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Abstract. We propose a method to synthesise optimal values of timing
parameters for probabilistic timed automata, in the sense that the prob-
ability of reaching some set of states is either maximised or minimised.
Our first algorithm, based on forward exploration of the symbolic states,
can only guarantee parameter values that correspond to upper (resp.
lower) bounds on maximum (resp. minimum) reachability probability.
To ensure precise reachability probabilities, we adapt the game-based
abstraction refinement method. In the parametric setting, our method
is able to determine all the possible maximum (or minimum) reachabil-
ity probabilities that arise for different values of timing parameters, and
yields optimal valuations represented as a set of symbolic constraints
between parameters.

1 Introduction

Stochastic aspect is very important for modelling numerous classes of systems,
such as communication and security protocols, due to component failures, unre-
liable channels or randomisation. The correctness of such systems can be guar-
anteed only with some probability. Many of them also operate under timing
constraints. In such cases, the probability of a property being true depends on
those timing aspects in the system: for example, increasing a certain delay might
increase the maximum or minimum probability of reaching an error state.

Automatic synthesis of timing constraints to ensure the satisfaction of a
given property has received a lot of attention lately. Its aim is to overcome
the disadvantage of model checking, which requires complete knowledge of the
system. This is often difficult to obtain, especially in the early design stages,
when the whole environment is not yet known. The use of parameters instead
of concrete values gives more freedom to the designers. A parametric timed
model can specify that a transition is enabled for a time units, where a is a
parameter. The goal is then to automatically synthesize the values of model’s
parameters such that the specification is guaranteed. Parameterisation, however,
makes verification more difficult, as most problems become undecidable.

In this paper, we are dealing with the synthesis of timing parameters for
probabilistic real-time systems modelled as probabilistic timed automata (PTA)
[18]. PTA have been introduced as an extension of timed automata (TA) [1] for
modelling and analysing systems which exhibit real-time, nondeterministic and



probabilistic behaviour. They are finite-state automata extended with clocks,
real-valued variables which increase at the same, constant rate. A fundamental
property of PTA is the maximum/minimum probability of reaching a certain
set of states in the model (i.e. the reachability probabilities). These probabil-
ities allow one to express a broad range of properties, from quality of service
to reliability, for example, deadline properties: “the maximum probability of an
airbag failing to deploy within 0.02 seconds”. PTA have been successfully used
to analyse protocols such as FireWire, Bluetooth, IEEE 802.11, etc. These are
embedded in a networked environment and their properties are almost always
expressed parametrically, as concrete values make sense only when the network
environment is known. It is thus desirable to provide a tool to automatically
derive the constraints on parameters for probabilistic systems, so that their cor-
rectness is ensured with optimal probability.

Contributions We propose an algorithm for parameter synthesis for PTA
based on the symbolic state-space exploration. As the forward approach gives
only upper (resp. lower) bounds on max. (resp. min.) reachability probability,
we adapt the game-based abstraction refinement method. This method has been
introduced in [13] for Markov decision processes, and extended in [15] for PTA,
for the computation of exact max/min reachability probabilities. As we consider
parametric models, these probabilities are not unique and depend on particular
parameter valuations. Our algorithm allows us to choose the valuations for which
these probabilities are either maximised or minimised, and to synthesise them
as a finite set of symbolic constraints on parameters. To the best of our knowl-
edge, this is the first paper dealing with optimal timing parameter synthesis for
probabilistic timed automata. A full version of this paper is available as [10].

Related work An orthogonal line of work on parameter synthesis for un-
timed probabilistic models is that of [7], where the authors consider Markov
chains and transition probabilities as parameters. Regarding timed systems,
parametric timed automata have been introduced in [2] as a means to spec-
ify parametric timing constraints. The reachability-emptiness problem, which
asks whether there exists a parameter valuation such that the automaton has an
accepting run, is undecidable. Subsequent research has thus concentrated on find-
ing subclasses for which certain problems would be decidable by restricting the
use of parameters [9] or by restricting the parameter domain [11]. In [6], the au-
thors consider fully deterministic networks of timed automata with priorities and
parametric guards, and extended MTL with counting formulas. They develop an
algorithm based on constraint solving and Monte Carlo sampling to synthesise
timing delays. There is little work, however, on timing parameter synthesis for
probabilistic real-time systems. In [8], a technique is proposed to approximate
parametric rate values for continuous-time Markov chains for bounded reacha-
bility probabilities. In [3], the authors apply their Inverse method for parameter
synthesis for TA to PTA. The method starts from reference parameter values of
a TA, and derives the constraints on parameters such that the obtained models
are time-abstract equivalent. Time-abstract equivalence preserves untimed prop-
erties, and thus the parameter values derived on the non-probabilistic version of



the model preserve reachability probabilities. Termination is not guaranteed and
the derived constraints are not weakest in general. In [4], the authors consider
a fully deterministic parametric model, where the remaining time in a node is
unique and given as a parameter, and provide a method to compute the expected
time to reach some node as a function of model’s parameters.

2 Preliminaries

A discrete probability distribution over a set S is a function µ : S ÞÑ r0, 1s, such
that

ř

sPS µpsq “ 1 and the set ts | s P S ^ µpsq ą 0u is finite. By DistpSq we
denote the set of such distributions. µp is a point distribution if µppsq “ 1 for
some s P S. We now define Markov decision processes, a formalism for modelling
systems which exhibit both nondeterministic and probabilistic behaviour.

Definition 1 (Markov decision processes). An MDP is a tuple M “ pS, s0, Σ,
StepsMq, where S is a set of states, s0 is a set of initial states, Σ is a set of
actions and StepsM : S ˆΣ ÞÑ DistpSq is a probabilistic transition function.

A transition in M from state s is first made by nondeterministically selecting
an action δ P Σ and then the successor state s1 is chosen randomly according to
the probability distribution StepsMps, δq. A path is a sequence of such transitions
and represents a particular resolution of both nondeterminism and probability.
A state s is reachable in M if there exists a path from the initial state of M to
s. A strategy A is a function from finite paths to distributions which resolves
nondeterminism in an MDP. For a fixed strategy A, the behaviour of an MDP
is purely probabilistic, and we can define the probability pAs pF q of reaching a
target set F Ď S from s under A. By quantifying over all strategies in M, we
can define the minimum and maximum probability of reaching F :

pminM pF q “ infsPs0 infA pAs pF q and pmaxM pF q “ supsPs0supA p
A
s pF q

These values can be computed efficiently together with the corresponding strate-
gies using, e.g., value iteration, which approximates the probability value.

Stochastic 2-player games [5] are turn-based games involving two players and
probability. They generalise MDPs by allowing two types of nondeterministic
choice, each controlled by a separate player.

Definition 2 (Stochastic games). A stochastic game is a tuple G “ pS, pS1, S2q,
s0, Σ, StepsGq, where S is a set of states partitioned into sets S1 and S2, s0 is a

set of initial states, Σ is a set of actions and StepsG : S1 ˆΣ ˆ S2 ÞÑ 2DistpSq is
a probabilistic transition function.

S1 and S2 represent the sets of states controlled by player 1 and player 2, respec-
tively. The behaviour of a game is as follows: first player 1, in state s P S1, selects
an available action δ P Σ, which takes the game into a state s1 P S2. Player 2
then selects a probability distribution µ from the set StepsGps, δ, s

1q. Finally, the
successor state s2 is chosen according to µ. A resolution of nondeterminism in G
is a pair of strategies σ1, σ2 for player 1 and player 2, respectively, under which
we can define the probability pσ1,σ2

s pF q of reaching a subset F Ď S from state s.



Clocks and parameters. Let R, Rě0 and Z be the sets of reals, non-negative
reals and integers, respectively. Let X be a finite set. A linear expression on X
is an expression of the form λ :“ k | k ¨ x | λ` λ, where k P Z and x P X.

Now let X “ tx1, ..., xnu be a finite set of clock variables. A clock valuation
u : X ÞÑ Rě0 is a function assigning a non-negative real number to each x P X.
Let 0 be a valuation that assigns 0 to all clocks in X. For any R Ď X and any
valuation u on X, we write urRs for the valuation on X such that urRspxq “ 0
if x P R and urRspxq “ upxq otherwise. For t ě 0, u ` t denotes the valuation
which assigns pu` tqpxq “ upxq ` t to all x P X. Let P “ tp1, ..., pmu be a finite
set of parameters. A (linear parametric) constraint on X Y P is an expression
of the form γ :“ xi „ c | xi ´ xj „ c | γ ^ γ where 1 ď i ‰ j ď n, xi, xj P X,
„P tă,ďu and c is a linear expression on P . By CpX,P q we denote the set of
such parametric constraints and by C1pX,P q we denote the set of (non-diagonal)
constraints of the form: γ1 :“ xi „ c | γ1 ^ γ1. For any valuation v on P and
any linear constraint γ on X Y P , vpγq is the linear constraint on X obtained
by replacing each parameter p P P by the (concrete) value vppq. Given some
arbitrary order on XYP , a valuation can be viewed as a real-valued vector of size
|XYP |. The set of valuations satisfying some linear constraints is then a convex
polyhedron of R|XYP |. A zone is a polyhedron defined only by conjunctions of
the constraints of the form x ´ y „ c or x „ c with x, y P X, c P Z and
„P tă,ďu. If v is a valuation on both clocks and parameters X Y P (as v is
used throughout the paper, unless specified otherwise) then by v|P (resp. v|X)
we denote the projection of v onto P (resp. X). We now give a formal definition
of Parametric Probabilistic Timed Automata (PPTA), which are PTA extended
with timing parameters.

Definition 3 (PPTA). A PPTA is a tuple P “ pL, l0, X, P,Σ, prob, Invq where:
L is a finite set of locations; l0 P L is the initial location; X is a finite set
of clocks; P is a finite set of parameters; Σ is a finite set of actions; prob :
L ˆ Σ ˆ CpX,P q ÞÑ Distp2X ˆ Lq is a probabilistic transition function; and
Inv : L ÞÑ C1pX,P q is a function that assigns an invariant to each location.

For any rational valuation v on P , the structure vpPq obtained from P by
replacing every constraint γ by vpγq is a PTA. The behaviour of a PPTA P is
described by the behaviour of all PTA vpPq obtained by considering all possible
parameter valuations. A (concrete) state of vpPq is a pair pl, uq P LˆRXě0 such
that the clock valuation u satisfies the invariant (notation u |ù vpInvplqq). A
transition in the semantics of vpPq is a timed-action pair pt, δq. In each state
certain amount of time t P Rě0 can elapse, as long as u ` t |ù vpInvplqq. Time
elapse is followed by the choice of an action δ P Σ, for which the set of clocks
R to reset and successor locations l1 are selected randomly according to the
probability distribution probpl, δ, γq. The action δ can only be taken once its
constraint vpγq (called guard) is satisfied by the current clock valuation. Each
element pR, l1q P 2X ˆ L, such that probpl, δ, γqpR, l1q ą 0, is called an edge and
the set of all such edges, denoted edgespl, δ, γq, is assumed to be an ordered list
xe1, ..., eny. We now formally define the semantics of a PPTA under a parameter
valuation v.



Definition 4 (Semantics of a PPTA). Let P “ pL, l0, X, P,Σ, prob, Invq be
a PPTA and v be a R-valuation on P (v : P ÞÑ R) . The semantics of vpPq is
given by the infinite-state MDP MvpPq “ pQ, q0,Rě0 ˆΣ,StepsMvpPq

q where:

- Q “ tpl, uq P LˆX ÞÑ Rě0 | u |ù vpInvplqqu, q0 “ pl0,0q
- StepsMvpPq

ppl, uq, pt, δqq “ µ iff DpR, l1q P edgespl, δ, γq such that u ` t |ù

vpγq ^ u` t1 |ù Invplq for all 0 ď t1 ď t, and for any pl1, u1q P Q:
µpl1, u1q “

ř

t| probpl, δ, γqpR, l1q |R P 2X ^ u1 “ pu` tqrRs |u

Note that the definition of µ involves summation over the cases in which multiple
clock resets result in the same target state pl1, u1q, expressed as a multiset, since
some of the probabilities might be the same.

We study the optimal timing parameter synthesis problem for PPTA, i.e.,
automatically finding values of parameters such that the probability (either
maximum or minimum) of reaching a certain set of locations is optimised. For
example, in the case of property “the maximum probability of an airbag failing
to deploy”, we would want to choose the timing parameters that minimise this
probability value. On the other hand, we would want to maximise “the maximum
probability that the protocol successfully terminates”.

3 Synthesis with Forward Reachability

A naive approach to parameter synthesis for PTA is to restrict parameter values
to bounded intervals of integers (or rationals that can be scaled to integers) and
perform verification for each such (non-parametric) model using a probabilistic
model checker, e.g. Prism [16]. However, this approach is shown to be inefficient
for (non-probabilistic) TA compared to symbolic techniques, especially when the
sets of possible parameter values are large [11]. This is why we aim to formulate
a symbolic algorithm for deriving constraints on parameters that ensure the
optimisation of some reachability probability in the model. For the symbolic
exploration of the state-space, we use the notion of parametric symbolic state
and forward symbolic operations on valuation sets given below, defined in [11].

Definition 5 (Parametric symbolic state). A (parametric) symbolic state
of a PPTA P, with set of clocks X and set of parameters P , is a pair S “ pl, ζq
where l is a location of P and ζ is a set of valuations v on X Y P .

- future (time successors): ζÕ “ tv1 | v P ζ ^ v1pxq “ vpxq ` d, d ě 0 if x P
X; v1pxq “ vpxq if x P P u
- reset of clocks in R Ď X: ζrRs “ tvrRs | v P ζu
- successor by edge e “ pR, l1q in the distribution probpl, δ, γq: Succppl, ζq, eq “
pl1, pζ X γqrRsÕ X Invpl1qq
- initial symbolic state: InitpPq “ pl0, tv P RXYP | v|X P t0XuÕ ^ vpInvpl0qquq.

The sets of valuations of all reachable symbolic states of a PPTA are convex
polyhedra [9], since the set of valuations of the initial symbolic state is a convex
polyhedron and all the operations preserve convexity.



Forward reachability exploration The forward exploration, which builds an
MDP-based abstraction of a given PTA [18], is an extension of the well-known
zone-based forward reachability algorithm, ubiquitous for model-checking TA.
This algorithm performs the exploration of the state-space by successively com-
puting symbolic states using Succ, starting from the initial state. For probabilis-
tic models, on-the-fly techniques are not used, as the goal is to compute the
probability of reaching a state, instead of just checking the existence of a path.

In Fig. 1 we present our extension of the forward reachability algorithm
from [18] to parametric probabilistic timed automata. It takes a PPTA P and
some subset of its locations F as input, and returns the reachability graph
pSym,Transq. Sym is the set of all reachable parametric symbolic states S of the
model and Trans is the set of symbolic transitions. Waiting is the set of those
symbolic states which have not yet been explored. As long as there are sym-
bolic states unexplored (Waiting ‰ ∅), successor states are computed for each
possible edge using Succ operator. Each symbolic transition T P Trans is of the
form T “ ppl, ζq, δ, xpl1, ζ1q, ..., pln, ζnqyq, where n “ |edgespl, δ, γq|. A symbolic
transition T induces probability distribution µT over symbolic states Sym. For
any pl1, ζ 1q P Sym: µT pl

1, ζ 1q “
ř

t| probpl, δ, γqei | ei P edgespl, δ, γq ^ ζi “ ζ 1 |u.

Using these distributions, the algorithm BuildMDPpSym,Transq constructs
an MDP similarly to that of [18] for PTA, which can then be analysed to compute
the reachability probabilities. For PTA, and therefore for PPTA, this approach
only gives upper (resp. lower) bounds on maximum (resp. minimum) reachability
probability in the model. This is because the reachability graph is too coarse to
preserve precise time the actions can be taken, and thus constructs an over-
approximation of the possible strategies.

Let us highlight the differences between our algorithm and its non-parametric
counterpart from [18]. In the non-parametric case, all the symbolic states pl, ζq
containing some location l P F are collected into a set Reached . Then, in the
constructed MDP, the max. (or min.) probability of ending up in Reached is
calculated. In our setting, we are interested in finding the optimal parameter
valuations (that maximise or minimise some reachability probability). We thus
need to keep separate those symbolic states containing different parameter val-
uations and calculate the max/min reachability probability for each one. We
divide the set Reached into subsets Reached i, each of which contains the sym-
bolic states pli, ζiq with equivalent parameter values (obtained by projection onto
parameters ζi|P ). Another difference arises when building symbolic transitions
Trans. This follows from the property of TA (and therefore PTA) proven in
[9], which states that weakening (resp. strengthening) the guards in any TA T ,
e.g decreasing lower and increasing upper (resp. increasing lower and decreasing
upper) bounds on clocks, yields an automaton whose reachable states include
(resp. are subset of) those of T . We therefore add, for any two symbolic states
pli, ζiq, plj , ζjq P Sym which satisfy ζi|X Ď ζj |X ^ ζi|P Ď ζj |P ^ li “ lj , a tran-

sition (point distribution) from plj , ζjq to pli, ζiq, in order to obtain the correct
probabilities in the MDP. By tReached iu|P in Fig. 1, we denote the parameter
values contained in Reached i.



// ParReach(P, F )
Sym :“ ∅; Trans :“ ∅; Reached :“ ∅; Waiting :“ tInitpPqu; n :“ 0; Reached0 :“ ∅
while Waiting ‰ ∅

choose and remove pl, ζq from Waiting
Sym :“ Sym Y tpl, ζqu
for δ P Σ such that edgespl, δ, γq ‰ ∅

for each ei P edgespl, δ, γq “ xe1, ..., eny
pl1i, ζ

1
iq :“ Succppl, ζq, eiq

if pl1i, ζ
1
iq R Sym ^ ζ 1

i ‰ ∅^ l1i R F then Waiting :“ Waiting Ytpl1i, ζ
1
iqu

else if pl1i, ζ
1
iq R Sym ^ ζ 1

i ‰ ∅ then Reached :“ Reached Y tpl1i, ζ
1
iqu

Trans :“ Trans Y tppl, ζq, δ, xpl1, ζ1q, ..., pln, ζnqqyu
//Additional transitions from a state to its subsets
for each pl, ζq P Sym

if Dpl1, ζ 1
q P Sym such that l “ l1 ^ ζ|X Ď ζ 1

|X ^ ζ|P Ď ζ 1
|P then

Trans :“ Trans Y tpl1, ζ 1
q,∅, xpl, ζqyu

//Divide Reached into subsets Reached i according to different parameter valuations
for each pl, ζq P Reached

if (ζ|P “ tReached iu|P for some Reached i where i P r0..ns) then
Reached i :“ Reached i Y tpl, ζqu

else Reachedn :“ Reachedn Y tpl, ζqu; n``;
return pSym,Transq
// BuildParMDPpSym,Transq
sym0 “ tpl, ζq P Sym | l “ l0u
for pl, ζq P Sym and T P Transpl, ζq

StepsMppl, ζq, T q :“ µT

return M “ pSym, sym0,Trans, StepsMq

Fig. 1. Parametric forward reachability and construction of the corresponding MDP

Example 1. Let us consider a PPTA shown in Fig. 2. We are interested in
the values of the parameter b which maximise the probability of the medium
successfully send-ing the data (reaching location l2). The MDP constructed
from the reachability graph is shown in Fig. 3. There are three symbolic states
holding l2 with different parameter valuations, Reached1 “ tpl2, x “ y ^ b ď
1qu,Reached2 “ tpl2, x “ y^b ď 3qu and Reached3 “ tpl2, x “ y^b ď 5qu. Using
Prism, we calculated maximal probabilities of reaching those states in the MDP:
pmax p♦Reached1q “ 0.65, pmax p♦Reached2q “ 0.8775, and pmax p♦Reached3q “

0.957125, where ♦φ means that φ must hold eventually. If we want to maximise
the probability of reaching l2, it is clear that we should choose b ď 1.

The forward reachability algorithm provides only upper (resp. lower) bound
on the max. (resp. min.) reachability probability. In Example 1, this method
actually gives the correct values, but consider now the automaton of Fig. 4,
inspired by [18]. The probability of reaching l3 obtained using forward approach
(the resulting MDP is shown in Fig. 5) is 1, regardless of the value of a. By
careful inspection, we observe that the max. probability is 1 only if a “ 0 (when
the transition from l0 is taken at x “ y “ 0), and otherwise it is at most 0.5.

Theorem 1. For a PPTA P and a subset of its locations F , if pSym,Transq “
ParReachpP, F q and M “ BuildMDPpSym,Transq, then:



l0 l1

x ď 3^ y ď 7

l2 l3

send

release x ě b

tx :“ 0u

t
x
, y

:“
0u

0.
65

x ě 2
tx :“ 0u

0.35

tx :“ 0u

ty :“ 0u

y “ 7

abort

Fig. 2. PPTA

l1, x ď 3^ b ` x ď
y ď 7 ^ b ď 7

l0, x “ y

l1, x ď 3^b`x`2 ď
y ď 7 ^ b ď 5

l2, x “
y ^ b ď 5

l3, x “
y ^ b ď 7

l1, x ď 3^b`x`4 ď
y ď 7 ^ b ď 3

l2, x “
y ^ b ď 3

l3, x “
y ^ b ď 5

l1, x ď 3^b`x`6 ď
y ď 7 ^ b ď 1

l2, x “
y ^ b ď 1

l3, x “
y ^ b ď 3

l3, x “
y ^ b ď 1

0.35

0.35

0.35

0.65

0.65

0.65

Fig. 3. MDP for PPTA of Fig. 2

l0

l3

l2l1 0.5

tx :“ 0u

0.5

x “ 0^ y “ 0
ty :“ 0u

x “ 0^ y “ a

Fig. 4. PPTA

l0, x “ y

l3, x “ y

l2, x “ yl1, x ď y
0.50.5

Fig. 5. MDP for PPTA of Fig. 4

- pminM pReachedq ď pminP pF q and pmaxM pReachedq ě pmaxP pF q;
- if M gives the precise reachability probabilities in P and if some plk, ζkq P

Reached has the optimum (max. or min.) reachability probability, among all
plj , ζjq P Reached, then tζk|P zp

Ť

@j‰k,ljPF
ζj|P qu is the solution to the optimal

parameter synthesis problem.

The reachability-emptiness problem for parametric timed automata is unde-
cidable [2], and the algorithm for forward reachability exploration for this model
might not terminate [11,9]. Since our algorithm for PPTA can be viewed as its
extension, termination cannot be guaranteed either.

To resolve the limitation of the forward approach, namely, that it can only
compute bounds on the reachability probabilities, in the next section we adapt
the game-based abstraction refinement method from [15] to synthesise the op-
timal timing parameter values for PPTA. We choose this approach as it can
compute precise min. and max. probabilities and is shown to perform better
then the alternative model checking technique for PTA, digital clocks [17].

4 Synthesis with Game-based Abstraction Refinement

In [14], stochastic two-player games are used as abstractions for MDPs. In such
a game, the two players represent nondeterminism introduced by the abstraction
(player 1) and nondeterminism from the original model (player 2). By quanti-
fying over all possible strategies for players 1 and 2, we can obtain both the



lower bound (lb) and upper bound (ub) on either the max. or min. reachability
probability in the original MDP. If a game G is constructed from an MDP M
using the approach from [14], where F is a subset of states of M, we have:

plb,min
G pF q ď pmin

M pF q ď pub,min
G pF q and plb,max

G pF q ď pmax
M pF q ď pub,max

G pF q.

In case of maximum probability we have: plb,max
G pF q

def
“ supsPs0 infσ1supσ2

pσ1,σ2
s pF q

and pub,max
G pF q

def
“ supsPs0supσ1

supσ2
pσ1,σ2
s pF q. Using similar techniques to value

iteration for MDPs [5], these probabilities can be efficiently approximated, to-
gether with the corresponding strategy pairs which achieve them.

In [15], the concept of gamed-based abstractions is used for PTA in order
to compute the maximum and minimum reachability probabilities. The method
starts from the MDP obtained via forward reachability algorithm, and subse-
quently builds and refines the stochastic game abstraction. In this section, we
generalise this method by taking into account timing parameters.

Game-based abstraction for PPTA The game-based abstraction is con-
structed by analysing transitions outgoing from each location in a PPTA. The
transitions are divided into subsets according to the common part of the symbolic
state in which they are enabled. This analysis is based on the validity opera-
tor [15]. In the non-parametric case, this operator takes the symbolic transition
T “ ppl, ζq, δ, xpl1, ζ1q, ..., pln, ζnqyq and returns false if the part of ζ from which
it is possible to let time pass and then perform action δ, such that taking the
ith edge pRi, liq gives some state pli, vq P pli, ζiq, is empty. Such analysis requires
several backward operators, defined for the parametric domain in [12]:

- past (time predecessors): ζÖ “ tv1 | v P ζ ^ v1pxq ě 0, v1pxq ` d “ vpxq, d ě
0 if x P X; v1pxq “ vpxq if x P P u

- inverse reset of clocks in set R Ď X: ζrRs´1 “ tv1 | Dv P ζ s.t. v1pxq “
0 if x P R^ v1pxq “ vpxq otherwiseu

We extend the validity operator to parametric domain and replace Boolean
operations with the corresponding set-theoretic operations, in order to obtain
the valuations on X Y P from which it is possible to perform such a transition:
validpT q “ ζ X ppγ X pXni“1pζirRs

´1qqqÖq. The transition T is therefore valid
if the set of valuations (polyhedron) validpT q is non-empty. The projection of
these valuations onto parameters gives the corresponding values of parameters.
In order to construct a stochastic game, the notion of validity is extended to sets
of symbolic transitions with the same source. Again, we replace Boolean with
set-theoretic operators: validpTq “ pXTPTvalidpT qqXpXTPTranspl,ζqzT validpT qq.
validpTq defines the set of valuations v |ù ζ on X Y P , such that from pl, vq it
is possible to perform any symbolic transition T P T, but it is not possible
to perform any other transition of Transpl, ζq. In a symbolic state pl, ζq of a
stochastic game abstraction of a PPTA, player 1 first picks a subset T of symbolic
transitions (in other words, part of the symbolic state in which these transitions
are valid), and player 2 then picks a transition T P T. Fig. 6 shows the algorithm
for the construction of a stochastic game from a given reachability graph, which
yields (by quantifying over all possible strategies for player 1 and player 2) upper
and lower bounds on the max/min reachability probabilities in a PPTA.



//BuildGamepSym,Transq
sym0 “ tpl, ζu P S | l “ l0u
for pl, ζq P S

for T Ď Transpl, ζq s.t. T ‰ ∅ and validpTq ‰ ∅
StepsGppl, ζq,Tq :“ tµT | T P Tu

return G “ pSym, sym0, 2
Trans , StepsGq

Fig. 6. Algorithm for stochastic game abstraction

// RefinepSym,Trans, pl, ζq,Tlb ,Tubq

ζlb :“ validpTlbq; ζub :“ validpTubq

Symnew :“ tpl, ζlbq, pl, ζubq, pl, ζ ^ pζlb _ ζubqquzt∅u
Symref :“ pSymztpl, ζquq Z Snew ; Transref :“ ∅
for each T “ pS0, δ, xS1, ..., Snyq P Trans

if pl, ζq R tS0, S1, ..., Snu then
Transref :“ Transref

Y tT u
else Tnew :“ tpS1

0, δ, xS
1
1, ..., S

1
nyq | S

1
i P Symnew if Si “ pl, ζq ^ S

1
i “ Si otherwiseu

for T new
P Tnew such that validpT new

q ‰ ∅
Transref :“ Transref

Y tT new
u

return pSymref ,Transref
q

Fig. 7. Algorithm for parametric abstraction refinement

l0, x “ y

l3, x “ y

l2, x “ yl1, x ď y 0.50.5

Fig. 8. Game-based abstraction

l0, x “ y

l3, x “ y

l2, x “ y

l1, x ě 0 ^
y ´ x ‰ a l1, x “ 0^ y “ a

0.5
0.5

0.5 0.5

Fig. 9. Refinement of a symbolic state

Theorem 2. If pSym,Transq “ ParReachpP, F q, G “ BuildGamepSym,Transq

and ˚ P tmin,maxu then: plb,˚G pReachedq ď p˚
PpF q ď pub,˚G pReachedq.

Example 2. A game constructed from the forward reachability graph of a PPTA
in Fig. 2 is shown in Fig. 8. We represent player 1 states by ellipses containing
symbolic states pl, ζq, and player 2 states by a black dot. In two of its states
(containing l1 and l2), player 1 can choose between the part of the state where
both transitions are valid and the part where only one transition is valid (a
self-loop). The analysis of this game, however, gives values 0 and 1 for lower
and upper bound, respectively, on the maximum probability of reaching l3. We
address this issue below by applying a method to refine the abstraction.

Parametric abstraction refinement Stochastic game abstractions might be
too imprecise for reachability probabilities, as shown in Example 2. The abstrac-
tion refinement method proceeds by iteratively computing refined abstractions



until suitable precision is obtained. The game-based abstraction refinement for
MDPs from [13] uses the difference between lower and upper bounds on max/min
reachability probability computed thus far as the quantitative measure of pre-
cision. This method has been subsequently used in [15] for the abstraction re-
finement for PTA. We now explain our extension for the parametric case, which
leads to parameter values corresponding to precise probabilities in the model.

After the construction and analysis of a stochastic game, the refinement algo-
rithm, presented in Fig. 7, takes the reachability graph pSym,Transq, splits one
symbolic state per iteration and modifies symbolic transitions accordingly. The
split of a symbolic state pl, ζq is done with respect to player 1 strategy choices,
Tub and Tlb , in pl, ζq, which achieve lower and upper bounds (such choices
must exist in a state where these bounds differ, [14]). The symbolic state pl, ζq
is therefore split into pl, validpTlbqq, pl, validpTubqq, and pl, ζ ^  pvalidpTlbq _

validpTubqqq. By construction, both validpTlbq and validpTubq are non-empty
and validpTlbq ‰ validpTubq, and thus the split produces strict refinement. The
MDP of Fig. 5, after a refinement of one symbolic state, is shown in Fig. 9.

The complete game-based abstraction refinement scheme, shown in Fig. 10,
provides a means to compute the precise values for max/min reachability prob-
ability, each corresponding to a particular parameter valuation. We can then
choose those valuations that optimise (either maximise or minimise) these prob-
abilities. Algorithm Synth uses function AnalyzeGame of [5] to compute
bounds on max/min probability of reaching some set of locations in a stochas-
tic game and the corresponding strategies. The choice Ti of player 1, in some
pl, ζq, is a set of symbolic transitions T , and also represents the part of ζ in
which these transitions are valid. To find the optimal parameter valuations,
we first need to take the projection onto the parameters for each validpTiq
in the optimal strategy of player 1 (the strategy for reaching some Reachedk
which gives the optimal probability), and take their intersection. Then, for some
plk, ζkq P Reachedk (all of them have the equivalent ζk|P ), we obtain the solution
as t

Ş

i validpTiq|P X pζk|P zp
Ť

@j‰k,ljPF
ζj|P qqu.

Theorem 3. For a PPTA P, a subset of its location F and ˚ P tmin,maxu, let
pSym,Transq “ ParReachpP, F q. If pSymref ,Transref q is the result returned
by applying Refine to pSym,Transq, G by BuildGamepSym,Transq and Gref

by BuildGamepSymref ,Transref q then:
- pSymref ,Transref q is a reachability graph for pP, F q;
- plb,˚G pReachedq ď plb,˚Gref pReachedq and pub,˚G pReachedq ě pub,˚Gref pReachedq;

- If p˚ “ plb,˚Gref plk, ζkq “ pub,˚Gref plk, ζkq, for some plk, ζkq P Reached, is the opti-
mum ˚ reachability probability, among all plj , ζjq P Reached, then the solution to
the optimal parameter synthesis can be extracted from the strategy σ1 of Player
1 (which achieves p˚) and ζk.

The algorithm is designed to terminate when the difference between the up-
per and lower bound falls below some threshold ε for reasons of computational
efficiency. We show that this is, however, not necessary. If the initial forward
reachability exploration terminates (ParReach), then our algorithm, similarly



// SynthpP, F,˚, ε, ‹q
pSym,Transq “ ParReachpP, F q; G “ BuildGamepSym,Transq; p˚ :“ 0; σp˚ :“ ∅
for each Reached i P Reached

pplb,˚G , pub,˚G , σlb
1 , σ

ub
1 q :“ AnalyseGamepG,Reached i,˚q

while pub,˚G ´ plb,˚G ą ε
choose pl, ζq P Sym

pSymref ,Transref
q “ RefinepSym,Trans, pl, ζq, σlb

1 pl, ζq, σ
ub
1 pl, ζqq

G “ BuildGamepSymref ,Transref
q

pplb,˚G , pub,˚G , σlb
1 , σ

ub
1 q :“ AnalyseGamepG,Reached i,˚q

if p˚
„ plb,˚G then // put ă (resp. ą) instead of „ when ‹ is maximisation

p˚ :“ plb,˚G ; σp˚ :“ σlb
1 (resp. minimisation)

return rp˚, σp˚ s

Fig. 10. Parameter synthesis using game-based abstraction refinement loop

to its non-parametric counterpart from [15], is guaranteed to terminate in a finite
number of steps with a precise answer.

Theorem 4 (Termination). Let ˚ P tmin,maxu. If forward reachability al-
gorithm (ParReach) terminates, then the algorithm for parameter synthesis
Synth terminates after a finite number of steps and returns p˚ “ plb,˚ “ pub,˚.

Example 3. We return to the PPTA in Fig. 4. The final stochastic game, after
two refinement iterations, contains six symbolic states. The validity of each new
symbolic transition Ti, obtained in the refinement process, gives the following
parameter valuations:
-T1 “ ppl0, x “ yq,∅, xpl1, x “ 0^ y “ aq, pl2, x “ y “ 0qyq ‰ ∅ if a “ 0
-T2 “ ppl0, x “ yq,∅, xpl1, x “ 0^ y “ aq, pl2, x “ y ą 0qyq ‰ ∅ if a ‰ 0
-T3 “ ppl0, x “ yq,∅, xpl1, x ě 0^ y ‰ aq, pl2, x “ y “ 0qyq ‰ ∅ if a ‰ 0
-T4 “ ppl0, x “ yq,∅, xpl1, x ě 0 ^ y ‰ aq, pl2, x “ y ą 0qyq ‰ ∅ for a P Rě0.
The set of transitions T1 “ tT2, T3, T4u is valid if a ‰ 0, in which case the max.
probability of reaching l3 is 0.5, and T2 “ tT1, T4u, is valid if a “ 0, in which case
the max. probability of reaching l3 is 1. If we wish to maximise this probability,
the algorithm obtains the constraint a “ 0.

5 Conclusion

We presented a technique for PPTA which derives symbolic constraints on pa-
rameters of the model, such that the max/min probability of reaching some set
of locations is optimised. We focused on probabilistic reachability, but can easily
consider more expressive target sets that refer to locations and clocks by syntac-
tically modifying the model as in [18]. Computing expected time properties using
game abstractions is still open for PTA. Termination of our algorithm depends
on whether the forward reachability exploration terminates. Unlike for TA/PTA,
where the extrapolation operator on zones can be used, in the parametric case
we need to impose certain restrictions to ensure termination. One possibility is



to restrict the parameter domain to bounded integers as in [11]. We are currently
implementing the algorithm in Prism.
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