting Metric Temporal Logic

(CMTL) formula ϕ and a path length n.

Problem: Find the optimal parameter values for Γc for any values

of parameters Γu with respect to an objective function O
such that ϕ is satisfied on N , if such values exist.

As mentioned in the introduction of this thesis, one feature shared across most of med-

ical devices is that a fault in the system or in the embedded software could be dangerous.

Thus, the benefits of developing a formal framework for the verification of medical devices

would include: increased usability and reliability; decreased failure rate and recalls; and

reduced risks to patients and users.

The chapter is based on two published conference papers [CDKM12a, CDKM13c],

one unpublished report [DKM13], one journal publication [CDKM13a] and is organised

as follows. We start by discussing in Section 5.1 the functioning of the human heart

and its main features. We continue in Section 5.2, where we describe the formalisms

used to model the human heart and the pacemaker. In Section 5.3 we introduce two

formal ways of modelling the human heart as a network of HIOAs. The first method, in

Section 5.3.1, involves the modelling of single heart cells as HIOAs and then connecting

them to form a network. The second method, in Section 5.3.2, is instead a mapping

from the electrocardiogram signal (ECG), an electric signal read from the torso of the

human body, to a network of HIOAs. Section 5.4 presents a detailed Timed Automata

(TA) model of the pacemaker taken from [JPM+12b]. More specifically, the pacemaker is

modelled as network of Timed I/O Automata (TIOAs, see Section 5.2.1). Next, Section 5.5

introduces the real-time properties that we want to study. We conclude the chapter with

Section 5.6, largely based on [CDKM13a], and Section 5.7 whose results are awaiting

submission [DKM13], where we give algorithms for the model checking and synthesis

problems, respectively.

94

5.1. THE HEART AND ITS ELECTRICAL ACTIVITY

5.1 The heart and its electrical activity

In this section we describe the working of the human heart, focusing on the electrical con-

duction system (ECS)[Nat07]. The main function of the human heart is to maintain the

blood circulation of the body. This rhythmic, pump-like function is driven by muscle con-

tractions, and in particular the contraction of the atria and ventricles which are triggered

by electrical signals.

Figure 5.1: Electrical conduction system of the heart.

5.1.1 SA node

The sinoatrial (SA) node (a special tissue in the heart, see Figure 5.1) spontaneously pro-

duces an electrical signal, which is the natural pacemaker of the heart. On each heart beat,

it generates the control electrical signal which is conducted through prescribed internodal

pathways into the atrium causing its contraction. The signal then passes through the slow

conducting atrioventricular (AV) node, allowing the blood to empty out the atria and fill

the ventricles. The fast conducting Purkinje system spreads the electricity through the

ventricles, causing all tissues in both ventricles to contract simultaneously and to force

blood out of the heart. At the cellular level, the electrical signal is a change in the po-

tential across the cell membrane, which is caused by the flow of ions between the inside

and outside of the cell. It is known that sodium, potassium and calcium are the major

ion species involved in this process; they flow through multiple voltage-gated ion channels.

Excitation disturbances can occur in the behaviour of these ion channels at the cellular

level, or in the propagation of the electrical waves at the cell network level [YEGS05].

Abnormalities in the electrical signal generation and fast or slow propagation can

cause different types of arrhythmias, such as Tachycardia and Bradycardia, which require

95

5.1. THE HEART AND ITS ELECTRICAL ACTIVITY

medical intervention in the form of medication, surgery or implantable pacemakers.

5.1.2 Action potential

At the cellular level, the heart tissue is activated by an external voltage applied to the cell

Figure 5.2: Action potential [YEGS08].

or the SA node. After the activation, a transmembrane voltage change over time can be

sensed due to ion channel activities, which is referred to as an action potential (AP). This is

also the signal that an implantable pacemaker will receive or generate. A simplified version

of the ventricular AP (generated according to the dynamic Luo-Rudy model [YEGS08]

from the Simulink implementation via Matlab [MAT13]) is shown in Figure 5.2. The AP

is fired as an all-or-nothing response to a supra-threshold electrical signal, and each AP

follows roughly the same sequence of events and has the same magnitude regardless of the

applied stimulus. In general, APs exhibit the following major phases:

• Stimulated. This is the phase where the cell is triggered by a voltage spike from

the AP of its neighbouring tissue or from an artificial pacing signal (pacemaker

signal). However, if the current does not reach the threshold, then the cell cannot

get stimulated, and consequently it goes to the resting phase.

• Rapid upstroke. If the received voltage spike is high enough, the upstroke indicates

the depolarisation of the cell and the time when the muscle contracts.

• Plateau and ER (early repolarisation). This is a plateau phase during which calcium

influx facilitates the muscle contraction.

• Resting and FR (final repolarisation). This is the last phase which features faster

repolarisation that brings the potential back to the resting phase.

After the initial increase in the membrane potential, an AP lasts for a couple of hundred

milliseconds (for most mammals including human beings). The early portion of an AP is

known as the effective refractory period (ERP), due to its non-responsiveness to further

stimulation, and the latter portion is known as the relative refractory period (RRP), during

96

5.2. MODELS

which an altered secondary excitation event is possible if the stimulation threshold is raised.

Excitations during the RRP period will produce a slightly shorter subsequent ERP period.

5.2 Models

In this section we present additional background material that is needed to understand

the chapter. First, we will introduce the models used to model the human heart and the

pacemaker, i.e., Timed I/O Automata (TIOAs) and Hybrid I/O Automata (HIOAs). Both

models can be expressed in Matlab [MAT13] and Simulink [SIM13] (see Section 5.6.1 for

details).

Before describing the model of TIOAs and the model HIOAs we need to enrich some

of the definitions already introduced for TAs in Section 3.2.4 of Chapter 3.

Let X = {x1, . . ., xn} be a set of nonnegative real-valued variables, called clocks. An

X -valuation is a function η : X → R>0 assigning to each variable x a nonnegative real

value η(x). Let Γ = {v1, . . ., vn} be a set of nonnegative real-valued parameters taking

values respectively in the domains Dv1 . . .Dvn .

Definition 5.2.1 Given a real domain D = [l, u], where l, u ∈ R>0, we define its δ-

discretisation to be the discrete domain of points D̄ = [l, l + δ, l + 2δ, . . . , l + kδ] where

l + kδ 6 u and l + (k + 1)δ > u.

A Γ−valuation is a function ϑ : Γ → R>0 assigning to each parameter v ∈ Γ a

nonnegative real value ϑ(v). Let Y be a set and V(Y) denote the set of all valuations over

Y. A clock constraint on X , denoted by g, is a conjunction of expressions of the form

x ./ y for clock x ∈ X , comparison operator ./ ∈ {<,6, >,>} and y ∈ {N∪ Γ}. We write

x ∈ g, for x ∈ X , if the guard g contains a constraint on clock x and g.x := (./, y) with

g.x(1) =./ and g.x(2) = y if x ./ y is a constraint of g. Let B(X ,Γ) denote the set of clock

constraints over X and Γ. An (X ,Γ)-valuation (η, ϑ) satisfies a constraint x ./ y, denoted

(η, ϑ) |= x ./ y, if and only if η(x) ./ y and y ∈ N, or η(x) ./ ϑ(y) and y ∈ Γ; it satisfies a

conjunction of such expressions if and only if η satisfies all of them.

Let 0 denote the valuation that assigns 0 to all clocks. For a subset X ⊆ X , the

reset of X, denoted η[X := 0], is the valuation η′ such that ∀x ∈ X. η′(x) := 0 and

∀x /∈ X. η′(x) := η(x). For δ ∈ R>0 and X -valuation η, η+δ is the X -valuation η′′ such

that ∀x ∈ X . η′′(x) := η(x)+δ, meaning that all clocks proceed at the same speed.

5.2.1 Timed I/O automata

In this section we introduce the Timed I/O Automata (TIOAs) model defined in [KLSV10],

which we augment with parametric guards and priority on the transitions in order to im-

pose determinism. In words, TIOAs are TAs augmented with input/output actions and

97

5.2. MODELS

priorities. The reason why we impose deterministic behaviours in our model is because

we will use TIOAs to model medical devices (see Section 5.4). Non-determinism is often

viewed as an undesirable feature of medical devices, since it could lead to uncontrollable

dangerous behaviours of the system. For such a reason, we tailor our model to the spe-

cific domain in which we operate and exclude non-determinism by means of prioritised

transitions. We also use parametric guards on the transitions. The reason for introdu-

cing parameters is again related to the specific application domain in which we operate.

Pacemakers are electronic devices. Their functional behaviour is controlled by hardware

and cannot be fully specified. For instance, the hardware manufacturers, instead of giv-

ing the exact response time of the device to a given event, will specify a possible time

interval in which a response from the device should be expected. Hence, there is a need

for parameters that can take values in a given domain in order to cover various timing

behaviours.

Definition 5.2.2 (Deterministic Timed I/O Automaton with Priority) A determ-

inistic timed I/O automaton (TIOA) with priority A = (X ,Γ, Q, q0,Σin, Σout,→, γ) con-

sists of:

• A finite set of clocks X .

• A finite set of real-valued parameters Γ = Γc ∪ Γu, where Γc and Γu are respectively

the set of controllable and uncontrollable parameters.

• A finite set of modes Q, with the initial mode q0 ∈ Q.

• A finite set of input actions Σin and a finite set of output actions Σout.

• A transition relation →⊆ Q × (Σin ∪ Σout) × B(X ,Γ) × 2X × Q. For any q, q′ ∈ Q
and clocks to reset X ⊆ X , if a ∈ Σout then e = (q, a, g,X, q′) has g 6= true. Also,

for any q ∈ Q and any two outgoing transitions of q with guards g1, g2 6= true, we

require that g1 ∩ g2 = ∅.

• A priority function γ : Q× (Σin ∪ Σout)→ N that assigns a priority to an action in

a given mode. For any q ∈ Q, ain ∈ Σin, aout ∈ Σout and a1, a2 ∈ (Σin ∪ Σout) we

require γ(q, ain) < γ(q, aout) and γ(q, a1) 6= γ(q, a2).

Let e = (q, a, g,X, q′) be a transition of TIOA A and η a clock valuation. We say that an

action a is enabled if either a ∈ Σin or a ∈ Σout and η |= g. Observe that every transition

of the TIOA A that has an output action is urgent, i.e., it is taken when the guard becomes

true. The TIOA in the above definition can still exhibit Zeno behaviour, but one can use

the sufficient criteria in ([BK08], Lemma 9.24) to check for absence of Zenoness.

98

5.2. MODELS

The TIOAs as defined above are able to synchronise on matching input and output

actions, thus forming networks N of communicating automata. An example of network of

TIOAs is shown in Example 5.2.1.

Similarly to Section 3.2.4, we will now define, first informally and after formally in

Definition 5.2.3, timed and untimed paths of a network of TIOAs. We keep the notation

introduced in Section 3.2.4 to refer to timed and untimed paths of the network.

Informally, the network N evolves as follows. Each component Ai of N can either:

I) have an output transition with maximum priority enabled, in which case the com-

ponent fires the output transition and moves to the next mode accordingly, or

II) if no output transition is enabled then it either

(a) synchronises with an output transition fired by another component, which must

have a matching input transition, or

(b) lets time pass.

Formally, keeping the labelling I), II)(a) and II)(b) introduced above, the composition

is defined as follows.

Definition 5.2.3 (Network of TIOAs) Let N = {A(i) | i ∈ {1, . . . ,m}} with m ∈ N
be a network of m TIOAs A(i), i ∈ {1, . . . ,m}. Define the set of modes of the network

by ~Q = Q(1) × · · · ×Q(m). Let ϑ(i) be a parameter instantiation for every i ∈ {1, . . . ,m}.
We say σ = ~q0

t0−−→ ~q1
t1−−→ · · · tn−1−−−−→ ~qn, (tj 6 0, j ∈ {0, . . . , n − 1}) is the finite timed

path of a network N of m TIOAs if for all j ∈ {0, . . . , n − 1} there exists an index set

Ij ⊆ {1, . . . ,m} such that:

I) For all i ∈ Ij, (q
(i)
j , a

(i)
j , g

(i)
j , X

(i)
j , q

(i)
j+1) ∈→(i), γ(q

(i)
j , a

(i)
j) is the maximum, with

respect to the priority relation γ, over the set of enabled actions of q
(i)
j , a

(i)
j ∈ Σ

(i)
out,

(η
(i)
j +tj , ϑ

(i)) |= g
(i)
j and η

(i)
j+1 = (η

(i)
j +tj)[X

(i)
j := 0], where η

(i)
j is the clock valuation

when entering q
(i)
j . We define the set Σout,j to be the set of output actions a

(i)
j .

II) For all k ∈ {1, . . . ,m}\Ij:

(a) if there exists an i ∈ Ij such that a
(k)
j = a

(i)
j and a

(k)
j ∈ Σ

(k)
in then it must be the

case that (q
(k)
j , a

(k)
j , true ,∅, q(k)

j+1) ∈→(k), γ(q
(k)
j , a

(k)
j) is the maximum over the

set of enabled actions of q
(k)
j and η

(k)
j+1 := η

(k)
j +tj,

(b) otherwise q
(k)
j+1 := q

(k)
j and η

(k)
j+1 := η

(k)
j +tj.

We define Σin,j to be the set of input actions a
(k)
j .

We define the set Actj = Σout,j ∪ Σin,j of enabled actions at step j. We write σ[j] :=

Actj for (j ∈ {0, . . . , n − 1}) and σ〈j〉 := tj. Moreover, for t ∈ R>0, σ@t := o, where o

99

5.2. MODELS

is the smallest index such that
o∑

k=0

σ〈k〉 > t. We can instantiate the timed path σ with a

different sequence of times t′0, · · · , t′n−1 by σ[t′0, · · · , t′n−1].

Given a finite timed path σ = ~q0
t0−−→ ~q1

t1−−→ · · · tn−1−−−−→ ~qn we define σJjK := ~qj →
~qj+1 → · · · → ~qn to be the untimed suffix of σ. As for timed paths, we can instantiate an

untimed path by σJjK[tj , · · · , tn−1] = ~qj
tj−−→ ~qj+1

tj+1−−−→ · · · tn−1−−−−→ ~qn.

Example 5.2.1 In Figure 5.3 we present an example of a network N composed of two

TIOAs, A1 and A2. The TIOAs A1 and A2 represent an abstraction of two components

of the pacemaker model described later in Section 5.4, namely, the Lower Rate Interval

(LRI) component (see Figure 5.10(a)) and the Upper Rate Interval (URI) component (see

Figure 5.11(a)).

(a) A1 (b) A2

Figure 5.3: Example network N with two components.

Here X (1) = {t}, X (2) = {x, y}, Γ(1) = {T}, Γ(2) = {P, J}, Σ
(1)
in = {AS,VS,VP},

Σ
(2)
out = {AP}, Σ

(2)
in = ∅ and Σ

(2)
out = {AS,VP}. A sample path of the network N is

σ = (q, z) → (q′, z) → (q, z) → (q, z), where for simplicity we have omitted time stamps

and actions from the transitions. The initial state is (q, z). The automaton A2 triggers

the first two transitions with the output actions AS and VP, moving the system respectively

to (q′, z) with the first action and to (q, z) with the second. Essentially, the automaton A2

is evolving following case I) in Definition 5.2.3. On these transitions, the automaton A1

will synchronise with A2 via matching inputs, AS and VP. Here the automaton A1 is syn-

chronising, meaning that it is evolving following the first subcase of II) in Definition 5.2.3.

The third transition of the path is instead triggered by A1 through the output action AP.

Note that σ is a finite timed path, but in the example we have decided to abstract time

from σ in order to simplify the notation.

5.2.2 Hybrid I/O automata

We next introduce now the Hybrid I/O Automata (HIOAs) [LSVW95]. In short, HIOAs

are TIOAs augmented with continuous variables.

We extend the definitions of clocks, valuation functions and constraints that we intro-

duced at the beginning of this section. In particular, for HIOAs, we do not just consider

only clocks but a more general set of variables. The idea is that those variables update

100

5.2. MODELS

their values differently from clocks. Thus, valuation functions must be adapted to evaluate

not only simple clocks but any general variable with its possible updates.

Let X = {x1, . . . , xd} be a set of variables in R. An X -valuation is a function η : X → R
assigning to each variable x ∈ X a real value η(x). Let V(X) denote the set of all valuations

over X . A constraint on X , denoted by grd, is a conjunction of expressions of the form

x ./ c for variable x ∈ X , comparison operator ./ ∈ {<,≤, >,≥} and c ∈ R. Let B(X)

denote the set of constraints over X . An X -valuation η satisfies constraint grd, denoted

η |= grd, if and only if (η(x1), · · · , η(xd)) ∈ grd. For δ ∈ R and X -valuation η, η+δ is

the X -valuation η′ such that ∀x ∈ X . η′(x) := η(x)+δ, which implies that all variables

proceed at the same speed. Let Y(X) denote the set of all real-valued functions over 2X .

We define L(X) := {x := u | x ∈ X ∧ u ∈ X ∪ {0}} to be the set of update assignments

over the set of variables X . For an assignment λ = {x := u} ∈ L(X) we write η[λ] to be

the valuation η′ such that η′(x) = η(u) and η′(y) = η(y) for all y ∈ X and y 6= x.

We impose some restrictions on the HIOAs of [LSVW95], which are described before

introducing the network of HIOAs in Definition 5.2.6.

Definition 5.2.4 (Hybrid I/O Automaton) A hybrid I/O automaton (HIOA) A =

(X , Q, q0, E1, E2, Inv,→,Diff) consists of:

• a finite set of variables X ;

• a finite set of modes Q, with the initial mode q0 ∈ Q;

• a finite set E1 of input actions and a finite set E2 of output actions with E =

E1 ∪ E2;

• an invariant function Inv : Q→ B(X);

• a transition relation →⊆ Q× (E ∪ {ς})×B(X)× 2L(X) ×Q, where ζ is the internal

action; and

• a derivative function Diff : Q × X → Y(X) that assigns a function to a variable

x ∈ X .

The state space of an HIOA is S = Q× V(X). A state s ∈ S is thus a pair s = (q, η),

where q ∈ Q is a mode and η is the continuous state denoting a valuation of all variables X .

The initial state is s0 = (q0,0) where 0 is the valuation which assigns 0 to each variable.

Notice that we only consider transitions with at most one input or output action. Let

Φ : Q × V(X) × R≥0 → V(X) be the flow function defined by Diff. The (unlabelled)

transition relation of A is a set J ⊆ S × S that defines transitions between states of A.

Example 5.2.2 As an example of a simple HIOA consider the HIOA A = (X , Q, q0, E1, E2,

Inv,→,Diff) in Figure 5.4, where X = {x, θ}, Q = {q0}, E1 = {∅}, E2 = {Aget,Vget},

101

5.2. MODELS

and Inv = {∅}. The transition relation → consists of two self-loops. The first self-loop is

taken when the guard θ = θ1 is satisfied and it outputs the action Aget, whereas the second

self-loop is taken when θ = θ2 and it outputs the action Vget. The variables ẋ, θ̇ denote

the derivative function Diff of respectively x and θ. The system of ODEs in Figure 5.4

is used to map the electrocardiogram signal recorded from the torso of a human body to a

human heart cell. The variable x represents the voltage amplitude of the signal and the

variable θ the cardiac phase (see Section 5.3.2 for further details).

q0

ẋ = −
�

i

αx
i ω

(bx
i)

2∆θx
i exp

�
−(∆θx

i)2

2(bx
i)

2

�

θ̇ = ω

{Aget!}, {θ = θ1}, {∅}

{Vget!}, {θ = θ2}, {∅}

Figure 5.4: Example hybrid I/O automaton.

We now define the discrete-time simulation semantics for a hybrid automaton intro-

duced in [AKRS08]. The main idea is to discretise the flow functions of the HIOA using an

integration routine S. There are several standard approaches that can be applied here, for

instance the Runge-Kutta method which has a total accumulation error of O(h4), where

h is the time step. More specifically, we use ΦS to denote the flow function obtained by

using the integration routine S.

Definition 5.2.5 (Discrete-time semantics [AKRS08]) Consider an HIOA A, an in-

tegration routine S, a time step h and a time bound T . Let k = bTh c. The set of k-step tra-

jectories of A consists of sequences (discrete paths) of the form σ = s0, s
′
0, . . . , sk−1, s

′
k−1,

where the states si = (qi, ηi) and s′i = (q′i, η
′
i) are defined as follows:

• the state s0 = (q0, η0) is the initial state;

• for each 0 6 i 6 k− 1, (q′i, η
′
i) is the state after the continuous state evolution of the

system from (qi, ηi) with q′i = qi and η′i = ΦS(qi, ηi, h);

• for each 0 6 i 6 k − 2, ((q′i, η
′
i), (qi+1, ηi+1)) ∈ J .

We define σ[i] to be the i-th state in σ, and |σ| to be the length of the discrete path, i.e.,

the number of states si ∈ σ.

We use a network of HIOAs for the composition of more than one HIOA. The (discrete-

time simulation) semantics of a network of HIOAs is the same as for a single HIOA. In

order to obtain a deterministic network we impose some restrictions on HIOAs as follows:

102

5.2. MODELS

• they must be input enabled, meaning that, for each mode and each input action,

there is an edge labelled by the input action;

• the output actions have the highest priority, meaning that they are always urgent,

i.e., if at any state the output action is enabled, the system must execute that action;

• the input actions are never enabled unless the corresponding output actions from

the environment synchronise with them: once they can be synchronised, they are

urgent;

• for each mode, there is a self-loop labelled by the internal action.

Definition 5.2.6 (Network of Hybrid Automata) Let m be the number of HIOAs in

the network. A state of the network is
(
(q(1), η(1)), · · · , (q(m), η(m))

)
. There is a transition

(
(q

(1)
i , η

(1)
i), . . . , (q

(m)
i , η

(m)
i)

)
→
(

(q
(1)
i+1, η

(1)
i+1), . . . , (q

(m)
i+1 , η

(m)
i+1)

)
,

where

• either, for each 1 6 k 6 m, (q
(k)
i , η

(k)
i) has a continuous evolution;

• or, for each 1 6 k 6 m, (q
(k)
i , η

(k)
i) has a discrete transition. If, for some k,

(q
(k)
i , η

(k)
i) enables an output action a ∈ E(k)

2 , then all of the other (q
(k′)
i , η

(k′)
i) must

take a corresponding input action a ∈ E(k′)
1 (notice that this is guaranteed by input

enabledness, the first of the restrictions that we have previously introduced); other-

wise, each state evolves by taking the internal action.

Example 5.2.3 Figure 5.5 shows an example network of HIOAs. The network is com-

posed of two HIOAs, A1 and A2, which have been labelled respectively as Heart and

Pacemaker. The HIOAs A1 and A2 represent respectively an abstract model of the hu-

man heart and a model of a pacemaker. A1 and A2 communicate via input and output

actions which are marked by ? and !, respectively. A2 communicates with A1 through four

output actions, Vs(at)!, Vs(at)!, Vs(vt)! and Vs(vt)!. A1 communicates with A2 using two

output actions Aget! and Vget!. An example of execution of the network might be the

following. First the heart component, A1, outputs the action Aget!. The pacemaker com-

ponent, A2, synchronises with that action via the input action Aget?. After some time

interval of not receiving any event from the heart, the pacemaker decides to deliver a stim-

ulus and outputs the beginning of the stimulus action Vs(vt)!. The heart then synchronises

with the action Vs(vt)?. When the stimulus terminates, the pacemaker outputs the action

Vs(vt)! and the heart synchronises with its respective action Vs(vt)?.

103

5.3. HYBRID HEART MODELS

Heart
Aget!

Vget!

Vs(at)? Vs(at)?

Vs(vt)?

Vs(vt)?

(a) A1.

Pacemaker
Aget?

Vget?

Vs(at)!

Vs(at)!

Vs(vt)! Vs(vt)!

(b) A2.

Figure 5.5: Example of a network of HIOAs.

5.3 Hybrid heart models

In this section we present two hybrid human heart models that we will use to validate our

framework. The two hybrid heart models in Section 5.3.1 and Section 5.3.2 share multiple

similarities: they both model the ECS (see Section 5.1) of the heart as a network of HIOAs.

However, there are some advantages and disadvantages that users should consider when

choosing one model over the other. The cardiac cell heart model in Section 5.3.1 can

be very accurate according to the number of cells that one decides to model. Of course,

such accuracy comes at a price: the system becomes substantially more complex when

one increases the number of cells. Moreover, each of those cells contains a number of

parameters which characterise the cell behaviour. It is quite hard to estimate the cell

parameters directly. On the other hand, the ECG model in Section 5.3.2 is simpler and

more tractable than the cellular heart model since it uses a smaller number of cells to

model the human heart. Section 5.3.2 presents also a mapping from ECG signals to

action potential which allows one to switch from an ECG model to a cardiac cellular

model. Although the ECG model is a less precise abstraction of the human heart, it has

some advantages. ECG signals are easy to record and monitor. Thus, it is possible to

collect patient-specific ECG data and map those onto a cellular heart model. In this way,

one can obtain a patient-specific cardiac heart model.

5.3.1 The cardiac cell heart model

The first heart model is based on modelling the ECS of the heart. The ECS is a network

of nerves whose role is to propagate the action potential (AP) through the heart tissue.

Modelling every single cell of the ECS is computationally intensive. Thus, we abstract

the conduction system as a network of cells in order to achieve a good trade-off between

the complexity of the model and the running time of the experiments. We choose to

connect each cell to neighbouring cells, forming a graph of 33 cells as shown in Figure 5.1

of Section 5.1. The ECS of the heart consists of conduction pathways with different

conduction delays. Cells are connected by pathways. The delays of the pathways depend

on the physiology of the tissue considered. Moreover, it is possible to use the pathway

104

5.3. HYBRID HEART MODELS

delays to model various known tissue diseases.

Our model consists of the SA node, whose role is to generate sequences of AP sig-

nals which are propagated through the ECS of the heart, and 32 cells that share similar

properties.

q3

v < VO

v > VR

q0

v < VR

q1

v < VT

q2
v̇ = α2v
v < VO

v > VT

v̇ = α0v+g(�v) v̇ = ist+g(�v)

{Vs?}, {v < VT}, {vn := v}

{V s?}, {v < VT}, {∅}

{ς}, {v ≥ VT}, {∅}
{ς}, {v ≥ V

T }, {∅}

{ς}, {v ≤ VR}, {∅}

{Vget!}, {v ≥ VO}, {∅}
v̇ = α3vf (λ)

Figure 5.6: Hybrid automaton for a ventricular cardiac cell.

The cell model in Figure 5.6, taken from [YEGS05], consists of four (discrete) modes,

each associated with an AP phase: resting and final repolarisation (q0), stimulated (q1),

upstroke (q2), and plateau and early repolarisation (q3). The variables of the model are:

v, which is the membrane voltage to control mode switches; a restitution-related variable

vn, which is used to modify the next ERP phase upon a new round of excitation; and ist,

which is the stimulus current. Notice that the variable vn serves as the“memory”. This

is crucial to capture the proper response of AP to pacing frequency, which is an essential

feature of cardiac excitation. Accordingly, [YEGS05] defines the parameter λ = vn
VR

, where

VR is a model-specific constant called repolarisation voltage, and incorporates the function

f(λ) = 1 + 13 6
√
λ into mode q3 (see Figure 5.6).

Given N cells, ~v is the vector of all membrane voltages such that, for i ≤ N , vi

denotes the voltage of cell i. In the model, we also have the function g(~v) denoting the

voltage contribution from the neighbouring cells. Such voltage contribution is essential.

In fact, the cells will rarely be stimulated with an external stimulus. Normally a cell is

stimulated by neighbouring cells by means of shared voltage. When a cell is stimulated, it

propagates its own voltage potential to the neighbouring cells. The neighbouring cells due

to these voltage potentials will subsequently stimulate and propagate their own voltage to

neighbours. The process continues in this way stimulating all the heart cells. The function

g(~v) captures this phenomenon. Let N − 1 be the total number of cells connected to the

current cell k. The function gk(~v) for the k’th cell is defined as:

gk(~v) =
N∑

i=1,i 6=k
vi(t− δki) · aki − vk · dk, (5.1)

where aki is the gain applied to the potential vi from cell i, δki is the time it takes for the

105

5.3. HYBRID HEART MODELS

potential to reach cell k, and dk is the distance coefficient. These coefficients depend on

the conduction system, and in particular the conduction delays.

The mode invariants, defined according to Definition 5.2.4, are given by linear inequal-

ities describing the AP. They depend on three model-specific constants: threshold voltage

VT , overshoot voltage VO, and repolarisation voltage VR. Initially, the cell starts in q0.

When (externally) stimulated by the event Vs? (input action), it enters the stimulated

mode (q1) and updates its voltage according to the stimulus current (ist). Upon termin-

ation of the stimulation, via event Vs? (input action), with a sub-threshold voltage, the

cell returns to resting without firing an AP. If the stimulus is supra-threshold, i.e., v ≥ VT
holds, the excited cell will generate an AP by progressing to mode upstroke (q2). From

the upstroke mode the cell will go to the plateau and ER mode (q3) generating the event

Vget! (output action). Then the cell transitions to mode resting and FR (q0).

In Figure 5.7(a) we depict three blocks representing the connection of cells in the ECS.

The atrium block consists of 14 cells and the ventricle block consists of 18 cells. The

connections of these cells are illustrated in Figure 5.1, where atrium cells are shown in

the upper part of the figure, while ventricle cells are in the lower part. Every cell in the

atrium and the ventricle can be stimulated by the pacemaker (see Section 5.4) using the

input actions Vs(at)?, Vs(at)? and Vs(vt)?, Vs(vt)?, respectively. The output actions Aget!

and Vget! notify the pacemaker that the AP in the atrium and the ventricle (where the

pacemaker leads are inserted) have reached a given threshold. The function ~v(t) is the

output voltage from a given cell.

SA node
�v(t)

Atrium
�v(t)

Ventricle

Vs(at)?

Vs(at)? Aget!

Vs(vt)?

Vs(vt)? Vget!

Vs?

Vs?

(a) Conduction system.

q0 q1

x ≤ ∆
ṫ = 1, ẋ = 1 ṫ = 1, ẋ = 1 ṫ = 1, ẋ = 1

q2

t ≤ χi(n)

{Vs!}, {∅}, {x := 0} {V s!}, {x ≥ ∆}, {∅}

{ς}, {t ≥ χi(n), n < N}, {n := n + 1, t := 0}

{sw!}, {n ≥ N}, {n := 0, t := 0}

(b) SA node stimulation automaton.

Figure 5.7: Electrical conduction system (ECS) model.

106

5.3. HYBRID HEART MODELS

Recall that the SA node is the self-firing cell of the heart, stimulated by the central

nervous system. The frequency of the stimulation of the SA node is given by the hybrid

automaton depicted in Figure 5.7(b). The main parameter of this automaton is the func-

tion χi(n), i∈{1, 2, 3}, which represents the RR-series. Here the index i denotes three

different types of RR-series corresponding to Normal, Tachycardia and Bradycardia heart

rhythms. Although we have decided here to represent three heart behaviours, nothing

stops us to introduce more. For example, one could model different Bradycardia modes,

say a soft and a severe one, as well as different Tachycardia modes. The hybrid automaton

in Figure 5.7(b) starts in mode q0. Then it moves to mode q1 by generating an output

action Vs! representing the start of the stimulus. In mode q1 the automaton waits for ∆

units of time (which denotes the width of the stimulus) before moving to mode q2 and

generating the end of the stimulus action Vs!. In mode q2 the automaton waits for at

most χi(n) − ∆ units of time. There are two possible transitions from mode q2. When

n < N , the value of n is incremented and a new value of the RR-series is chosen. When

the automaton reaches the end of the RR-series, i.e., n ≥ N , a new type of RR-series is

picked by generating the action sw!.

5.3.2 The ECG heart model

The heart model that we describe in this section was developed by Clifford et al. [CNS10]

and it is based on electrocardiogram (ECG) rhythms. In words, an ECG signal is an

electric signal recorded from the surface of the human chest. With ECG signals it is

possible to track the activity of the human heart and due to its non-invasiveness it is

widely used by medical doctors as the first examination to detect arrhythmias. ECG

signals are a qualitative over-approximation of the electrical activity inside the human

heart, i.e., the ECG signal is the supercomposition of all the electric signals of single cells.

An example ECG is given in Figure 5.8.

ECG signals follow roughly the same cycle in each heart beat. Typically, an ECG

signal is composed of three main waves, P, QRS and T. The P wave denotes the at-

rial depolarisation. The QRS wave reflects the rapid depolarisation of the right and left

ventricles. The T wave denotes the repolarisation of the ventricles. [CNS10] presents a

mathematical model for generating ECGs based on a system of nonlinear ODEs, which is

given as follows:

θ̇ = ω, ẋ = −
∑

i

αxi ω

(bxi)2 ∆θxi exp

[
−(∆θxi)2

2(bxi)2

]
. (5.2)

Here αxi and bxi , respectively, are the amplitude and width of the Gaussian functions used

to model the ECG, θ ∈ [−π, π] is the cardiac phase, ∆θxi = (θ−θxi)mod 2π, and ω = 2πh
60
√
hav

is the angular velocity, where h is the instantaneous (beat-to-beat) heart rate in BPM and

hav is the mean of the last n heart rates (typically with n = 6) normalized by 60 BPM.

107

5.3. HYBRID HEART MODELS

Figure 5.8: Example electrocardiogram [MCTS03].

To use Equation (5.2) one has to define the instantaneous (beat-to-beat) heart rate

function h(t) (t ∈ R≥0), which specifies the distance between two consecutive R-events

(highest peak in Figure 5.8). Technically, it is equivalent to the so called RR-series χ(n),

n ∈ {1, . . . , N}, where N denotes the length of the series. The value of χ(n) denotes the

time between two consecutive heart beats. The RR-series can be generated by constructing

the power spectrum S(f) as a sum of two Gaussian distributions

S(f) =
σ2

1√
2πc2

1

e

(
(f−f1)2

2c21

)
+

σ2
2√

2πc2
2

e

(
(f−f2)2

2c22

)
,

which have means f1 with power σ1, f2 with power σ2 and standard deviations c1 and c2

respectively. The RR-series χ(n) is obtained by taking the inverse Fourier transform of

S(f). More details on the construction of the function h(t) can be found in [MCTS03].

Mapping from ECG to action potential

We show how to map from an ECG to the atrium and ventricle AP signals. In our

framework, the mapping can be implemented as a hybrid automaton which is depicted

in Figure 5.9. The hybrid automaton in Figure 5.9 was previously shown as example of

HIOA in Section 5.2.2.

Here θ1 represents the beginning of the P wave, whereas θ2 represents the beginning of

the Q wave. By this mapping we can create a model consisting of two cardiac cells (one for

the atrium and one for the ventricle) in which the propagation delay δ (see Equation (5.1))

is proportional to the angular velocity ω. We do not use the value of the x(t) function

in the current analysis based on the ECG heart model. However, the function of x(t) is

crucial when one wants to define a patient-specific heart model. In this case, from the

108

5.3. HYBRID HEART MODELS

q0

ẋ = −
�

i

αx
i ω

(bx
i)

2∆θx
i exp

�
−(∆θx

i)2

2(bx
i)

2

�

θ̇ = ω

{Aget!}, {θ = θ1}, {∅}

{Vget!}, {θ = θ2}, {∅}

Figure 5.9: ECG hybrid automaton.

given patient ECG data one can learn the parameters of the function x(t) [CAM06]. This

is one of the advantages of the ECG model compared to the cardiac cell model.

We would like to point out here that the mapping described in this section is illus-

trative. We are aware that the so called “inverse problem”[PCN+10, MB98], namely

reconstructing the electrical activity of single cells from the ECG, is a hard problem. Al-

though it is well established that the P wave denotes the atrial depolarisation, the QRS

wave reflects the rapid depolarisation of the right and left ventricles and the T wave de-

notes the repolarisation of the ventricles, we have no experimental evidence to believe that

our mapping is the right one. A deeper study of the mapping from ECG to the electrical

activity of single cells is needed. It is true, though, that, once the correct mapping is

developed, one can use it as input to instantiate our framework, with a similar procedure

to the one presented in this section.

5.3.3 Switching between different heart behaviours

The two heart models described in Section 5.3.1 and Section 5.3.2 can exhibit only a single

heart behaviour, such as Normal, Bradycardia or Tachycardia. However, a real human

heart exhibits several spontaneous behavioural changes. We consider three of them:

1. the malfunction of the SA node;

2. the malfunction of certain cardiac cells; and

3. the malfunction of the conduction system.

Let χi be the set of RR-series, Distr({1, 2, 3}) be a discrete probability distribution

which assigns a probability value to each element of the set {1, 2, 3}, let α ∈ Distr({1, 2, 3})
be an initial distribution and let Pi ∈ Distr({1, 2, 3}), for i ∈ {1, 2, 3}, denote the transition

probabilities between different heart modes. The malfunctioning of the SA node can be

modelled through Algorithm 12. Algorithm 12 iterates M times the following procedure:

• pick a new RR-series according to a given probability distribution (Line 4 of Al-

gorithm 12);

109

5.4. PACEMAKER MODEL

• update the current step and heart mode behaviour index (Line 5 of Algorithm 12);

• use the new RR-series (Line 6 of Algorithm 12).

Algorithm 12 Mode switching algorithm

1: Pick i∈{1, 2, 3} according to α;

2: while k < M do

3: if sw? then

4: Pick a j according to Pi;

5: i := j; k := k + 1;

6: Use χi as the new RR-series (see Figure 5.7(b));

7: end if

8: end while

We remark that the initial distribution and the transition probabilities can be learned

from patient data [LB13], although we have not used personalised patient data. The

learning algorithms of [LB13] were developed after the experiments presented in this thesis.

The other heart malfunctions can be modelled by varying the cell model parameters.

5.4 Pacemaker model

The pacemaker is implanted under the chest skin and sends impulses to the heart at

specific time intervals. In most cases the pacemaker comes implanted with two leads: one

for the atrium and one for the ventricle. Each lead has the ability to sense or deliver

an electrical signal. As mentioned in the introduction of this chapter, the authors in

[JPM+12b] develop a pacemaker model based on Timed Automata (TAs) which we use

to validate our framework. For completeness of the presentation, below we reproduce this

model and its variants developed for our framework.

The pacemaker model in [JPM+12b] consists of five basic TA components (Figure 5.10,

Figure 5.11(a)) and additional three advanced components (Figure 5.11(b), Figure 5.11(c)).

The basic components are: the lower rate interval (LRI) component, the atrio-ventricular

interval (AVI) component, the upper rate interval (URI) component, the post ventricular

atrial refractory period (PVARP) component and the ventricular refractory period (VRP)

component. The LRI component (see Figure 5.10(a)) has the function of keeping the

heart rate above a given minimum value. The AVI component (see Figure 5.10(c)) has

the purpose to maintain the synchronisation between the atrial and the ventricular events.

An event is when the pacemaker senses or generates an action. The AVI component also

defines the longest interval between an atrial event and a ventricular event. The PVARP

component (see Figure 5.10(b)) notifies all other components that an atrial event has oc-

curred. Notice that there is no AR signal in the PVARP and Interval components as we

110

5.4. PACEMAKER MODEL

(a) LRI component

(b) PVARP component (c) AVI component

Figure 5.10: LRI, PVARP, AVI components used for basic analysis

are not using the advanced algorithms given in [JPM+12b]. The URI component (see

Figure 5.11(a)) sets a lower bound on the times between consecutive ventricular events.

The VRP component (see Figure 5.11(a)) filters noise and early events that may cause

undesired behaviour.

The advanced components, Interval, Counter and Duration, are used for detection and

correction of pacemaker mediated Tachycardia. The components switch the functioning

modes of the pacemaker from DDD (pacing and sensing of the atrium and ventricle) to

VDI (pacing and sensing only the ventricle). Note that in all components the locations

labelled with C do not allow time to elapse.

There are four actions in the pacemaker model that will be considered in the remainder

of the thesis. The input actions Aget? and Vget? will notify the pacemaker when there is

an AP from the atrium or from the ventricle, respectively. The output actions AP! and

VP! are responsible for pacing the atrium and the ventricle, respectively. After receiving

an AP? event, the component in Figure 5.12 generates a cell stimulus of duration ∆a using

the two actions Vs(at)! and Vs(at)!. The longer the stimulus duration is, the more likely

the cell is to be stimulated. If the stimulus is too short the cell will not be stimulated.

111

5.4. PACEMAKER MODEL

(a) URI and VRP components (b) Interval component

(c) Counter and Duration component

Figure 5.11: URI, VRP components used for basic analysis. Interval, Counter and Dura-

tion components used for PMT analysis

There is a similar component for the ventricle stimulus generation.

5.4.1 Enhanced pacemaker model

Although the pacemaker model of [JPM+12b] is a fairly detailed reproduction of the

algorithms that run inside a real pacemaker device, it is still an over approximation of the

reality. Real pacemakers are far more complex. They are subject to noise, failures to sense

physiologically relevant events, hardware faults and many other forms of uncertainties that

are not captured in the model of [JPM+12b]. Think, for example, of the following situation.

{AP?}, {∅}, {∅}q0

ta≤∆a

q1

q2

{V
s(

a
t)

!},
{∅

},
{t

a
:=

0}

{V
s (at)!}, {ta ≥

∆
a }, {∅}

Figure 5.12: Atrium pacing.

112

5.4. PACEMAKER MODEL

In real pacemakers, it is not uncommon that the device fails to sense a natural heart beat,

namely the human heart beats but, due to the noise, the beat is lost and hence not received

by the pacemaker. The pacemaker will then believe that a beat is missing and will deliver

an electric impulse in order to stimulate the heart. Such a stimulus is unnecessary and

could, in extreme cases, lead to dangerous heart behaviours. The aforementioned example

cannot be modelled with the pacemaker of [JPM+12b].

Even though it was not mentioned before, energy is a crucial feature of pacemaker

devices. The battery lifetime of a pacemaker will determine when a new surgery, in order

to change the battery, will be needed. It is evident that having the possibility of analysing

how the battery of the pacemaker depletes would enrich the trust and understanding

that we have of the device. Unfortunately, the model of [JPM+12b] does not include the

possibility to model the energy consumption of the pacemaker.

For such reasons, in this section we enhance the pacemaker model in [JPM+12b] by

considering noise and energy consumption.

Pacing noise

One of the important design issues of pacemakers is the need to tolerate noise. For

instance, when the pacemaker tries to deliver a beat, the beat could be lost due to noise

on the channel. As mentioned earlier, for the pacemaker model presented in [JPM+12b]

the assumption is that the pacemaker can pace the heart perfectly. This can simplify the

modelling considerably, but is not realistic.

We remedy this by introducing the so called “failure-to-capture”, which in practice

is equivalent to insufficient contact between the lead and the myocardium [GJM93]. In

order to model the failure to capture situation, we add to the fixed stimulus current that

the pacemaker delivers, ist (cf. Figure 5.6), a normally distributed noise with mean µ and

variance σ2 each time the pacemaker wants to pace the cell. The result is the following.

If the noise added to the channel is too high, the stimulus from the pacemaker will not

be high enough to stimulate the cell. In such case that stimulus is considered “missing”

and the cell will not be stimulated. Although this is a first improvement to the pacemaker

model of [JPM+12b], we would like to remark here that there exist different causes of noise

that affect pacemakers, for instance lead displacement, which we have not considered here.

Energy

Pacemaker’s life time is limited and is crucially dependent on the battery embedded into

the devices. The pacemaker must be re-implanted when the battery depletes. Each re-

implant is a new surgery and as any other surgery it carries dangers and discomforts for

the patient. For such a reason, energy usage analysis is indispensable.

We use the Kinetic Battery model (KiBaM) [BVF+11] to describe energy consumption

113

5.5. REAL-TIME PROPERTIES

of the pacemaker over time. The model is given as a system of ODEs:

dy1(t)

dt
= −ι(t) + k

(
y2(t)

1− c −
y1(t)

c

)
,

dy2(t)

dt
= −k

(
y2(t)

1− c −
y1(t)

c

)
. (5.3)

The KiBaM models the battery charge distributing it in two wells: available-charge

y1(t) and bound-charge y2(t). The function ι(t) denotes the current applied to the battery.

When the value of ι(t) is zero the battery enters the recovery mode, where the energy

from the bound-charge well flows to the available-charge well. The recovery effect of the

battery allows a nearly discharged battery to recover in a period of zero or low current

by increasing its available-charge. When the current ι(t) is not zero, both y1(t) and y2(t)

decrease over time. If C [Ah] (ampere-hour) is the initial total capacity of the battery

then y1(0) = c · C and y2(0) = (1 − c) · C, where c is a fraction of the total charge. The

conduction parameter k represents the flow rate of charge from the bound-charge well to

the available-charge well. The battery is considered to be empty when there is no charge

in the available-charge well, i.e., y1(t) = 0.

We compose the KiBaM with the TA pacemaker model as follows. The pacemaker

model (see Section 5.4) has in total eight components. Each of them uses ιj(t) µA (micro-

ampere), j ∈ {1, . . . , 8}. The total current applied at any time to the battery will be

ι(t) =
8∑
j=1

ιj(t), i.e., the sum of the current used by each component. When the pacemaker

is in the aSensed state of the LRI component, Idle or VDI idle states of the AVI component,

Idle state of the PVARP component, URI state of the URI component, Idle state of the

VRP component, Wait1st or wait2nd states of the Interval component, Init or all fast states

of the Counter component, and any states except V8 of the Duration component, then

the respective current ιj(t) is zero. Technically, when the pacemaker is in the sensing

mode or the idle mode, the current applied to the battery is very small, almost zero. On

the other hand, when the pacemaker is pacing, counting the duration between successive

pacing events or sending a signal, the current applied to the battery increases.

We would like to remark here that we do not have experimental results that show how

the battery of the pacemaker depletes. It could be the case that the decision to model the

pacemaker energy with the KiBaM model of [BVF+11], in the end, does not match the

reality. However, once a good model of the battery of the pacemaker is developed, similar

techniques to the ones presented in this chapter could be applied to analyse the energy

consumption of the pacemaker.

5.5 Real-time properties

In this section we introduce property patterns and the logic Counting Metric Temporal

Logic (CMTL) that we use to specify real-time properties.

114

5.5. REAL-TIME PROPERTIES

5.5.1 Property Patterns

Property patterns are specialised real-time properties that we define in order to model

check certain important safety properties of medical devices. Moreover, they are imple-

mentation driven, meaning that we defined those patterns keeping in mind that they will

be implemented in Simulink. Therefore, we defined property patterns with respect to

what we called a “simulation step”. The simulation step is the implicit Simulink model

discretisation step, the step that Simulink uses to discretise its models and for integration

routines. The simulation step is a parameter of our property pattern, reflecting the fact

that the user can vary the simulation step of Simulink.

We present two important property patterns which are used to analyse the pacemaker.

The first one specifies the key safety property of the pacemaker, namely, whether it main-

tains the number of heart beats in the normal range of 60-100 beat per minute (BPM),

and the second specifies whether the energy consumed by the pacemaker at a given time

point is less than a specific value.

Definition 5.5.1 (Duration of a path) Given a discrete path ς (see Definition 5.2.5)

and a simulation step h, we define the duration of ς in milliseconds as Dur(ς) = h · |ς|.

Definition 5.5.2 (Heart beats) We define the number of heart beats with respect to the

cardiac cell heart model described in Section 5.3.1. Given a discrete path ς, we define the

number of heart beats of ς as Heart beats(ς) =
|ς|−1∑
i=0

1(ς, i), where 1(ς, i) is the charac-

teristic function of transitions such that 1(ς, i) = 1 if ς[i] = (q2, ·) and ς[i + 1] = (q3, ·),
and 0 otherwise. Here q2 and q3 refer to the upstroke and plateau modes in Figure 5.6,

respectively.

We are now ready to define “normal paths”, namely, paths corresponding to normal

heart behaviours.

Definition 5.5.3 (Normal path property) Given a discrete path ς we say that ς is

normal if, for any i, j,

(Dur(ς[i..j]) = 1 minute)⇒ (Heart beats(ς[i..j]) ∈ [60, 100]) .

Definition 5.5.4 (Energy property) Let ς be a discrete path, T a finite time bound,

h the simulation step and V an energy level bound. We define the time bound energy

property to be satisfied only if the following expression is true: y1(
⌊
T
h

⌋
·h) ≤ V ∧T ≤ |ς| ·h,

where y1(·) is computed by Equation (5.3) in Section 5.4.1.

Intuitively, the energy property pattern checks that the energy at time T is less than

or equal to V . Both the energy and normal path properties are encoded as deterministic

automata, where each transition corresponds to h time units.

115

5.5. REAL-TIME PROPERTIES

5.5.2 Counting metric temporal logic

In this section we define the Counting Metric Temporal Logic (CMTL). CMTL extends

MTL with basic counting formulas (BCF), such that one can count the number of ac-

tions (events) in a given interval of time. We use the pointwise semantics for both BCF

and CMTL (see Definition 5.5.6 and Definition 5.5.7). Counting is essential for safety

properties of medical devices, but cannot be expressed in MTL. For example, the normal

path property introduced in Definition 5.5.3 can be expressed only using counting. In

fact, in order to check the latter property we need to count the number of beats that

have happened in a given interval of time. This justifies the need for the Counting Metric

Temporal Logic. We refer the reader to a survey of the differences between MTL and

counting variants of MTL in [Rab10, HR06].

Definition 5.5.5 Let ρ be a timed path. The counting function #u
` a for an action a ∈

(Σin ∪ Σout) and time points ` ∈ R>0, u ∈ R>0 ∪ {∞}, such that ` < u, is defined as

#u
` a =

(ρ@u)−1∑
k=(ρ@`)

(a ∈ ρ[k]). Here, we write (a ∈ ρ[k]) for the indicator function that returns

1 if the action “a” belongs to the k-th transition of ρ and 0 otherwise.

Remark 5.5.1 By abuse of notation we write (a ∈ ρ[k]) to say that the action “a” be-

longs to the k-th transition of ρ. Previously, in Section 3.2.2, we wrote (p ∈ ρ[k]) to say

that the atomic proposition “p” belongs to the state ρ[k]. This may seem confusing at

first. However, the former notation is used for CMTL, where we are interested in count-

ing the number of occurrences of actions, whereas the latter notation is used for MTL,

where we are interested in atomic propositions. Moreover, in this thesis we check MTL

against continuous-time Markov chains and CMTL against network of Timed I/O Auto-

mata. Thus, it should be clear from the context, i.e., if we are model checking CTMCs

or network of TIOAs, whether we refer to (a ∈ ρ[k]) with “a” as action or as atomic

proposition and no confusion should arise.

Definition 5.5.6 A basic counting formula (BCF) B is of the form B =
∑
j∈J

cj#
uj
`j
aj,

where J is a finite index set, aj ∈ (Σin ∪ Σout), cj ∈ Z>0, `j , uj ∈ R>0 (with the usual

constraint that `j < uj for all j).

We now define our logic CMTL as an extension of MTL, where we replace atomic

propositions with BCF formulas.

Definition 5.5.7 The syntax of the Counting Metric Temporal Logic (CMTL) is defined

inductively by

ϕ ::= B ./ b | ϕ ∧ ϕ | ¬ϕ | ϕ U [`,u]ϕ,

where ./ ∈ {>,>, <,6}, b ∈ Z, ` ∈ R>0, u ∈ R>0 ∪ {∞} are time points such that ` 6 u

and ϕ is a CMTL formula.

116

5.6. VERIFICATION OF PACEMAKERS OVER HYBRID HEART MODELS

The satisfaction relation for CMTL is defined over timed paths.

Definition 5.5.8 Let σ be a finite timed path and i ∈ N be an index. We say that σ

satisfies ϕ at i, denoted (σ, i) |= ϕ, iff

(σ, i) |= B ./ b iff
∑

j∈J
cj

k′′−1∑

k=k′

(aj ∈ σ[k]) ./ b

(σ, i) |= ϕ1 ∧ ϕ2 iff (σ, i) |= ϕ1 ∧ (σ, i) |= ϕ2

(σ, i) |= ¬ϕ1 iff (σ, i) 6|= ϕ1

(σ, i) |= ϕ1 U [`,u]ϕ2 iff ∃i′. i 6 i′ s.t.
i′∑

k=i

σ〈k〉 ∈ [`, u] ∧ (σ, i′) |= ϕ2,

∀i′′. i 6 i′′< i′ ∧ (σ, i′′) |= ϕ1,

where k′ = (σJiK(ti, · · · , tn−1)@`j), k
′′ = (σJiK(ti, · · · , tn−1)@uj), ϕ1, ϕ2 are CMTL for-

mulas, and i′, i′′ ∈ N.

We define ♦[`,u]ϕ := true U [`,u]ϕ and �[`,u]ϕ := ¬♦[`,u]¬ϕ.

Example 5.5.1 Consider the following CMTL formula: �[0,2](#1
0VP > 60 ∧ #1

0VP 6

120). It states that, for every time point t between 0 and 2, the number of VP actions

in the time interval [t, t + 1] is between 60 and 120. Intuitively, the formula represents a

sliding time window that counts the number of events in a given interval of time.

5.6 Verification of pacemakers over hybrid heart models

In this section we present a solution to the model checking problem for pacemakers over

hybrid heart models.

As stated at the beginning of the chapter, the problem can be summarised as follows.

Model checking problem

Input: A network of Hybrid I/O Automata (HIOAs) N and a real-time

property pattern

Problem: Find the probability that the property pattern is satisfied in N .

We describe our implementation of the pacemaker verification framework and present

experimental results. First, we introduce the framework and its implementation. Next, we

instantiate the framework with the cardiac cell model and the (enhanced) pacemaker model

described in Section 5.4.1, and summarise the results of the verification for a broad range

of properties, including known physiological scenarios that are problematic for pacemaker

designs.

117

5.6. VERIFICATION OF PACEMAKERS OVER HYBRID HEART MODELS

5.6.1 The framework

In this section we briefly describe the model-based verification framework and its imple-

mentation.

The framework has been implemented in Simulink/Stateflow [SIM13]. Simulink is a

simulation based tool that allows us to analyse dynamical systems. Simulink is a graphical

block diagramming tool (see Figure 5.13(a) and Figure5.13(b) for examples of Simulink

blocks) interfaced with Matlab that allows users to:

1. Utilise already existing blocks for well-known functions, such as integration, deriva-

tion and channel delays.

2. Personalise blocks through the introduction of new Matlab functions created by the

users.

One of the main advantages of Simulink is that it allows one to declare real-time

variables as well as shared actions among components. Thus, Simulink becomes a valuable

tool for the simulation of systems that are modelled as networks of TIOAs and HIOAs.

Stateflow enables the use of state machines and flow charts within a Simulink model.

We used both Simulink and Stateflow in our framework but from now on we omit the

word Stateflow when we refer to Simulink/Stateflow.

As mentioned earlier in the introduction of this chapter the components of the frame-

work are: a model of the human heart, a pacemaker model and a property to check.

The TA pacemaker model of [JPM+12b] is translated into Simulink blocks. Each TA

becomes a Simulink block. The TAs’ clocks become Simulink variables and the events on

the transitions become Simulink events.

We have created Simulink blocks whose role is to monitor the validity of a property

pattern (see Section 5.5.1) over a simulation run of the Simulink model. The monitors

flag an action if the property pattern becomes false.

The most interesting part of the implementation is the human heart. The human

heart is modelled through a network of 33 cells. Each cell is a four location HIOA (see

Section 5.3.1). Cells are connected through pathway delays, i.e., Simulink delay blocks that

propagate the cell voltage to its neighbouring cells according to Equation 5.1 previously

introduced in Section 5.3.1.

Remark 5.6.1 We remark here that modelling the human heart with only 33 cells cannot

be considered a good abstraction. The human heart contains billions of cells. For such a

reason, an in depth research should be conducted in order to determine a good abstraction of

the human heart composed by only a finite number of cells. However, once such abstraction

is found, the framework introduced in this thesis can be reused to verify real-time properties

of the abstracted system.

118

5.6. VERIFICATION OF PACEMAKERS OVER HYBRID HEART MODELS

Figure 5.13(a) shows the Simulink implementation of the SA node. The cell is imple-

mented by means of three Simulink blocks: Event generator, Hybrid set and Subsystem.

The Event generator block is responsible to generate the input events to the cell. The

Hybrid set implements the cell hybrid automaton model described in Figure 5.6. The

Subsystem block performs the integration procedure to compute the voltage level of the

cell. Figure 5.13(b) shows a network of six cells. Each cell block is composed from the

three sub-blocks shown in Figure 5.13(a) and connected to other cells through delay and

gain components.

(a) Cell block

(b) Cell connection

Figure 5.13: Simulink models

119

5.6. VERIFICATION OF PACEMAKERS OVER HYBRID HEART MODELS

5.6.2 Approximate quantitative verification

The complexity of the heart models that we have developed, including non-linearity of

the electrical signal and the large number of cells, makes automatic verification using

Hybrid Automata tools infeasible. An additional complication is that we also model

stochastic features, and specifically noise and probabilistic switching. We therefore employ

approximate quantitative verification methods based on finitely many simulation runs. The

derived simulation trajectories are used to estimate the probability of the satisfaction or

violation of the specification expressed as a property pattern. Such a method is necessarily

approximate, and so the property can only be established up to a given confidence level,

but its advantage is that quantitative properties such as expected energy usage can also

be handled.

There are a number of approaches that can be applied to estimate the probability of a

property being satisfied based on the set of randomly generated paths according to Defini-

tion 5.2.5. These include statistical model checking based on hypothesis testing [YKNP04],

Bayesian methods [ZPC10], and probability estimation [LP08]. We use the latter method,

which we now explain.

In order to estimate the probabilities of a real-time property being satisfied in our model

we use a simple randomized algorithm. We generate random paths in the probabilistic

space underlying the model structure of depth k and compute a random variable which

estimates the probability of the real-time property being true in all the paths of the system

of length up to k. The approximation algorithm is good with confidence (1 − δ) where δ

is the confidence level.

Let 0 < ε < 1 be the error bound, 1− δ with 0 < δ < 1 be the confidence level, T be

the time bound and h be the simulation step. Let k = T
h be the discrete path length, p

be the probability of all “normal paths”, i.e., the probability of all the paths of length k

satisfying the property pattern, and N = log(2
δ)/2ε2 be the number of random paths of

length k. Let N ′ be the number of random paths which are “normal”. By simple results

from probability theory (mainly the Chernoff bound), one can show that the probability

Prob
[∣∣∣N ′N − p

∣∣∣ ≤ ε
]
≥ 1 − δ, which intuitively means that, with a very high probability

(i.e., 1 − δ), the probability N ′

N that we compute is ε-close to the true probability p. We

refer the readers to [LP08] for further details.

We exploit this approach in our experiments involving heart models with probabilistic

switching. The probabilistic verification is carried out as follows. We consider a time

bound T = 1 minute and a simulation step of h = 3.7 milliseconds, yielding paths of length

k = 16217. We encode different heart behaviours, namely Bradycardia, Tachycardia and

Normal. We allow our Simulink heart model to switch probabilistically between those

different behaviours every 10 seconds. An example path could be that the heart model is

beating in the “Normal” mode for 10 seconds, followed by another 10 seconds of “Normal”

120

5.6. VERIFICATION OF PACEMAKERS OVER HYBRID HEART MODELS

mode, followed by 10 seconds of “Tachycardia”, etc.. We then generate all the possible

paths of length 1 minute. There are 310 such paths. For each path, we check whether the

property pattern that we are verifying holds or not. We then apply the approximation

method described in this section in order to determine the probability of the property

being true.

It should be emphasised that the verification method introduced in this section is not

limited to the property patterns previously described, but applies also to other classes of

properties, e.g., Metric Temporal Logic or Durational Calculus, that can be checked on

paths of finite length.

5.6.3 Experimental results

We run the experiments on a 2.83GHz 4 Core(TM)2 Quad CPU with 3.7GB of memory.

All experiments run in less than one hour.

In all our experiment, also the non-probabilistic ones, we consider a time bound T = 1

minute and a simulation step of h = 3.7 milliseconds, yielding paths of length k = 16217.

These parameters are good enough to capture the physiological behaviour of the heart.

Bradycardia correction

The aim of the first experiments that we present is to check whether the pacemaker is

capable to correct Bradycardia in the human heart. Thus, we set our Simulink heart model

in such a way as to produce too few heart beats in a minute. The pacemaker should then

correct the Bradycardia by stimulating the heart.

The results of the simulation are shown in Figure 5.14 where we depict two signals.

The first one (in blue, continuous line) denotes the AP generated by the SA node. In this

scenario the SA node is in the Bradycardia mode. More precisely, we have three beats in

six seconds, which is approximately 30 beats per minute. The second signal (in red, dotted

line) denotes the AP from one of the cells situated in the ventricle. This is the signal which

is captured and paced by the pacemaker. Note that the pacemaker increases the number

of beats per minute by first delivering a beat to the ventricle after approximately one

second.

Probabilistic switching experiments

We carry out experiments when the probabilistic switching between different heart beha-

viours is taken into account. Figure 5.15 depicts the results on the relationship between the

probability to generate Bradycardia and the number of pacemaker beats to the ventricle.

We range the probability from 0.05 to 0.95 and run 40 experiments, each representing

8 minutes of the heart beat. As expected, by increasing the probability the pacemaker

delivers more beats to the ventricle.

121

5.6. VERIFICATION OF PACEMAKERS OVER HYBRID HEART MODELS

0 2 4 6 8
0

20

40

60

80

100

120

140

Time [sec]

V
ol

ta
ge

Figure 5.14: Bradycardia correction experiment.

0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35

40

Probability of Bradycardia

N
um

be
r o

f v
en

tri
cl

e
be

at
s

Figure 5.15: Bradycardia experiment

AV node block

In Figure 5.16 we depict the case when the ERP value of the AV node is long enough, so

that it filters out the signal from the SA node. As described in Section 5.1, a cell cannot be

stimulated during its ERP phase. Thus, increasing the ERP value of the AV node results

in filtering some of the signal that comes from the atrium. In this case, the SA node signal

(in blue, dotted line) is being blocked by a high ERP value of the AV node (signal in red,

continuous line). The factor is 2 : 1 (two beats in the atrium result in one beat in the

ventricle). A long ERP value for the AV node induces Bradycardia in the ventricle.

122

5.6. VERIFICATION OF PACEMAKERS OVER HYBRID HEART MODELS

0 1 2 3 4 5
0

20

40

60

80

100

120

140

Time [sec]

V
ol

ta
ge

Figure 5.16: AV node block experiments

Noise

In this section we describe experiments that take into account noise on sensors. In the

experiments that we run to simulate the noise we have 2 parameters: the mean µ and

the variance σ2 of the normally distributed noise. Figure 5.17 shows the results of the

experiments for different values of µ (red line with µ = −0.3, green line with µ = −0.2 and

blue line with µ = −0.1). We choose µ as negative in order to simulate the undersensing

effect. In each experiment with fixed mean µ, we vary the variance from 0.1 to 1 with step

of 0.1. Figure 5.17 demonstrates that, when the noise with large mean (the red line with

mean equal to −0.3 for example) is added to the stimulus, the number of beats in the

ventricle decreases. This is due to the fact that more beats induced by the pacemaker will

be lost. At the same time, increasing the variance of the normal distribution will produce

more beats. The reason is that greater variance to the noise, when centred at negative

mean, produces better chances of picking positive samples from the normal distribution.

This, in turn, yields a better chance for the stimulus to be high enough to stimulate the

cell.

Energy

In this section, we analyse energy consumption of the pacemaker. In Figure 5.18 we

depict the pacemaker battery charge in one minute period. In this experiment the SA

node induces Bradycardia. We varied two parameters, TAVI and TURI, which are the

default programmable parameters used by technicians to ensure a heart beat between 60

and 100 BPM. The value of TAVI is 70-300 msec with 10 msec increment and the value

of TURI is 50-175 BPM with 5 BPM increment. All the time values are shown in msecs.

123

5.6. VERIFICATION OF PACEMAKERS OVER HYBRID HEART MODELS

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

50

55

Variance

N
um

be
r o

f v
en

tri
cl

e
be

at
s

mean = 0.1
mean = 0.2
mean = 0.3

Figure 5.17: Noise experiment

In Figure 5.18 there is an energy rise when TURI< 50 or TAVI> 200. This is due to the

fact that we are forcing the pacemaker to wait less between two consecutive ventricular

events. Thus, the pacemaker will initiate most of the ventricular beats before a natural

beat happens. The experimental results confirm our intuition that, by waiting less, the

pacemaker will consume more energy, since it paces more frequently.

100

150

200

250

300

20
40

60
80

2000

2200

2400

2600

2800

3000

TAVI [msec]
TURI [msec]

En
er

gy

Figure 5.18: Battery charge in 1 min period

Pacemaker mediated Tachycardia

As mentioned before, in some cases the pacemaker can increase the heart rate inappro-

124

5.7. SYNTHESISING PARAMETERS FOR PACEMAKERS USING TIOAS

priately, i.e., Pacemaker Mediated Tachycardia (PMT), which is considered to be unsafe.

In this section, we show that this scenario can be modelled in our framework. We then

verify the advanced pacemaker model which can correct PMT (see Section 5.4).

In human hearts, the atrium can beat faster than the ventricle, at ratio 2:1 or 3:1. The

resulting heart beat can still be regular due to a special cell called the AV node which

has a refractory period longer than the other cells. The AV node connects the ECS of the

atrium to the ECS of the ventricle. The pacemaker tries to maintain a 1:1 AV conduction

through the AVI component. Thus, in the event of PMT, the pacemaker increases the

beats in the ventricle inappropriately. In order to avoid this behaviour we need to switch

the pacemaker from the DDD mode to the VDI mode after the PMT is detected. After a

normal heart beat is re-established, the pacemaker can switch back to the DDD mode.

To accomplish this result we generate Tachycardia and assign a longer ERP value to

the AV node. The pacemaker algorithm detects the PMT behaviour in the atrium. Then,

after confirmed detection, the pacemaker switches from the DDD mode to VDI mode.

During the VDI mode, the AV synchrony function of the pacemaker is deactivated, and

thus the ventricular rate is decoupled from the fast atrial rate. When the components

detect the end of the PMT, the pacemaker switches back to the DDD mode.

For our experiments, using the notation introduced in Section 5.6, we picked ε = 0.01

and δ = 0.01 yielding N = 11505 sample paths. The advanced pacemaker model is

capable of correcting N ′ = 9017 of them. Intuitively, this means that with confidence

99% we are sure that the computed probability N ′

N = 0.783 is within 0.01 radius from the

real probability p. In Figure 5.19 we show an example containing two graphs. The first

graph depicts Tachycardia in the ventricle due to PMT. The second graph shows how the

pacemaker switches its mode from DDD to VDI at time 13. As a result, the number of

ventricle beats decreases.

5.7 Synthesising parameters for pacemakers using TIOAs

In this section we solve the optimal parameter synthesis problem, i.e., the problem of

finding optimal model parameters’ values. We will define this problem with respect to an

objective function. We do not restrict to a single type of objective function, and instead

admit a family of them, each of which will correspond to ensuring a particular quantitative

property. The content of this section is based on one report awaiting submission [DKM13].

The general idea is to model the human heart and the pacemaker as a network of Timed

I/O Automata (TIOAs) which are parametrised. Some parameters are under control

of the user: we call those parameters controllable parameters. Think, for example, of

real pacemaker software that technicians can set during a pacemaker implantation. The

software allows the technicians to manually set some of the timing behaviours of the

pacemakers. Some other parameters of our model are uncontrollable, meaning that we

125

5.7. SYNTHESISING PARAMETERS FOR PACEMAKERS USING TIOAS

0 5 10 15 20 25
0

50

100

150

V
ol

ta
ge

0 5 10 15 20 25
0

50

100

150

Time [sec]

V
ol

ta
ge

Figure 5.19: PMT correction.

cannot adjust them to our need. Think, for example, about the timing at which ventricle

beats are fired. It is clear that we cannot control such timings. Our problem is to find the

best values for the controllable parameters.

Due to complexity reasons, in this section, we restrict ourselves to network of TIOAs

and not to the more general networks of HIOAs. The reason for that is that the algorithms

presented do not scale enough to consider models which are more complex than TIOAs.

Network of HIOAs will be considered for future work.

As stated at the beginning of the chapter the problem can be summarised as follows.

Optimal parameter synthesis problem

126

5.7. SYNTHESISING PARAMETERS FOR PACEMAKERS USING TIOAS

Input: A parametric network of Timed I/O Automata TIOAs N , a set of

parameters Γ = Γu ∪ Γc composed of controllable (Γc) and

uncontrollable (Γu) parameters, a Counting Metric Temporal Logic

(CMTL) formula ϕ and a path length n.

Problem: Find the optimal parameter values for Γc for any values

of parameters Γu with respect to an objective function O
such that ϕ is satisfied on N , if such values exist.

Note here that one can find optimal values for the set of controllable parameters by

discretising the set of model parameters. Theorem 5.7.8 states that it is enough to pick a

discretisation step of 1 in order to generate all possible timed paths σ. Here timed paths

are finite, even though the theory would work for infinite timed paths as well. The reason

for finite timed paths is that, also in this case, we focus on time-bounded verification.

In fact, medical devices have finite life-time due to their battery. For each timed path σ

we can then check the satisfaction of the CMTL formula ϕ. This would accomplish the

result but at a cost of generating timed paths σ for all the parameter valuations, which

is expensive. In order to overcome the high complexity, we instead generate sets of linear

constraints S. A set of linear constraints S is a system of linear inequalities that can be

expressed in matrix form as A · x 6 b, where A ∈ Rm×n, x ∈ Rn and b ∈ Rm with

m,n ∈ N. The key idea is that multiple model parameters will share the same set of linear

constraints S. Thus, instead of generating a timed path σ for a parameter valuation ϑ,

we check whether ϑ ∈ S. If this is the case, we then skip this valuation and therefore save

computation time. Here, we use the notation ϑ ∈ S to say that the parameter valuation

ϑ, once plugged into the parameters of S, makes the set of linear inequalities S true. We

say that ϑ /∈ S otherwise.

In a nutshell, the above synthesis problem can be solved by first generating a set of

linear inequalities S from property ϕ and path σ of N , described in Section 5.7.1, and

then finding an optimal solution for S with respect to the given objective function O,

described in Section 5.7.2.

Remark 5.7.1 As anticipated, the optimal parameter synthesis problem will be solved with

similar techniques to those employed to solve the model checking problem of CTMCs against

real-time properties in Chapter 4. In fact, after generating the set of linear inequalities S
from property ϕ and path σ of N , we need to solve a volume integral over the set S in

order to find the optimal solution for S with respect to the objective function O. Again,

volume integrals and complex integrations constitute the main building block of the solution

to our problem.

127

5.7. SYNTHESISING PARAMETERS FOR PACEMAKERS USING TIOAS

5.7.1 Constraint generation

We first describe the intuition for how to compute the set S that guarantees the satisfaction

of the property along the path, and next we present an algorithm, Algorithm 13, which

generates S.

The set S is computed with the following simple steps:

1. Discretise according to Definition 5.2.1 the domains of the model parameters in order

to generate a discrete path.

2. For each point in the discretised domain do:

If the point does not belong to the set of constraints S

Generate the path σ (Definition 5.2.3).

Generate the set of inequalities which satisfy ϕ in σ (Algorithm 14, 18, 19).

Algorithm 13 generates the constraints S with the help of three subroutines, Al-

gorithm 14, Algorithm 18 and Algorithm 19. We will now describe Algorithm 13 and

its subroutines step by step.

Algorithm 13 Constraint generation for N with m-components, CMTL formula ϕ and

path length n

Ensure: Family of linear inequalities S over the parameters Γ

1: Function Sat(N , ϕ, n)

2: Γ̄ := Discretise(Γ, δ)

3: for ϑ ∈ Γ̄ do

4: if ϑ /∈ S then

5: σ := Gen path(N , n, ϑ)

6: (S ′, T) := Path Constr Gen(N , σ)

7: S ′′ := Constr Gen(σ, 0, ϕ, T)

8: S := S∨(S ′∧S ′′)
9: end if

10: end for

11: return S

The first step of Algorithm 13 discretises the domains Γ(i) of each parameter with a

discretisation step δ ∈ R>0 (line 2), obtaining the set of discretised parameters Γ̄. The

algorithm then iterates over each point of Γ̄ and at every iteration checks whether the

discretised set of points under consideration, say ϑ, satisfies the set of linear inequalities

S or not. This operation is indicated in Algorithm 13 with ϑ /∈ S. The second step of the

algorithm generates a discrete path σ. We do not describe the function Gen path(N , n, ϑ)

since it is equivalent to Definition 5.2.3. The function Gen path returns a discrete path

128

5.7. SYNTHESISING PARAMETERS FOR PACEMAKERS USING TIOAS

where each transition is labelled with an output action. Afterwards, Algorithm 13 gener-

ates the set of linear inequalities over the parameter set Γ from the the discrete path σ of

length n. This is accomplished with Algorithm 14, which is composed of three main cycles

(reproduced respectively in Algorithm 15, Algorithm 16 and Algorithm 17). The algorithm

returns two sets of constraints, T and S ′. The set T contains the time constraints t
(i)
j over

the parameter set Γ, j ∈ {0, . . . , |σ| − 1}, i ∈ {1, . . . ,m}, corresponding to every discrete

transition j of σ and component i of N . The set of constraints S ′ contains the relationship

between the clock valuations η
(i)
j and guards g(i) for all components i and transition j of

N . For instance, if there is a transition labelled with an enabled output action and guard

x 6 γ, where x ∈ X (i) and γ ∈ Γ(i) for some component i, then S ′ will contain the con-

straint η
(i)
j (x) 6 γ. The first cycle of Algorithm 14 at line 5, presented in Algorithm 15,

iterates over the set of components Ij that have an enabled output transition with max-

imal priority and generates the symbolic time constraints t
(i)
j . It also generates the set of

constraints S ′ corresponding to the discrete transition with {<,6} ⊆ g(i).x(1). At the end

of the cycle (line 13 of Algorithm 15), the algorithm creates a new clock valuation η
(i)
j+1

from the symbolic time constraint t
(i)
j . Each clock valuation is a symbolic expression over

t
(i)
j with i ∈ Ij . The second cycle of Algorithm 14 at line 7, presented in Algorithm 16,

iterates over the set of components Isj that synchronise with Ij . Every transition in σ, cor-

responding to a component of Isj , is labelled with an input action. This cycle generates the

set of constraints t
(k)
j and S ′ for k ∈ Isj . The last cycle of Algorithm 14 at line 9, presented

in Algorithm 17, generates the set of time constraints t
(k)
j for the remaining components

Icj := {1, . . . ,m}\(Ij ∪ Isj). Note that t
(k′)
j > t

(i)
j for any k′ ∈ Icj and i ∈ Ij . Line 10 of

Algorithm 14 adds to S ′ the relationships between all time constrains for each component

i ∈ N , namely, t
(i)
j = t

(k)
j for every component that synchronises, and t

(k′)
j > t

(i)
j for every

other component that does not synchronise, where i, j ∈ Ij ∪ Isj and k′ ∈ Icj .

Example 5.7.1 We show now the functioning of Algorithm 14 with an example. In Fig-

ure 5.20, previously shown in Example 5.2.1, we present an example of a network N
composed of two TIOAs, A1 and A2.

(a) A1 (b) A2

Figure 5.20: Example network N with two components.

Here X (1) = {t}, X (2) = {x, y}, Γ(1) = {T}, Γ(2) = {P, J}, Σ
(1)
in = {AS,VS,VP},

129

5.7. SYNTHESISING PARAMETERS FOR PACEMAKERS USING TIOAS

Algorithm 14 Constraints generation for the path σ

Ensure: Family of linear inequalities S ′ and sequence of time constraints T over Γ

1: Function Path Constr Gen(N , σ)

2: t
(i)
j := 0, η

(i)
j := 0, for all i ∈ {1, . . . ,m} and j ∈ {0, . . . , |σ| − 1}

3: for j := 0 to |σ| − 1 do

4: Ij - index of components that have an enabled output action with maximal priority

5: See Algorithm 15.

6: Isj - index of components that synchronise with an output transition from Ij
7: See Algorithm 16.

8: Icj := {1, . . . ,m}\(Ij ∪ Isj)

9: See Algorithm 17.

10: S ′ := S ′ ∧
{

∧
i,k∈Ij∪Isj ,i 6=k

(t
(i)
j = t

(k)
j)

∧
i∈Ij ,k∈Icj

(t
(i)
j < t

(k)
j)

}

11: end for

12: return (S ′, T)

Algorithm 15 Constraints generation for the path σ (First for cycle)

1: for i ∈ Ij do

2: maxguard := 0

3: e(i) := (q
(i)
j , a, g(i), X(i), q

(i)
j+1)

4: for x ∈ g(i) do

5: if g(i).x(1) = ” > ” or g(i).x(1) = ” > ” then

6: maxguard := max{maxguard, g(i).x(2)− η(i)
j (x)}

7: else if g(i).x(1) = ” 6 ” then

8: S ′ := S ′ ∧ {η(i)
j (x) 6 g(i).x(2)}

9: else

10: S ′ := S ′ ∧ {η(i)
j (x) < g(i).x(2)}

11: end if

12: end for

13: t
(i)
j := maxguard, η

(i)
j+1 := (η

(i)
j + t

(i)
j)[X(i) := 0], T := T × t(i)j

14: end for

Σ
(2)
out = {AP}, Σ

(2)
in = ∅ and Σ

(2)
out = {AS,VP}. A sample path of the network N is

σ = (q, z)→ (q′, z)→ (q, z)→ (q, z). The initial state is (q, z). As usual, we omit actions

and time stamps from the transitions to ease notation. The automaton A2 triggers the first

two transitions with the output actions AS and VP, moving the system respectively to (q′, z)

with the first action and to (q, z) with the second. On these transitions, the automaton

A1 will synchronise with A2 via matching inputs, AS and VP. The third transition of the

130

5.7. SYNTHESISING PARAMETERS FOR PACEMAKERS USING TIOAS

Algorithm 16 Constraints generation for the path σ (Second for cycle)

1: for k ∈ Isj do

2: e(k) := (q
(k)
j , a, g(k), X(k), q

(k)
j+1)

3: maxguard := 0

4: for x ∈ g(k) do

5: if g(k).x(1) = ” > ” or g(k).x(1) = ” > ” then

6: maxguard := max{maxguard, g(k).x(2)− η(k)
j (x)}

7: else if g(k).x(1) = ” 6 ” then

8: S ′ := S ′ ∧ {η(k)
j (x) 6 g(k).x(2)}

9: else

10: S ′ := S ′ ∧ {η(k)
j (x) < g(k).x(2)}

11: end if

12: end for

13: t
(k)
j := maxguard, η

(k)
j+1 := (η

(k)
j + t

(k)
j)[X(k) := 0]

14: end for

Algorithm 17 Constraints generation for the path σ (Third for cycle)

1: for k ∈ Icj do

2: maxguard := 0

3: for every outgoing transition e(k) out of q
(k)
j do

4: e(k) := (q
(k)
j , a, g(k), X(k), q

(k)
j+1)

5: for x ∈ g(k) do

6: if g(k).x(1) = ” > ” or g(k).x(1) = ” > ” then

7: maxguard := max{maxguard, g(k).x(2)− η(k)
j (x)}

8: end if

9: end for

10: end for

11: t
(k)
j := maxguard, η

(k)
j+1 := η

(k)
j + t

(i)
j , for some i ∈ Ij

12: end for

path is instead triggered by A1 through the output action AP.

The set of constraints generated by Algorithm 14 for each transition is given below in

Table 5.1. Note that, in this example, the set S ′ will contain only the constraint T <

max{J − P, 0}, which is due to the fact that the output transition in A1 labelled with T

will be triggered, whereas A2 has no enabled output transition.

Algorithm 18 generates the set of constraints for a basic counting formula BCF B (see

Definition 5.5.6). The algorithm creates two sets, L and U , for the lower and upper bounds,

respectively, appearing in B. The sequence w̄ contains the ordered set of elements from

L∪U and the function f maps an element of L∪U , to an element of the sequence w̄. The

131

5.7. SYNTHESISING PARAMETERS FOR PACEMAKERS USING TIOAS

Step 0 1 2

Ij {2} {2} {1}
Isj {1} {1} ∅
Icj ∅ ∅ {2}

A1

t
(1)
0 = P t

(1)
1 = J − P t

(1)
2 = T

η
(1)
0 (t) = 0 η

(1)
1 (t) = P η

(1)
2 (t) = 0

A2

t
(2)
0 = P t

(2)
1 = J − P t

(2)
2 = max{J − P, 0}

η
(2)
0 (x) = 0 η

(2)
1 (x) = P η

(2)
2 (x) = J

η
(2)
0 (y) = 0 η

(2)
1 (y) = P η

(2)
2 (y) = J

S ′ ∅ ∅ T < max{J − P, 0}

Table 5.1: Example Algorithm 14

Algorithm 18 Constraints generation for basic counting formulas (BCFs)

Ensure: Family of linear inequalities S ′′ over t0, . . . , tn−i

1: Function Sum Gen(σ, i, ϕ)

2: σ̄ := σJiK, L := {lj | j ∈ J}, U := {uj | j ∈ J} and w̄ := sort(L ∪ U)

3: f maps an element of L ∪ U to an element of w̄

4: S ′′ := ∨
yk∈{0,...,|σ̄|−1}
y16···6y|w̄|

(
∧

z∈{0,...,|w̄|}
σ̄@w̄(z) = yz

)
∧
(
∑
j∈J

cj

yf(uj)−1∑
ι=yf(`j)

aj ∈ σ̄[ι] ./ b

)

5: Where we define (σ̄@w̄(z) = yz) :=

(
yz∑
ι=0

tι > w̄(z) ∧
yz−1∑
ι=0

tι < w̄(z)

)

6: return S ′′

main phase of the algorithm involves generating all possible orderings of the transitions

occurring in σ̄, where σ̄ is the untimed suffix of length i of σ, with respect to the elements

of w̄. This is achieved with the outer disjunction over the set {0, . . . , |σ̄| − 1}. For every

possible ordering, the algorithm checks whether the formula
∑
j∈J

cj

yf(uj)−1∑
ι=yf(`j)

aj ∈ σ̄[ι] ./ b

holds.

Example 5.7.2 In this example we show the function of Algorithm 18 for the path σ =

(q, z) → (q′, z) → (q, z) → (q, z) and formula ϕ = #7
5VP > 1. The first column of

Table 5.2 shows all possible ordering of variables y1 and y2. Note that, for a path of length

3, yi ∈ {0, 1, 2}, i ∈ {1, 2}. The second column of Table 5.2 shows how the time constraints

are generated, while the third column shows the formula that checks whether there is at

least one VP action present in the interval of time 5 to 7.

Algorithm 19 generates the set of constraints for a CMTL formula. The algorithm proceeds

by induction over the structure of the formula and generates the set of linear inequalities

132

5.7. SYNTHESISING PARAMETERS FOR PACEMAKERS USING TIOAS

Ordering
∧

z∈{0,...,|w̄|}
σ̄@w̄(z) = yz

∑
j∈J

cj

yf(uj)−1∑
ι=yf(`j)

aj ∈ σ̄[ι] ./ b

(y1 = 0 ∧ y2 = 0) (t0 > 5) false

(y1 = 0 ∧ y2 = 1)
(t0 > 5) ∧

false
(t0 + t1 > 7 ∧ t0 < 7)

(y1 = 0 ∧ y2 = 2)
(t0 > 5) ∧

true
(t0 + t1 + t2 > 7 ∧ t0 + t1 < 7)

(y1 = 1 ∧ y2 = 1)
(t0 + t1 > 5 ∧ t0 < 5) ∧

false
(t0 + t1 > 7 ∧ t0 < 7)

(y1 = 1 ∧ y2 = 2)
(t0 + t1 > 5 ∧ t0 < 5) ∧

true
(t0 + t1 + t2 > 7 ∧ t0 + t1 < 7)

(y1 = 2 ∧ y2 = 2)
(t0 + t1 + t2 > 5 ∧ t0 + t1 < 5) ∧

false
(t0 + t1 + t2 > 7 ∧ t0 + t1 < 7)

Table 5.2: Constraint generation for BCF

S ′′ over Γ. We use the function Rewrite to rewrite each tj in terms of parameters in Γ.

Finally, we state two theorems which establish the correctness of Algorithm 13. The-

orem 5.7.4 deals with the correctness of the generated set S of constraints, whereas The-

orem 5.7.8 shows that any CMTL formula is preserved even if we discretise the domain of

the model parameters.

From here on we consider infinite timed paths ρ instead of finite timed paths σ. The

reason is that the theory applies to both.

In the rest of this section we will assume a timed path ρ in which t0, t1, . . . are the times

at which transitions occur. In order to prove Theorem 5.7.4 we need to introduce some

lemmas that prove intermediate results for simple CMTL formulas, namely, basic counting

formulas. The first lemma presented is Lemma 5.7.1. Lemma 5.7.1 states that ρ satisfies

a basic CMTL formula B ./ b at step i if and only if the i-th suffix of the untimed version

of ρ, ρJiK, satisfies the formula B ./ b when the time instants ti, . . . , tn−1 are plugged

back into ρ. The lemma is intuitive since (ρ, i) and ρJiK(ti, . . . , tn−1, 0) are essentially the

same timed path. Note that (ρ, i), according to the semantics of CMTL (see Section 5.5),

satisfies a CMTL formula ϕ if the suffix of ρ starting at step i satisfies ϕ. On the other

hand, ρJiK(ti, . . . , tn−1, 0) is the untimed suffix of the timed path ρ starting at step i, ρJiK,

which is subsequently instantiated with the original time stamps (ti, . . . , tn−1), making

the definition of (ρ, i) and ρJiK(ti, . . . , tn−1, 0) the same.

Lemma 5.7.1 Given a network of TIOAs N , a timed path ρ, i ∈ N, ti, . . . , tn−1 time

133

5.7. SYNTHESISING PARAMETERS FOR PACEMAKERS USING TIOAS

Algorithm 19 Constraints generation for CMTL formulas

Require: A finite timed path σ of length n > 0, an index i, a CMTL formula ϕ and a

set of time constraints T
Ensure: Family of linear inequalities S ′′ over Γ

Function Constr Gen(σ, i, ϕ, T)

case(ϕ) :

ϕ =
∑
j∈J

cj#
uj
`j
aj ./ b : S ′′ := Sum Gen(σ, i, ϕ)

ϕ = ¬ϕ1 : S ′′ := ¬Constr Gen(σ, i, ϕ1, T)

ϕ = ϕ1 ∧ ϕ2 : S ′′ := Constr Gen(σ, i, ϕ1, T) ∧ Constr Gen(σ, i, ϕ2, T)

ϕ = ϕ1U [`,u]ϕ2 : S ′′ :=
(n∨
i′=i

Constr Gen(σ, i′, ϕ2, T) ∧ ` ≤
i′∑
k=i

tk ≤ u ∧

(
i′−1∧
i′′=i

Constr Gen(σ, i′′, ϕ1, T))
)

if T 6= ∅ then

return Rewrite(S ′′,T)

else

return S ′′ (where S ′′ is the set of constraints over t0, . . . , tn used in Theorem 5.7.4)

end if

instants, b ∈ Z and a basic counting formula B we have the following.

(ρ, i) |=N B ./ b iff

(ρJiK(ti, . . . , tn−1), 0) |=N B ./ b.

Proof The proof follows simply by the definition of the semantics of CMTL.

Next we present Lemma 5.7.2 and Lemma 5.7.3. The two lemmas prove a timed path

ρ satisfies B ./ b at step i if and only if the time sequence t0, t1, . . . satisfies the set of

linear constraints returned by Sum Gen(ρJ0K, i,B ./ b).

Lemma 5.7.2 Given a network of TIOAs N , a timed path ρ, i ∈ N, ti, . . . , tn−1 time

instants, b ∈ Z and a basic counting formula B we have the following.

(ρ, i) |=N B ./ b =⇒
(t0, . . . , tn−1) ∈ Sum Gen(ρJ0K, i,B ./ b)

Proof By Lemma 5.7.1 this is equivalent to proving that

(ρJiK(ti, . . . , tn−1), 0) |=N B ./ b =⇒ (5.4)

(ti, . . . , tn−1) ∈ Sum Gen(ρJiK, 0,B ./ b)

134

5.7. SYNTHESISING PARAMETERS FOR PACEMAKERS USING TIOAS

Algorithm 13 will generate multiple sets of inequalities over the variables λ0, . . . , λn−i.

Let us instantiate the variables with the values of (ti, . . . , tn−1) taken from ρJiK(ti, . . . , tn−1) =

~qj
tj−−→ ~qj+1

tj+1−−−→ · · · tn−1−−−−→ ~qn. Due to the fact that ρ is a concrete timed path of the sys-

tem, it must be true that the values of λ0, . . . , λn−i instantiated with (ti, . . . , tn−1) satisfy

the constraints in
∧

z∈{0,...,|w̄|}

(
yz∑
ι=0

λι > w̄(z) ∧
yz−1∑
ι=0

λι < w̄(z)

)
for a given vector w̄. The

vector w̄ is the one obtained by considering the original timed path ρ@x where x ∈ {L ∪ U}
with L := {lj | j ∈ J}, U := {uj | j ∈ J}, where each lj , uj is taken from the CMTL

formula B.

Now consider the formula

(
∑
j∈J

cj

yf(uj)−1∑
ι=yf(`j)

aj ∈ ρJiK(ti, · · · , tn−1)[ι] ./ b

)
generated by

Algorithm 13 and substitute yf(`j) and yf(`j) with ρ@w(z) = yz for the z that gives you

yf(`j) or yf(`j). The formula thus generated is equivalent to
∑
j∈J

cj
(ρJiK(ti,··· ,tn−1)@uj)−1∑
k=(ρJiK(ti,··· ,tn−1)@`j)

(aj ∈

ρ[k]) ./ b which is true if and only if the Equation (5.4) is satisfied.

Lemma 5.7.3 Given a network of TIOAs N , a timed path ρ, i ∈ N, ti, . . . , tn−1 time

instants, b ∈ Z and a basic counting formula B we have the following.

(t0, . . . , tn−1) ∈ Sum Gen(ρJ0K, i,B ./ b) =⇒
(ρ, i) |=N B ./ b

Proof By Lemma 5.7.1 this is equivalent to proving that

(ti, . . . , tn−1) ∈ Sum Gen(ρJiK, 0,B ./ b) =⇒ (5.5)

(ρJiK(ti, . . . , tn−1), 0) |=N B ./ b

Here the reverse reasoning of Lemma 5.7.2 is applied. If there is a solution to the system

of constraints returned from Algorithm 13, it means that it is possible to find a sequence

of λ0, . . . , λn−i that satisfies the constraint
∧

z∈{0,...,|w̄|}

(
yz∑
ι=0

λι > w̄(z) ∧
yz−1∑
ι=0

λι < w̄(z)

)

for a given vector w̄. The vector w̄ defines a sequence of states to visit (under the

time constraints λ0, . . . , λn−i) such that it is possible to satisfy the linear inequality(
∑
j∈J

cj

yf(uj)−1∑
ι=yf(`j)

aj ∈ ρJiK(λ0, . . . , λn−i)[ι] ./ b

)
. The timed path ρJiK(λ0, . . . , λn−i) must

then satisfy B ./ b, which concludes the proof.

We are now ready to prove Theorem 5.7.4, which is a generalisation of Lemma 5.7.2

and Lemma 5.7.3 to the whole syntax of CMTL, rather than only considering basic CMTL

formulas.

Theorem 5.7.4 Let ρ(t0, . . . , tn−1) be the instantiated timed path of the network N of

TIOAs and i ∈ N an index (i 6 n). For every CMTL formula ϕ it holds

(ρ(t0, . . . , tn−1), i) |=N ϕ iff (t0, . . . , tn−1) ∈ S,

135

5.7. SYNTHESISING PARAMETERS FOR PACEMAKERS USING TIOAS

where S := Constr Gen(ρ, i, ϕ,∅).

Proof Let ρ = ~q0
t0−−→ ~q0

t1−−→ · · · tn−1−−−−→ ~qn be the finite timed path of the network of

TIOAs N , i ∈ N be an index (i 6 n) and B ./ b a CMTL formula. We now prove the

main theorem. The proof proceeds by induction on the length of the formula. As usual,

ϕ,ϕ1 and ϕ2 are CMTL formulas and `, u ∈ R. We have:

(ρ(t0, . . . , tn−1), i) |=N ϕ iff (t0, . . . , tn−1) ∈ S.

• ϕ = B ./ b. The theorem is true by the Lemma 5.7.2 and Lemma 5.7.3.

• ϕ = ϕ1 ∧ ϕ2, ϕ = ¬ϕ1. Trivial just by induction hypothesis.

• ϕ = ϕ1U [`,u]ϕ2. The proof follows from [CDKM11, CDKM13b].

The next step is to prove Theorem 5.7.8, which shows that any CMTL formula is

preserved even if we discretise the domain of the model parameters. In order to do so we

introduce three lemmas: Lemma 5.7.5, Lemma 5.7.6 and Lemma 5.7.7.

Lemma 5.7.5 proves that, given a network of TIOAs N = {A(i) | i ∈ {1, . . . ,m}} for

which all the guard constants are integers, then it must be the case that each entering

clock valuation of each clock, namely the value of the clocks when entering a new state,

is integer as well.

Lemma 5.7.5 Let N = {A(i) | i ∈ {1, . . . ,m}} be a network of TIOAs A(i) for which

Γ(i) = ∅ and all guard constants are integers for every i ∈ {1, . . . ,m}. Then each entering

clock valuation η(i)(x), for each i ∈ {1, . . . ,m} and x ∈ X (i), is an integer.

Proof Simply follows from the semantics of TIOAs which states that as soon as a guard

becomes true the corresponding transition must be taken. Thus, if all the guards of the

transitions contain integers, it must be the case that the transition is taken at an integer

time point.

Lemma 5.7.6 states that, given a parameter instantiation ϑ(i), i ∈ {1, . . . ,m}, which

generates a timed path ρ, there exists an integer version of ϑ(i), which we indicate with

bϑ(i)e, that can reproduce the same timed path ρ. Lemma 5.7.6 is crucial for proving

Theorem 5.7.8.

Lemma 5.7.6 Let ϑ(i), i ∈ {1, . . . ,m}, be a parameter instantiation and ρ be the associ-

ated path of length n for which η
(i)
j is the entering clock valuation of component i at step

j ∈ {0, . . . , n−1}. Then there exists a parameter instantiation bϑ(i)e such that ρJ0K = ρ̄J0K,

where ρ̄ is the path corresponding tobϑ(i)e and b·e is the closest integer.

136

5.7. SYNTHESISING PARAMETERS FOR PACEMAKERS USING TIOAS

Proof Let (q
(i)
j , a(i), g(i), X(i), q

(i)
j+1) be the transition of ρ in component i taken at step j.

It holds that η
(i)
j + tj |= g(i), where ρ〈j〉 = tj . Therefore, we get

η
(i)
j + tj |=

∧

x∈X(i)

x ./ g(i).x(2) iff

∧

x∈X(i)

η
(i)
j + tj |= x ./ g(i).x(2) iff

∧

x∈X(i)

η
(i)
j (x) + tj ./ g

(i).x(2) .

Due to the fact that every transition of a TIOA is forced we have that

tj= min
x∈g(i)

{g(i).x(2)− η(i)
j (x)} if ∃x ∈ g(i)∧g(i).x(1) =>,

tj=0, otherwise.

Let ρ̄ be the path corresponding to bϑ(i)e with η̄
(i)
j as the entering clock valuation of ρ̄

and ρ̄〈j〉 = t̄j . Also, we have

t̄j= min
x∈g(i)

{bg(i).x(2)e − η̄(i)
j (x)} if ∃x ∈ g(i)∧g(i).x(1) =>,

t̄j=0, otherwise.

First, we prove

(ρ̄J0K = ρJ0K) =⇒
|η̄(i)
j − η

(i)
j | 6 0.5 ∧ |t̄j − tj | 6 1,∀j ∈ {0, . . . , n− 1}

by induction on j (the base case trivially holds) and we distinguish the following cases.

1. If @x ∈ g(i)∧g(i).x(1) => then tj = 0 and it must the case that t̄j = 0 because

ρ̄J0K = ρJ0K. Then we have that |t̄j − tj | 6 1 and given that |η̄(i)
j − η

(i)
j | 6 0.5 we

have

|η̄(i)
j+1 − η

(i)
j+1| = |η̄

(i)
j + t̄j − (η

(i)
j + tj)| = |η̄(i)

j − η
(i)
j | 6 0.5.

2. If ∃x ∈ g(i)∧g(i).x(1) => and tj = 0. From the induction hypothesis we know that

|η̄(i)
j − η

(i)
j | 6 0.5 and it must be the case that η̄

(i)
j = bη(i)

j e. Given that tj = 0 we

have that

∧

x∈g(i)∧g(i).x(1)=>

η
(i)
j > g

(i).x(2) =⇒

∧

x∈g(i)∧g(i).x(1)=>

bη(i)
j e > bg(i).x(2)e =⇒

∧

x∈g(i)∧g(i).x(1)=>

η̄
(i)
j > bg(i).x(2)e =⇒

t̄j = 0 ∧ |η̄(i)
j+1 − η

(i)
j+1| 6 0.5

137

5.7. SYNTHESISING PARAMETERS FOR PACEMAKERS USING TIOAS

3. If ∃x ∈ g(i)∧g(i).x(1) => and tj > 0. It holds that

∧

x∈g(i)

|t̄j − tj | = |bg(i).x(2)e − η̄(i)
j − (g(i).x(2)− η(i)

j)| =⇒

∧

x∈g(i)

|t̄j − tj | = |bg(i).x(2)e − g(i).x(2) + η
(i)
j − η̄

(i)
j | =⇒

∧

x∈g(i)

|t̄j − tj | ≤ |bg(i).x(2)e − g(i).x(2)|+ |η(i)
j − η̄

(i)
j | =⇒

|t̄j − tj | ≤ 1.

Notice that η
(i)
j + tj = η

(i)
j+1 = g(i).x(2) for some x ∈ g(i). We also have that

η̄
(i)
j + t̄j = η̄

(i)
j+1 = bg(i).x′(2)e for some x′ ∈ g(i). Now we prove that x = x′ when

|g(i)| > 1. If the clock x is the minimum for tj , there exists a clock x1 ∈ g(i) such

that

g(i).x(2)− η(i)
j (x) 6 g(i).x1(2)− η(i)

j (x1) and

bg(i).x(2)− η(i)
j (x)e 6 bg(i).x1(2)− η(i)

j (x1)e.

In Table 5.3 we show the difference between ba − be and bae − bbe according to

different values of the fractional part of a and b.

Fractional part Difference

a b (ba− be)− (bae − bbe)
6 0.5 6 0.5 0

6 0.5 > 0.5 −1

> 0.5 6 0.5 1

> 0.5 > 0.5 0

Table 5.3: Case distinction table

We want to prove that:

bg(i).x(2)− η(i)
j (x)e 6 bg(i).x1(2)− η(i)

j (x1)e =⇒ (5.6)

bg(i).x(2)e − η̄(i)
j (x) 6 bg(i).x1(2)e − η̄(i)

j (x1).

Now we will analyse how the differences (bg(i).x(2)−η(i)
j (x)e)−(bg(i).x(2)e− η̄(i)

j (x))

and (bg(i).x1(2)− η(i)
j (x1)e)− (bg(i).x1(2)e − η̄(i)

j (x1)) behave.

Three cases are possible according to the fractional part of g(i).x(2) and η
(i)
j (x).

• The fractional part of g(i).x(2) and η
(i)
j (x) is 6 0.5 (same if it is > 0.5). In this

case, (bg(i).x(2)− η(i)
j (x)e)− (bg(i).x(2)e− η̄(i)

j (x)) = 0. Moreover, bg(i).x(2)e−
η̄

(i)
j (x) 6 bg(i).x1(2)e − η̄

(i)
j (x1) if (bg(i).x1(2) − η

(i)
j (x1)e) − (bg(i).x1(2)e −

138

5.7. SYNTHESISING PARAMETERS FOR PACEMAKERS USING TIOAS

η̄
(i)
j (x1)) = 0 or 1. The only critical case would be when (bg(i).x1(2)−η(i)

j (x1)e)−
(bg(i).x1(2)e − η̄(i)

j (x′1)) = −1. However, this case is not possible given the fact

that bg(i).x(2) − η
(i)
j (x)e 6 bg(i).x1(2) − η

(i)
j (x1)e and the condition on the

fractional part of g(i).x1(2) 6 0.5 and the fractional part of η̄
(i)
j (x1) > 0.5.

• The fractional part of g(i).x(2) 6 0.5 and η
(i)
j (x) > 0.5. In this case, no matter

what the value of (bg(i).x1(2)−η(i)
j (x1)e)−(bg(i).x1(2)e−η̄(i)

j (x1)) is, the relation

is preserved.

• The fractional part of g(i).x(2) > 0.5 and η
(i)
j (x) 6 0.5. Now we have that

(bg(i).x(2) − η(i)
j (x)e) − (bg(i).x(2)e − η̄(i)

j (x)) = 1 and we want to show that

(bg(i).x1(2) − η(i)
j (x1)e) − (bg(i).x1(2)e − η̄(i)

j (x1)) = 1 as well. Since we know

that bg(i).x(2)− η(i)
j (x)e 6 bg(i).x1(2)− η(i)

j (x1)e it must be the case that

(a) the integer part of g(i).x(2) = g(i).x1(2) and the integer part of η
(i)
j (x) =

η
(i)
j (x1). In this case the condition on the fractional parts must hold, as

otherwise it could not be the case that bg(i).x(2)− η(i)
j (x)e 6 bg(i).x1(2)−

η
(i)
j (x1)e. Thus, (bg(i).x1(2)− η(i)

j (x1)e)− (bg(i).x1(2)e − η̄(i)
j (x1)) = 1;

(b) the integer part of g(i).x(2) < g(i).x1(2) (or the integer part of η
(i)
j (x) >

η
(i)
j (x1)). Then, it also holds that (bg(i).x1(2)− η(i)

j (x1)e)− (bg(i).x1(2)e −
η̄

(i)
j (x1)) = 1.

Therefore, we have

|η̄(i)
j+1 − η

(i)
j+1| = |bg(i).x(2)e − g(i).x(2)| 6 0.5.

Now we prove

∀j ∈ {0, . . . , n− 1}.|η̄(i)
j − η

(i)
j | 6 0.5 ∧ |t̄j − tj | 6 1 =⇒

(ρ̄J0K = ρJ0K).

by induction on j.

1. j = 0: In this case η̄
(i)
0 = η

(i)
0 = 0 and we have that

t0 = g(i).x1(2) 6 g(i).x2(2) 6 · · · 6 g(i).x|g(i)|, (5.7)

where xz ∈ g(i), ∀z ∈ {1, . . . , |g(i)|}. Let e0 = (q
(i)
0 , a(i), g(i), X(i), q

(i)
1) be the first

transition of ρ. We show that e′0 = (q
(i)
0 , a(i), ḡ(i), X(i), q

(i)
1) is also the first transition

of ρ′, where ḡ(i).x(1) = g(i).x(1) and ḡ(i).x(2) = bg(i).x(2)e, for all x ∈ g(i). From

Equation (5.7) we get that

t̄0 = bg(i).x1(2)e 6 bg(i).x2(2)e 6 · · · 6 bg(i).x|g(i)|e,

which proves the base case.

139

5.7. SYNTHESISING PARAMETERS FOR PACEMAKERS USING TIOAS

2. j → j + 1: It is enough to show that Equation (5.6) holds, which was proven

above.

Lemma 5.7.7 Let {ρJ0K | ρ ∈ Gen path(N , n, ϑ), ϑ ∈ V(Γ)} be the set of location se-

quences of network N . Then it holds

{ρJ0K | ρ ∈ Gen path(N , n, ϑ), ϑ ∈ V(Γ)} =

{ρJ0K | ρ ∈ Gen path(N , n, ϑ̄), ϑ̄ ∈ Γ̄},

where Γ̄ := Discretise(Γ, 1).

Proof Let ϑ ∈ V(Γ). Then, there is ϑ̄ ∈ Γ̄ such that ϑ̄ = bϑe. The Lemma holds from

Lemma 5.7.6.

Theorem 5.7.8 Let N = {A(i) | i ∈ {1, . . . ,m}} be a network of TIOAs A(i) and n ∈ N.

We have that

∨

ϑ∈Γ

(
S ′ ∧ Constr Gen(ρ, 0, ϕ, T)

)
=
∨

ϑ̄∈Γ̄

(
S̄ ′ ∧ Constr Gen(ρ, 0, ϕ, T̄)

)

where (S ′, T) := Path Constr Gen(N ,Gen path(N , n, ϑ)) and (S̄ ′, T̄) := Path Constr Gen

(N ,Gen path(N , n, ϑ̄)) for all ϑ ∈ Γ, and ϑ̄ ∈ Γ̄. Here we say that two constraints are

equal if they share the same solution set.

Proof The proof follows from Lemma 5.7.5, Lemma 5.7.6, Lemma 5.7.7.

The reader should note the similarities with techniques used in Chapter 4. Once again,

we generate the set of linear constraints over residence times, and we will show later that

the solution of the parameter synthesis problem in some cases boils down to computing

multidimensional integrals over this set. The models considered here, similarly to the

CTMCs presented in Chapter 4, are continuous-time models. The solution algorithms

share similar steps, enforcing the idea that computing multidimensional integrals over

domains characterised by sets of linear inequalities, which in turn defines constraints over

residence times in states of the system, is a valuable solution technique for a vast class

real-time problems on continuous-time systems.

5.7.2 Parameter optimisation

After generating the set of linear inequalities S we are ready to tackle the parameter

synthesis problem, i.e., to find the optimal solution for the set of controllable parameters

Γc with respect to an objective function O. The optimal solution will be the one that

maximises O. We emphasise that there is no single optimal solution. The optimal solution

should be the one that best fits the domain of the application. For this reason, we present

140

5.7. SYNTHESISING PARAMETERS FOR PACEMAKERS USING TIOAS

two different choices of the objective functions that we believe are relevant for pacemaker

applications. The first consists in maximizing the value of an integral over the domain

V(Γu), i.e.,

optv := argsup
ϑc∈V(Γc)

∫

ϑu∈V(Γu),(ϑc,ϑu)∈S

DistrΓu(dϑu).

The idea of the integral is to find a valuation for the controllable parameters that satisfies

the set of constraints S and that also maximises the probability mass associated with the

uncontrollable parameter set. In the above objective function, we assume that the set

of uncontrollable parameters, Γu, are distributed according to DistrΓu . If DistrΓu is a

discrete probability distribution, then the above objective function can be reduced to a

linear programming problem for which standard solution algorithms exist. If DistrΓu is

continuous, then it is always possible to discretise V(Γu) or apply Monte-Carlo simulation

techniques. In the special case when DistrΓu is the uniform distribution, the above object-

ive function becomes a volume integral parametric in V(Γc) for which efficient solutions

also exist [CDKM11, CDKM13b].

In some practical examples it does not suffice to have an optimal solution unless it is

also robust (see [FP09, FP07, FP06] for various definitions of robustness). Intuitively, we

say that a set of model parameters is robust if a small variation at the values of the model

parameters does not affect the validity of the formula under consideration. We show the

concept with an abstract example. For instance, consider the problem of finding optimal

parameters for a pacemaker. Running Algorithm 13 we find the optimal controllable

parameters optv for which the pacemaker satisfies the safety property ϕ. Let opt′v be a

sub-optimal solution, i.e., opt′v < optv. Now consider that a small change of ε in optv

invalidates ϕ, whereas the same change in opt′v does not affect the validity of ϕ. In this

case it makes sense to chose opt′v rather than optv because opt′v is more “robust”. In light

of this example, we introduce a new optimal problem (optr) that captures the concept of

robustness:

Bε(ϑ) = {ϑ′ ∈ V(Γ) | ||ϑ′ − ϑ||∞ 6 ε},

optr := argsup
ϑc∈V(Γc)

{sup
ε
{ε | ϑu ∈ V(Γu), Bε((ϑc, ϑu)) ⊆ S}}

where the norm ||ϑ′−ϑ||∞ for ϑ, ϑ′ ∈ V(Γ) and Γ = {v1, . . . , vn} is defined as max{|ϑ(v1)−
ϑ′(v1)|, . . . , |ϑ(vn′) − ϑ′(vn)|}. Note that the above optimisation problem can be trans-

formed into a linear programming problem.

5.7.3 Parameter synthesis case study

In this section we present a pacemaker case study where we apply the techniques described

in Section 5.7. The goal is to synthesise one of the parameters of the pacemaker in order

141

5.7. SYNTHESISING PARAMETERS FOR PACEMAKERS USING TIOAS

to ensure its correct behaviour, while at the same time optimising the value of a given

objective function.

We have implemented all the algorithms in Python for the full logic CMTL, using

the NumPy package for numerical computation and the SymPy package for symbolic

computation. All linear inequalities are encoded in SymPy.

For this case study, we consider the basic pacemaker model of five components in-

troduced in Section 5.4. We show how to synthesise the parameter TLRI − TAVI of the

pacemaker LRI component of Figure 5.10(a).

(a) Atrium component (b) Conduction component

(c) Ventricle component

Figure 5.21: Heart components.

The heart model is composed of three TIOA components (see Figure 5.21): atrium,

conduction and ventricle. The atrium component (Figure 5.21(a)) is responsible for gen-

erating atrial beats. It waits for a signal (action potential) from the SA-node, which is

the natural pacemaker of the heart, or from the pacemaker by means of action AP. The

waiting time is modelled by a transition labelled with the guard t ≥ PP, which defines the

firing frequency of the SA-node. The atrial component generates atrial beats by means

of action Aget. The conduction component models the propagation delay of the atrial

signal through the atrium and the AV-node. The delay is given by the parameter TAVD.

When the action potential originating from the atrium reaches the ventricle, the conduc-

tion component notifies the ventricle component by means of action CD. The ventricle

component is responsible for generating ventricle beats. It can receive a signal VP from

the pacemaker or from the conduction component CD. The ventricle component generates

ventricle beats by means of action Vget. We emphasise that both PP and TAVD can be

estimated from real patient data, and we have done so [LB13] to validate our approach.

We synthesise the pacemaker parameter TLRI − TAVI (Figure 5.10(a)), which is the

amount of time that the pacemaker waits before delivering an atrial pace. TLRI−TAVI is

a controllable parameter in our model and its value is critical for the correct functioning

142

5.7. SYNTHESISING PARAMETERS FOR PACEMAKERS USING TIOAS

of the pacemaker device. The frequency of the atrial beat PP is instead an uncontrollable

variable of the model. We assume that PP and TLRI− TAVI are the only two parameters

of the system, both taking values in [0, 1000] (milliseconds). All other parameters are

constant. We check the correctness of the pacemaker against the CMTL formula ϕ =

�[0,τ](#τ
0Vget > 60 ∧ #τ

0Vget 6 120) (τ = 60000 milliseconds), which states that it is

always the case that the heart beats (ventricle beat) at least 60 and no more than 120

times in one minute.

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

TLRI−TAVI

P
P

(a) Result Algorithm 19

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

TLRI−TAVI
P
P

(b) Results Algorithm 14

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

TLRI−TAVI

P
P

(c) Intersection between Fig 5.22(a) and

Figure 5.22(b)

Figure 5.22: Constraint generation algorithms

We propose an optimised algorithm which has been implemented in order to effi-

ciently solve the parameter synthesis problem. Our solution reduces the complexity of

Algorithm 13 for a subclass of CMTL, namely, the safety part of MTL and including

BCF. For example, the formula ϕ = �[0,τ](#τ
0Vget > 60 ∧ #τ

0Vget 6 120) (τ = 60000

milliseconds) belongs to this subclass. Note that the main disadvantage of Algorithm 13

is that it needs to discretise the set of all parameters and generate constraints for each

discretised value. However, as mentioned at the end of Section 5.7, multiple model para-

meters will share the same set of linear constraints S. Our solution transforms the network

of TIOAs into a labelled transition system and generates an untimed path ρJ0K such that it

contains k Vget events where k ∈ {60, . . . , 120}. This step replaces the function Gen Path

in Algorithm 13. We then use ρJ0K to generate the set of linear constraints S by means of

functions Path Constr Gen and Constr Gen. S will contain the time constraints on model

143

5.8. SUMMARY

parameters such that the instantiated timed path ρ contains k Vget actions. We start

with k = 60 and iterate the procedure for all the remaining values in the set {61, . . . , 120}.
In Figure 5.22 we show three graphs, where we depict the satisfiability of the constraints

S for discretised values of PP and TLRI − TAVI. The first, Figure 5.22(a), is the result

of Algorithm 19 (set of constraints S ′′ in Algorithm 13), the second Figure 5.22(b) is the

result of Algorithm 14 (set of constraints S ′ in Algorithm 13) and the third Figure 5.22(c)

is the conjunction S ′′∧S ′. In Figure 5.22 the red region denotes the admissible parameter

valuations, i.e., the valuations that satisfy the CMTL formula ϕ, whereas the blue region

denotes inadmissible parameter valuations. Recall that PP is an uncontrollable variable,

whereas TLRI − TAVI is controllable. This means that we should synthesise a value for

TLRI − TAVI such that the validity of the formula ϕ is preserved for any value of PP.

As discussed in Section 5.7.2, the optimal parameter valuation might not be robust. In

this example, we have that a value for TLRI − TAVI of around 1000 is optimal. This is

due to the fact that when TLRI−TAVI is in that range the pacemaker model satisfies the

formula ϕ for the largest set of parameter valuations of PP. However, setting TLRI−TAVI

to 1000 is not robust from an implementation point of view. In fact, if we have small

perturbation of TLRI−TAVI, say from 1000 to 1001, the formula ϕ is invalidated. A more

robust choice is to pick values for TLRI−TAVI around 750 (and this is the value returned

by Algorithm 13 using the robust optimisation function). Picking the value of TLRI−TAVI
around 750 reduces the number of PP behaviours that we cover. However, in this case, a

small change of TLRI − TAVI will not invalidate the formula ϕ. Notice that some major

pacemaker manufacturers, such as Boston Scientific [BOS07], suggest that these values

be set between 750 and 900, which validates the result of our algorithms. In addition to

ensuring the correct number of beats, we can also guarantee that the pacemaker consumes

no more than a given amount of energy in an interval of time. This property can be

expressed in CMTL by ϕ = �[0,τ]((10 ·#τ
0AP + 20 ·#τ

0VP) 6 E), where τ is a time bound

as before and E is a given energy bound. The formula states that, for every atrial beat

AP and ventricle beat VP, the pacemaker respectively consumes 10 and 20 units of energy,

and the total energy consumption should be less than E.

5.8 Summary

In this chapter we have introduced a general model-based framework which can help to

develop embedded software for medical devices. We have presented algorithms to perform

model checking of real-time properties over medical devices in Section 5.6, as well as

parameter synthesis in Section 5.7.

For the model checking problem of Section 5.6, we show how the framework can be

used for quantitative analysis of pacemaker software that incorporates stochasticity to

model probabilistic switching and noise. The framework can be instantiated with a hybrid

144

5.8. SUMMARY

automaton model for embedded pacemaker software and a hybrid heart model. We have

developed a Simulink implementation of the framework that is based on discrete-time

simulation semantics and endowed it with a range of quantitative property checks tailored

to the verification of pacemakers and expressed as property patterns. The high complexity

of the models as well as the ad-hoc property formalisms introduced come at a price: the

verification process becomes challenging and we needed to employ approximate model

checking techniques. Unfortunately, our current methods are not practical if one wants

to use small confidence intervals and error bounds (see Section 5.6.2) due to the high

computational complexity of simulating sufficiently many paths. Moreover, some of the

assumptions that we make are still too strong to be considered realistic. Consider, for

example, the pacing noise introduced in Section 5.4.1. We assume that the pacing noise

can be modelled by a normal distribution. However, in order to model the pacing noise

more accurately, one can consider additional parameters, such as the influence of the body

temperature, vibrations, or the position of the pacing lead that are currently not supported

in our implementation.

The synthesis problem of Section 5.7 is even more challenging than the model checking

problem. In Section 5.7 we have developed an algorithm to synthesise optimal timing

delays for real-time embedded systems modelled as an extension of Timed I/O Automata

with priorities and parametric guards. Focusing on medical devices as an application

domain, we propose the Counting Metric Temporal Logic (CMTL), an extension of the

Metric Temporal Logic with counting formulas, which can express fundamental safety

properties for pacemakers, as well as quantitative requirements for energy consumption.

We show the feasibility of our approach on a simplified model of the human heart and

the pacemaker. Some parameters of the human heart model have been validated using

real electrocardiogram data. We synthesise an important parameter that is critical for the

safety of the pacemaker, while also affecting energy usage. The results of our case study

are encouraging as they comply with specifications from major pacemaker manufacturers.

We use techniques similar to Chapter 4, namely, we reduce the problem to computing a

volume integral over a complex domain. The domain of integration is defined as a set of

linear inequalities over the residence time in system states (as for Chapter 4). As expected,

the drawback of our approach is the high complexity of computing the constraints that

guarantee the satisfaction of a given CMTL formula. Unfortunately, the algorithms do

not scale for real-life examples. For example, the parameter synthesis algorithm was not

capable to analyse paths of length greater than 10 even for simple CMTL formulas. The

set of linear constraints that the algorithm returned was too large to store on a typical

desktop computer.

Although we are aware that the techniques presented in this chapter have some lim-

itations due to the high complexity of the algorithms, these techniques represent the first

step for future work. For instance, it is clear that we should concentrate on developing

145

5.8. SUMMARY

algorithms to efficiently solve volume integrals, which in turn would significantly speed up

the algorithms presented in this thesis.

The aim of the work in this thesis was to propose a first model-based framework

that enables to perform verification and parameter synthesis for medical devices. We

achieved this goal while introducing a broad range of new features, such as probabilities,

complex heart behaviours, and continuous variables to monitor cells’ voltage levels that

were not considered before. We believe that the framework introduced in this chapter,

after optimising some of the algorithms that we have developed, can assist in the design

and verification of software embedded in real medical devices.

146

Chapter 6

Conclusions and future work

6.1 Conclusions

In this thesis we have developed a framework for the analysis of real-time properties over

different classes of continuous-time systems, such as Continuous-Time Markov Chains

(CTMCs), networks of Timed I/O Automata and networks of Hybrid I/O Automata. We

have considered a broad range of real-time specifications, including properties expressed

as Timed Automata, as Metric Temporal Logic formulas, as Counting Metric Temporal

Logic formulas and as Linear Duration Properties.

The main drawback of our approach is the state space explosion. In most of our

verification algorithms, we need to enumerate all the discrete paths of length up to N for

a given step bound N . The procedure is exponential in the step bound N . Furthermore, in

most cases presented in this thesis, the verification problem reduces to computing a volume

integral over a complex domain. The domain of integration depends on the set of linear

constraints that we generate during the course of the verification algorithm. Such a set of

constraints is usually very large, making the solution of the volume integral challenging.

We have provided a collection of results, ranging from theoretical foundations to veri-

fication tools, which provide a framework for the formal analysis of real-time properties.

Chapter 4 and Chapter 5 include the main contribution of this thesis.

• Chapter 4. In this chapter we have considered the problem of verifying continous-

time Markov chains against different real-time specifications. More specifically, we

presented model checking algorithms for CTMCs against properties specified as

Metric Temporal Logic (MTL) formula, as Timed Automata (TA) or as Linear

Duration Property (LDP). The central question of this chapter is the following:

given a CTMC C and a real-time property ϕ, “what is the probability of the set of

timed paths of C that satisfy the property ϕ over a time interval of fixed, bounded

length?”. We provide approximation algorithms to solve these problems. The solu-

tions for the model checking problem of CTMCs against MTL formulas, TAs or

147

6.1. CONCLUSIONS

LDP follow the following steps. First, we determine a step bound N such that it

is enough to consider all the timed paths of C with at most N discrete jumps, to

approximate the desired probability up to ε. Then, we take each discrete path, ς,

of length at most N , and we generate timed constraints over variables determining

the residence time of each state along ς, depending on the real-time specification

under consideration. Next, we formulate a multidimensional integral that allows us

to express the probability of the set of timed paths determined by the discrete path

and the associated timed constraints. The algorithm concludes by summing up all

such probabilities and yielding the final result. All the algorithms have been im-

plemented in Matlab [MAT13]. To our knowledge, there were no previous solutions

to the model checking problem of CTMCs against MTL formulas, general TA or

LDPs.

The key idea of Chapter 4 is to generate sets of linear constraints and solve multidi-

mensional integrals over those sets. It turns out that such a technique is a powerful

tool to analyse real-time properties. In fact, we can always use sets of linear con-

straints to characterise the validity of a timed property in a path, independently from

the formalism chosen, as long as the property under consideration can be related to

the residence time of a state in a path of the CTMC.

• Chapter 5. In this chapter we have tackled two main problems: model checking

networks of Hybrid I/O Automata; and synthesising model parameters for networks

of Timed I/O Automata. The model checking problem consists in taking a network

of Hybrid I/O Automata which represents the human heart, a network of Timed

I/O Automata which represents a pacemaker specification, a property pattern which

represents a safety property that we want to verify, and applying approximation al-

gorithms to determine the probability of the property being satisfied in the composed

system. The parameter synthesis problem takes as input a network of Timed I/O

Automata for the human heart and the pacemaker, a Counting Metric Temporal Lo-

gic formula, and an objective function, and finds the values of the parameters of the

composed system such that the objective function is maximised and the Counting

Metric Temporal Logic formula is satisfied in the system. We have implemented our

algorithms in Simulink [SIM13] and in Python, and provided extensive case studies

which are encouraging.

The main contribution of Chapter 5 is to provide a framework which is tailored

for the verification of pacemakers. Our framework can be instantiated with differ-

ent types of human heart models. The human heart models can be patient-specific

through the analysis of real data. In Chapter 5 we give an example translation

from ECG data to a heart model based on Hybrid I/O Automata. The pacemaker

model that we use is taken from a specification of a real pacemaker manufacturer,

148

6.2. FUTURE WORK

Boston Scientific. Our novelty is to introduce probabilities for the formal verific-

ation of pacemaker algorithms and to enhance the pacemaker model in order to

consider energy consumption and signal loss. We also consider a probabilistic mode

switching behaviour of the human heart, which allows us to represent different, nor-

mal and diseased, human heart behaviours. Probabilities are essential when dealing

with physiologically-relevant systems. In fact, the human heart, as well as real

pacemakers, are inherently probabilistic systems. We believe that the work in this

chapter can be considered as a theoretical and practical initial building block for the

formal verification of pacemakers and other similar medical devices.

6.2 Future work

The work done in this thesis has raised many interesting research questions that still

need to be addressed. In this section we discuss several of them. One issue with both

model checking CTMCs and medical devices is the state space explosion. Investigating

abstraction techniques as well as symbolic methods could yield a tangible improvement in

the execution time of the algorithms, thus making them amenable for real-life applications.

• Chapter 4. The verification of continuous-time Markov chains is a well established

field of computer science. However, there are still open questions. For example, it was

recently showed in [NP10] that, under the bounded-variability assumption (BVA), an

MTL formula can be transformed into a deterministic timed automaton. Roughly, a

timed path satisfies the BVA if there exist δ and k such that for every interval of the

form [t, t + δ] the number of discrete jumps is at most k. Clearly, this is related to

the bound on discrete jumps in [0, T]. However, the BVA is a “global” assumption

over [0,∞), so it does not apply to time-bounded verification. Also, at the moment

it is not clear how to bound the error under this assumption. It would be interesting

to investigate whether one could obtain a deterministic timed automaton from MTL

under our assumption of finite jumps over [0, T], which could yield an alternative way

to solve the model checking problem of CTMCs against MTL formulas, based on the

work in [CHKM09]. Another natural question is how to tackle the traditional (time-

unbounded) verification. The general scheme introduced in this thesis still works.

However, one cannot guarantee approximation to within the given error bound ε,

which implies loss of precision. It is also interesting to study specifications combining

duration properties and temporal properties (in traditional real-time logics, e.g.,

MTL). The verification of these specifications would be challenging. Extending

the current work to continuous-time Markov decision processes is another possible

direction.

• Chapter 5. The verification of medical devices is still in its infancy. Thus, there are

149

6.2. FUTURE WORK

many possible future directions. We mention here only some of them. For example,

it is clear that we should focus on transformation techniques from real patient data

to physiologically relevant heart models. The most sophisticated heart models are at

a cellular level. Although this allows one to construct a fairly detailed heart model,

it has a major drawback. It is hard to gather patient-specific data at a cellular

level. The issue is that the patient data that we can usually gather comes in the

form of ECG signals, monitored from the torso of the patient. An ECG signal is a

super-composition of the electrical activity of multiple cells. It is hard to map back

the ECG signal to the action potential of single cells. This is a hard problem known

as the inverse problem [PCN+10, MB98].

Another important direction is to enhance the pacemaker model even further. Al-

though we have already augmented the pacemaker model with energy consumption

and signal loss, real pacemakers are far more complex. To give an example, con-

sider the case in which a person with a pacemaker is running. It is clear that the

heart beat of that person will increase. This, however, it is not a critical situation

and modern pacemakers can sense when the patient is exercising through the use of

accelerometers which are embedded into the devices. Our pacemaker model lacks

models for those advanced sensors.

From a pure modelling point of view, it would be interesting to consider more sources

of randomness. A very common situation that would be quite obvious to consider is

the effect of movements of the leads of the pacemaker. In fact, during the lifetime

of a pacemaker, there is a small chance that the leads implanted within the heart

move slightly, compromising the correct functioning of the device. This and other

sources of randomness should be taken into account during the validation process.

Last, but not least, we should think of how to expand our analysis to more com-

plicated medical devices. Pacemakers are just a starting point that we decided to

begin with due to their relative simplicity. An interesting future direction to follow

would be to consider cardiac defibrillators. These are devices similar to pacemakers

which not only produce a heart beat with an electric impulse, but also prevent one

by giving a strong electrical shock. This is used in the case the heart is beating too

fast. Cardiac defibrillators, although more complex than pacemakers, share multiple

similarities with them. In fact, cardiac defibrillators can be considered as enhanced

pacemakers with multiple functionalities. It should not be too hard to extend our

analysis to those types of medical devices. A different approach is necessary, instead,

when one wants to consider more complex medical devices such as neurostimulators.

For neurostimulators the models developed for pacemakers may not apply, and for

such reasons more investigation is needed.

150

Bibliography

[ACFE08] É. André, T. Chatain, L. Fribourg, and E. Encrenaz. An Inverse Method for

Parametric Timed Automata. Electron. Notes Theor. Comput. Sci., 223:29–

46, December 2008.

[ACH97] R. Alur, C. Courcoubetis, and T. A. Henzinger. Computing Accumulated

Delays in Real-Time Systems. Formal Methods in System Design, 11(2):137–

155, 1997.

[ACHH92] R. Alur, C. Courcoubetis, T. A. Henzinger, and P-H. Ho. Hybrid Automata:

An Algorithmic Approach to the Specification and Verification of Hybrid

Systems. In Robert L. Grossman, Anil Nerode, Anders P. Ravn, and Hans

Rischel, editors, Hybrid Systems, volume 736 of Lecture Notes in Computer

Science, pages 209–229. Springer, 1992.

[AD94] R. Alur and D. L. Dill. A Theory of Timed Automata. Theor. Comput. Sci.,

126(2):183–235, 1994.

[AF10] É. André and L. Fribourg. Behavioral Cartography of Timed Automata. In

Antonn Kucera and Igor Potapov, editors, RP, volume 6227 of Lecture Notes

in Computer Science, pages 76–90. Springer, 2010.

[AFH96] R. Alur, T. Feder, and T. A. Henzinger. The Benefits of Relaxing Punctuality.

J. ACM, 43(1):116–146, January 1996.

[AH93] R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressive-

ness. Inf. Comput., 104(1):35–77, 1993.

[AKRS08] R. Alur, A. Kanade, S. Ramesh, and K. C. Shashidhar. Symbolic Analysis for

Improving Simulation Coverage of Simulink/Stateflow models. In EMSOFT,

pages 89–98, 2008.

[AKV98] R. Alur, R. P. Kurshan, and M. Viswanathan. Membership Questions for

Timed and Hybrid Automata. In RTSS, pages 254–263. IEEE Computer

Society, 1998.

151

BIBLIOGRAPHY

[ASSB00] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model-Checking

Continuous-Time Markov Chains. ACM Trans. Comput. Logic, 1(1):162–

170, July 2000.

[BCH+07] C. Baier, L. Cloth, B. R. Haverkort, M. Kuntz, and M. Siegle. Model Check-

ing Markov Chains with Actions and State Labels. IEEE Trans. Software

Eng., 33(4):209–224, 2007.

[BCH+11] B. Barbot, T. Chen, T. Han, J.-P. Katoen, and A. Mereacre. Efficient CTMC

Model Checking of Linear Real-Time Objectives. In TACAS, pages 128–142,

2011.

[BCM+90] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.

Symbolic Model Checking: 1020 States and Beyond. In LICS, pages 428–

439. IEEE Computer Society, 1990.

[BES93] A. Bouajjani, R. Echahed, and J. Sifakis. On Model Checking for Real-Time

Properties with Durations. In LICS, pages 147–159, 1993.

[BFT01] A. Bemporad, K. Fukuda, and F. D. Torrisi. Convexity Recognition of the

Union of Polyhedra. Comput. Geom., 18(3):141–154, 2001.

[BHHK00] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. On the Logical

Characterisation of Performability Properties. In Ugo Montanari, José D. P.

Rolim, and Emo Welzl, editors, ICALP, volume 1853 of Lecture Notes in

Computer Science, pages 780–792. Springer, 2000.

[BHHK03] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Model-Checking

Algorithms for Continuous-Time Markov Chains. IEEE Trans. Software

Eng., 29(6):524–541, 2003.

[BK08] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[BOS07] PACEMAKER System Specification, Boston Scientific, 2007.

[BR07] V. Bruyre and J.-F. Raskin. Real-Time Model-Checking: Parameters Every-

where. Logical Methods in Computer Science, 3(1), 2007.

[Bra05] M. S. Branicky. Introduction to Hybrid Systems. In Dimitrios Hristu-

Varsakelis and William S. Levine, editors, Handbook of Networked and Em-

bedded Control Systems, pages 91–116. Birkhäuser, 2005.

[BRP13] M. M .Bersani, M. Rossi, and P. S. Pietro. Deciding Continuous-Time Metric

Temporal Logic with Counting Modalities. In Parosh Aziz Abdulla and Igor

Potapov, editors, RP, volume 8169 of Lecture Notes in Computer Science,

pages 70–82. Springer, 2013.

152

BIBLIOGRAPHY

[BVF+11] S. Butterbach, B. Vulturescu, C. Forgez, G. Coquery, and G. Friedrich. Lead-

Acid Battery Model for Hybrid Energy Storage. In Vehicle Power and Propul-

sion Conference (VPPC), 2011 IEEE, pages 1–5, 2011.

[CAM06] G. D. Clifford, F. Azuaje, and P. McSharry. Advanced Methods and Tools

for ECG Data Analysis. Artech House Publishers, 2006.

[CDKM11] T. Chen, M. Diciolla, M. Z. Kwiatkowska, and A. Mereacre. Time-Bounded

Verification of CTMCs against Real-Time Specifications. In Uli Fahrenberg

and Stavros Tripakis, editors, FORMATS, volume 6919 of Lecture Notes in

Computer Science, pages 26–42. Springer, 2011.

[CDKM12a] T. Chen, M. Diciolla, M. Z. Kwiatkowska, and A. Mereacre. Quantitative

Verification of Implantable Cardiac Pacemakers. In RTSS, pages 263–272.

IEEE Computer Society, 2012.

[CDKM12b] T. Chen, M. Diciolla, M. Z. Kwiatkowska, and A. Mereacre. Verification of

Linear Duration Properties over Continuous-Time Markov Chains. In Thao

Dang and Ian M. Mitchell, editors, HSCC, pages 265–274. ACM, 2012.

[CDKM13a] T. Chen, M. Diciolla, M. Kwiatkowska, and A. Mereacre. Quantitative Veri-

fication of Implantable Cardiac Pacemakers over Hybrid Heart Models. In-

formation and Computation, 2013.

[CDKM13b] T. Chen, M. Diciolla, M. Kwiatkowska, and A. Mereacre. Verification of Lin-

ear Duration Properties over Continuous-Time Markov Chains. Transactions

on Computer Logic, 2013.

[CDKM13c] T. Chen, M. Diciolla, M. Z. Kwiatkowska, and A. Mereacre. A Simulink

Hybrid Heart Model for Quantitative Verification of Cardiac Pacemakers. In

Calin Belta and Franjo Ivancic, editors, HSCC, pages 131–136. ACM, 2013.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of

Finite-State Concurrent Systems Using Temporal Logic Specifications. ACM

Trans. Program. Lang. Syst., 8(2):244–263, 1986.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,

Cambridge, MA, USA, 1999.

[CHKM09] T. Chen, T. Han, J.-P. Katoen, and A. Mereacre. Quantitative Model Check-

ing of Continuous-Time Markov Chains Against Timed Automata Specific-

ations. In LICS, pages 309–318, 2009.

153

BIBLIOGRAPHY

[CHKM11] T. Chen, T. Han, J.-P. Katoen, and A. Mereacre. Model Checking of

Continuous-Time Markov Chains Against Timed Automata Specifications.

Logical Methods in Computer Science, 7(1), 2011.

[CHR91] Z. Chaochen, C. A. R. Hoare, and A. P. Ravn. A Calculus of Durations. Inf.

Process. Lett., 40(5):269–276, 1991.

[CJLX94] Z. Chaochen, Z. Jingzhong, Y. Lu, and L. Xiaoshan. Linear Duration Invari-

ants. In FTRTFT, pages 86–109, 1994.

[Clo06] L. Cloth. Model Checking Algorithms for Markov Reward Models. PhD thesis,

Univerisity of Twente, The Netherlands, 2006.

[CNS10] G. D. Clifford, S. Nemati, and R. Sameni. An Artificial Vector Model for

Generating Abnormal Electrocardiographic Rhythms. Physiological Meas-

urement, 31(5):595, 2010.

[Con78] J.B. Conway. Functions of One Complex Variable. Graduate Texts in Math,

1978.

[CPW01] C.G. Cassandras, D. L. Pepyne, and Y. Wardi. Optimal Control of a Class of

Hybrid Systems. Automatic Control, IEEE Transactions on, 46(3):398 –415,

March 2001.

[CY88] C. Courcoubetis and M. Yannakakis. Verifying Temporal Properties of Finite-

State Probabilistic Programs. In FOCS, pages 338–345. IEEE Computer

Society, 1988.

[CY95] C. Courcoubetis and M. Yannakakis. The Complexity of Probabilistic Veri-

fication. J. ACM, 42(4):857–907, 1995.

[Dah58] G. Dahlquist. Stability and Error Bounds in the Numerical Integration of

Ordinary Differential Equations. PhD thesis, Stockholm College, 1958.

[Dav93] M. H. A. Davis. Markov Models and Optimization. Chapman and Hall, 1993.

[DHK13] F. Dannenberg, E. M. Hahn, and M. Kwiatkowska. Computing Cumulat-

ive Rewards using Fast Adaptive Uniformisation. In Ashutosh Gupta and

Thomas A. Henzinger, editors, Computational Methods in Systems Biology,

volume 8130 of Lecture Notes in Computer Science, pages 33–49. Springer

Berlin Heidelberg, 2013.

[DHS09] S. Donatelli, S. Haddad, and J. Sproston. Model Checking Timed and

Stochastic Properties with CSLTA. IEEE Trans. Software Eng., 35(2):224–

240, 2009.

154

BIBLIOGRAPHY

[DKM13] M. Diciolla, M. Z. Kwiatkowska, and A. Mereacre. Synthesising Model Para-

meters for Cardiac Pacemakers Using Timed I/O Automata, 2013. Report.

[DKNP06] M. Duflot, M. Kwiatkowska, G. Norman, and D. Parker. A Formal Analysis

of Bluetooth Device Discovery. Int. Journal on Software Tools for Technology

Transfer, 8(6):621–632, 2006.

[DKTT13] F. Dannenberg, M. Kwiatkowska, C. Thachuk, and A. J. Turberfield. DNA

Walker Circuits: Computational Potential, Design, and Verification. In

David Soloveichik and Bernard Yurke, editors, DNA Computing and Mo-

lecular Programming, volume 8141 of Lecture Notes in Computer Science,

pages 31–45. Springer International Publishing, 2013.

[Doy07] L. Doyen. Robust Parametric Reachability for Timed Automata. Inf. Pro-

cess. Lett., 102(5):208–213, 2007.

[ESY12] K. Etessami, A. Stewart, and M. Yannakakis. Polynomial Time Algorithms

for Branching Markov Decision Processes and Probabilistic Min(Max) Poly-

nomial Bellman Equations. CoRR, abs/1202.4798, 2012.

[FP06] G. E. Fainekos and G. J. Pappas. Robustness of Temporal Logic Specific-

ations. In Klaus Havelund, Manuel Núñez, Grigore Rosu, and Burkhart

Wolff, editors, FATES/RV, volume 4262 of Lecture Notes in Computer Sci-

ence, pages 178–192. Springer, 2006.

[FP07] G. E. Fainekos and G. J. Pappas. Robust Sampling for MITL Specifications.

In Jean-François Raskin and P. S. Thiagarajan, editors, FORMATS, volume

4763 of Lecture Notes in Computer Science, pages 147–162. Springer, 2007.

[FP09] G. E. Fainekos and G. J. Pappas. Robustness of Temporal Logic Specifica-

tions for Continuous-Time Signals. Theor. Comput. Sci., 410(42):4262–4291,

2009.

[GBF+11] R. Grosu, G. Batt, F. H. Fenton, J. Glimm, C. Le Guernic, S. A. Smolka,

and E. Bartocci. From Cardiac Cells to Genetic Regulatory Networks. In

Ganesh Gopalakrishnan and Shaz Qadeer, editors, CAV, volume 6806 of

Lecture Notes in Computer Science, pages 396–411. Springer, 2011.

[GH01] D. Giannakopoulou and K. Havelund. Automata-Based Verification of Tem-

poral Properties on Running Programs. In Automated Software Engineering,

2001. (ASE 2001). Proceedings. 16th Annual International Conference on,

pages 412–416, 2001.

155

BIBLIOGRAPHY

[GH10] D. P. Guelev and D. V. Hung. Reasoning about QoS Contracts in the Prob-

abilistic Duration Calculus. Electr. Notes Theor. Comput. Sci., 238(6):41–62,

2010.

[GJM93] S.E. Greenhut, J.M. Jenkins, and R.S. MacDonald. A Stochastic Network

Model of the Interaction Between Cardiac Rhythm and Artificial Pacemaker.

Biomedical Engineering, IEEE Transactions on, 40(9):845–858, 1993.

[GO09] A. O. Gomes and M. V. Oliveira. Formal Specification of a Cardiac Pacing

System. In Proceedings of the 2nd World Congress on Formal Methods, FM

’09, pages 692–707, Berlin, Heidelberg, 2009. Springer-Verlag.

[GSC+09] R. Grosu, S. A. Smolka, F. Corradini, A. Wasilewska, E. Entcheva, and

E. Bartocci. Learning and Detecting Emergent Behavior in Networks of

Cardiac Myocytes. Commun. ACM, 52(3):97–105, 2009.

[GT07] M. Gribaudo and M. Telek. Fluid Models in Performance Analysis. In Marco

Bernardo and Jane Hillston, editors, SFM, volume 4486 of Lecture Notes in

Computer Science, pages 271–317. Springer, 2007.

[HCH+02] B. R. Haverkort, L. Cloth, H. Hermanns, J.P. Katoen, and C. Baier. Model

Checking Performability Properties. In DSN, pages 103–112. IEEE Computer

Society, 2002.

[Hen91] T. A. Henzinger. The Temporal Specification and Verification of Real-Time

Systems. PhD thesis, Stanford University, Palo Alto, California, USA, 1991.

[Hig02] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA, second edition,

2002.

[HJ90] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University

Press, 1990.

[HJ94] H. Hansson and B. Jonsson. A Logic for Reasoning about Time and Reliab-

ility. Formal Aspects of Computing, 6:102–111, 1994.

[HKNT98] G. Horton, V.G. Kulkarni, D.M. Nicol, and K.S. Trivedi. Fluid Stochastic

Petri Nets: Theory, Applications, and Solution Techniques. European

Journal of Operational Research, 105(1):184–201, February 1998.

[HKPV95] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s Decidable

about Hybrid Automata? In Journal of Computer and System Sciences,

pages 373–382. ACM Press, 1995.

156

BIBLIOGRAPHY

[HR06] Y. Hirshfeld and A. M. Rabinovich. Expressiveness of Metric Modalities for

Continuous Time. In D. Grigoriev, J. Harrison, and E. A. Hirsch, editors,

CSR, volume 3967 of Lecture Notes in Computer Science, pages 211–220.

Springer, 2006.

[HRSV01] T. Hune, J. Romijn, M. Stoelinga, and F. W. Vaandrager. Linear Parametric

Model Checking of Timed Automata. In Tiziana Margaria and Wang Yi 0001,

editors, TACAS, volume 2031 of Lecture Notes in Computer Science, pages

189–203. Springer, 2001.

[HUL94] J.B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization

Algorithms: Fundamentals, volume 305. Springer-Verlag, 1994.

[HZ99] D. V. Hung and C. Zhou. Probabilistic Duration Calculus for Continuous

Time. Formal Asp. Comput., 11(1):21–44, 1999.

[HZ07] D. V. Hung and M. Zhang. On Verification of Probabilistic Timed Automata

against Probabilistic Duration Properties. In RTCSA, pages 165–172, 2007.

[Jen53] A. Jensen. Markov Chains as an Aid in the Study of Markov processes.

Skand. Aktuarietidskrift, 36:87–91, 1953.

[JPC+10] Z. Jiang, M. Pajic, A. Connolly, S. Dixit, and R. Mangharam. Real-Time

Heart Model for Implantable Cardiac Device Validation and Verification. In

ECRTS, pages 239–248. IEEE Computer Society, 2010.

[JPM12a] Z. Jiang, M. Pajic, and R. Mangharam. Cyber-Physical Modeling of Im-

plantable Cardiac Medical Devices. Proceedings of the IEEE, 100(1):122–137,

2012.

[JPM+12b] Z. Jiang, M. Pajic, S. Moarref, R. Alur, and R. Mangharam. Modeling

and Verification of a Dual Chamber Implantable Pacemaker. In Cormac

Flanagan and Barbara König, editors, TACAS, volume 7214 of Lecture Notes

in Computer Science, pages 188–203. Springer, 2012.

[JY10] Karl Henrik Johansson and Wang Yi, editors. Proceedings of the 13th ACM

International Conference on Hybrid Systems: Computation and Control,

HSCC 2010, Stockholm, Sweden, April 12-15, 2010. ACM, 2010.

[KHM+98] T. J. Koo, F. Hoffmann, F. Ho Mann, H. Shim, B. Sinopoli, and S. Sastry.

Hybrid Control of an Autonomous Helicopter. In IFAC Workshop on Motion

Control, pages 285–290, 1998.

157

BIBLIOGRAPHY

[KLSV10] D. K. Kaynar, N. A. Lynch, R. Segala, and F. W. Vaandrager. The Theory

of Timed I/O Automata, Second Edition. Synthesis Lectures on Distributed

Computing Theory. Morgan & Claypool Publishers, 2010.

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of

Probabilistic Real-Time Systems. In G. Gopalakrishnan and S. Qadeer, ed-

itors, Proc. 23rd International Conference on Computer Aided Verification

(CAV’11), volume 6806 of LNCS, pages 585–591. Springer, 2011.

[KNP12] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic Verification

of Hermans Self-Stabilisation Algorithm. Formal Aspects of Computing,

24(4):661–670, 2012.

[Koy90] R. Koymans. Specifying Real-Time Properties with Metric Temporal Logic.

Real-Time Systems, 2(4):255–299, 1990.

[KP12] M. Knapik and W. Penczek. Bounded Model Checking for Parametric Timed

Automata. Timed Petri Nets and Other Models of Concurrency, 5:141–159,

2012.

[KPSY99] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Decidable Integration Graphs.

Inf. Comput., 150(2):209–243, 1999.

[KV01] O. Kupferman and M. Y. Vardi. Model Checking of Safety Properties. Form.

Methods Syst. Des., 19(3):291–314, October 2001.

[LB13] H. Lea-Banks. The Rate-Adaptive Pacemaker: Developing Simulations and

Applying Patient ECG Data, Internship report, University of Oxford, 2013.

[LGS96] J. Lygeros, D. N. Godbole, and S. Sastry. Verified Hybrid Controllers for

Automated Vehicles. IEEE Transactions on Automatic Control, 43:522–539,

1996.

[LHZ97] X. Li, D. V. Hung, and T. Zheng. Checking Hybrid Automata for Linear

Duration Invariants. In R. K. Shyamasundar and Kazunori Ueda, editors,

ASIAN, volume 1345 of Lecture Notes in Computer Science, pages 166–180.

Springer, 1997.

[LKM10] J. Lian, H. Krätschmer, and D. Müssig. Open Source Modeling of Heart

Rhythm and Cardiac Pacing. The Open Pacing, Electrophysiology & Therapy

Journal, pages 28–44, 2010.

[LP08] R. Lassaigne and S. Peyronnet. Probabilistic Verification and Approxima-

tion. Ann. Pure Appl. Logic, 152(1-3):122–131, 2008.

158

BIBLIOGRAPHY

[LPY97] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. STTT,

1(1-2):134–152, 1997.

[LS83] J. D. Lehmann and S. Shelah. Reasoning with Time and Chance. In Josep

Daz, editor, ICALP, volume 154 of Lecture Notes in Computer Science, pages

445–457. Springer, 1983.

[LSVW95] N. A. Lynch, R. Segala, F. W. Vaandrager, and H. B. Weinberg. Hybrid I/O

automata. In Hybrid Systems, pages 496–510, 1995.

[LZ01] J. B. Lasserre and E. S. Zeron. A Laplace Transform Algorithm for the

Volume of a Convex Polytope. J. ACM, 48(6):1126–1140, 2001.

[MAT13] MATLAB. version 8.2 (R2013b). The MathWorks Inc., Natick, Massachu-

setts, 2013.

[MB98] R. S. MacLeod and D.H. Brooks. Recent Progress in Inverse Problems in

Electrocardiology. Engineering in Medicine and Biology Magazine, IEEE,

17(1):73–83, 1998.

[MCTS03] P.E. McSharry, G.D. Clifford, L. Tarassenko, and L.A. Smith. A Dynamical

Model for Generating Synthetic Electrocardiogram Signals. IEEE Transac-

tions on Biomedical Engineering, 50(3):289 –294, march 2003.

[MLF08] H. Macedo, P. Larsen, and J. Fitzgerald. Incremental Development of a

Distributed Real-Time Model of a Cardiac Pacing System Using VDM. In

Jorge Cuellar, Tom Maibaum, and Kaisa Sere, editors, FM 2008: Formal

Methods, volume 5014 of Lecture Notes in Computer Science, pages 181–197.

Springer Berlin / Heidelberg, 2008.

[MS09] D. Méry and N. K. Singh. Pacemaker’s Functional Behaviors in Event-B.

Rapport de recherche, MOSEL - INRIA Lorraine - LORIA, 2009.

[MT09] S. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Cam-

bridge University Press, New York, NY, USA, 2nd edition, 2009.

[Nat07] A. Natale. Handbook of Cardiac Electrophysiology. CRC Press, 2007. Editor:

Frank Marchlnski.

[NNN10] B. F. Nielsen, F. Nielson, and H. R. Nielson. Model Checking Multivariate

State Rewards. In QEST, pages 7–16. IEEE Computer Society, 2010.

[NP10] D. Nickovic and N. Piterman. From MTL to Deterministic Timed Automata.

In Krishnendu Chatterjee and Thomas A. Henzinger, editors, FORMATS,

volume 6246 of Lecture Notes in Computer Science, pages 152–167. Springer,

2010.

159

BIBLIOGRAPHY

[NPK+05] G. Norman, D. Parker, M. Kwiatkowska, S. Shukla, and R. Gupta. Us-

ing Probabilistic Model Checking for Dynamic Power Management. Formal

Aspects of Computing, 17(2):160–176, August 2005.

[Pat93] K.R. Pattipati. Markov-Reward Models and Hyperbolic Systems. University

of Connecticut, Department of Electrical and Systems Eng., 1993.

[PCN+10] A. J. Pullan, L. K. Cheng, M. P. Nash, A. Ghodrati, R. MacLeod, and

D. H. Brooks. The Inverse Problem of Electrocardiography. In PeterW.

Macfarlane, A. van Oosterom, Olle Pahlm, Paul Kligfield, Michiel Janse,

and John Camm, editors, Comprehensive Electrocardiology, pages 299–344.

Springer London, 2010.

[PJ08] M. Prandini and H. Jianghai. Application of Reachability Analysis for

Stochastic Hybrid Systems to Aircraft Conflict Prediction. In Decision and

Control, 2008. CDC 2008. 47th IEEE Conference on, pages 4036 –4041,

December 2008.

[Pnu77] A. Pnueli. The Temporal Logic of Programs. In FOCS, pages 46–57. IEEE

Computer Society, 1977.

[PRI] PRISM Website. https://www.prismmodelchecker.org/.

[QQM01] Q. Qiu, Q. Qu, and M.Pedram. Stochastic Modeling of a Power-Managed

System-Construction and Optimization. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 20(10):1200 –1217, 2001.

[QS94] M. A. Qureshi and W. H. Sanders. Reward Model Solution Methods with Im-

pulse and Rate Rewards: an Algorithm and Numerical Results. Performance

Evaluation, 20(4):413 – 436, 1994.

[Rab10] A. M. Rabinovich. Complexity of Metric Temporal Logics with Counting and

the Pnueli Modalities. Theor. Comput. Sci., 411(22-24):2331–2342, 2010.

[SC85] A. P. Sistla and E. M. Clarke. The Complexity of Propositional Linear

Temporal Logics. J. ACM, 32(3):733–749, July 1985.

[SIM13] SIMULINK. The MathWorks Inc., Natick, Massachusetts, 2013.

[SK11] A. Sharma and J.-P. Katoen. Weighted Lumpability on Markov Chains. In

Edmund M. Clarke, Irina Virbitskaite, and Andrei Voronkov, editors, Ershov

Memorial Conference, volume 7162 of Lecture Notes in Computer Science,

pages 322–339. Springer, 2011.

160

https://www.prismmodelchecker.org/

BIBLIOGRAPHY

[TH04] P. H. Thai and D. V. Hung. Verifying Linear Duration Constraints of Timed

Automata. In ICTAC, pages 295–309, 2004.

[TZT10] A. Tuan, M. C. Zheng, and Q. T. Tho. Modeling and Verification of Safety

Critical Systems: A Case Study on Pacemaker. In SSIRI, pages 23–32. IEEE

Computer Society, 2010.

[Var85] M. Y. Vardi. Automatic Verification of Probabilistic Concurrent Finite-State

Programs. In FOCS, pages 327–338, 1985.

[Wik] Wikipedia Website. http://en.wikipedia.org/wiki/Medical_device/.

[YEGS05] P. Ye, E. Entcheva, R. Grosu, and S. A. Smolka. Efficient Modeling of

Excitable Cells Using Hybrid Automata. In In Proceedings of Computational

Methods in System Biology, pages 216–227, 2005.

[YEGS08] P. Ye, E. Entcheva, R. Grosu, and S. A. Smolka. Modelling Excitable Cells

Using Cycle-Linear Hybrid Automata. IET Syst. Biol., 2(1):24–32, 2008.

[YKNP04] H. L. S. Younes, M. Z. Kwiatkowska, G. Norman, and D. Parker. Numerical

vs. Statistical Probabilistic Model Checking: an Empirical Study. In Kurt

Jensen and Andreas Podelski, editors, TACAS, volume 2988 of Lecture Notes

in Computer Science, pages 46–60. Springer, 2004.

[ZHL08] M. Zhang, D. V. Hung, and Z. Liu. Verification of Linear Duration Invariants

by Model Checking CTL properties. In John S. Fitzgerald, Anne Elisabeth

Haxthausen, and Hüsnü Yenigün, editors, ICTAC, volume 5160 of Lecture

Notes in Computer Science, pages 395–409. Springer, 2008.

[ZPC10] P. Zuliani, A. Platzer, and E. M. Clarke. Bayesian Statistical Model Checking

with Application to Simulink/Stateflow Verification. In Johansson and Yi

[JY10], pages 243–252.

161

http://en.wikipedia.org/wiki/Medical_device/

BIBLIOGRAPHY

162

