
1

Reasoning about Cognitive Trust in Stochastic Multiagent
Systems

XIAOWEI HUANG, University of Oxford, UK

MARTA KWIATKOWSKA, University of Oxford, UK

MACIEJ OLEJNIK, University of Oxford, UK

We consider the setting of stochastic multiagent systems modelled as stochastic multiplayer games and

formulate an automated verification framework for quantifying and reasoning about agents’ trust. To capture

human trust, we work with a cognitive notion of trust defined as a subjective evaluation that agent Amakes

about agent B’s ability to complete a task, which in turn may lead to a decision by A to rely on B. We propose

a probabilistic rational temporal logic PRTL
∗
, which extends the probabilistic computation tree logic PCTL

∗

with reasoning about mental attitudes (beliefs, goals and intentions), and includes novel operators that can

express concepts of social trust such as competence, disposition and dependence. The logic can express, for

example, that “agent A will eventually trust agent B with probability at least p that B will behave in a way

that ensures the successful completion of a given task”. We study the complexity of the automated verification

problem and, while the general problem is undecidable, we identify restrictions on the logic and the system

that result in decidable, or even tractable, subproblems.

CCS Concepts: • Theory of computation →Modal and temporal logics; Probabilistic computation; Veri-
fication by model checking.

Additional Key Words and Phrases: multi-agent systems, stochastic games, cognitive trust, quantitative

reasoning, probabilistic temporal logic

ACM Reference Format:
Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik. 2019. Reasoning about Cognitive Trust in Stochastic

Multiagent Systems. ACM Trans. Comput. Logic 1, 1, Article 1 (January 2019), 64 pages. https://doi.org/10.1145/

3329123

1 INTRODUCTION
Mobile autonomous robots are rapidly entering the fabric of our society, to mention driverless

cars and home assistive robots. Since robots are expected to work with or alongside humans in

our society, they need to form partnerships with humans, as well as other robots, understand

the social context, and behave, and be seen to behave, according to the norms of that context.

Human partnerships such as cooperation are based on trust, which is influenced by a range of

subjective factors that include subjective preferences and experience. As the degree of autonomy of

mobile robots increases and the nature of partnerships becomes more complex, to mention shared

autonomy, understanding and reasoning about social trust and the role it plays in decisions whether

to rely on autonomous systems is of paramount importance. A pertinent example is the recent

Authors’ addresses: Xiaowei Huang, University of Oxford, Department of Computer Science, Oxford, UK, xiaowei.huang@

live.com; Marta Kwiatkowska, University of Oxford, Department of Computer Science, Oxford, UK, marta.kwiatkowska@cs.

ox.ac.uk; Maciej Olejnik, University of Oxford, Department of Computer Science, Oxford, UK, maciej.olejnik@cs.ox.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1529-3785/2019/1-ART1 $15.00

https://doi.org/10.1145/3329123

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1145/3329123
https://doi.org/10.1145/3329123
https://doi.org/10.1145/3329123


1:2 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

Tesla fatal car accident while on autopilot mode [37], which is a result of over-reliance (“overtrust”)

by the driver, likely influenced through his personal motivation and preferences.

Trust is a complex notion, viewed as a belief, attitude, intention or behaviour, and is most

generally understood as a subjective evaluation of a truster on a trustee about something in particular,
e.g., the completion of a task [24]. A classical definition from organisation theory [39] defines trust

as the willingness of a party to be vulnerable to the actions of another party based on the expectation
that the other will perform a particular action important to the trustor, irrespective of the ability to
monitor or control that party. The importance of being able to correctly evaluate and calibrate trust

to guide reliance on automation was recognised in [38]. Trust (and trustworthiness) have also

been actively studied in many application contexts such as security [30] and e-commerce [14].

However, in this paper we are interested in trust that governs social relationships between humans

and autonomous systems, and to this end consider cognitive trust that captures the human notion

of trust. By understanding how human trust in an autonomous system evolves, and being able to

quantify it and reason about it, we can offer guidance for selecting an appropriate level of reliance

on autonomy.

The goal of this paper is therefore to develop foundations for automated, quantitative reasoning
about cognitive trust between (human and robotic) agents, which can be employed to support

decision making in dynamic, uncertain environments. The underlying model is that of multiagent
systems, where agents are autonomous and endowed with individual goals and preferences in the

style of BDI logic [44]. To capture uncertainty, we work in the setting of stochastic multiagent

systems, represented concretely in terms of concurrent stochastic multiplayer games, where stochas-
ticity can be used to model, e.g., component failure or environmental uncertainty. This also allows

us to represent agent beliefs probabilistically. Inspired by the concepts of social trust in [17], we

formulate a probabilistic rational temporal logic PRTL
∗
as an extension of the probabilistic temporal

logic PCTL
∗
[23] with cognitive aspects. PCTL∗ allows one to express temporal properties pertaining

to system execution, for example “with probability p, agent A will eventually complete a given

task”. PRTL
∗
includes, in addition, mental attitude operators (belief, goal, intention and capability),

together with a collection of novel trust operators (competence, disposition and dependence), in

turn expressed using beliefs. The logic PRTL
∗
is able to express properties such as “agent A will

eventually trust agent B with probability at least p that B will behave in a way that ensures the

successful completion of a given task” that are informally defined in [17]. PRTL
∗
is interpreted

over a stochastic multiagent system, where the cognitive reasoning processes for each agent can be

modelled based on a cognitive mechanism that describes his/her mental state (a set of goals and an

intention, referred to as pro-attitudes) and subjective preferences.

Since we wish to model dynamic evolution of beliefs and trust, the mechanisms are history-

dependent, and thus the underlying semantics is an infinite branching structure, resulting in

undecidability of the general model checking problem for PRTL
∗
. In addition, there are two types

of nondeterministic choices available to the agents, those made along the temporal or the cognitive
dimension. By convention, the temporal nondeterminism is resolved using the concept of adversaries

and quantifying over them to obtain a fully probabilistic system [22], as is usual for models

combining probability and nondeterminism. We use a similar approach for the cognitive dimension,

instead of the classical accessibility relation employed in logics for agency, and resolve cognitive

nondeterminism by preference functions, given as probability distributions that model subjective

knowledge about other agents. Also, in contrast to defining beliefs in terms of knowledge [16] and

probabilistic knowledge [22] operators, which are based solely on agents’ (partial) observations, we

additionally allow agents’ cognitive changes and subjective preferences to influence their belief.

This paper makes the following original contributions.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:3

• We introduce autonomous stochastic multiagent systems as an extension of stochastic multi-

player games with a cognitive mechanism for each agent (a set of goals and intentions).

• We provide a mechanism for reasoning about agent’s cognitive states based on preference

functions that enables a sound formulation of probabilistic beliefs.

• We formalise a collection of trust operators (competence, disposition and dependence) infor-

mally introduced in [17] in terms of probabilistic beliefs.

• We formulate a novel probabilistic rational temporal logic PRTL
∗
that extends the logic

PCTL
∗
[23] with mental attitude and trust operators.

• We study the complexity of the automated verification problem for PRTL
∗
and, while the

general problem is undecidable, we identify restrictions on the logic and the system that

result in decidable, or even tractable, subproblems.

The structure of the paper is as follows. Section 2 gives an overview of related work, and in

Section 3 we discuss the concept of cognitive trust. Section 4 presents stochastic multiplayer games

and strategic reasoning on them. Section 5 introduces autonomous stochastic multiagent systems,

an extension of stochastic multiplayer games with a cognitive mechanism. Section 6 introduces

preference functions and derives the semantics of the subjective, probabilistic belief operator.

Section 7 defines how beliefs vary with respect to agents’ observations. In Section 8 we define trust

operators and the logic PRTL
∗
. We consider the interactions of beliefs and pro-attitudes in Section 9

via pro-attitude synthesis. Section 10 gives the undecidable complexity result for the general PRTL
∗

model checking problem and Section 11 presents several decidable logic fragments. We conclude

the paper in Section 12.

A preliminary version of this work appeared as [28]. This extended version includes detailed

derivations of the concepts, illustrative examples and full proofs of the complexity results omitted

from [28].

2 RELATEDWORK
The notion of trust has been widely studied in management, psychology, philosophy and economics

(see [36] for an overview). Recently, the importance of trust in human-robot cooperation was

highlighted in [34]. Trust in the context of human-technology relationships can be roughly classified

into three categories: credentials-based, experience-based, and cognitive trust. Credentials-based
trust is used mainly in security, where a user must supply credentials in order to gain access.

Experience-based trust, which includes reputation-based trust in peer-to-peer and e-commerce

applications, involves online evaluation of a trust value for an agent informed by experiences

of interaction with that agent. A formal foundation for quantitative reputation-based trust has

been proposed in [32]. In contrast, we focus on (quantitative) cognitive trust, which captures

the social (human) notion of trust and, in particular, trust-based decisions between humans and

robots. The cognitive theory of [17], itself founded on organisational trust of [39], provides an

intuitive definition of complex trust notions but lacks rigorous semantics. Several papers, e.g.,

[25, 26, 29, 41], have formalised the theory of [17] using modal logic, but none are quantitative and

automatic verification is not considered. Of relevance are recent approaches [47, 48] that model

the evolution of trust in human-robot interactions as a dynamical system; instead, our formalism

supports evolution of trust through events and agent interactions.

A number of logic frameworks have been proposed that develop the theory of human decisions [6]

for artificial agents, see [40] for a recent overview. The main focus has been on studying the

relationships betweenmodalities with various axiomatic systems, but their amenability to automatic

verification is arguable because of a complex underlying possible world semantics, to mention the

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:4 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

sub-tree relation of BDI logic [44]. The only attempt at model checking such logics [46] ignores the

internal structure of the possible worlds to enable a reduction to temporal logic model checking.

The distinctive aspects of our work is thus a quantitative formalisation of cognitive trust in terms

of probabilistic temporal logic, based on a probabilistic notion of belief, together with algorithmic

complexity of the corresponding model checking problem.

3 COGNITIVE THEORY OF SOCIAL TRUST
In the context of automation, trust is understood as delegation of responsibility for actions to the

autonomous system and willingness to accept risk (possible harm) and uncertainty. The decision

to delegate is based on a subjective evaluation of the system’s capabilities for a particular task,

informed by factors such as past experience, social norms and individual preferences. Moreover,

trust is a dynamic concept which evolves over time, influenced by events and past experience. The

cognitive processes underpinning trust are captured in the influential theory of social trust by [17],

which is particularly appropriate for human-robot relationships and serves as an inspiration for

this work.

The theory of [17] views trust as a complex mental attitude that is relative to a set of goals and

expressed in terms of beliefs, which in turn influence decisions about agent’s future behaviour.

They consider agent A’s trust in agent B for a specific goal ψ (goals may be divided into tasks),

and distinguish the following core concepts: competence trust, where A believes that B is able to

performψ , and disposition trust, where A believes that B is willing to performψ . The decision to

delegate or rely on B involves a complex notion of trust called dependence: A believes that B needs,

depends, or is at least better off to rely on B to achieveψ , which has two forms, strong (A needs or

depends on B) and weak (forA, it is better to rely than not to rely on B). [17] also identify fulfilment
belief arising in the truster’s mental state, which we do not consider.

We therefore work in a stochastic setting (to represent uncertainty), aiming to quantify belief

probabilistically and express trust as a subjective, belief-weighted expectation, informally understood

as a degree of trust.

4 STOCHASTIC MULTIAGENT SYSTEMS AND TEMPORAL REASONING
A multiagent systemℳ comprises a set of agents (humans, robots, components, processes, etc.)

running in an environment [16]. To capture random events such as failure and environmental

uncertainty that are known to influence trust, we work with stochastic multiagent systems, con-

cretely represented using concurrent stochastic multiplayer games, where each agent corresponds

to a player. Taking such models as a starting point, in this section we gradually extend them to

autonomous multiagent systems that support cognitive reasoning.

4.1 Stochastic Multiplayer Games
Given a finite set S , we denote by 𝒟(S) the set of probability distributions on S and by 𝒫(S) the
power set of S . Given a probability distribution δ over a set S , we denote by supp(δ ) the support
of δ , i.e., the set of elements of S which have positive probability. We call δ a Dirac distribution if

δ (s) = 1 for some s ∈ S .
We now introduce concurrent stochastic games, in which several players repeatedly make choices

simultaneously to determine the next state of the game.

Definition 4.1. A stochastic multiplayer game (SMG) is a tuple ℳ = (Aдs, S, Sinit, {ActA}A∈Aдs ,T ,
L), where:

• Aдs = {1, ...,n} is a finite set of players called agents, ranged over by A, B, ...
• S is a finite set of states,

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:5

• Sinit ⊆ S is a set of initial states,

• ActA is a finite set of actions for the agent A,
• T : S ×Act → 𝒟(S) is a (partial) probabilistic transition function, where Act = ×A∈AдsActA,
• L : S → 𝒫(AP) is a labelling function mapping each state to a set of atomic propositions

taken from a set AP .

We assume that each (global) state s ∈ S of the system includes a local state of each agent and an

(optional) environment state. In every state of the game, each player A ∈ Aдs selects a local action
aA ∈ ActA independently and the next state of the game is chosen by the environment according to

the probability distribution T (s,a) where a ∈ Act is the joint action. In other words, the probability

of transitioning from state s to state s ′ when action a is taken is T (s,a)(s ′). In this paper we will

usually omit the environment part of the state.

In concurrent games players perform their local actions simultaneously. Turn-based games are a

restricted class of SMGs whose states are partitioned into subsets, each of which is controlled by

a single agent, meaning that only that agent can perform an action in any state in the partition.

Turn-based games can be simulated by concurrent games by requiring that, in states controlled

by agent A, A performs an action aA ∈ ActA and the other agents perform a distinguished silent

action ⊥.

Let aA denote agent A’s action in the joint action a ∈ Act . We let Act(s) = {a ∈ Act |

T (s,a) is defined} be the set of valid joint actions in state s , and ActA(s) = {aA | a ∈ Act(s)}
be the set of valid actions in state s for agentA.T is called serial (or total) if, for any state s and joint
action a ∈ Act , T (s,a) is defined. We often write s−→a

T s
′
for a transition from s to s ′ via action a,

provided that T (s,a)(s ′) > 0.

Paths. A path ρ is a finite or infinite sequence of states s0s1s2... induced from the transition

probability function T , i.e., satisfying T (sk ,a)(sk+1) > 0 for some a ∈ Act , for all k ≥ 0. Paths

generated byT are viewed as occurring in the temporal dimension. We denote the set of finite (resp.

infinite) paths ofℳ starting in s by FPathℳ(s) (resp. IPathℳ(s)), and the set of paths starting from
any state by FPath

ℳ
(resp. IPath

ℳ
). We may omit ℳ if clear from the context. For any path ρ we

write ρ(k) for its (k + 1)-th state, ρ[0..n] for the prefix s0...sn , and ρ[n..∞] for the suffix snsn+1...
when ρ is infinite. If ρ is finite then we write last(ρ) for its last state and |ρ | for its length, i.e., the
number of states in ρ. Given two paths ρ = s0...sn and ρ ′ = s ′

0
...s ′m , we write ρ · ρ ′ = s0...sns

′
1
...s ′m

when sn = s ′
0
for their concatenation by an overlapping state, and ρρ ′ = s0...sns

′
0
s ′
1
...s ′m for the

regular concatenation.

Strategies. A (history-dependent and stochastic) action strategy σA of agent A ∈ Aдs in an SMG

ℳ is a function σA : FPath
ℳ → 𝒟(ActA), such that for all aA ∈ ActA and finite paths ρ it holds that

σA(ρ)(aA) > 0 only if aA ∈ ActA(last(ρ)). We call a strategy σ pure if σ(ρ) is a Dirac distribution for

any ρ ∈ FPath
ℳ

. A strategy profile σD for a set D of agents is a vector of action strategies ×A∈DσA,
one for each agent A ∈ D. We let ΣA be the set of agent A’s strategies, ΣD be the set of strategy

profiles for the set of agents D, and Σ be the set of strategy profiles for all agents.

Probability space. In order to reason formally about a given SMG ℳ we need to quantify the

probabilities of different paths being taken. We therefore define a probability space over the set

of infinite paths IPath
ℳ(s0) starting in a given state s0 ∈ S , adapting the standard construction

from [31]. Our probability measure is based on the function assigning probability to a given finite

path ρ = s0...sn under strategy σ ∈ Σ, defined as Prσ (ρ) =
∏n−1

i=0
∑

a∈Act σ(ρ[0..k])(a) ·T (sk ,a)(sk+1).
To define measurable sets, for a path ρ we let Cylρ be a basic cylinder, which is a set of all

infinite paths starting with ρ. We then set ℱℳ
s to be the smallest σ -algebra generated by the

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:6 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

Table 1. Payoff of a simple trust game

share keep

invest (20, 20) (0, 40)
withhold (10, 5) (10, 5)

Table 2. Strategies for Alice and Bob

Strategy withhold invest keep share

σpassive 0.7 0.3

σactive 0.1 0.9

σshare 0.0 1.0

σkeep 1.0 0.0

basic cylinders {Cylρ | ρ ∈ FPath
ℳ(s)} and Pr

ℳ
σ to be the unique measure on the set of infinite

paths IPath
ℳ(s) such that Pr

ℳ
σ (Cylρ ) = Prσ (ρ). It then follows that (IPathℳ(s),ℱℳ

s , Pr
ℳ
σ ) is a

probability space [31].

Example 4.2. We consider a simple (one shot) trust game from [33], in which there are two agents,

Alice and Bob. At the beginning, Alice has 10 dollars and Bob has 5 dollars. If Alice does nothing,

then everyone keeps what they have. If Alice invests her money with Bob, then Bob can turn the

15 dollars into 40 dollars. After having the investment yield, Bob can decide whether to share the

40 dollars with Alice. If so, each will have 20 dollars. Otherwise, Alice will lose her money and Bob

gets 40 dollars.

For the simple trust game, the payoffs of the agents are shown in Table 1. The game has a

Nash equilibrium of Alice withholding her money and Bob keeping the investment yield. This

equilibrium discourages collaboration between agents and has not been confirmed empirically

under the standard economic assumptions of pure self-interest [5].

To illustrate our methods, we construct a stochastic multiplayer game 𝒢 withAдs = {Alice,Bob},
S = {s0, s1, ..., s4} with s0 being the initial state, ActAlice = {invest ,withhold,⊥}, ActBob =
{share,keep,⊥} and the transition function defined in an obvious way (see Figure 1). Note that we

do not represent payoffs explicitly in our modelling of the trust game, but rather capture them using

atomic propositions. For example, richerAlice,Bob is true is state s1, while richerBob,Alice holds in
s3. Note also that Alice and Bob proceed in turns, which is captured through joint actions where

the other agent takes the silent action ⊥. We represent states as pairs:

(aAlice ,aBob ),

where aAlice ∈ ActAlice is Alice’s last action and aBob ∈ ActBob is Bob’s last action. For example,

s0 = (⊥,⊥), s2 = (invest ,⊥) and s4 = (⊥, share).
We now equip agents with strategies. For Alice, we define σactive and σpassive , where the

former corresponds to high likelihood of Alice investing her money and the latter allocates greater

probability to withholding it. For Bob, we set two pure strategies σkeep and σshare , corresponding
to him keeping and sharing the money with Alice. The strategies are summarised in Table 2. □

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:7

Fig. 1. Simple trust game

4.2 Temporal Reasoning about SMGs
We now recall the syntax of the Probabilistic Computation Tree Logic PCTL

∗
[3, 4]

1
for reason-

ing about temporal properties in systems exhibiting nondeterministic and probabilistic choices.

PCTL
∗
is based on CTL

∗
[13] for purely nondeterministic systems and retains its expressive power,

additionally extending it with a probabilistic operator P▷◁qψ .

Definition 4.3. The syntax of the logic PCTL∗ is as follows.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ∀ψ | P▷◁qψ
ψ ::= ϕ | ¬ψ | ψ ∨ψ | ⃝ψ | ψ𝒰ψ

where p is an atomic proposition, ▷◁∈ {<, ≤, >, ≥}, and q ∈ [0, 1].

In the above, ϕ is a PCTL
∗
(state) formula andψ an LTL (path) formula. The operator ∀ is the

(universal) path quantifier of CTL
∗
and P▷◁qψ is the probabilistic operator of PCTL [23], which

expresses thatψ holds with probability in relation ▷◁ with q. The remaining operators, ⃝ψ (next)

andψ𝒰ψ (until) follow their usual meaning from PCTL and CTL
∗
. The derived operators such as

ϕ1 ∧ ϕ2, ^ψ (eventually), □ψ (globally),ψℛψ (release) and ∃ϕ (existential path quantifier) can be

obtained in the standard way.

Let ℳ be an SMG. Given a path ρs which has s as its last state, a strategy σ ∈ Σ of ℳ, and a

formulaψ , we write:

Probℳ,σ,ρs (ψ )
def
= Pr

ℳ
σ {δ ∈ IPath

ℳ
T (s) | ℳ, ρs,δ |= ψ }

for the probability of implementingψ on a path ρs when a strategy σ applies. The relationℳ, ρ,δ |=

ψ is defined below. Based on this, we define:

Probmin
ℳ,ρ (ψ )

def
= infσ ∈Σ Probℳ,σ,ρ (ψ ),

Probmax
ℳ,ρ (ψ )

def
= supσ ∈Σ Probℳ,σ,ρ (ψ )

as the minimum and maximum probabilities of implementingψ on a path ρ over all strategies in Σ.
We now give semantics of the logic PCTL

∗
for concurrent stochastic games.

Definition 4.4. Let ℳ = (Aдs, S, Sinit, {ActA}A∈Aдs ,T ,L) be an SMG and ρ ∈ FPath
ℳ
T . The

satisfaction relation |= of PCTL
∗
is defined inductively by:

1
Note that we do not consider here the coalition operator, and therefore the logic rPATL* [12] that is commonly defined

over stochastic game models.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:8 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

• ℳ, ρ |= p if p ∈ L(last(ρ)),
• ℳ, ρ |= ¬ϕ if not ℳ, ρ |= ϕ,
• ℳ, ρ |= ϕ1 ∨ ϕ2 if ℳ, ρ |= ϕ1 or ℳ, ρ |= ϕ2,
• ℳ, ρ |= ∀ψ ifℳ, ρ,δ |= ψ for all δ ∈ IPath

ℳ
T (last(ρ)),

• ℳ, ρ |= P▷◁qψ if Prob
opt (▷◁)
ℳ,ρ (ψ ) ▷◁ q, where

opt(▷◁) =

{
min when ▷◁∈ {≥, >}
max when ▷◁∈ {≤, <}

and for any infinite continuation δ ∈ IPath
ℳ
T of ρ (i.e., δ (0) = last(ρ)):

• ℳ, ρ,δ |= ϕ if ℳ, ρ |= ϕ,
• ℳ, ρ,δ |= ¬ψ if not ℳ, ρ,δ |= ψ ,
• ℳ, ρ,δ |= ψ1 ∨ψ2 if ℳ, ρ,δ |= ψ1 or ℳ, ρ,δ |= ψ2,

• ℳ, ρ,δ |= ⃝ψ if ℳ, ρ · δ [0..1],δ [1..∞] |= ψ ,
• ℳ, ρ,δ |= ψ1𝒰ψ2 if there exists n ≥ 0 such that ℳ, ρ · δ [0..n],δ [n..∞] |= ψ2 and ℳ, ρ ·

δ [0..k],δ [k ..∞] |= ψ1 for all 0 ≤ k < n.

We note that the semantics of state formulas is defined on finite paths (histories) rather than

states, whereas the semantics of path formulas is defined on a finite path together with its infinite

continuation (rather than a single infinite path). The reason for defining it in such a way is to be

consistent with definitions of trust operators (which we introduce in Section 8), whose semantics is

dependent on execution history (understood as a sequence of past states of a system).

Below, we write < for >, > for <, ≤ for ≥ and ≥ for ≤ (inverting the order), and write <̂ for ≤, >̂
for ≥, ≤̂ for <, and ≥̂ for > (strict/non-strict variants).

Proposition 4.5. Let ℳ be an SMG and ρ ∈ FPath
ℳ. The following equivalences hold for any

formulaψ :

(1) ℳ, ρ |= ¬P ▷◁qψ iffℳ, ρ |= P ▷̂◁1−q¬ψ
(2) ℳ, ρ |= P ▷◁qψ iffℳ, ρ |= P ▷◁1−q¬ψ

Definition 4.6. For a given SMGℳ and a formula ϕ of the language PCTL
∗
, the model checking

problem, written as ℳ |= ϕ, is to decide whether ℳ, s |= ϕ for all initial states s ∈ Sinit.

Example 4.7. Here we give a few examples of PCTL
∗
formulas that we may wish to check on the

trust game from Example 4.2. The formula

P≤0.9 ⃝ (aAlice = invest)

expresses that the probability of Alice investing in the next step is no greater than 0.9. On the other

hand, the formula

P≤1^(aBob = keep)

states (the obvious fact) that the probability of Bob keeping the money in the future is no greater

than 1. Finally, the formula

∃^richerAlice,Bob ,
where richerAlice,Bob is an atomic proposition with obvious meaning, states that eventually a state

can be reached where Alice has more money than Bob.

All the above formulas are true when evaluated at the state s0, given in Fig 1. □

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:9

Table 3. Payoff of a simple trust game with trust as a decision factor

share keep

invest (20,20+5) (0,40-20)

withhold (10,5) (10,5)

5 STOCHASTIC MULTIAGENT SYSTEMSWITH THE COGNITIVE DIMENSION
In this section, we present a framework for reasoning about autonomous agents in multiagent

systems. The key novelty of our model is the consideration of agents’ mental attitudes to enable

autonomous decision making, which we achieve by equipping agents with goals and intentions
(also called pro-attitudes). We enhance stochastic multiplayer games with a cognitive mechanism

to represent reasoning about goals and intentions. The system then evolves along two interleaving

dimensions: temporal, representing actions of agents in the physical space, and cognitive, which
corresponds to mental reasoning processes, i.e., goal and intention changes, that determine the

actions that agents take.

5.1 Cognitive Reasoning
We now motivate and explain the concepts of the cognitive state of an agent and the cognitive
mechanism, and how they give rise to partial observability.

Cognitive State. We assume that each agent has a set of goals and a set of intentions, referred to
as pro-attitudes and viewed as high-level concepts.We follow existing literature, see e.g., Bratman [6]

and Gollwitzer [21], etc., and identify commitment as the distinguishing factor between goals and

intentions, i.e., an intention is a committed plan of achieving some immediate goal. We therefore

think of goals as abstract attitudes, for example selflessness or risk-taking, whereas intentions are

more concrete and directly influence agents’ behaviour. Goals are usually static and independent of

external factors, whereas intentions are dynamic, influenced by agent’s own goals and by its beliefs

about other agents’ pro-attitudes. For the purposes of our framework, we assume that agents use

action strategies to implement their intentions and therefore there exists a one-to-one association

between intentions and action strategies. This way, agents’ behaviour in the physical space is

determined by their mental state.

For an agent A, we useGoalA to denote its set of goals and IntA to denote its set of intentions. At

any particular time, an agent may have several goals, but can only have a single intention. Goals

are not required to satisfy constraints such as consistency.

Definition 5.1. Let A be an agent and let GoalA and IntA be its set of goals and intentions,

respectively. A cognitive state ofA consists of a set of goals and an intention, which can be retrieved

from global states of the system using the following functions:

• дsA : S → 𝒫(GoalA), i.e., дsA(s) is a set of agent A’s goals in state s ,
• isA : S → IntA, i.e., isA(s) is the agent A’s intention in state s .

To illustrate the concepts, we now extend the trust game given in the previous examples to

include agents’ goals and intentions.

Example 5.2. It is argued in [33] that the single numerical value as the payoff of the trust game

introduced in Example 4.2 is an over-simplification. A more realistic utility should include both the

payoff and other hypotheses, including trust. An example payoff table is given in Table 3, in which

Bob’s payoff will increase by 5 to denote that he will gain Alice’s trust if sharing the investment

yield and decrease by 20 to denote that he will lose Alice’s trust if keeping the investment yield

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:10 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

without sharing. With the updated payoffs, the new Nash equilibrium is for Alice to invest her

money and Bob to share the investment yield.

The main point for the new payoffs is for the agents to make decisions not only based on the

original payoffs, but also based on the trust that the other agent has. This reflects some actual

situations in which one agent may want to improve, or at least maintain, the trust of the other

agent. In our modelling of such a game, we show that this can be captured by adding the cognitive

dimension and assuming that Bob makes decisions by considering additionally whether Alice’s

trust in him reaches a certain level.

For Alice, we letGoalAlice = {passive,active} be two goals which represent her attitude towards

investment. Intuitively, passive represents the goal of keeping the cash and active represents the
goal of investing. For simplicity, we assume that Alice’s intention is determined by her goals and

set IntAlice = {passive,active}. We also assume that Alice uses strategy σpassive to implement her

passive intention, and σactive to implement her active intention, where the strategies are defined in

Example 4.2.

Bob has a set of goals GoalBob = {investor ,opportunist}, which represent the goals of being an

investor pursuing long-term profits and being an opportunist after short-term profits, respectively.

As for Alice, Bob’s intentions are associated with action strategies, and we have already defined two

such strategies: σshare , in which Bob shares the investment yield with Alice, and σkeep , in which

Bob keeps all the money for himself. Hence IntBob = {share,keep}, with the obvious association.

We assume that Bob’s intention will be share when he is an investor and his belief in Alice being

active is above a certain threshold, and keep otherwise. Intuitively, when he is an investor, Bob
intends to build a good relationship with Alice (in other words, gain Alice’s trust), hoping that it
will pay off in his future interactions with her.

We extend the trust game 𝒢 defined in Example 4.2 by expanding the states to additionally

include cognitive states. In particular, each state can now be represented as a tuple:

(aAlice ,aBob ,дsAlice ,дsBob , isAlice , isBob ),

such that aAlice and aBob are as before and дsAlice ⊆ GoalAlice ∪ {⊥}, дsBob ⊆ GoalBob ∪ {⊥},

isAlice ∈ IntAlice ∪ {⊥}, and isBob ∈ IntBob ∪ {⊥} denote the cognitive part of the state, namely

Alice’s and Bob’s goals and intentions. □

Partial Observation. It is common that, in real-world systems, agents are not able to fully

observe the system state at any given time. In a typical scenario, every agent runs a local protocol,

maintains a local state, observes part of the system state by, e.g., sensing devices, and communicates

with other agents. It is impractical, and in fact undesirable, from the system designer’s point of

view, to assume that agents can learn the local states of other agents or learn what the other agents

observe. In the context of our work partial observability arises naturally through the cognitive

state, which represents an internal state of every agent that is, in general, not observable by other

agents. We formalise this notion with the following definition.

Definition 5.3. A partially observable stochastic multiplayer game (POSMG) is a tupleℳ = (G,
{OA}A∈Aдs , {obsA}A∈Aдs ), where

• G = (Aдs, S, Sinit, {ActA}A∈Aдs ,T ,L) is an SMG,

• OA is a finite set of observations for agent A, and
• obsA : S −→ OA is a labelling of states with observations for agent A.

Remark 1. We note that, unlike partially observable Markov processes (POMDPs), in which

observations are probability distributions, we follow the setting in [18] and work with deterministic

observations. In [20], it is stated without proof that probabilistic observations do not increase the

complexity of the problem.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:11

We lift the observations from states to paths in the obvious way. Formally, for a finite path

ρ = s0...sn , we define obsA(ρ) = obsA(s0)...obsA(sn).

Remark 2. In our model, an agent remembers both its past observations and the number of states,

known as synchronous perfect recall [16]. This assumption is necessary for the definition of belief

in Section 7.

Example 5.4. For the trust game from Example 5.2, the agents’ observation functions for A ∈

{Alice,Bob} are as follows:

obsA((aAlice ,aBob ,дsAlice ,дsBob , isAlice , isBob )) = (aAlice ,aBob ,дsA, isA),

denoting that they cannot observe the opponent’s cognitive state but can observe their last action.

The set of observations OA can be easily inferred from this definition. □

We say ℳ is fully observable if s = s ′ iff obsA(s) = obsA(s
′) for all A ∈ Aдs . In fully observable

systems, agents make decisions based on the current state, whereas in partially observable systems

decisions must be based on all past observations.

Cognitive Mechanism. While agents interact with each other and with the environment

by taking actions in the physical space, they make decisions through cognitive processes that

determine their behaviour. Thus, in addition to the temporal dimension of transitions s−→a
T s

′
, we

also distinguish a cognitive dimension of transitions s−→Cs
′
, which corresponds tomental reasoning

processes. The idea is that each temporal transition is preceded by a cognitive transition, which

represents an agent’s reasoning that led to its decision about which action to take. While transitions

in the temporal dimension conform to the transition function T , cognitive changes adhere to the

cognitive mechanism, which determines for an agent its legal goals and intentions. Formally, we

have the following definition of a stochastic game extended with a cognitive mechanism.

Definition 5.5. A stochastic multiplayer game with the cognitive dimension (SMGΩ) is a tuple

ℳ = (G, {ΩA}A∈Aдs , {πA}A∈Aдs ), where

• G = (Aдs, S, Sinit, {ActA}A∈Aдs ,T ,L, {OA}A∈Aдs , {obsA}A∈Aдs ) is a POSMG,

• ΩA = ⟨ω
д
A,ω

i
A⟩ is the cognitive mechanism of agent A, consisting of a legal goal function

ω
д
A : S → 𝒫(𝒫(GoalA)) and a legal intention function ωi

A : S → 𝒫(IntA), and

• πA = ⟨π
д
A,π

i
A⟩ is the cognitive strategy of agentA, consisting of a goal strategy π

д
A : FPath

ℳ →

𝒟(𝒫(GoalA)) and an intention strategy π iA : FPath
ℳ → 𝒟(IntA).

We refer to the SMG G from the above definition as the induced SMG fromℳ.

Thus, the SMGΩ model generalises the usual notion of multiplayer games by extending states

S with agents’ cognitive states, and adding for each agent A the cognitive mechanism ΩA and

A’s cognitive strategies to enable autonomous decision making. We sometimes refer to the set

Ω = {ΩA}A∈Aдs of cognitive mechanisms of all agents as the cognitive mechanism of the system

ℳ.

The legal goal (resp. intention) functionωдA (resp.ωi
A) specifies legal goal (resp. intention) changes

in a given state. Intuitively, those are goal (resp. intention) changes that an agent is allowed (but

might not be willing) to make. One possible use of those functions is to enforce application-specific

constraints that goals or intentions must satisfy (see Example 5.6).

The cognitive strategy πA determines how an agent’s cognitive state evolves over time. Specifically,

the goal (resp. intention) strategy π
д
A (resp. π iA) specifies the incurred goal (resp. intention) changes

(along with their probabilities), which are under agent A’s consideration for a given execution

history. We sometimes call π
д
A (resp. π iA) a possible goal (resp. intention) function and require that

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:12 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

possible goal (resp. intention) changes are also legal. Formally, for all ρs ∈ FPath
ℳ
, we must have

supp(π
д
A(ρs)) ⊆ GoalA(s) and supp(π

i
A(ρs)) ⊆ IntA(s).

Remark 3. We remark that cognitive strategies π
д
A and π iA are, in general, not computable. In

Section 9 we propose how to realise cognitive strategies so that they can be effectively computed.

We note the following correspondence between the cognitive and temporal dimension: GoalA
and IntA (regarded as sets) specify all the goals and intentions of a given agent A similarly to the

way that ActA specifies all the actions of A, while the cognitive mechanism Ω identifies possible

cognitive transitions in a similar fashion to the transition function T playing the same role for

the temporal dimension. Finally, a cognitive strategy gives the probability for agents’ goal and

intention changes, analogously to an action strategy quantifying the likelihood of actions taken by

agents in the temporal dimension.

The following standard assumption ensures that agents’ temporal and cognitive transitions, as

well as their cognitive strategies, are consistent with their partial observability.

Assumption 1. (UniformityAssumption) An SMGΩ ℳ = (Aдs, S, Sinit, {ActA}A∈Aдs ,T ,L, {OA}A∈Aдs ,
{obsA}A∈Aдs , {ΩA}A∈Aдs , {πA}A∈Aдs ) satisfies the Uniformity Assumption if the following condi-

tions hold.

• Agents can distinguish states with different sets of joint actions or legal cognitive changes: for

any two states s1 and s2 and an agentA ∈ Aдs , obsA(s1) = obsA(s2) impliesActB (s1) = ActB (s2),
ω
д
B (s1) = ω

д
B (s2), and ω

i
B (s1) = ω

i
B (s2), for all B ∈ Aдs .

• Agents can distinguish execution histories which give rise to different cognitive strategies:

for any two finite paths ρ1, ρ2, obsA(ρ1) = obsA(ρ2) implies π
д
A(ρ1)(x) = π

д
A(ρ2)(x) and

π iA(ρ1)(x) = π
i
A(ρ2)(x) for all x ⊆ GoalA.

Given a state s and a set of agent A’s goals x ⊆ GoalA, we write A.д(s,x) for the state obtained
from s by substituting agent A’s goals with x . Similar notation A.i(s,x) is used for the intention

change when x ∈ IntA. Alternatively, we may write s−→
A.д .x
C s ′ if s ′ = A.д(s,x) contains the goal

set x for A and s−→A.i .x
C s ′ if s ′ = A.i(s,x) contains the intention x for A.

Example 5.6. Having extended states of the trust game 𝒢 with goals and intentions in Exam-

ple 5.2, we now make 𝒢 into an SMGΩ by introducing cognitive transitions, defining the cognitive

mechanism and specifying cognitive strategies of agents.

We give a graphical representation of 𝒢 in Figure 2. Note that w and i stand for Alice’s actions

withhold and invest respectively, whereas s and k denote Bob’s actions share and keep. Cognitive
transitions are represented with dashed lines. Temporal actions are annotated with probabilities

which reflect the intention (i.e., an action strategy) that an agent has in a given state.

Below we explain how we arrived at such a system. The execution of the game starts by agents

choosing their goals. While it may seem unnatural (a more realistic approach would probably

involve multiple initial states corresponding to agents having different goals), such a way of

modelling plays well with our formalism and does not restrict the generality of our approach.

Formally, we specify those cognitive transitions using legal goal function for Alice and Bob as

follows:

ω
д
Alice (s0) = {{active}, {passive}},

ω
д
Bob (sk ) = {{investor }, {opportunist}},

where k ∈ {1, 2}.
Once their goals are set, agents begin interacting with one another in the physical space by taking

actions. However, each action is preceded by an agent determining its intention, which represents

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:13

Fig. 2. Trust game with cognitive dimension

the mental reasoning that results in action selection. Note that we do not depict Alice’s intention

change in Figure 2, the reason being our assumption that Alice’s intention is fully determined by

her goals.

Asmentioned above, Alice’s actions are annotated with probabilities, according to our assumption

that cognitive state determines agents’ behaviour. For example, in states s3 and s4, Alice’s intention
is passive, and so the probabilities of withholding and investing the money are given by Table 2. If

Alice withholds her money, the game ends. Otherwise, Bob determines his intention (his choice

depends on his goals and his belief about Alice’s goals) and performs his action of keeping or

sharing his profit. Bob’s legal intentions are given by his legal intention function, defined as:

ωi
Bob (sk ) = {share,keep},

where k ∈ {8, 10, 12, 14}.
Finally, we define Bob’s intention strategy. As mentioned above, Bob takes on intention share

only if he is an investor and he believes that Alice is active. The latter depends on Alice’s actions in

the physical space (since Bob can’t observe Alice’s cognitive state). In this case, Alice investing her

money with Bob increases his belief that she is active. We therefore set:

π iBob (s0s1s3s8) = ⟨share 7→ 1,keep 7→ 0⟩

π iBob (s0s1s4s10) = ⟨share 7→ 0,keep 7→ 1⟩

π iBob (s0s2s5s12) = ⟨share 7→ 1,keep 7→ 0⟩

π iBob (s0s2s6s14) = ⟨share 7→ 0,keep 7→ 1⟩

Note that the above strategy is pure. While the framework does not enforce it, we believe defining

it in such a way more accurately resembles human cognitive processes. Also, as we will see later,

pure intention strategies are more compatible with our trust formulations.

Finally, note that we don’t consider goal strategies here. The reason for that is our representation

of goals in this example as static mental attitudes which agents possess or not, rather than choose

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:14 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

dynamically. We therefore treat the first two cognitive transitions as nondeterministic for now. In

Section 6, we introduce a mechanism which motivates choosing such representation. □

Remark 4. We remark that, while defining the intention strategy as in the above example is

easy for simple systems, for more complex games this approach does not scale. In particular, we

could consider repeated version of the trust game, for which constructing Bob’s intention strategy

manually is impractical. However, in Section 7, we formalise the notion of agent’s belief and, in

Section 9, we propose an intuitive method of constructing the intention strategy efficiently.

Induced SMG. For a concrete system, it is conceptually simpler to assume a certain, predefined

interleaving of cognitive and temporal transitions, as we did in Example 5.6. However, in general,

such interleaving might be arbitrary since agents may change their mental state at any time. It is

therefore often useful to think of a SMGΩ as a collection of induced SMGs, each corresponding

to one configuration of mental states of agents. Those induced SMGs do not differ as far as their

components are concerned (i.e., states, actions and transitions are the same), but different mental

states give rise to different behaviour. Execution of such an SMGΩ can then be viewed as starting

in one of the induced SMGs, remaining there as long as agents perform temporal actions and

moving to a different induced SMG as soon as one agent changes its mental state. In the long run,

execution alternates between different standard SMGs, where, at any point, current SMG reflects

current mental states of agents, and each temporal transition preserves the current SMG, while

each cognitive transition switches to a different SMG. The benefit of such an approach is that each

induced SMG can then be reasoned about using standard techniques. We note also that, for the

purposes of the logic operators introduced later in the paper, we assume that both temporal and

cognitive transitions are available to agents in any state.

Paths. In contrast to the conventional multiplayer games, where each path includes a sequence

of temporal transitions, which are consistent with the transition function T , in an SMGΩ , in view

of the active participation of agents’ pro-attitudes in determining their behaviour, a path can

be constructed by interleaving of temporal and cognitive transitions. Each cognitive transition

represents a change of an agent’s goals or intention. We now extend the definition of a path to

allow cognitive transitions.

Definition 5.7. Given a stochastic multiplayer game with the cognitive dimension (SMGΩ)ℳ,

we define a finite, respectively infinite, path ρ as a sequence of states s0s1s2... such that, for all

k ≥ 0, one of the following conditions is satisfied:

(1) sk−→
a
T sk+1 for some joint action a such that a ∈ Act(sk ),

(2) sk−→
A.д .x
C sk+1 for some A ∈ Aдs and x ⊆ GoalA(sk ),

(3) sk−→
A.i .x
C sk+1 for some A ∈ Aдs and x ∈ IntA(sk ).

We reuse the notation introduced in Section 4.1 for regular paths and denote the set of finite (resp.

infinite) paths by FPath
ℳ

(resp. IPath
ℳ

), and the set of finite (resp. infinite) paths starting in state

s by FPath
ℳ(s) (resp. IPathℳ(s)).

The first condition represents the standard temporal transition, while the other two stand for

cognitive transitions – the former is a goal change, whereas the latter is an intention change.

We often require that both the legal goal function and the legal intention function are serial, i.e.,

for any state s and any subset x of GoalA, there exists a state s
′ ∈ S such that s−→

A.д .x
C s ′, and for

any state s and any intention x ∈ IntA, there exists a state s
′ ∈ S such that s−→A.i .x

C s ′. This is a
non-trivial requirement, since such states s ′ can be unreachable via temporal transitions.

Remark 5. We remark that the seriality requirement for the probabilistic transition function is

usually imposed for model checking, and by no means reduces the generality of the problem, as we

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:15

can introduce absorbing states to accommodate undefined temporal or cognitive transitions in an

obvious way.

Deterministic Behaviour Assumption. Recall that intentions of agents are associated with

action strategies, thereby determining agents’ behaviour in a physical space. Below, we formalise

that idea, in addition requiring that the associated strategies are pure, which simplifies results.

Assumption 2. (Deterministic Behaviour Assumption) An SMGΩ ℳ satisfies the Deterministic
Behaviour Assumption if each agent’s cognitive state deterministically decides its behaviour in

terms of selecting its next local action. In other words, agent’s cognitive state induces a pure action

strategy that it follows.

Hence, since global states encode agents’ cognitive states, under Assumption 2 the transition

function T becomes deterministic, i.e., for every state s , there exists a unique joint action a such

that next state s ′ is chosen with probabilityT (s,a)(s ′). Therefore, each SMG induced fromℳ, with

fixed pro-attitudes, can be regarded as a Markov chain.

Remark 6. We note that a more general version of Assumption 2 is possible, where the action

strategy is not assumed to be pure, and our results can be easily adapted to that variant. In fact,

action strategies introduced in Example 4.2 are not pure and so the trust game does not satisfy the

strict version of the Deterministic Behaviour Assumption as stated above. Example 6.4 illustrates

how the calculations can be adapted to handle that.

5.2 Cognitive Reasoning
We can now extend the logic PCTL

∗
with operators for reasoning about agent’s cognitive states,

resulting in the logic called Probabilistic Computation Tree Logic with Cognitive Operators, PCTL
∗
Ω .

Definition 5.8. The syntax of the logic PCTL∗Ω is:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ∀ψ | P▷◁qψ | GAϕ | IAϕ | CAϕ
ψ ::= ϕ | ¬ψ | ψ ∨ψ | ⃝ψ | ψ𝒰ψ

where p ∈ AP , A ∈ Aдs , ▷◁∈ {<, ≤, >, ≥}, and q ∈ [0, 1].

Intuitively, the newly introduced cognitive operators GAϕ (goal), IAϕ (intention) and CAϕ (capa-

bility) consider the task expressed as ϕ and respectively quantify, in the cognitive dimension, over

possible changes of goals, possible intentions and legal intentions.
The semantics for PCTL

∗
Ω is as follows.

Definition 5.9. Let ℳ = (Aдs, S, Sinit, {ActA}A∈Aдs ,T ,L, {OA}A∈Aдs , {obsA}A∈Aдs , {ΩA}A∈Aдs ,

{πA}A∈Aдs ) be a SMGΩ , ρ a finite path inℳ and s ∈ S such that ρs ∈ FPath
ℳ
. The semantics of

previously introduced operators of PCTL
∗
remains the same in PCTL

∗
Ω . For the newly introduced

cognitive operators, the satisfaction relation |= is defined as follows:

• ℳ, ρs |= GAϕ if ∀x ∈ supp(π
д
A(ρs))∃s ′ ∈ S : s−→

A.д .x
C s ′ andℳ, ρss ′ |= ϕ,

• ℳ, ρs |= IAϕ if ∀x ∈ supp(π iA(ρs))∃s ′ ∈ S : s−→A.i .x
C s ′ andℳ, ρss ′ |= ϕ,

• ℳ, ρs |= CAϕ if ∃x ∈ ωi
A(s)∃s ′ ∈ S : s−→A.i .x

C s ′ andℳ, ρss ′ |= ϕ.

Thus, GAϕ expresses that ϕ holds in future regardless of agent A changing its goals. Similarly,

IAϕ states that ϕ holds regardless of A changing its intention, whereas CAϕ quantifies over the

legal intentions, and thus expresses that agent A could change its intention to achieve ϕ (however,

such a change might not be among agent’s possible intention changes).

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:16 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

Table 4. Complexity of Markov chain model checking

PCTL PTIME-complete

PCTL∗ PSPACE-complete

Remark 7. We note that, when evaluating PCTL
∗
operators, we assume that agents keep their

currentmental attitudes, i.e., that the future path is purely temporal. Formally, for a SMGΩ ℳ, PCTL
∗

operators should be interpreted over the SMG induced from ℳ. Furthermore, when evaluating

PCTL
∗
Ω formulas, we assume agents can change their goals and intentions at any time, in line

with the ‘induced SMGs’ interpretation presented in Section 5.1. That ensures that the cognitive

operators can be applied at any point of execution, as well as meaningfully chained, nested or

manipulated in any other way.

Remark 8. We comment here about our definition of the semantics ofGAϕ, IAϕ andCAϕ, whereby
the changes of goals and intentions do not incur the changes of other components of the state.

This can be counter-intuitive for some cases, e.g., it is reasonable to expect that the intention of

the agent may change when its goals are changed. We believe that such dependencies are better

handled at the modelling stage. For example, a simultaneous change of goals and intention can be

modelled as two consecutive cognitive transitions – a goal change followed by an intention change.

Below, we write Xϕ with X ∈ {GA, IA,CA} for ¬X¬ϕ. For instance, formula IAϕ expresses that

it is possible to achieve ϕ by changing agent A’s intention. Note that it is not equivalent to CAϕ,
which quantifies over legal, rather than possible, intentions.

Example 5.10. Here we give examples of formulas that we may wish to check on the trust game

from Example 5.6. The formula:

GAliceP
≤0.9^(aAlice = invest)

expresses that, regardless of Alice changing her goals, the probability of her investing in the future

is no greater than 90%. On the other hand, the formula:

CBobP
≤0 ⃝ (aBob = keep)

states that Bob has a legal intention which ensures that he will not keep the money as his next

action. Also, the formula:

IAlice∃^richerAlice,Bob ,
where richerAlice,Bob is an atomic proposition with obvious meaning, states that Alice can find

an intention such that eventually a state can be reached where Alice has more money than Bob.

Finally, the formula:

IAlice∃^GBob∀^¬richerAlice,Bob
expresses that Alice can find an intention such that it is possible to reach a state such that, for all

possible Bob’s goals, the game will always reach a state in which Bob is no poorer than Alice. □

In this paper we study the model checking problem defined as follows.

Definition 5.11. For a given SMGΩ ℳ and a formula ϕ of the language PCTL
∗
Ω themodel checking

problem, written as ℳ |= ϕ, is to decide whether ℳ, s |= ϕ for all initial states s ∈ Sinit.

The model checking problem amounts to checking whether a given finite model satisfies a

formula. For logics PCTL and PCTL
∗
the model checking problem over Markov chains is known to

be decidable, with the complexity results summarised in Table 4. These logics thus often feature

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:17

in probabilistic model checkers, e.g., PRISM [35] and Storm [15]. In contrast, the satisfiability

problem, i.e., the whether there exists a model that satisfies a given formula, for these logics is an

open problem [8]. Therefore. the satisfiability problem for the logic introduced here is likely to be

challenging.

Consider a SMGΩ ℳ in which agents never change their mental attitudes. Then, thanks to

Assumption 2, all transitions in the system are effectively deterministic and ℳ can be viewed as a

Markov chain. Using complexity results summarised in Table 4 we formalise the above observation

with the following theorem.

Theorem 5.12. If the cognitive strategies of all agents in a system ℳ are constant, then the
complexity of model checking PCTL∗Ω over SMGΩ is PSPACE-complete, and model checking PCTLΩ
over SMGΩ is PTIME-complete.

However, it is often unrealistic to assume that agents’ cognitive strategies are constant. In

Section 9, we suggest a variation of our model based on agents reasoning about their beliefs and

trust, all of whose components are finite, which makes it amenable for model checking.

6 PREFERENCE FUNCTIONS AND PROBABILITY SPACES
In this section, we develop the foundations for reasoning with probabilistic beliefs, which we define

in Section 7. In order to support subjective beliefs, we utilise the concept of preference functions,
which resolve the nondeterminism arising from agents’ cognitive transitions in a similar way

to how action strategies resolve nondeterminism in the temporal dimension. This enables the

definition of probability spaces to support reasoning about beliefs, which will in turn provide the

basis for reasoning about trust. The central model of this paper, autonomous stochastic multiagent

systems, is then introduced.

Preference Functions. To define a belief function, the usual approach is to employ for every

agent a preference ordering, which is a measurement over the worlds. This measurement is com-

monly argued to naturally exist with the problem, see [18] for an example. However, the actual

definition of such a measurement can be non-trivial, because the number of worlds can be very large

or even infinite, e.g. in [18] and in this paper, and thus enumerating all worlds can be infeasible.

In this paper, instead of an (infinite definition of) preference ordering, we resolve the nondeter-

minism in the system by introducing preference functions. The key idea for a preference function is

to estimate, for an agentA, the possible changes of goals or intentions of another agent B in a given

state using a probability distribution. In other words, preference functions model probabilistic prior
knowledge of agent A about pro-attitudes of another agent B. That knowledge may be derived

from prior experience (through observations), personal preferences, social norms, etc., and will in

general vary between agents. A uniformly distributed preference function can be assumed if no

prior information is available, as is typical in Bayesian settings.

Resolving the nondeterminism (for temporal dimension – by Assumption 2, for cognitive dimen-

sion – by preference functions) allows us to define a family of probability spaces for each agent.

Since preference functions vary among agents, probability spaces are also different for every agent.

Moreover, each agent has multiple probability spaces, corresponding to its own various cogni-

tive states. Intuitively, every probability space represents agent’s subjective view on the relative

likelihood of different infinite paths being taken in the system.

We are now ready to define the central model of this paper.

Definition 6.1. An autonomous stochasticmulti-agent system (ASMAS) is a tupleℳ = (G, {pA}A∈Aдs ),

where

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:18 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

• G = (Aдs, S, Sinit, {ActA}A∈Aдs ,T ,L, {OA}A∈Aдs , {obsA}A∈Aдs , {ΩA}A∈Aдs , {πA}A∈Aдs ) is an

SMGΩ and

• pA is a family of preference functions of agent A ∈ Aдs , defined as

pA
def
= {дpA,B , ipA,B | B ∈ Aдs and B , A},

where:

– дpA,B : S → 𝒟(𝒫(GoalB )) is a goal preference function of A over B such that, for any state

s and x ∈ 𝒫(GoalB ), we have дpA,B (s)(x) > 0 only if x ∈ ω
д
B (s), and

– ipA,B : S → 𝒟(IntB ) is an intention preference function of A over B such that, for any state

s and x ∈ IntB , we have ipA,B (s)(x) > 0 only if x ∈ ωi
B (s).

Remark 9. During system execution, preference functions may be updated as agents learn new

information through interactions; we will discuss in Section 9 how this can be implemented in our

framework.

Intuitively, a preference function provides agent A with a probability distribution over another

agent B’s changes of pro-attitudes. Naturally, we expect preference functions to be consistent with

partial observability. We therefore extend the Uniformity Assumption in the following way.

Assumption 3. (Uniformity Assumption II) Let ℳ = (Aдs, S, Sinit, {ActA}A∈Aдs ,T ,L, {OA}A∈Aдs ,
{obsA}A∈Aдs , {ΩA}A∈Aдs , {πA}A∈Aдs , {pA}A∈Aдs ) be an ASMAS. For an agent A ∈ Aдs and any

two states s1, s2 ∈ S , we assume that obsA(s1) = obsA(s2) implies дpB,A(s1)(x) = дpB,A(s2)(x) and
ipB,A(s1)(x) = ipB,A(s2)(x) for any B ∈ Aдs such that B , A and x ⊆ GoalA. That is, agents’
preferences over a given agent are the same on all paths which a given agent cannot distinguish.

We also mention that Assumption 2 (Deterministic Behaviour Assumption) extends to ASMAS

in a straightforward manner.

Transition Type. In general, in any state of the system, an agent may choose a temporal or a

cognitive transition. However, it is often desirable, e.g., when constructing a probability space, to

restrict the type of transition available to an agent.

Definition 6.2. Given a path s0s1s2... in an ASMAS ℳ satisfying Assumption 2 and an agent

A ∈ Aдs , we use tpA(sk , sk+1) to denote the type, as seen by agent A, of the transition that is taken

to move from state sk to sk+1. More specifically, we distinguish five different transition types:
• tpA(sk , sk+1) = a if sk−→

a
T sk+1 for some a ∈ Act ,

• tpA(sk , sk+1) = A.д.x if sk−→
A.д .x
C sk+1 for some x ⊆ ω

д
A(sk ),

• tpA(sk , sk+1) = A.i .x if sk−→
A.i .x
C sk+1 for some x ∈ ωi

A(sk ),

• tpA(sk , sk+1) = B.д if sk−→
B .д .x
C sk+1 for another agent B ∈ Aдs and x ⊆ ω

д
B (sk ),

• tpA(sk , sk+1) = B.i if sk−→
B .i .x
C sk+1 for another agent B ∈ Aдs and x ∈ ωi

B (sk ).

Remark 10. Assumption 2 guarantees that, if the transition form sk to sk+1 is temporal, then the

action a is uniquely determined.

We write tpA(ρ) = tpA(ρ(0), ρ(1)) · tpA(ρ(1), ρ(2)) · ... for the type of a path ρ. When ρ is a finite

path and t is a type of an infinite path, we say that ρ is consistent with t if there exists an infinite

extension ρ ′ = ρδ of ρ such that tpA(ρ
′) = t .

We note that the type of agent’s own cognitive transitions is defined differently than the type

of another agent’s cognitive transitions. This stems from our implicit assumption that agents can

observe their own cognitive changes, but they cannot, in general, observe another agent’s cognitive

transitions. Formally, we make the following assumption.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:19

Assumption 4. (Transition TypeDistinguishability Assumption) Letℳ = (Aдs, S, Sinit, {ActA}A∈Aдs ,
T ,L, {OA}A∈Aдs , {obsA}A∈Aдs , {ΩA}A∈Aдs , {πA}A∈Aдs , {pA}A∈Aдs ) be an ASMAS. For an agent A ∈

Aдs and any two finite paths ρ1, ρ2, we assume that obsA(ρ1) = obsA(ρ2) implies tpA(ρ1) = tpA(ρ2).
That is, agents can distinguish paths of different types.

This assumption is essential to ensure that the belief function is defined over finite paths in the

same probability space.

Initial Distribution. We replace the set of initial states with a more accurate notion of initial
distribution µ0 ∈ 𝒟(Sinit), as a common prior assumption of the agents about the system, which is

needed to define a belief function.

Probability Spaces. We now define a family of probability spaces for an arbitrary ASMAS.

Recall that our ultimate goal is to define the belief function. To motivate the following construction,

we mention that the belief function provides a probability distribution over paths which are

indistinguishable (i.e., have the same observation) to a given agent. There are two important

consequences of this: (i) probability spaces will vary among agents, reflecting the difference in their

partial observation, and (ii) rather than defining a single probability space, spanning all the possible

paths, for a given agent, we may define many of them, as long as every pair of indistinguishable

paths lies in the same probability space. Hence, using the fact that agents can observe the type of

transitions (by Assumption 4), we parameterise probability spaces by type, so that each contains

paths of unique type.

We begin by introducing an auxiliary transition function, specific to each agent, which will be

used to define the probability measure.

Definition 6.3. Let ℳ = (Aдs, S, Sinit, {ActA}A∈Aдs ,T ,L, {OA}A∈Aдs , {obsA}A∈Aдs , {ΩA}A∈Aдs ,
{πA}A∈Aдs , {pA}A∈Aдs ) be an ASMAS. Based on temporal transition function T and preference

functions {pA}A∈Aдs , we define an auxiliary transition function TA for agent A ∈ Aдs as follows for
s, s ′ ∈ S :

TA(s, s
′) =


T (s,a)(s ′) if tpA(s, s

′) = a

дpA,B (s)(x) if tpA(s, s
′) = B.д and s−→

B .д .x
C s ′

ipA,B (s)(x) if tpA(s, s
′) = B.i and s−→B .i .x

C s ′

1 if tpA(s, s
′) = A.д.x for some x ∈ ω

д
A(s)

or tpA(s, s
′) = A.i .x for some x ∈ ωi

A(s)

The application of the function TA resolves the nondeterminism in both the temporal and

cognitive dimensions and the resulting system is a family of probability spaces, each containing

a set of paths of the same type. While the probabilities of temporal transitions are given by

the transition function T and computed by all agents in the same way, each agent resolves the

nondeterminism in the cognitive dimension differently. For an agent A, all possible cognitive

transitions of another agent B have the same type and hence lie in the same probability space;

A uses its preference functions to associate probabilities to them. On the other hand, each of A’s
own possible pro-attitude changes has a different type and lies in a different probability space; A
therefore treats it as a deterministic transition and assigns probability 1 to it.

We now construct a probability space for an arbitrary ASMAS ℳ, agent A and a type t in
a similar way as in Section 4. The sample space consists of infinite paths of type t starting in

one of the initial states, i.e., Ωℳ,t =
⋃

s ∈S,µ0(s)>0{δ ∈ IPath
ℳ(s) | tpA(δ ) = t}. We associate

a probability to each finite path ρ = s0...sn consistent with t via function PrA(ρ) = µ0(ρ(0)) ·∏
0≤i≤ |ρ |−2TA(ρ(i), ρ(i + 1)). We then set ℱℳ to be the smallest σ -algebra generated by cylinders

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:20 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

{Cylρ ∩ Ωℳ,t | ρ ∈ FPath
ℳ} and Pr

ℳ
A to be the unique measure such that Pr

ℳ
A (Cylρ ) = PrA(ρ).

It then follows that (Ωℳ,t ,ℱℳ, PrℳA ) is a probability space.

Note that, for agents A and B such that A , B in a system ℳ, agents’ probability spaces will in

general differ in probability measures Pr
ℳ
A and Pr

ℳ
B , because their preference functions may be

different.

Example 6.4. We now define preference functions for Bob and Alice of Example 4.2. For example,

setting:

дpBob,Alice (s0) = ⟨passive 7→ 1/3,active 7→ 2/3⟩

indicates that Bob believes Alice is more likely to be active than passive. Similarly, we give Alice’s

preference functions. We first note that obsBob (s1) = obsBob (s2). Therefore, by Assumption 3,

дpAlice,Bob (s1) = дpAlice,Bob (s2). Setting:

дpAlice,Bob (sk ) = ⟨investor 7→ 1/2,opportunist 7→ 1/2⟩,

for k ∈ {1, 2}, represents that Alice has no prior knowledge regarding Bob’s mental attitudes. Finally,

we define Alice’s intention preference over Bob. Since obsBob (s8) = obsBob (s12) and obsBob (s10) =
obsBob (s14), Assumption 3 implies that ipAlice,Bob (s8) = ipAlice,Bob (s12) and ipAlice,Bob (s10) =
ipAlice,Bob (s14). We may set:

ipAlice,Bob (sk ) = ⟨share 7→ 3/4,keep 7→ 1/4⟩ for k ∈ {8, 12},

ipAlice,Bob (sk ) = ⟨share 7→ 0,keep 7→ 1⟩ for k ∈ {10, 14}

to indicate that Alice knows that Bob will keep the money when he is an opportunist, but she thinks
it is quite likely that he will share his profit when he is an investor.

We now compute the probability that Alice and Bob will have the same amount of money at the

end of the game. In other words, we want to find the probability that Alice invests her money with

Bob and Bob shares his profit with her. As noted above, probability spaces differ between agents.

We first perform the computation from Alice’s point of view and consider two cases: (i) Alice being

passive and (ii) Alice being active. For (i), letting ρ1 = s0s1s3s8s15s24 and ρ2 = s0s1s4s10s17s28, we
compute:

PrAlice (ρ1) = дpAlice,Bob (s1)(investor ) · (σpassive (s0s1s3)(invest) ·T (s3, invest)(s8))

· ipAlice,Bob (s8)(share) · (σshare (s0s1s3s8s15)(share) ·T (s15, share)(s24))

=
1

2

· (
3

10

· 1) ·
3

4

· (1 · 1) =
9

80

,

PrAlice (ρ2) = дpAlice,Bob (s1)(opportunist) · (σpassive (s0s1s4)(invest) ·T (s4, invest)(s10))

· ipAlice,Bob (s10)(share) · (σshare (s0s1s4s10s17)(share) ·T (s17, share)(s28))

=
1

2

· (
3

10

· 1) · 0 · (1 · 1) = 0.

Similarly, in case (ii), letting ρ3 = s0s2s5s12s19s32 and ρ3 = s0s2s6s14s21s36, we compute:

PrAlice (ρ3) = дpAlice,Bob (s2)(investor ) · (σactive (s0s2s5)(invest) ·T (s5, invest)(s12))

· ipAlice,Bob (s12)(share) · (σshare (s0s2s5s12s19)(share) ·T (s19, share)(s32))

=
1

2

· (
9

10

· 1) ·
3

4

· (1 · 1) =
27

80

,

PrAlice (ρ4) = дpAlice,Bob (s2)(opportunist) · (σactive (s0s2s6)(invest) ·T (s6, invest)(s14))

· ipAlice,Bob (s14)(share) · (σshare (s0s2s6s14s21)(share) ·T (s21, share)(s36))

=
1

2

· (
9

10

· 1) · 0 · (1 · 1) = 0.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:21

Hence, from Alice’s point of view, the probability that both will have 20 dollars at the end of the

game is three times higher when she is active, and roughly equal to 1/3. This is consistent with our

expectations, since the only difference between the two scenarios is the likelihood of her investing,

which is three times greater when she is active.
We now perform a similar computation for Bob. Again, we consider (i) Bob being an investor

and (ii) Bob being an opportunist. We start with case (i), but we have to be a little more careful

now. In order for the result to be meaningful, all paths in which Bob is an investor must be in

the same probability space. However, currently, this is not the case for paths corresponding to

different intention changes for Bob. To fix that, we use Bob’s intention strategy π iBob to quantify

the likelihoods of paths in different probability spaces. We may then compute:

PrBob (ρ1) = дpBob,Alice (s0)(passive) · (σpassive (s0s1s3)(invest) ·T (s3, invest)(s8))

· π iBob (s0s1s3s8)(share)

· (σshare (s0s1s3s8s15)(share) ·T (s15, share)(s24))

=
1

3

· (
3

10

· 1) · 1 · (1 · 1) =
1

10

,

PrBob (ρ3) = дpBob,Alice (s0)(active) · (σactive (s0s2s5)(invest) ·T (s5, invest)(s12))

· π iBob (s0s2s5s12)(share)

· (σshare (s0s2s5s12s19)(share) ·T (s19, share)(s32))

=
2

3

· (
9

10

· 1) · 1 · (1 · 1) =
3

5

.

In case (ii), Bob chooses intention σkeep with probability 1 and so the probability of him sharing

the profit is 0. □

7 REASONINGWITH PROBABILISTIC BELIEFS
In presence of partial observation and, resulting from it, imperfect information that agents have

about system state, one resorts to using beliefs to represents agents’ knowledge. In this section, we

define a probabilistic belief function beA of an agent A in an autonomous stochastic multiagent

system (ASMAS), which models agents’ uncertainty about the system state and its execution history.

In [18], a qualitative belief notion is defined based on a plausibility measure. We consider

probability measure instead, and define a quantitative belief function expressing that agent A
believes ϕ with probability in relation ▷◁ to q if it knows ϕ with probability in relation ▷◁ to q. This
can be seen as a quantitative variant of the qualitative definition in [43], according to which agent

A believes ϕ if the probability of ϕ is close to 1. It is generally accepted that trust describes agents’

subjective probability [19] and therefore needs to be measured quantitatively.

7.1 Belief Function
Before defining the belief function, we establish an equivalence relation ∼o

A on the set of finite paths

of an autonomous system ℳ for an agent A. We say that paths ρ, ρ ′ ∈ FPath
ℳ

are equivalent

(from the point of view of A), denoted ρ ∼o
A ρ ′, if and only if obsA(ρ) = obsA(ρ

′). Intuitively, each

equivalence class contains paths which a given agent cannot differentiate from each other. Note

that, by Assumption 4, each equivalence class comprises paths of the same type.

Example 7.1. Recall the trust game 𝒢 from Example 5.6 and the observation function defined on

𝒢 in Example 5.4. Using that definition, we obtain obsBob (s0s1) = obsBob (s0s2), which is intuitively

correct, since Bob cannot observe Alice’s goals. These two paths form an equivalence class. Similarly,

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:22 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

obsBob (s0s1s3s8) = obsBob (s0s2s5s12) andobsBob (s0s1s4s10) = obsBob (s0s2s6s14), and both pairs of paths
form an equivalence class. □

The belief function quantifies agent’s belief about the execution history of the system at any

given time. Intuitively, at any point during system execution, agent’s observation history uniquely

identifies an equivalence class (with respect to ∼oA), consisting of all paths with that observation.

The belief function gives a probability distribution on that equivalence class. We define OPathA =
{obsA(ρ) | ρ ∈ FPath

ℳ} to be a set of all finite observation histories (path observations), and for a

given path observation o ∈ OPathA, class(o) denotes the equivalence class associated with o. Recall
that, for any finite path ρ, Cylρ denotes a basic cylinder with prefix ρ.

Definition 7.2. Let ℳ be an ASMAS and A an agent in ℳ. The belief function beA : OPathA →

𝒟(FPathℳ) of an agent A is given by:

beA(o)(ρ) = Pr
ℳ
A (Cylρ |

⋃
ρ′∈class(o)

Cylρ′).

Hence, given that agent A’s path observation is o at some point, their belief that the execution

history at that time is ρ is expressed as the conditional probability of the execution history being ρ,
given that the execution history belongs to the equivalence class class(o). We note that sometimes,

e.g., when the observation is clear from the context, we might omit it, and simply write beA(ρ) for
agent A’s belief that the execution history at some point is ρ.

Example 7.3. We return again to Example 5.6 and let ρ1 = s0s1 and ρ2 = s0s2. Recall from
Example 7.1 that obsBob (ρ1) = obsBob (ρ2), and let o1 denote that common observation. Hence, o1 is
a path observation associated with the equivalence class {ρ1, ρ2}. We compute beBob (o1, ρ1) and
beBob (o1, ρ2) below.

beBob (o1, ρ1) = Pr
𝒢
Bob (Cylρ1 |

⋃
ρ ∈class(o)

Cylρ )

=
Pr

𝒢
Bob (Cylρ1 )

Pr
𝒢
Bob (Cylρ1 ) + Pr

𝒢
Bob (Cylρ2 )

=
дpBob,Alice (s0)(passive)

дpBob,Alice (s0)(passive) + дpBob,Alice (s0)(active)

=
1

3

.

Similar computation shows that:

beBob (o1, ρ2) =
2

3

.

We also let ρ3 = s0s1s3s8, ρ4 = s0s2s5s12 and recall from Example 7.1 that obsBob (ρ3) = obsBob (ρ4).
We let o2 denote that common observation and, performing similar computation as above, we

obtain:

beBob (o2, ρ3) =
1

7

,

beBob (o2, ρ4) =
6

7

.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:23

Analogously, letting ρ5 = s0s1s4s10, ρ6 = s0s2s6s14 and o3 = obsBob (ρ5) = obsBob (ρ6), we compute:

beBob (o3, ρ5) =
1

7

,

beBob (o3, ρ6) =
6

7

.

□

The following theorem gives a recursive definition of the belief function. Intuitively, the beliefs

of agent A are represented as a distribution over a set of possible states which are reachable by

paths consistent with the current observation history. This belief distribution will be updated in

the Bayesian way whenever a new observation is taken.

Theorem 7.4. The beliefs beA(ρ) can be computed recursively over the length of path ρ:

• For an initial state s , beA(s) =
µ0(s)∑

s ′∈S∧obsA(s ′)=obsA(s) µ0(s
′)
.

• For ρ a path such that |ρ | = k + 2 and k ≥ 0,

beA(ρ) =
beA(ρ[0..k]) ×TA(ρ(k), ρ(k + 1))∑

ρ′∈FPathℳ∧obsA(ρ′)=obsA(ρ[0..k ])
∑

s ∈S∧obsA(s)=obsA(ρ(k+1)) beA(ρ
′) ×TA(ρ ′(k), s)

.

7.2 Belief ASMAS
A conceptually simpler construction, defined below, can be effectively used to reason about a single
agent’s understanding about the system, when there is no need for nested reasoning on agents’

beliefs. We employ a well-known construction [10] which, for a system ℳ and a fixed agent A,
induces an equivalent belief ASMAS βA(ℳ) whose states are distributions over states of ℳ called

belief states. Intuitively, belief states quantify agent’s uncertainty about the current state of a system
by specifying their belief, expressed as a probability distribution: although we may not know which

of several observationally-equivalent states we are currently in, we can determine the likelihood of

being in each one. The belief ASMAS is fully observable but its state space is possibly infinite.

Formally, a belief ASMAS for an ASMASℳ and an agent A is a tuple βA(ℳ) = (Aдs,𝒟(S),ℬinit,

{ActA}A∈Aдs ,T
β
A ,L), where ℬinit = {bo

init
| o ∈ OA} is a set of initial belief states such that:

bo
init

(s) =


µ0(s)∑

s ′∈S&obsA(s ′)=obsA(s) µ0(s
′)

if obsA(s) = o

0 otherwise.

We now give the transition function T
β
A . Intuitively, from a belief state b, different belief states

b ′ are possible, each corresponding to a unique combination of A’s next observation and the type

of transition taken. Transition probabilities are then computed based on the temporal transition

function T or A’s preferences. The definition is split into three parts, reflecting the different types

of transitions present in an ASMAS.

First, for b,b ′ ∈ 𝒟(S) and a ∈ Act , we have

T
β
A (b,a)(b

′) =
∑
s ∈S

b(s) · (
∑

o∈OA&ba,o=b′

∑
s ′∈S&b′(s ′)>0

T (s,a)(s ′)),

where ba,o is a belief state reached from b by performing a and observing o, i.e.,

ba,o(s ′) =


∑

s ∈S b(s) ·T (s,a)(s
′)∑

s ∈S b(s)
∑

s ′′∈S&obsA(s ′′)=o T (s,a)(s
′′)

if obsA(s
′) = o

0 otherwise.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:24 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

Intuitively, the belief state reached by agentA fromb by performinga and observingo is a probability
distribution over states s such that obsA(s) = o, where the probability of each state is weighted

according to the probabilities of transitions from states in the support of b to that state.

Second, for x ⊆ GoalA,

T
β
A (b,A.д.x)(b

′) =
∑
s ∈S

b(s) · (
∑

o∈OA&bA.g.x,o=b′

∑
s ′∈S&b′(s ′)>0

(s−→
A.д .x
C s ′)),

where bA.д .x,o is belief reached from b by performing A’s goal change into x and observing o, i.e.,

bA.д .x,o(s ′) =


∑

s ∈S b(s) · (s−→
A.д .x
C s ′)∑

s ∈S b(s)
∑

s ′′∈S&obsA(s ′′)=o(s−→
A.д .x
C s ′′)

if obsA(s
′) = o

0 otherwise.

Note the we interpret s−→
A.д .x
C s ′ as having value 0 or 1, depending on whether a transition of a

specified type exists or not. The case corresponding to an intention change of agent A is defined

analogously.

Third, for B ∈ Aдs such that B , A,

T
β
A (b,B.д)(b

′) =
∑
s ∈S

b(s) · (
∑

o∈OA&bB .д,o=b′

∑
s ′∈S&b′(s ′)>0

∑
x ∈ωд

A(s)

дpA,B (s)(x) · (s−→
B .д .x
C s ′)),

where bB .д,o is belief reached from b by performing B’s goal change into x and observing o, i.e.,

bB .д,o(s ′) =


∑

s ∈S b(s) ·
∑

x дpA,B (s)(x) · (s−→
B .д .x
C s ′)∑

s ∈S b(s)
∑

s ′′∈S&obsA(s ′′)=o
∑

x дpA,B (s)(x) · (s−→
B .д .x
C s ′′)

if obsA(s
′) = o

0 otherwise.

The case of intention change can be defined in a similar manner.

Example 7.5. We illustrate the above construction on the trust game 𝒢 from Example 5.6 by

considering the initial few states of the belief ASMAS βBob (𝒢) corresponding to 𝒢. Since the

game has a single initial state, the belief ASMAS also has a single initial belief state, namely

b0 = b
o1
init
= ⟨s0 7→ 1⟩.

We now compute possible belief states after the first transition, i.e. Alice’s goal change. Recall

that Bob cannot distinguish states s1 and s2; we let o1 = obsBob (s1) = obsBob (s2). Then the new

belief state is b1 = b
Alice .д,o1
0

, with:

b1(s1) = b
Alice .д,o1
0

(s1) =
b0(s0) · дpBob,Alice (s0)({passive})

b0(s0) · (дpBob,Alice (s0)({passive}) + дpBob,Alice (s0)({active}))

=

2

3

2

3
+ 1

3

=
2

3

,

where we used Bob’s preference function дpBob,Alice defined in Example 6.4. Similar computation

shows that:

b1(s2) =
1

3

.

Since Bob has only one possible observation at this point of the game, we expect that b1 is his

only possible belief state after first transition, i.e. T
β
Bob (b0,Alice .д)(b1) = 1. Indeed,

T
β
Bob (b0,Alice .д)(b1) = b0(s0) · (дpBob,Alice (s0)({passive}) + дpBob,Alice (s0)({active}))

= 1.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:25

Fig. 3. Belief ASMAS βBob (𝒢)

Next, Bob sets his goal. We let o2 = obsBob (s3) = obsBob (s5) and o3 = obsBob (s4) = obsBob (s6). If

Bob observes o2, then his belief state is b2 = b
Bob .д,o2
1

, such that:

b2 = ⟨s3 7→ 2/3, s5 7→ 1/3⟩.

If he observes o3 then his belief state is b3 = b
Bob .д,o3
1

, with:

b3 = ⟨s4 7→ 2/3, s6 7→ 1/3⟩.

The transition function is as follows.

T
β
Bob (b1,Bob .д.{investor })(b2) = 1,

T
β
Bob (b1,Bob .д.{opportunist})(b3) = 1.

Finally, we consider how belief state changes after Alice’s temporal transition. There are four

possible observations for Bob at this stage, namely o4 = obsBob (s7) = obsBob (s11), o5 = obsBob (s8) =
obsBob (s12), o6 = obsBob (s9) = obsBob (s13), o7 = obsBob (s10) = obsBob (s14). Hence there are four

possible belief states, b4 = b
Bob .д,o4
2

, b5 = b
Bob .д,o5
2

, b6 = b
Bob .д,o6
3

, b7 = b
Bob .д,o7
3

, such that:

b4 = ⟨s7 7→ 2/3, s11 7→ 1/3⟩,

b5 = ⟨s8 7→ 2/3, s12 7→ 1/3⟩,

b6 = ⟨s9 7→ 2/3, s13 7→ 1/3⟩,

b7 = ⟨s10 7→ 2/3, s14 7→ 1/3⟩.

Figure 3 depicts belief states of βBob (𝒢) which we have computed.

□

As in our construction of the probability measure Prs,σ for SMGs in Section 4, a strategy profile

σ induces a probability measure Prb,σ on any belief state b over infinite paths of ASMAS βA(ℳ).

We note that, in general, βA(ℳ) has a (continuous) infinite state space.

8 REASONING ABOUT BELIEFS AND TRUST
In this section, we formalise the notions of trust, which are inspired by the social trust theory of [17].

We define trust in terms of the belief function and further extend PCTL
∗
Ωto capture reasoning about

beliefs and trust.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:26 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

In Section 7, a Bayesian-style definition of the belief function is presented. It uses agents’ partial

observation function and probability measure, which is in turn defined in terms of preference

functions introduced in Section 6. In this section, we assume the existence of such a belief setting,

i.e., one belief function for every agent, and define operators to reason about agents’ beliefs and

trusts.

Expressing Trust. Our trust operators follow the intuition of social trust concepts from [17],

but the technical definitions are different and more rigorous. We distinguish between two types

of trust, competence, meaning that agent A believes that B is capable of producing the expected

result, and disposition, which means that agent A believes that agent B is willing to do what A
needs. Moreover, we express trust with the usual probabilistic quantification of certainty that

we sometimes use in our daily life, e.g., “I am 99% certain that the autonomous taxi service is

trustworthy”, or “I trust the autonomous taxi service 99%”. Our formalisation then captures how

the value of 99% can be computed based on the agent’s past experience and (social, economic)

preferences. Indeed, [17] also provides a justification for quantifying trust with probabilities, e.g. in

Section 5, where it is stated that the degree of trust is a function of the subjective certainty of the

pertinent beliefs. We do not consider fulfilment belief also discussed in [17].

Beliefs and trust are intimately connected. As agents continuously interact with the environment

and with each other, their understanding about the system and the other agents may increase,

leading to an update of their beliefs. This change in an agent’s beliefs may also lead to an update of

trust, which is reflected in the definition of the semantics of our trust operators.

Changes of beliefs and trust will affect goals and intentions, which will be captured via so called

pro-attitude synthesis, which is introduced in Section 9. Based on its updated beliefs, an agent may

modify its strategy to implement its intention.

8.1 Probabilistic Rational Temporal Logic
We now introduce Probabilistic Rational Temporal Logic (PRTL

∗
) that can express mental attitudes

of agents in an ASMAS, as well as beliefs and trust. PRTL
∗
extends the logic PCTL

∗
Ω with operators

for reasoning about agent’s beliefs and cognitive trust.

Definition 8.1. The syntax of the logic PRTL∗ is as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ∀ψ | P▷◁qψ | GAϕ | IAϕ | CAϕ | B
▷◁q
A ψ | CT

▷◁q
A,Bψ | DT

▷◁q
A,Bψ

ψ ::= ϕ | ¬ψ | ψ ∨ψ | ⃝ψ | ψ𝒰ψ
where p ∈ AP , A,B ∈ Aдs , ▷◁∈ {<, ≤, >, ≥}, and q ∈ [0, 1].

Intuitively, B
▷◁q
A ψ is the belief operator, expressing that agent A believesψ with probability in

relation ▷◁ with q. CT
▷◁q
A,Bψ is the competence trust operator, expressing that agent A trusts agent B

with probability in relation ▷◁ with q on its capability of completing the taskψ , where capability
is understood to be the possibility of taking one of its legal intentions defined with function ωi

B .

DT
▷◁q
A,Bψ is the disposition trust operator, expressing that agent A trusts agent B with probability in

relation ▷◁ with q on its willingness to do the taskψ , where the state of willingness is interpreted
as unavoidably taking an intention defined with function π iB . Recall that we use function ω

i
B for

the legal intentions and function π iB for the possible intentions, i.e., intentions available assuming

agent’s willingness. We use T to range over the two trust operators CT and DT.
Before we define the semantics, we require additional notation. We write:

Pr
max,min
ℳ,A,ρ (ψ )

def
= supσA ∈ΣA

infσAдs\{A} ∈ΣAдs\{A}
Prℳ,σ,ρ (ψ ),

Pr
min,max
ℳ,A,ρ (ψ )

def
= infσA ∈ΣA supσAдs\{A} ∈ΣAдs\{A}

Prℳ,σ,ρ (ψ )

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:27

to denote the strategic ability of agentA in implementingψ on a finite path ρ. Intuitively, Prmax,min
ℳ,A,ρ (ψ )

gives a lower bound on agentA’s ability to maximise the probability ofψ , while Prmin,max
ℳ,A,ρ (ψ ) gives

an upper bound on agent A’s ability to minimise the probability ofψ .
Moreover, we extend the expression B.i(s,x) to work with finite paths: B.i(ρ,x) for the path

ρ ′ = ρs and last(ρ)−→B .i .x
C s . Intuitively, it is the concatenation of path ρ with a cognitive transition

B.i .x .
For a measurable function f : FPath

ℳ → [0, 1], we denote by EbeA [f ] the belief-weighted
expectation of f , i.e.,

EbeA [f ] =
∑

ρ ∈FPathℳ
beA(ρ) · f (ρ).

With this in mind, we aim to define the new operators so that B
▷◁q
A ψ normalises the probability

measure of the formula P▷◁qψ with agent’s probabilistic belief, whereas T
▷◁q
A,Bψ operators consider

moreover the possible or legal intention changes of another agent B. The intention changes are

conditioned over agent’s strategic ability of implementing formulaψ , expressed by Pr
max,min
ℳ,A,ρ (ψ )

and Pr
min,max
ℳ,A,ϕ (ψ ).

Definition 8.2. Let ℳ = (Aдs, S, Sinit, {ActA}A∈Aдs ,T ,L, {OA}A∈Aдs , {obsA}A∈Aдs , {ΩA}A∈Aдs ,
{πA}A∈Aдs , {pA}A∈Aдs ) be an ASMAS and ρ a finite path inℳ. The semantics of previously intro-

duced operators of PCTL
∗
and PCTL

∗
Ω remains the same in PRTL

∗
(see Definitions 4.4 and 5.9). For

the newly introduced belief and trust operators, the satisfaction relation |= is defined as follows:

• ℳ, ρ |= B
▷◁q
A ψ if

EbeA [V
▷◁
B,ℳ,ψ ] ▷◁ q,

where the function V ▷◁
B,ℳ,ψ : FPath

ℳ → [0, 1] is such that

V ▷◁
B,ℳ,ψ (ρ

′) =

{
Pr

max,min
ℳ,A,ρ′ (ψ ) if ▷◁∈ {≥, >}

Pr
min,max
ℳ,A,ρ′ (ψ ) if ▷◁∈ {<, ≤}

• ℳ, ρ |= CT
▷◁q
A,Bψ if

EbeA [V
▷◁
CT,ℳ,B,ψ ] ▷◁ q,

where the function V ▷◁
CT,ℳ,B,ψ : FPath

ℳ → [0, 1] is such that

V ▷◁
CT,ℳ,B,ψ (ρ

′) =


sup

x ∈ω i
B (last (ρ

′))

Pr
max,min
ℳ,A,B .i(ρ′,x )(ψ ) if ▷◁∈ {≥, >}

inf

x ∈ω i
B (last (ρ

′))
Pr

min,max
ℳ,A,B .i(ρ′,x )(ψ ) if ▷◁∈ {<, ≤}

• ℳ, ρ |= DT
▷◁q
A,Bψ if

EbeA [V
▷◁
DT,ℳ,B,ψ ] ▷◁ q,

where the function V ▷◁
DT,ℳ,B,ψ : FPath

ℳ → [0, 1] is such that

V ▷◁
DT,ℳ,B,ψ (ρ

′) =


inf

x ∈supp(π iB (ρ
′))
Pr

max,min
ℳ,A,B .i(ρ′,x )(ψ ) if ▷◁∈ {≥, >}

sup

x ∈supp(π iB (ρ
′))

Pr
min,max
ℳ,A,B .i(ρ′,x )(ψ ) if ▷◁∈ {<, ≤}

We interpret formulas ϕ in ASMAS ℳ in a state reached after executing a path ρ, in history-

dependent fashion. Recall that this path may have interleaved cognitive and temporal transitions.

However, when evaluating a given belief or trust formula, we assume that agents do not change

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:28 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

their mental attitudes (i.e., the future path is purely temporal, contained within a single induced

SMG), which motivates using the probability measure defined in Section 4 in the above definition.

The belief formula corresponds to the probability of satisfying ϕ in future in the original ASMAS

ℳ weighted by the belief distribution; in other words, it is a belief-weighted expectation of future

satisfaction of ϕ, which is subjective, as it is influenced by A’s partial observation and its prior

knowledge about B encoded in the preference function. The competence trust operator reduces

to the computation of optimal probability of satisfying ψ in ℳ over legal changes of agent’s

intention, which is again weighted by the belief distribution and compared to the probability bound

q. Dispositional trust, on the other hand, computes the optimal probability of satisfyingψ inℳ over

possible changes of agent’s intention, which is weighted by the belief distribution and compared to

the probability bound q.
For a relational symbol ▷◁∈ {≥, >}, the expression V ▷◁

CT,ℳ,B,ψ (ρ) computes the maximum proba-

bility of completing the taskψ on path ρ, among all legal changes of agent B’s intention. Therefore,
when interpreting formula CT

▷◁q
A,Bψ , we assume the optimal capability of agent B. Note that this

capability is not necessarily within B’s possible intention changes. On the other hand, for ▷◁∈ {≥, >},
the expression V ▷◁

DT,ℳ,B,ψ (ρ) computes the minimum probability of completing the taskψ on path

ρ that all agent B’s possible intentional changes can achieve. Therefore, when interpreting formula

DT
▷◁q
A,Bψ , we consider all possible states of agent B’s willingness. It should be noted that the T

▷◁q
A,B

operators cannot be derived from the other operators.

Remark 11. We remark that, while defining competence trust in terms of legal intentions should

be rather uncontroversial, the disposition trust operator may be expressed in an alternative way.

Given that DT
▷◁q
A,B computes A’s trust towards B and that intentional attitudes of B are in general

not observable to A, one could argue that it is not realistic to assume that A uses B’s intention
strategy to compute its trust towards B. It would perhaps be more natural to use A’s intention
preference function ipA,B instead, since it precisely represents A’s expectations about B’s mental

attitudes. Indeed, it is possible to make such a modification, which we discuss below.

First of all, note that, in the definition of DT
▷◁q
A,B above, we restrict A’s knowledge to the support

of π iB , i.e., to B’s possible intentions, rather than allowing A to know B’s full intention strategy. As

a side note, the consequence of this is that A’s disposition trust towards B differs from competence

trust only when the set of possible intentions of B is a strict subset of B’s legal intentions. In
particular, it is the case when B’s intention strategy is pure, such as in Example 5.6. Hence, an

important practical consideration to bear in mind when constructing instances of ASMAS is to keep

cognitive strategies pure, or close to pure (with few intentions in the support). In fact, Section 9

provides an easy way to achieve this.

Going back to the alternative way of defining DT
▷◁q
A,B , if we replace B’s intention strategy π iB

by A’s intention preferences over B, ipA,B , it makes sense to include in our calculations of trust

the full probability distribution that ipA,B provides, rather than just its support, as we do for π iB .
That’s because ipA,B represents knowledge that A realistically possesses, so there’s no reason to

introduce any restrictions on it. We then end up with DT
▷◁q
A,B defined as a belief-preference-weighted

expectation of agent’s strategic ability of implementing a given formula ψ . Note that, with such

formulation of DT
▷◁q
A,B , the last equivalence of Theorem 8.10 does not hold.

Finally, note that disposition trust operator of one agent may be nested inside a belief operator of

another agent, which calls for nested preferences (i.e., preferences over preferences) in an idealised

version of DT
▷◁q
A,B . We aim to avoid such complexities at this early stages of the development of

the framework, and therefore settle for a simplified notion of disposition trust involving intention

strategy.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:29

Example 8.3. Here we give examples of formulas that we may wish to verify on the trust game

defined in Example 5.6. The formula

B≥0.6
Bob ⃝ (aAlice = invest)

states that Bob believes that, with probability at least 0.6, Alice will invest the money with him in

the next step. On the other hand, the formula

DT≥0.9Alice,Bob^(aBob = keep)

states that Alice can trust Bob with probability no less than 0.9 that he will keep the money for

himself. The formula

∀□(richerBob,Alice → P≥0.9^CT≥1.0Bob,AlicericherAlice,Bob )

states that, at any point of the game, if Bob is richer than Alice, then with probability at least 0.9,
in future, he can almost surely, i.e., with probability 1, trust Alice on her ability to become richer.

It is also possible, and often desired, to have a trust operator within the scope of a belief operator.

For instance,

B≥0.7
Bob DT

≥0.5
Alice,Bob^(aBob = share)

expresses that Bob believes that, with probability at least 0.7, Alice’s trust that he will share the

profits with her in the future is at least 0.5. Such construct might represent Bob’s reasoning leading

to his decision of whether to share his profit or not, where he considers Alice’s trust towards him

as a determining factor. A similar statement might be expressed by the following formula:

B≥0.7
Bob B

≥0.5
Alice IBob∃^(aBob = share).

The above states that Bob believes that, with probability at least 0.7, Alice believes that, with

probability at least 0.5, Bob has a possible intention which ensures that it is possible that he shares

the profit. The first formula may be seen as a quantitative version of the second, as it additionally

(implicitly, via DT operator) considers the probability of Bob sharing the profit. However, both

formulas are equivalent for the trust game, assuming the action strategies defined in Example 5.2

and intention strategy from Example 5.6. To see that, first note that Bob’s intention strategy is

pure, hence he has only one possible intention. Second, since the action strategy implementing that

intention (whatever it is) is pure, the probability of him sharing the profit is either 1 or 0. Therefore,

infx ∈supp(π iBob (ρ))
Pr𝒢,Bob .i(ρ,x )(^(aBob = share)) takes only two values, 1 and 0, and is equal to

1 whenever Pr𝒢,Alice,ρ (IBob∃^(aBob = share)) = 1 for any path ρ = ρ ′sk for k ∈ {8, 10, 12, 14}.
Hence,

DT≥0.5Alice,Bob^(aBob = share) ≡ B
≥0.5
Alice IBob∃^(aBob = share).

In general, however, those two formulas differ in their semantics. □

Definition 8.4. For a given autonomous stochastic multi-agent system ℳ and a formula ϕ of the

language PRTL
∗
, the model checking problem, written asℳ |= ϕ, is to decide whether ℳ, s |= ϕ

for all initial states s ⊆ supp(µ0).

8.2 Restricting to Deterministic Behaviour Assumption
The above semantics is complex because of the quantification over agents’ strategies. However,

under Assumption 2, this quantification is not necessary, since the system conforms to a single

action strategy, induced from agents’ cognitive states, which we call the induced strategy σind . As
a result, some operators have simpler semantics. We begin with an easy consequence of restricting

ourselves to a single action strategy.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:30 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

Proposition 8.5. With Assumption 2 on ASMASℳ, we have the following equivalence for ρ being
a finite path, andψ being a PRTL∗ formula.

Pr
max,min
ℳ,A,ρ (ψ ) = Pr

min,max
ℳ,A,ρ (ψ ) = Pr

max,min
ℳ,ρ (ψ ) = Pr

min,max
ℳ,ρ (ψ ) = Prℳ,σind ,ρ (ψ ).

Moreover, for systems ℳ satisfying Assumption 2, we will often omit the σind component in the
last expression above and write Prℳ,ρ (ψ ) instead. Intuitively, it represents the probability ofψ being
satisfied on a future path in a system ℳ given that the current path is ρ.

Definition 8.6. Let ℳ be an ASMAS satisfying Assumption 2 and ρ a finite path in ℳ. The

following are several operators whose semantics can be simplified according to Proposition 8.5.

• ℳ, ρ |= P▷◁qψ if

Prℳ,ρ (ψ ) ▷◁ q.

• ℳ, ρ |= B
▷◁q
A ψ if

EbeA [VB,ℳ,ψ ] ▷◁ q,

where the function VB,ℳ,ψ : FPath
ℳ → [0, 1] is such that

VB,ℳ,ψ (ρ
′) = Prℳ,ρ′(ψ )

• ℳ, ρ |= CT
▷◁q
A,Bψ if

EbeA [V
▷◁
CT,ℳ,B,ψ ] ▷◁ q,

where the function V ▷◁
CT,ℳ,B,ψ : FPath

ℳ → [0, 1] is such that

V ▷◁
CT,ℳ,B,ψ (ρ

′) =


sup

x ∈ω i
B (last (ρ

′))

Prℳ,B .i(ρ′,x )(ψ ) if ▷◁∈ {≥, >}

inf

x ∈ω i
B (last (ρ

′))
Prℳ,B .i(ρ′,x )(ψ ) if ▷◁∈ {<, ≤}.

• ℳ, ρ |= DT
▷◁q
A,Bψ if

EbeA [V
▷◁
DT,ℳ,B,ψ ] ▷◁ q,

where the function V ▷◁
DT,ℳ,B,ψ : FPath

ℳ → [0, 1] is such that

V ▷◁
DT,ℳ,B,ψ (ρ

′) =


inf

x ∈supp(π iB (ρ
′))
Prℳ,B .i(ρ′,x )(ψ ) if ▷◁∈ {≥, >}

sup

x ∈supp(π iB (ρ
′))

Prℳ,B .i(ρ′,x )(ψ ) if ▷◁∈ {<, ≤}.

Intuitively, given that the action strategy in the system is fixed as σind , there is no need to

consider agents’ strategic abilities, and hence the probability of a given formulaψ being satisfied

can be uniquely determined, which simplifies the definitions above.

8.3 A Single-Agent Special Case
The semantics can be further simplified if we work with the single-agent case, in which case we

can employ the belief ASMAS construct βA(ℳ) as given in Section 7.2. Recall that this approach

explores belief states (distributions over states ofℳ) and that δA is a mapping from paths inℳ
to paths in belief ASMAS βA(ℳ). Therefore, to evaluate belief and trust we can directly employ

current belief last(δA(ρ)), instead of working with belief distribution beA defined on finite paths ρ.
Here we only present the semantics of the belief and trust operators.

Definition 8.7. Let ℳ be an ASMAS satisfying Assumption 2 and ρ a finite path in ℳ. The

semantics of the belief and trust operators can be defined on βA(ℳ) as follows.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:31

• ℳ, ρ |= B
▷◁q
A ψ if

Elast(δA(ρ))[Satψ ] ▷◁ q,

where the function Satψ : S → [0, 1] is such that Satψ (s) = 1 if ℳ, s |= ψ and 0 otherwise.

• ℳ, ρ |= CT
▷◁q
A,Bψ for ▷◁∈ {≥, >} if

Elast(δA(ρ))[VCT,ℳ,B,ψ ] ▷◁ q

where the function VCT,ℳ,B,ψ : S → [0, 1] is such that

VCT,ℳ,B,ψ (s) = sup

x ∈ω i
B (s)

Prℳ,B .i(s,x )(ψ )

and if ▷◁ is ≤ or < we replace sup with inf in the above.

• ℳ, ρ |= DT
▷◁q
A,Bψ if for ▷◁∈ {≥, >} if

Elast(δA(ρ))[V
▷◁
DT,ℳ,B,ψ ] ▷◁ q

where the function V ▷◁
DT,ℳ,B,ψ : S → [0, 1] is such that

V ▷◁
DT,ℳ,B,ψ (s) = inf

x ∈π iB (ρ
′)
Prℳ,B .i(s,x )(ψ )

for ρ ′ such that δA(ρ
′) = δA(ρ) and last(ρ

′) = s ; if ▷◁ is ≤ or < we replace inf with sup in the

above.

Note that A’s belief in ψ is evaluated as an expectation of satisfaction of ψ computed in the

current belief state. A’s competence trust in B’s ability to perform ψ reduces to the expectation

of the optimal probability of completing ψ , over all legal changes of B’s intention. Similarly, to

evaluate A’s disposition trust in B’s willingness to performψ we compute the expectation of the

optimal probability of completingψ , over all possible changes of B’s intention π iB .

Remark 12. The sets of possible intentions π iB (·) of agent B can be determined for a given belief

state with pro-attitude synthesis defined in Section 9.

8.4 Other Trust Notions
In [17], another concept related to trust called dependence is introduced, whose interpretation is

that agent A needs agent B (strong dependence), or is better off relying on B (weak dependence).

We now propose how those two concepts can be formalised in an ASMAS under Assumption 2.

Definition 8.8. Let ℳ be an ASMAS satisfying Assumption 2 and ρ a finite path in ℳ. We

introduce operators ST
▷◁q
A,B andWT▷◁A,B to express strong and weak dependence, with the semantics

given by:

• ℳ, ρ |= ST
▷◁q
A,Bψ if ℳ, ρ |= (¬B

▷◁q
A ψ ∧ CT

▷◁q
A,Bψ ) ∨ (B

▷◁q
A ψ ∧ ¬CT

▷◁q
A,Bψ )

• ℳ, ρ |=WT▷◁A,Bψ if

EbeA [Vℳ,A,B,ψ ] ▷◁ EbeA [V
▷◁
CT,ℳ,A,ψ ],

where the function Vℳ,A,B,ψ : FPath
ℳ → [0, 1] is such that

Vℳ,A,B,ψ (ρ
′) =

∑
x ∈ω i

B (last (ρ
′))

ipA,B (last(ρ
′))(x) · Prℳ,B .i(ρ′,x )(ψ ).

Intuitively, ST
▷◁q
A,Bψ states that, according to agent A’s beliefs, either (i) the probability ofψ will

not be as required unless agent B takes on an appropriate intention, or (ii) the probability ofψ will

be as required unless B takes on a certain intention. In other words, strong dependence of A on

B overψ means that B can control the probability of future satisfaction ofψ . On the other hand,

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:32 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

WT▷◁A,Bψ states that, according to A’s beliefs and preferences, intentional changes of agent B can

bring about better results than any of the available intentional changes of agent A.
We note that alternative definitions of the above notions are possible. For example, we could

introduce a non-probabilistic version of strong dependence, based solely on the CA operator. We

could define

ℳ, ρ |= STA,Bϕ if ℳ, ρ |= CBCA¬ϕ ∧ CBCAϕ .

Intuitively, here STA,Bϕ means that B can take on an intention such that, regardless of what

intention A takes on, ϕ will not be satisfied, and B can take on another intention, such that A can

take on an intention which ensures that ϕ holds. In other words, B can either make it impossible

for A to achieve ϕ, or it can allow A to make ϕ true. We can view the above definition as a more

objective, absolute interpretation of strong dependence, whereas the probabilistic version represents

a subjective notion, influenced by agent’s understanding of the system execution. Depending on

the use case, either variant of the strong dependence operator might be employed.

Weak dependence can also be interpreted in a different way, especially in systems equipped

with a reward structure. The intuitive meaning of the expression better off used in the informal

definition of weak dependence relates to some implicit notion of agent’s well being. Definition 8.8

takes the probability of satisfying a given formula as agent’s reward. However, in presence of a

reward structure, we could allowψ to include a reward operator and adapt the definitions of the

V -functions to compute expected reward.

Example 8.9. In the trust game, Bob’s financial situation is dependent on Alice’s actions. We can

formally express that in PRTL
∗
with the following formula, where profitBob is an atomic proposition,

true in states in which Bob has more money than in the initial state:

STBob,Alice ∀^profitBob .
It expresses that Bob needs Alice’s cooperation to ensure that, at some point in the future, he will

have more money than when he started. In fact, Alice’s hopes of making a profit depend on Bob’s

cooperation, which we could express by a formula very similar to the one above.

We remark also that we could equip the trust game with a reward structure that reflects agents’

payoffs. We could then express that Bob is weakly dependent on Alice to maximise his payoff with

the following formula:

WTBob,Alice R
=?[^end],

where R=?[^end] returns the expected reward accumulated before the game ends.

8.5 Trust for Systems with Sure Beliefs
We now consider a special class of systems where agent A has sure beliefs, i.e., for all finite paths ρ,
we have either beA(ρ) = 1 or beA(ρ) = 0. Intuitively, agent A is sure about the current system state

and the execution history. The following theorem shows that, in such systems, agent A’s beliefs
and trusts can be expressed with other operators.

Theorem 8.10. For ASMASℳ in which agent A has sure beliefs, the following equivalences hold
for any finite path ρ, formulaψ , and agent B , A:

• ℳ, ρ |= B
▷◁q
A ψ if and only ifℳ, ρ |= P▷◁qψ ,

• ℳ, ρ |= CT
▷◁q
A,Bψ if and only if ℳ, ρ |= CBP

▷◁qψ ,
• ℳ, ρ |= DT

▷◁q
A,Bψ if and only if ℳ, ρ |= IBP

▷◁qψ .

Intuitively, the first equivalence shows that agent A’s belief of ψ reduces to computing the

probability of satisfying ψ . The other two equivalences concern agent A acting as a trustor and

agent B as a trustee. The former indicates that agent A’s trust in B’s competence in achievingψ is

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:33

equivalent to the existence of B’s legal intention which ensures satisfaction ofψ , while the latter
means that A’s trust in B’s disposition towards achievingψ is equivalent to B ensuring satisfaction

ofψ under all possible intentions.

The following proposition shows that the sure-belief system has an equivalent definition as fully

observable system. Therefore, Theorem 8.10 also holds for fully observable systems.

Proposition 8.11. Let ℳ be an ASMAS and A an agent in ℳ. The following two statements are
equivalent:

• Agent A has sure beliefs, i.e., for all finite paths ρ, we have either beA(ρ) = 1 or beA(ρ) = 0.
• Agent A has full observation, i.e., obsA(s) = s for all s ∈ S .

9 PRO-ATTITUDE SYNTHESIS
Recall that the cognitive strategies π

д
A and π iA are defined on the (possibly infinite) set of paths and

may lack a finite representation necessary for model checking. We now formalise an idea, which is

informally argued in [7, 50], that the changes of pro-attitudes are determined by the changes of

beliefs, but not vice versa.

This will enable us to synthesize the cognitive strategies πдA and π iA by considering agent A’s
beliefs and trust expressed as formulas of the logic PRTL

∗
and used to constrain pro-attitude

changes. In particular, we will associate with each set of goals a condition, expressed as a PRTL
∗

formula, which will guard that set of goals. The intuitive interpretation of such an association is

that an agent takes a set of goals when the associated condition is satisfied. To guard intentions,

we additionally use the agent’s own goals, since agents’ intentions are influenced by their goals.

We note that such a construction closely resembles human reasoning – for example, recall that

in Example 5.2 we stated that Bob takes intention share when he is an investor (i.e., his goal is
investor) and his belief in Alice being active is sufficient. In Example 9.3, we show how to express

this statement formally using pro-attitude synthesis, which consists of evaluating Bob’s belief in

Alice being active as a guarding mechanism for his intention to share and setting a minimum belief

threshold.

Let ℒA(PRTL
∗) be the set of formulas of the logic PRTL

∗
that are Boolean combinations of atomic

propositions and formulas of the form B
▷◁q
A ψ , T

▷◁q
A,Bψ , B

▷◁?
A ψ or T▷◁?A,Bψ , such thatψ does not contain

temporal operators. The formulas B▷◁?A ψ and T▷◁?A,Bψ denote the quantitative variants of B
▷◁q
A ψ and

T
▷◁q
A,Bψ that yield the actual value of the probability/expectation.

The language ℒA(PRTL
∗) allows nested beliefs

2
, for example B≥0.9

A B>0.7B ψ , under the condition
that the outermost belief operator is for agent A. The nesting is useful since one may want to

reason about, e.g., an agent’s belief over the other agent’s trust in himself. Moreover, all modal

logic formulas in ℒA(PRTL
∗) must be in the scope of a belief operator of agent A. This is to ensure

that agent A is able to invoke the synthesis with the limited information it has.

Below, we work with an arbitrary ASMASℳ and a set of agents Aдs inℳ.

Definition 9.1. For every agent A ∈ Aдs , we define:

• a goal guard function λ
д
A : 𝒫(GoalA) → ℒA(PRTL

∗) and

• an intention guard function λiA : IntA × 𝒫(GoalA) → ℒA(PRTL
∗).

The guard functions are partial functions associating pro-attitudes with conditions expressed

using belief and trust formulas that can be evaluated based on a finite execution history. Note

2
Because the semantics of trust is based on the belief function beA , a trust formula is also called a belief formula in this

paper.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:34 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

how λiA differs from λ
д
A in that it guards intentions by agent’s own goals. We call λ

д
A trivial if

λ
д
A(x) = true for all x ∈ 𝒫(GoalA). Similarly for λiA.

We recall that Ω = {⟨ω
д
A,ω

i
A⟩}A∈Aдs is the cognitive mechanism of ℳ. Additionally, we set

Λ = {⟨λ
д
A, λ

i
A⟩}A∈Aдs and call it the guarding mechanism. In the following, we present an approach

to obtain the infinite structure Π = {π
д
A,π

i
A}A∈Aдs , i.e., cognitive strategies of all agents, from finite

structures Ω and Λ.
First, for agentA ∈ Aдs , we define the goal evaluation function evalдA, such that for x ⊆ 𝒫(GoalA),

eval
д
A(x) : FPath

ℳ → [0, 1] is given by:

eval
д
A(x)(ρ) =

{
ℳ, ρ |= λ

д
A(x) if x ∈ ω

д
A(last(ρ))

0 otherwise

Intuitively, eval
д
A(x) evaluates the (probabilistic) satisfiability of agent A’s beliefs or trust ex-

pressed as ℒA(PRTL
∗) formulas given by λ

д
A(x). Note that the expressions B

▷◁?
A ψ and T▷◁?A,Bψ return

their corresponding probabilistic values, and ℳ, ρ |= B
▷◁q
A ψ and ℳ, ρ |= T

▷◁q
A,Bψ return the value 0

or 1 depending on the verification result.

Similarly, we define the intention evaluation function eval iA, such that for any x ∈ IntA, y ⊆

𝒫(GoalA), eval
i
A(x ,y) : FPath

ℳ → [0, 1] is given by:

eval iA(x ,y)(ρ) =

{
ℳ, ρ |= λiA(x ,y) if x ∈ ωi

A(last(ρ)),
0 otherwise.

We now use pro-attitude evaluation functions to provide a finite definition of a cognitive strategy.

Definition 9.2. Let ℳ be an ASMAS with a cognitive mechanism Ω = {ω
д
A,ω

i
A}A∈Aдs and let

Λ = {⟨λ
д
A, λ

i
A⟩}A∈Aдs be a guarding mechanism forℳ. In a finite-memory setting, the goal strategy

π
д
A : FPath

ℳ → 𝒟(𝒫(GoalA)) can be instantiated as follows: for any x ⊆ GoalA and ρ ∈ FPath
ℳ
,

we set

π
д
A(ρ)(x) =

eval
д
A(x)(ρ)∑

x ∈ωд
A(last(ρ))

eval
д
A(x)(ρ)

.

Likewise, the intention strategy π iA : FPath
ℳ → 𝒟(IntA) can be instantiated as follows: for any

x ∈ IntA and ρ ∈ FPath
ℳ
, we set

π iA(ρ)(x) =
eval iA(x ,y)(ρ)∑

x ∈ω i
A(last(ρ))

eval iA(x ,y)(ρ)
,

where y = дsA(last(ρ)).

This definition allows us to transform the model ℳ into eval(ℳ), which, besides the cognitive

mechanism Ω, contains the cognitive strategy of each agent. Once eval(ℳ) has been precomputed,

model checking a given specification can be carried out on eval(ℳ) instead of ℳ. We refer to

this approach as pro-attitude synthesis before model checking. Besides formalising the intuition

that agent’s pro-attitudes are affected by its beliefs, this approach makes the interaction of agents’

beliefs and trust possible, without resorting to nested beliefs.

Example 9.3. We show how a cognitive strategy can be constructed from the guarding mechanism

for Bob in the trust game 𝒢. Since we assume that goals of agents are static throughout the execution

of the game, we only concern ourselves with the intention guard function. We recall our informal

assumption that Bob’s intention will be share when he is an investor and his belief in Alice being

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:35

active is sufficient, and keep otherwise. We formalise it as follows:

λiBob (share, {investor }) = B
>0.7
Bob activeAlice ,

λiBob (keep, {investor }) = ¬B>0.7Bob activeAlice ,

λiBob (share, {opportunist}) = ⊥,

λiBob (keep, {opportunist}) = ⊤,

where activeAlice holds in states in which Alice’s goal is active and we used a value 0.7 to represent
Bob’s belief threshold.

We now synthesize Bob’s intention strategy. We let ρ1 = s0s1s3s8 and ρ2 = s0s2s5s12. We recall

from Example 7.1 that obsBob (ρ1) = obsBob (ρ2) and we let o1 denote that common observation. By

Example 7.3:

beBob (o1, ρ1) = 1/7,

beBob (o1, ρ2) = 6/7.

Therefore, since 𝒢, ρ1 |= ¬activeAlice and 𝒢, ρ2 |= activeAlice (below and in what follows, k ∈

{1, 2}):

𝒢, ρ j |= B=6/7Bob activeAlice .

Hence

eval iBob (share, {investor })(ρk ) = 1,

eval iBob (keep, {investor })(ρk ) = 0,

and so:

π iBob (ρk )(share) = 1,

π iBob (ρk )(keep) = 0.

Likewise, letting ρ3 = s0s1s4s10, ρ4 = s0s2s6s14 and k ∈ {3, 4} one can show that:

π iBob (ρ j )(share) = 0,

π iBob (ρ j )(keep) = 1.

As expected, if Bob is an opportunist, he keeps the money for himself. However, when he is an

investor and Alice invests the money with him, his belief that Alice is active is high enough for him

to share the profits, hoping to gain Alice’s trust. □

Finally, we remark that, while it may not be immediately clear how powerful pro-attitude

synthesis is after considering a simple example such as this, full appreciation of it can be gained

by applying it to more complex systems. One such system is provided by an iterated trust game,

in which Alice and Bob interact with each other repeatedly, in which beliefs and trust evolve

dynamically. Rather than specifying cognitive strategies by hand for each iteration, pro-attitude

synthesis enables one to encode them in a natural way via guard functions and generate them

dynamically. Such an approach scales well to larger systems and closely resembles human reasoning.

Preference Functions Update. During the execution of the system, agents learn new infor-

mation about other agents by observing their actions. As a result, their understanding of others’

behaviour, motivations and cognitive state increases. This new knowledge gained by agents is

reflected in their belief function, which could be used to update agents’ preference functions. To

do that, we extend guarding mechanism of each agent A by introducing guard functions of A
over B for every other agent B. In particular, for agents A and B, we define a goal (resp. intention)

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:36 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

guard function λ
д
A,B (resp. λiA,B ) of A over B in a similar way as in Definition 9.1, and then the

goal (resp. intention) evaluation function eval
д
A,B (resp. eval iA,B ) of A over B. Intuitively, λ

д
A,B (resp.

λiA,B ) captures A’s expectation of how B updates their mental attitudes. In case A does not possess

such information, λ
д
A,B (resp. λiA,B ) are trivial. We then define дphA,B and iphA,B (where h stands for

history, representing that updated preference functions are history-dependent) by weighting the

state-defined preferences with respect to the evaluation functions as follows:

• дphA,B (ρ)(x) =
дpA,B (last(ρ))(x) × eval

д
A,B (x)(ρ)∑

x ⊆GoalA дpA,B (last(ρ))(x) × eval
д
A,B (x)(ρ)

,

• iphA,B (ρ)(x) =
ipA,B (ρ)(x) × eval iA,B (x ,y)(ρ)∑

x ∈IntA ipA,B (ρ)(x) × eval iA,B (x ,y)(ρ)
,

where y = дsB (last(ρ)).
Intuitively, the preference functions of agent A over B will be adjusted with respect to its current

understanding of the system execution and the knowledge it has acquired throughout, represented

by aℒA(PRTL
∗) formula in the guarding functions λ

д
A,B and λiA,B . The probability space construction

from Section 6 can be adapted to work with the updated preference functions phA. Therefore, we
have probability spaces for both pro-attitude synthesis and model checking.

Example 9.4. After investing her money with Bob, Alice might be concerned whether she

can trust Bob to share his profit with her. Such trust can be formally expressed by a formula

ϕ = DT≥?Alice,Bobψ , where ψ = ⃝(aBob = share) and ≥ indicates that Alice wants to find a lower

bound on such trust value. We assume that Alice is active and let ρ1 = s0s2s5s12, ρ2 = s0s2s6s14,
o1 = obsAlice (ρ1) = obsAlice (ρ2) and k ∈ {1, 2}. We use Alice’s preference function defined in

Example 6.4, which we recall to be:

дpAlice,Bob (sk ) = ⟨investor 7→ 1/2,opportunist 7→ 1/2⟩.

From that, we easily compute Alice’s belief upon observing o1 to be:

beAlice (o1, ρ1) = 1/2,

beAlice (o1, ρ2) = 1/2.

We now compute V ≥
DT,𝒢,Bob,ψ (ρk ). We recall from Example 9.3 that, in state s10, Bob’s only

possible intention change is Bob .i .keep, and, in state s14, his only possible intention change is

Bob .i .share . Since Pr𝒢,Bob .i(ρk ,keep)(ψ ) = 0 and Pr𝒢,Bob .i(ρk ,share)(ψ ) = 1, we obtain:

V ≥
DT,𝒢,Bob,ψ (ρ1) = 0,

V ≥
DT,𝒢,Bob,ψ (ρ2) = 1.

Therefore:

𝒢, ρk |= DT≥?Alice,Bobψ = 1/2.

Hence, Alice can trust Bob with probability at least 50% in his willingness to share his profit with

her.

Note that an alternative way of formulating the trust we wish to compute is to use competence

trust instead, in which case ϕ = CT≥?Alice,Bobψ . Most of the computations stay the same in that case,

the exception being the V -functions:

V ≥
CT,𝒢,Bob,ψ (ρ1) = 1,

V ≥
CT,𝒢,Bob,ψ (ρ2) = 1.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:37

Fig. 4. Model progression and model checking diagram

Therefore:

𝒢, ρk |= CT≥1Alice,Bobψ .

Hence, Alice can trust Bob with certainty on his capability to share his profit with her. We remark

that the difference in the value of competence trust and disposition trust is as expected – intuitively,

Alice knows for sure that Bob is capable of sharing his profit with her, but she cannot be sure that

he is willing to do that.

Finally, we consider Alice’s belief that Bob will share money with her. We let ϕ = B=?Aliceψ and

recall Alice’s intention preference function over Bob defined in Example 6.4:

ipAlice,Bob (si ) = ⟨share 7→ 3/4,keep 7→ 1/4⟩ for i ∈ {8, 12},

ipAlice,Bob (si ) = ⟨share 7→ 0,keep 7→ 1⟩ for i ∈ {10, 14}.

Hence, after Bob settles his intention, Alice’s belief is as follows:

beAlice (ρ1s19) = 3/8,

beAlice (ρ1s20) = 1/8,

beAlice (ρ2s21) = 0,

beAlice (ρ2s22) = 1/2.

Therefore:

𝒢, s0s2 |= B=3/8Aliceψ .

Intuitively, due to inaccuracy of Alice’s prior knowledge about Bob (encoded in preference

functions), her belief that Bob will share his profit with her differs from her trust towards Bob
sharing the money. □

10 MODEL CHECKING COMPLEXITY
In the next two sections we consider model checking ASMAS against PRTL

∗
formulas. We first

present the verification procedure and then analyse its complexity.

We redefine the autonomous stochastic multi-agent system of Definition 6.1 by replacing an

infinite structure Π with a finite structure Λ, defined in Section 9.

Our automated verification framework accepts as inputs an ASMAS ℳ satisfying Assumption 2

and a PRTL
∗
specification formula ϕ. The verification procedure proceeds as follows:

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:38 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

Table 5. Complexity of decidable fragments

BPRTL∗ PSPACE-hard

PRTL∗
1

PSPACE-complete

PQRTL∗
1

PTIME

(1) Perform pro-attitude synthesis on the system ℳ to obtain eval(ℳ). In the new system,

guarding mechanism Λ is replaced by cognitive strategies, Π, of agents. (In this phase,

functions beA are based on preference functions pA.)
(2) Update the preference functions pA into phA according to the results of pro-attitude synthesis,

as defined in Section 9.

(3) Model check formula ϕ on the system eval(ℳ). (In this phase, the belief functions beA are

based on preference functions phA.)

The checking of expressionsℳ, ρ |= ϕ in Steps 1 and 3 relies on the corresponding preference

functions pA and phA, respectively. However, for simplicity of the notations, we still write them

as ℳ, ρ |= ϕ. Note that cognitive strategies synthesised in Step 1 generally lack a precise finite

representation. Remark 13 discusses a possible approximate solution, while Appendix B presents a

restriction on the systemwhich ensures that a finite representation forΠ exists. Figure 4 summarises

the differences between themodels introduced in this paper and outlines themodel checking process.

Unfortunately, the problem is undecidable in general for both the synthesis step and the model

checking step. First of all,

Theorem 10.1. The synthesis of pro-attitude functions whose formulas are in the languageℒA(PRTL
∗)

is undecidable.

A guarding mechanism Λ = {⟨λ
д
A, λ

i
A⟩}A∈Aдs is trivial if, for all agents A, we have λ

д
A(x) = true

for all x ∈ 𝒫(GoalA) and λ
i
A(x ,y) = true for all x ∈ IntA and y ∈ 𝒫(GoalA). If the guarding

mechanism is trivial then the first two steps can be skipped, and the computation proceeds directly

to model checking. In this case, we have

Theorem 10.2. Model checking PRTL∗ is undecidable, even if the guarding mechanism is trivial.

We note that both of the above problems are undecidable even for formulas concerning beliefs

of a single agent. Proofs can be found in Appendix A.

11 DECIDABLE FRAGMENTS
To counter the undecidability results, we explore fragments of the general problem. In this section,

we only present proof ideas for the complexity results. The details of the proofs can be found in the

Appendix. Table 5 summarises complexity results for the proposed fragments.

11.1 A Bounded Fragment
The bounded fragment, named BPRTL

∗
, allows formulas which 1) do not contain temporal operators

𝒰 and □, 2) all ⃝ operators are immediately prefixed with a probabilistic operator or a branching

operator, i.e., in a combination of P▷◁q ⃝ ψ , ∀ ⃝ ψ , or ∃ ⃝ ψ , and 3) the nested depth of belief

and trust operators is constant. The last constraint is needed to ensure that the complexity is not

measured over the nested depth of belief and trust operators. For the upper bound, we have the

following result.

Theorem 11.1. The complexity of the bounded fragment BPRTL∗ is in EXPTIME.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:39

Table 6. Assumptions of decidable fragments

BPRTL∗ PRTL∗
1

PQRTL∗
1

no 𝒰 or □ operators Λ is trivial ϕ = □(ψ ⇒ P▷◁q^B≥1
A ψ )

all ⃝ preceded by P, ∀ or ∃ BA, TA for single A only or □(ψ ⇒ P▷◁q^T≥1A,Bψ )

constant depth of B, T nesting no nesting of B and T
no B or T in scope of P
constant # of B and T

“expanded system restriction”

In Appendix B, we present an EXPTIME algorithm which performs the verification procedure

from Section 10. It uses boundedness of the logic fragment to limit the length of paths that need

to be considered to evaluate a guard or the specification formula. It then constructs an expanded

system whose states capture all past observations of all agents, enabling belief and trust formulas

to be evaluated locally. Model checking the original system is then reduced to model checking the

expanded system, which admits a standard recursive labelling procedure, similar to the one used

for PCTL model checking.

For the lower bound, we have the following result.

Theorem 11.2. The complexity of the bounded fragment BPRTL∗ is PSPACE-hard.

The proof is a reduction from the quantified Boolean formula problem. Given a QBF ϕ, the
reduction constructs an ASMAS with two agents, ∀ and ∃, playing a game of two phases. In the first

phase, the agents decide the truth values of the variables (atomic propositions) of ϕ by changing

their intentions. Then, in the second phase, the agent ∃ attempts to show that a randomly chosen

clause of ϕ evaluates to true by proving that one of its literals is true. If they can do that regardless

of which clause gets selected, then they have a winning strategy in the game, which is equivalent

to ϕ being true. The challenge lies in designing the system so that agents’ decisions from phase one

are “remembered” until phase two, and devising an appropriate formula to express the existence of

a winning strategy for ∃. The details of the proof are in Appendix B.

11.2 A Fragment with 𝒰 and □ operators
The fragment of this section, named PRTL

∗
1
, works with the 𝒰 and □ temporal operators in the

specification formula ϕ. With 𝒰 and □ operators, the specification formula can express long-run

properties about agent’s mental attitudes in the system, and therefore this fragment complements

the bounded fragment. However, the fragment is subject to other restrictions as follows.

• The guarding mechanism Λ is trivial. That is, the algorithm works with the model checking

step without conducting pro-attitude synthesis first.

• The specification formula ϕ is restricted so that 1) it works with a single agent’s beliefs and

trust, 2) there are no nested beliefs or trust, 3) beliefs and trust cannot be in the scope of a

probabilistic operator P, and 4) there is a constant number of belief or trust operators.

• The expanded system, described below, satisfies the restriction that, along any path of the

expanded system, the evaluation of belief or trust subformulas for agent A are the same on

any two expanded states if the support of the probabilistic distributions over the set of states

are the same.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:40 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

Remark 13. We remark that the pro-attitude synthesis problem is strictly harder than model

checking for long-run properties because it needs a finite representation for the set eval(x) of
paths. For this reason, this fragment and PRTL

∗
1
do not handle synthesis. Future work may involve

formulating an approach based on order effects [2, 27, 45] to approximate the set eval(x). The focus
of this paper is on approaches that can be computed precisely.

The restriction on the expanded system is essential. It results from an investigation into the

undecidability, which has established that the undecidable cases arise because of the existence of

non-monotonic flows of probability between states in two consecutive visits of the same expanded

state. By assuming stability (as we do in this fragment) or monotonicity of the flows, decidability can

be achieved. Moreover, we note that this fragment has full expressiveness of LTL. In the following,

we assume that it is the agent A’s beliefs that the formula ϕ is to describe. We have the following

result for the upper bound.

Theorem 11.3. The complexity of the fragment PRTL∗
1
is in PSPACE.

Given a systemℳ and a formula ϕ, the algorithm proceeds by first computing those subformulas

which do not have belief or trust formulas in their scope. These computations can be done by an

adaptation of the usual probabilistic temporal logic model checking. Then, to compute a formula

with belief and trust subformulas, we construct an expanded systemℳA(ϕ) with the state space

S† = S ×𝒟(S) × R × ... × R, where R is the domain of real numbers with fixed precision
3
. Although

R is infinite, we need only a finite number of real numbers. The restriction imposed on the system

ensures that the system ℳA(ϕ) is of size exponential with respect to the size of the system ℳ.

However, we do not explicitly construct the system, but instead take an automata-theoretic approach

and perform on-the-fly computation by, e.g., two-phase search. The belief and trust formulas can

be directly evaluated on the states of the expanded system. The details of the construction are in

Appendix C.

We have the following results for the lower bound. Recall that a strongly connected component

(SCC) of a graph G is a subgraph of G in which every vertex is reachable from every other vertex.

Theorem 11.4. The complexity of the fragment PRTL∗
1
is PSPACE-hard.

The proof is a reduction from the language universality problem of nondeterministic finite

automata. Given an NFAA = (Q,q0,δ , F ), we construct a single agent systemℳ(A) which, starting
from an initial state s0, moves into one of two subsystems ℳ1(A) and ℳ2(A), with a uniform

distribution. The system ℳ1(A) simulates the universal language Σ∗
, while ℳ2(A) simulates the

language ofA. In other words, every word in Σ∗
has a corresponding execution inℳ1(A) and every

word in Σ∗
that produces a valid run of A has a corresponding execution (one for each unique

run) in ℳ2(A) which ends in a designated state (one labelled finished) if the corresponding run
on A ends in a final state. We define the observation function so that the agent cannot distinguish

between paths in ℳ1(A) and ℳ2(A) corresponding to the same word. This then allows us to

prove that the non-universality of the language of A is equivalent to the satisfaction of a carefully

designed formula revolving around agent’s qualitative belief that the system reaches a designated

state. Finally, the reduction is completed by showing that the system ℳ(A) satisfies the restriction
outlined above, which follows by observing that agent’s belief stays constant in all SCCs of the

expanded system. The details of the proof are in Appendix C.

11.3 A Polynomial Time Fragment
One of the restrictions in the previous fragment is that beliefs and trust cannot be in the scope of a

probabilistic operator. In that fragment, this restriction ensures that the complexity is in PSPACE,

3
We assume that each number can be encoded with complexity O (1).

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:41

Table 7. Assumptions of the framework

1. Deterministic Behaviour Assumption (Assumption 2)

2. Uniformity Assumptions (Assumptions 1, 3)

3. Transition Type Distinguishability Assumption (Assumption 4)

4. Synchronous perfect recall (Remark 2)

5. PCTL
∗
formulas are evaluated in induced SMGs (Remark 7)

6. Constraints on the language ℒA(PRTL
∗)

7. Seriality of legal goal and intention functions

because it can be harder to perform quantitative verification of the probabilistic and belief operators.

In this section, we partly complement this with a fragment in which the belief or trust operators can

be in the scope of a probabilistic operator but need to be qualitative, i.e., almost sureness. We show

that this fragment, named PQRTL
∗
1
, is, very surprisingly, polynomial time. Note that, as before, T

ranges over two trust operators CT and DT.
We consider the model checking step and restrict formulas to be of the form □(ψ ⇒ P▷◁q^B≥1

A ψ )

or □(ψ ⇒ P▷◁q^T≥1A,Bψ ) such that, inψ , there are no belief or trust operators and every temporal

operator is immediately prefixed with a branching operator, i.e., in the style of CTL. The system

ℳ needs to satisfy the formula ℳ |= □(ψ ⇒ □ψ ), which means that, once ψ holds, it will hold

henceforth. The following is the result.

Theorem 11.5. The complexity of the fragment PQRTL∗
1
is in PTIME.

We give a polynomial time algorithm in Appendix D. The algorithm first constructs a system

ℳ#
in which two copies of system ℳ run by synchronising their observations and the second

copy avoids the states whereψ is satisfiable. The computation is then to find strongly connected

components (SCCs) ofℳ#
such that a) the formulaψ is satisfiable on some state of the first copy,

b) both copies are closed SCCs, and c) the two copies are equivalent in terms of the acceptance

probability of words. We show that the checking of formulas P▷◁q^B≥1
A ψ or P▷◁q^T≥1A,Bψ on states

satisfyingψ is equivalent to comparing the reachability probability of these SCCs with the value

1 − q. The PTIME complexity is due to the fact that the computation of SCCs and checking the

three conditions on SCCs can be done in polynomial time; in particular, checking of equivalence of

acceptance probability of all words can be done in polynomial time by [49].

12 CONCLUSIONS
The paper proposes an automated verification framework for autonomous stochastic multi-agent

systems and specifications given in probabilistic rational temporal logic PRTL
∗
, which includes

novel modalities for quantifying and reasoning about agents’ cognitive trust. Our model is an

extension of stochastic multiplayer games with cognitive reasoning, which specifies how agents’

goals and intentions change during system execution, and admits probabilistic beliefs on which the

trust concepts are founded. We study computational complexity of the decision problems and show

that, although the general problem is undecidable, there are decidable, even tractable, fragments.

Their existence is made possible by numerous assumptions and restrictions that we place on our

system, which are summarised in Table 7.

As can be seen from the illustrative running example in this paper, the framework is applicable to

a wide range of scenarios of human-robot interactions. This includes competitive settings such as

the trust game, as well as cooperative scenarios, which are more commonly considered in robotics

community, such as a table clearing task [11]. Furthermore, the development of trust sensors (see

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:42 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

[1]) complements our framework very well; they could serve as a source of agent preferences and

for validation purposes.

A natural next step following the development of the framework is implementing its techniques in

the form of a model checker. To overcome undecidability, a subset of the problem will be considered,

in particular, the bounded fragment BPRTL
∗
. Since a finite set of finite paths is sufficient to model

check a bounded specification formula, pro-attitude synthesis only needs to consider those finite

paths and the resulting cognitive strategies have a finite representation. Preference function update

also only needs to be performed on the relevant finite paths. Finally, computing the satisfaction of a

specification formula is a recursive procedure that keeps track of the execution history to evaluate

belief and trust formulas. Other decidable fragments also provide a basis for implementation, but

their strong restrictions make them less practical.

Another interesting direction for future works involves investigating how memory decay can be

introduced into the framework. Intuitively, humans tend to remember more recent experiences

better and this should be reflected in the semantics of trust. As a side effect, decidability will be

achieved if appropriately old memory is discarded. With that, a Bellman operator may be defined

which will allow more efficient evaluation of trust.

Finally, it would be interesting to study an axiomatisation for our logic, as well as the satisfiability

problem, which we believe to be challenging.

ACKNOWLEDGMENTS
The authors are supported by ERC Advanced Grant VERIWARE and EPSRC Mobile Autonomy

Programme Grant EP/M019918/1.

REFERENCES
[1] Kumar Akash, Wan-Lin Hu, Neera Jain, and Tahira Reid. 2018. A Classification Model for Sensing Human Trust in

Machines Using EEG and GSR. CoRR abs/1803.09861 (2018). arXiv:1803.09861 http://arxiv.org/abs/1803.09861

[2] S.E. Asch. 1946. Forming impression of personality. The Journal of Abnormal and Social Psychology 40, 3 (1946),

258–290.

[3] Adnan Aziz, Vigyan Singhal, Felice Balarin, Robert Brayton, and Alberto Sangiovanni-Vincentelli. 1995. It usually

works: The temporal logic of stochastic systems. In Computer Aided Verification. Springer Berlin/Heidelberg, 155–165.
[4] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. 2008. Principles of Model Checking. The MIT Press.

[5] Joyce Berg, John Dickhaut, and Kevin McCabe. 1995. Trust, Reciprocity, and Social History. Games and Economic
Behavior 10, 1 (1995).

[6] M.E. Bratman. 1987. Intentions, Plans, and Practical Reason. Harvard University Press, Massachusetts.

[7] Cristiano Castelfranchi and Fabio Paglieri. 2007. The role of beliefs in goal dynamics: prolegomena to a constructive

theory of intentions. Synthese 155 (2007), 237–263.
[8] Souymodip Chakraborty and Joost-Pieter Katoen. 2016. On the Satisfiability of Some Simple Probabilistic Logics. In

Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’16). ACM, New York, NY,

USA, 56–65. https://doi.org/10.1145/2933575.2934526

[9] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. 1980. Alternation. J. ACM 28, 1 (1980), 114–133.

[10] Krishnendu Chatterjee, Martin Chmelik, and Mathieu Tracol. 2016. What is decidable about partially observable

Markov decision processes with ω-regular objectives. J. Comput. Syst. Sci. 82, 5 (2016), 878–911. https://doi.org/10.

1016/j.jcss.2016.02.009

[11] Min Chen, Stefanos Nikolaidis, Harold Soh, David Hsu, and Siddhartha Srinivasa. 2018. Planning with Trust for

Human-Robot Collaboration. CoRR abs/1801.04099 (2018). arXiv:1801.04099 http://arxiv.org/abs/1801.04099

[12] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. 2013. Automatic Verification of Competitive Stochastic

Systems. FMSD 43, 1 (2013).

[13] E. M. Clarke, O. Grumberg, and D. Peled. 1999. Model Checking. The MIT Press.

[14] Brian J. Corbitt, Theerasak Thanasankit, and Han Yi. 2003. Trust and e-commerce: a study of consumer perceptions.

Electronic Commerce Research and Applications 2, 3 (2003), 203–215.
[15] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. 2017. A storm is Coming: A Modern

Probabilistic Model Checker. CoRR abs/1702.04311 (2017). arXiv:1702.04311 http://arxiv.org/abs/1702.04311

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://arxiv.org/abs/1803.09861
http://arxiv.org/abs/1803.09861
https://doi.org/10.1145/2933575.2934526
https://doi.org/10.1016/j.jcss.2016.02.009
https://doi.org/10.1016/j.jcss.2016.02.009
http://arxiv.org/abs/1801.04099
http://arxiv.org/abs/1801.04099
http://arxiv.org/abs/1702.04311
http://arxiv.org/abs/1702.04311


Reasoning about Cognitive Trust 1:43

[16] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. 1995. Reasoning About Knowledge. MIT Press.

[17] R. Falcone and C. Castelfranchi. 2001. Social trust: A cognitive approach. In Trust and Deception in Virtual Societies.
Kluwer, 55–90.

[18] Nir Friedman and Joseph Y. Halpern. 1997. Modeling belief in dynamic systems, part I: Foundations. Artificial
Intelligence 95, 2 (1997), 257–316.

[19] D. Gambetta (Ed.). 1990. Trust. Basil Blackwell, Oxford.
[20] Judy Goldsmith and Martin Mundhenk. 1998. Complexity Issues in Markov Decision Processes. In the Thirteenth

Annual IEEE Conference on Computational Complexity.
[21] P. M. Gollwitzer. 1993. Goal achievement: The role of intentions. European Review of Social Psychology 4 (1993),

141–185.

[22] Joseph Y. Halpern and Mark R. Tuttle. 1993. Knowledge, Probability, and Adversaries. J. ACM 40, 3 (1993), 917–962.

[23] Hans Hansson and Bengt Jonsson. 1994. A logic for reasoning about time and reliability. Formal aspects of computing
6, 5 (1994), 512–535.

[24] Russell Hardin. 2002. Trust and trustworthiness. Russell Sage Foundation.
[25] Andreas Herzig, Emiliano Lorini, Jomi F Hübner, and Laurent Vercouter. 2010. A logic of trust and reputation. Logic

Journal of IGPL 18, 1 (2010), 214–244.

[26] Andreas Herzig, Emiliano Lorini, and Frédéric Moisan. 2013. A simple logic of trust based on propositional assignments.

The Goals of Cognition. Essays in Honor of Cristiano Castelfranchi (2013), 407–419.
[27] Robin M Hogarth and Hillel J Einhorn. 1992. Order effects in belief updating: The belief-adjustment model. Cognitive

Psychology 24, 1 (1992), 1–55.

[28] Xiaowei Huang and Marta Kwiatkowska. 2017. Reasoning about cognitive trust in stochastic multiagent systems. In

Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17).
[29] Audun Jøsang. 2001. A logic for uncertain probabilities. International Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems 9, 03 (2001), 279–311.
[30] L. Kagal, T. Finin, and A. Joshi. 2001. Trust-based security in pervasive computing environments. Computer 34, 12

(2001), 154 – 157.

[31] John G. Kemeny, J. Laurie Snell, and Anthony W. Knapp. 1967. Denumerable Markov Chains. Springer-Verlag.
[32] Karl Krukow, Mogens Nielsen, and Vladimiro Sassone. 2008. Trust models in ubiquitous computing. Philosophical

Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 366, 1881 (2008),

3781–3793.

[33] Benjamin Kuipers. 2016. What is Trust and How Can My Robot Get Some?. In a Talk at Social Trust in Au-
tonomous Robots, a workshop in Robotics: Science and Systems 2016. http://qav.comlab.ox.ac.uk/trust_in_autonomy/

img/KuipersTrustWorkshop16.pdf

[34] Benjamin Kuipers. 2018. How Can We Trust a Robot? Commun. ACM 61, 3 (Feb. 2018), 86–95. https://doi.org/10.

1145/3173087

[35] M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Verification of Probabilistic Real-time Systems. In Proc.
23rd International Conference on Computer Aided Verification (CAV’11) (LNCS), G. Gopalakrishnan and S. Qadeer (Eds.),

Vol. 6806. Springer, 585–591.

[36] Morteza Lahijanian and Marta Kwiatkowska. 2016. Social Trust: a Major Challenge for the Future of Autonomous

Systems. In AAAI Fall Symposium on Cross-Disciplinary Challenges for Autonomous Systems (AAAI Fall Symposium).
AAAI, AAAI Press.

[37] Dave Lee. 2016. US opens investigation into Tesla after fatal crash. British Broadcasting Corporation
(BBC) News (Jul. 2016). http://www.bbc.co.uk/news/technology-36680043 [Online; posted 1-July-2016;

http://www.bbc.co.uk/news/technology-36680043].

[38] John D Lee and Katrina A See. 2004. Trust in automation: Designing for appropriate reliance. Human Factors: The
Journal of the Human Factors and Ergonomics Society 46, 1 (2004), 50–80.

[39] Roger C Mayer, James H Davis, and F David Schoorman. 1995. An integrative model of organizational trust. Academy
of management review 20, 3 (1995), 709–734.

[40] John-Jules Ch. Meyer, Jan Broersen, and Andreas Herzig. 2014. BDI Logics. In Handbook of Epistemic Logic. College
Publications.

[41] J-J Ch Meyer, Wiebe van der Hoek, and Bernd van Linder. 1999. A logical approach to the dynamics of commitments.

Artificial Intelligence 113, 1 (1999), 1–40.
[42] Azaria Paz. 1971. Introduction to probabilistic automata (Computer science and applied mathematics). Academic Press.

[43] Judea Pearl. 1994. Probabilistic semantics for nonmonotonic reasoning: a survey. In KR 1994.
[44] Anand S. Rao and Michael P. Georgeff. 1991. Modeling Rational Agents within a BDI-Architecture. In KR 1991.
[45] Frank E. Ritter, Josef Nerb, Erno Lehtinen, , and Timothy O’Shea. 2007. In Order to Learn: How the sequence of topics

influences learning. Oxford University Press.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://qav.comlab.ox.ac.uk/trust_in_autonomy/img/KuipersTrustWorkshop16.pdf
http://qav.comlab.ox.ac.uk/trust_in_autonomy/img/KuipersTrustWorkshop16.pdf
https://doi.org/10.1145/3173087
https://doi.org/10.1145/3173087
http://www.bbc.co.uk/news/technology-36680043


1:44 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

[46] Klaus Schild. 2000. On the Relationship between BDI Logics and Standard Logics of Concurrency. Autonomous Agents
and Multi-Agent Systems (2000), 259 – 283.

[47] Tina Setter, Andrea Gasparri, and Magnus Egerstedt. 2016. Trust-Based Interactions in Teams of Mobile Agents. In

American Control Conference. 6158–6163.
[48] Nicholas Sweet, Nisar R Ahmed, Ugur Kuter, and Christopher Miller. 2016. Towards Self-Confidence in Autonomous

Systems. In AIAA Infotech@ Aerospace. 1651–1652.
[49] Wen-Guey Tzeng. 1992. A polynomial-time algorithm for the equivalence of probabilistic automata. SIAM J. Comput.

21, 2 (1992), 216 – 227.

[50] Wiebe van der Hoek, Wojciech Jamroga, and Michael Wooldridge. 2007. Towards a theory of intention revision.

Synthese 155, 2 (2007), 265–290.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:45

A UNDECIDABILITY OF THE GENERAL PROBLEM
The undecidability proof is by a reduction from the emptiness problem and strict emptiness problem

of probabilistic automata, both known as undecidable problems [42]. A probabilistic automaton PA
is a tuple (Q,A, (Ma)a∈A,q0, F ), where

• Q is a finite set of states,

• q0 is the initial state,
• F ⊆ Q is a set of accepting states,

• A is the finite input alphabet, and

• (Ma)a∈A is the set of transition matrix.

For each a ∈ A,Ma ∈ [0, 1]Q×Q
defines transition probabilities, such that given q,q′ ∈ Q ,Ma(q,q

′)

is the probability that q makes a transition to q′ when a is the input. For every q ∈ Q and a ∈ A, we
have

∑
q′∈Q Ma(q,q

′) = 1. Plainly, given a stateq, an inputamakes a transition to a distribution onQ ,

and we further extendMa to be a transformer from distributions to distributions. Let𝒟(Q) be the set
of all probabilistic distributions on the set Q . Given ∆ ∈ 𝒟(Q), we writeMa(∆) for the distribution
transformed from ∆ by a, such that for all q′ ∈ Q ,Ma(∆)(q

′) =
∑
q∈supp(∆) ∆(q) ·Ma(q,q

′). Given

w = a1 ·a2 · . . . ·an ∈ A∗
, we writeMw for the functionMan ◦Man−1 ◦ · · · ◦Ma1 (we assume function

application is right associative).

The emptiness problem of a probabilistic automata is defined as follows: Given a probabilistic

automaton PA = (Q,A, (Ma)a∈A,q0, F ) and ϵ ∈ [0, 1], decide whether there exists a word w such

that Mw (∆0)(F ) ≥ ϵ , where ∆0(q0) = 1 and ∆0(q) = 0 for q ∈ Q \ {q0}. Replacing ‘≥’ by a strict

inequality ‘>’ yields the strict emptiness problem. Both problems are known to be undecidable.

Pro-attitude Synthesis is Undecidable. First of all, we show that the synthesis of pro-attitude func-

tions in which the formulas are in the languageℒA(PRTL
∗) is undecidable. Formally, let PA = (Q,A,

(Ma)a∈A,q0, F ) be a probabilistic automaton andAP = {final, found} be a set of atomic propositions.

We can then construct an ASMAS ℳ(PA) = (Aдs, S, Sinit,Act1,T ,L,O1,obs1,Ω1,π1,p1) such that

• Aдs = {1}, i.e., this is a single-agent system,

• S = A ×Q × {1, 2},
• Sinit = {(a,q0, 1)} for some a ∈ A,
• Act1 = {τ },
• the transition relation is as follows for k ∈ {1, 2}:

T ((a,q,k),τ , (a′,q′,k)) =
Ma′(q,q

′)∑
a′∈A

∑
q′∈Q Ma′(q,q′)

• found ∈ L((a,q, 2)) for a ∈ A and q ∈ Q , and final ∈ L((a,q,k)) for a ∈ A, q ∈ F , and
k ∈ {1, 2}.

Intuitively, the system consists of two subsystems, indexed with the third component of the states

(i.e., 1 or 2), running in parallel without any interaction. The observation is defined as follows:

• O1 = A, and
• obs1((a,q,k)) = a for all (a,q,k) ∈ S .

The moving from the first subsystem to the second subsystem is done by agent 1’s intentional

changes, which are guarded with a testing on agent 1’s beliefs. We only define relevant intentional

attitudes in Ω1 as follows.

• Int1 = {x1,x2},

As defined in Section 9, the cognitive strategy π1 can be obtained from Ω1 and Λ, with the latter

defined as follows for the intentional strategy.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:46 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

• λi
1
(x2) = B

≥(>)ϵ
1

f inal for some ϵ ∈ [0, 1] and λi
1
(x1) = true

The preference functions p1, the goal attitude Goal1 in Ω1, and the goal guards λ
д
1
are not defined,

because they are not used in this reduction. The initial distribution µ0 is a Dirac distribution over

the initial states Sinit. Therefore, given a PA and a number ϵ ∈ [0, 1], the (strict) emptiness of the

problemMw (∆0)(F ) ≥ (>)ϵ is equivalent to checking whether ℳ(PA) |= ∃^ I1found.
Model Checking PRTL∗ without Pro-Attitudes is Undecidable. In the following, we show that

model checking PRTL
∗
is also undecidable, for systems where the guarding mechanism Λ is trivial.

Formally, let PA be as before and AP = {final} be a set of atomic propositions. We then construct

an ASMAS ℳ(PA) = (Aдs, S, Sinit,Act1,T ,L,O1,obs1,Ω1,π1,p1) such that

• Aдs = {1}, i.e., this is a single-agent system,

• S = A ×Q ,
• Sinit = {(a,q0)} for some a ∈ A, with the initial distribution µ0 being a Dirac distribution over

Sinit,
• Act1 = {τ },
• the transition relation T is as follows:

T ((a,q),τ , (a′,q′)) =
Ma′(q,q

′)∑
a′∈A

∑
q′∈Q Ma′(q,q′)

• final ∈ L((a,q)) for a ∈ A and q ∈ F .

Agent 1’s observation is defined as

• O1 = A, and
• obs1((a,q)) = a for all (a,q) ∈ S .

We do not need the functions Ω1,π1,p1 in this reduction. Given a PA and a number ϵ ∈ [0, 1], the
(strict) emptiness of the problem ℳw (∆0)(F ) ≥ (>)ϵ is equivalent to checking whether ℳ(PA) |=

∃^B≥(>)ϵ
1

final.

B A DECIDABLE FRAGMENT OF BOUNDED LENGTH
As shown in Section A, the automated verification problem defined in Section 10 is undecidable in

general. In this section, we present a fragment of the problem whose computational complexity

falls between PSPACE and EXPTIME. Note that in the following discussions on decidable fragments

(i.e., Appendix B, C, and D), we only consider dispositional trust formula DT
▷◁q
A,Bψ . The competence

trust formula CT
▷◁q
A,Bψ can be handled in a similar way.

Bounded Fragment. The bounded fragment works with specification formulas ϕ which do not

contain temporal operators 𝒰 and □, all ⃝ operators are immediately prefixed with a probabilistic

operator or a branching operator, i.e., in a combination of P▷◁q ⃝ ψ , ∀ ⃝ ψ , or ∃ ⃝ ψ , and the

nested depth of belief and trust operators is constant. We remark that the specification formula ϕ
can be extended to include subformulas of the form P▷◁q(ψ1𝒰 ≤kψ2), ∀(ψ1𝒰 ≤kψ2), or ∃(ψ1𝒰 ≤kψ2).

Moreover, the restriction on nested temporal operators can be relaxed by taking the bounded

semantics for LTL. We focus on the simpler syntax to ease the notation.

Let d(ϕ) be the maximal length of the paths that are needed for the specification formula ϕ.
Specifically:

• d(p) = 0,

• d(ϕ1 ∨ ϕ2) = max{d(ϕ1), d(ϕ2)},
• d(¬ψ ) = d(∀ψ ) = d(P▷◁qψ ) = d(B

▷◁q
A ψ ) = d(ψ ), and

• d(⃝ψ ) = d(GAψ ) = d(IAψ ) = d(CAψ ) = d(DT
▷◁q
A,Bψ ) = d(ψ ) + 1.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:47

B.1 Upper Bound
The algorithm proceeds in three steps according to the verification procedure in Section 10.

B.1.1 Pro-attitude Synthesis. The purpose of the synthesis is to realise the guarding mechanism, i.e.,

for every x ∈ 𝒫(GoalA) and y ∈ IntA, compute an equivalent representation for the formulas λ
д
A(x)

and λiA(x ,y) for all agents A. Here we only consider formulas of the forms B
▷◁q
A ϕ and DT

▷◁q
A,Bϕ, and

claim that formulas of the other forms B=?A ϕ and DT=?A,Bϕ can be handled by adapting the technique

slightly. Without loss of generality, we let x ∈ 𝒫(GoalA). By the constraint of the language

ℒA(PRTL
∗) that no temporal operator can be in the scope of a belief operator, the satisfiability

of M, ρ |= λ
д
A(x) depends only on those paths of length |ρ |. Moreover, by the semantics of the

language PRTL
∗
, model checking the bounded specification formula ϕ requires only those paths of

length not greater than d(ϕ) + 1. Therefore, for this fragment, the synthesis is equivalent to finding

a set of paths eval(x , d(ϕ)), where

eval(x ,k) = {ρ ∈ FPath
ℳ | |ρ | ≤ k,x ∈ GoalA(last(ρ)),ℳ, ρ |= λ

д
A(x)}

for 1 ≤ k ≤ d(ϕ).
Given a state s ∈ S , we write obs(s) = (obs1(s), ...,obsn(s)) for the tuple of agents’ observations at

state s . For 0 ≤ k ≤ d(ϕ) − 1, we let Ok = {⊥} ∪ (O1 × ... ×On) be the set of possible observations

at time k , where ⊥ denotes that agents have not made any observations at time k . The state space
of the following expanded system ℳ#

is S ×O0 × ... ×Od(ϕ)−1
. For a state s# = (s,o0, ...,od(ϕ)−1)

of ℳ#
, we write LM(s

#) for original state s and Lk (s#) with 0 ≤ k ≤ d(ϕ) − 1 for the observations

at time k , i.e., Lk (s#) = ok ∈ Ok
. Moreover, for a tuple of observations Lk (s#), we write LkA(s

#) for

agentA’s observation. These notations can be extended to work with a sequence of states whenever

reasonable, e.g., LM(s
#

0
s#
1
...) = LM(s

#

0
)LM(s

#

1
)..., etc.

Givenℳ = (Aдs, S, Sinit, {ActA}A∈Aдs ,T ,L, {OA}A∈Aдs , {obsA}A∈Aдs , {ΩA}A∈Aдs , {πA}A∈Aдs , {pA}A∈Aдs ),

we construct a systemℳ# = (Aдs, S#, S#
init
, {ActA}A∈Aдs , {T

#

k }0≤k≤d(ϕ)−1,L
#, {O#

A}A∈Aдs , {obs
#

A}A∈Aдs ,

{Ω#

A}A∈Aдs , {πA}A∈Aдs , {p
#

A}A∈Aдs ) such that

• S# = S ×O0 × ... ×Od(ϕ)−1
,

• for s# ∈ S#, s# ∈ S#
init

whenever µ#
0
(s#) > 0, where µ#

0
(s#) = µ0(LM(s

#)) if L0(s#) = obs(LM(s
#))

and Lk (s#) = ⊥ for 1 ≤ k ≤ d(ϕ) − 1, and µ#
0
(s#) = 0 otherwise,

• T #

k (s
#

1
,a, s#

2
) = T (LM(s

#

1
),a,LM(s

#

2
)) if

– Lj (s#
2
) = Lj (s#

1
) for all 0 ≤ j ≤ k ,

– Lk+1(s#
1
) = ... = Ld(ϕ)−1(s#

1
) = Lk+2(s#

2
) = ... = Ld(ϕ)−1(s#

2
) = ⊥, and

– Lk+1(s#
2
) = obs(LM(s

#

2
)).

and T #

k (s
#

1
,a, s#

2
) = 0 otherwise,

• L#(s#) = L(LM(s
#)),

• O#

A and obs#A are to be defined later,

• for Ω#

A with A ∈ Aдs , we have Goal#A(s
#) = GoalA(LM(s

#)) and Int#A(s
#) = IntA(LM(s

#)) for all

s# ∈ S#, and
• for p#A, we have дp

#

A,B (s
#) = дpA,B (LM(s

#)) and дp#A,B (s
#) = дpA,B (LM(s

#)) for all A,B ∈ Aдs .

Intuitively, in the new systemℳ#
, agents’ observation history are remembered in the state, and

for every time 0 ≤ k ≤ d(ϕ) − 1, a separate transition relation T #

k is constructed. The transition

relation T #

k maintains the previous observation history up to time k and adds a new observation

Lk+1(s#
2
) to the next state s#

2
.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:48 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

Before evaluating ℒA(PRTL
∗) formulas, we define a new belief function be#A on the constructed

system ℳ#
. With this function, we can evaluate belief formulas locally instead of resorting to the

observation history as we did for the original systemℳ. A sequence ρ# = s#
0
...s#

d(ϕ)−1 of states in

the expanded systemℳ#
is a path if, for all 0 ≤ k ≤ d(ϕ) − 1, one of the following conditions holds:

• T #

k (s
#

k ,a, s
#

k+1) > 0 for some joint action a ∈ Act .

• there exist B ∈ Aдs and x ∈ GoalB (LM(s
#

k )) such that

– LM(s
#

k )−→
B .д .x
C LM(s

#

k+1)

– Lj (s#k+1) = Lj (s#k ) for all 0 ≤ j ≤ k ,

– Lk+1(s#k ) = ... = Ld(ϕ)−1(s#k ) = Lk+2(s#k+1) = ... = Ld(ϕ)−1(s#k+1) = ⊥, and

– Lk+1(s#k+1) = obs(LM(s
#

k+1)).

• Similar for a transition on which some agent B ∈ Aдs changes its intention.

The following proposition states that there is a 1-1 correspondence relation between paths in ℳ
and paths in ℳ#

.

Proposition B.1. For every path ρ# = s#
0
...s#

d(ϕ)−1 inℳ# such that µ#
0
(s#
0
) > 0, we have that LM(ρ#)

is an initialised path ofℳ. On the other hand, for every initialised path ρ inℳ whose length is no
more than d(ϕ) + 1, there exists exactly one path ρ# inℳ# such that LM(ρ#) = ρ.

Note that the transition relation of the constructed systemℳ#
is acyclic, that is, for every state s#,

there does not exist a cyclic path ρ# ∈ FPath
ℳ(s#) such that s# = ρ#(m) for somem ≥ 1. Therefore,

we can define clk(s#) as the time in which the state s# appears, or formally, clk(s#) = k − 1 for k
the greatest number such that Lk (s#) , ⊥.

We can now define a probabilistic functionT #

k,A for the systemℳ#
and agentA ∈ Aдs as follows,

by considering the preference functions of agent A, where clk(s#
1
) = k and we write tp(s#

1
, s#

2
) for

tp(LM(s
#

1
),LM(s

#

2
)). We note that s#

1
s#
2
needs to be on some path of ℳ#

.

T #

k,A(s
#

1
, s#

2
) =


T #

k (s
#

1
,a, s#

2
) if tp(s#

1
, s#

2
) = a

дpA,B (LM(s
#

1
))(x) if tp(s#

1
, s#

2
) = B.д and LM(s

#

1
)−→

B .д .x
C LM(s

#

2
)

ipA,B (LM(s
#

1
))(x) if tp(s#

1
, s#

2
) = B.i and LM(s

#

1
)−→B .i .x

C LM(s
#

2
)

1 if tp(s#
1
, s#

2
) = A.д.x for some x ∈ GoalA(s

#

1
)

or tp(s#
1
, s#

2
) = A.i .x for some x ∈ IntA(s

#

1
)

With the non-acyclic property, we can define for every state s# a reachability probability rPA(s
#)

as follows with respect to a type t of paths.

• rPA(s
#) = µ#

0
(s#) if clk(s#) = 0

• rPA(s
#) =

∑
s#
1
∈S#,clk(s#)=clk(s#

1
)+1 rPA(s

#

1
)×T #

k,A(s
#

1
, s#)×(tp(s#

1
, s#) = t(clk(s#

1
))), if clk(s#) > 0.

The observation function obs#A for agent A is defined as follows:

• obs#A(s
#

1
) = obs#A(s

#

2
) if obsA(LM(s

#

1
)) = obsA(LM(s

#

2
)), clk(s#

1
) = clk(s#

2
), and for all 0 ≤ k ≤

clk(s#
1
), LkA(s

#

1
) = LkA(s

#

2
).

Based on this, O#

A contains all possible observations of A. Moreover, we let obs#A(s
#) to be the set of

states that are indistinguishable to agent A at state s#. We define a belief function be#A : S# → [0, 1]
as follows for agent A ∈ Aдs:

be#A(s
#) =

rPA(s
#)∑

s#
1
∈obs#A(s

#) rPA(s
#

1
)

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:49

For every path ρ ∈ FPath
ℳ

in the original systemℳ, we construct the following state e#(ρ) in the

expanded system ℳ#
:

e#(ρ) = (last(ρ),obs(ρ(0)), ...,obs(ρ(|ρ | − 1)),⊥, ...,⊥)

We have the following proposition to reduce the probability of PrA inℳ into rPA inℳ#
.

Proposition B.2. For any path ρ of ℳ such that |ρ | ≤ d(ϕ) + 1, we have that PrA(Cylρ ) =
rPA(e

#(ρ)), where Cylρ is the basic cylinder with prefix ρ.

With this proposition, it is not hard to see that beA(ρ) = be#A(e
#(ρ)). In the following, we

inductively define a satisfiability relation ℳ#, s# |= ϕ as follows for ϕ a boolean combination of

atomic propositions and belief formulas of the form B
▷◁q
A φ or DT

▷◁q
A,Bφ such that φ is an atemporal

formula.

• ℳ#, s# |= p for p ∈ AP if p ∈ L#(s#)
• ℳ#, s# |= ¬ϕ if not ℳ#, s# |= ϕ
• ℳ#, s# |= ϕ1 ∨ ϕ2 ifℳ#, s# |= ϕ1 orℳ#, s# |= ϕ2
• ℳ#, s# |= B

▷◁q
A ψ if

©­«
∑

obs#A(s
#

1
)=obs#A(s

#)

(ℳ#, s#
1
|= ψ ) × be#A(s

#

1
)
ª®¬ ▷◁ q

• ℳ#, s# |= DT
▷◁q
A,Bψ if

©­«
∑

obs#A(s
#

1
)=obs#A(s

#)

be#A(s
#

1
) ×

⊗
s#
2
∈π iB (s

#

1
)

(T #

k,A(s
#

1
, s#

2
) ×ℳ#, s#

2
|= ψ )

ª®¬ ▷◁ q
where ⊗ ≡ inf if ▷◁∈ {≥, >}, ⊗ ≡ sup if ▷◁∈ {≤, <}, and the set π iB (s

#

1
) contains states s#

2
such

that s#
1
s#
2
is on some path of ℳ#

and tp(s#
1
, s#

2
) = B.i .

• The case of CT
▷◁q
A,Bψ can be done similarly as DT

▷◁q
A,Bψ .

Now we have the following theorem to reduce the problem of model checking on the original

systemℳ to the model checking on the expanded system ℳ#
.

Theorem B.3. ℳ, ρ |= ϕ if and only ifℳ#, e#(ρ) |= ϕ, for ϕ a formula in the languageℒA(PRTL
∗).

Now we can interpret those belief formulas properly with the above theorem, i.e., for each

x ⊆ GoalA and 1 ≤ k ≤ d(ϕ), we compute the set

eval#(x ,k) = {s# ∈ S# | ℳ#, s# |= λ
д
A(x), clk(s

#) ≤ k}

of states in the expanded system ℳ#
. It is noted that eval(x ,k) = {ρ | |ρ | = k,∃s# ∈ eval#(x ,k) :

s# = e#(ρ)}. But we do not need to compute eval(x ,k) because the following procedure will base
on ℳ#

instead of ℳ.

B.1.2 Preference Function Update. This can be done by following the expressions in Section 9. By

the system ℳ#
and the functions eval#(x ,k), we can have the updated preference functions pA for

allA ∈ Aдs . Then we can update the transition functionsT #

k,A(s
#

1
, s#

2
) intoT #,∗

k,A(s
#

1
, s#

2
) by substituting

pA with the new one. Based on these, we can update the reachability function rPA into rP∗A and the

belief function be#A into be#,∗A .

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:50 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

B.1.3 Model Checking Specification Formula. The model checking algorithm proceeds by labelling

subformulas of ϕ on the states in S#. We use the notation sat(s#,ψ ) to represent that a formulaψ is

labeled on the state s#. The labelling can be done recursively as follows.

• sat(s#,p) for p ∈ AP , if p ∈ L#(s#),
• sat(s#,ψ1 ∨ψ2) if sat(s

#,ψ1) or sat(s
#,ψ2),

• sat(s#,¬ψ ) if not sat(s#,ψ ),
• sat(s#,∀ ⃝ψ ) if sat(t#,ψ ) for all t# such that T #

k (s
#,a, t#) > 0,

• sat(s#, P▷◁q ⃝ψ ) if prob(s#,ψ ) ▷◁ q, where the function prob(s#,ψ ) is obtained as follows.

– prob(s#,ψ ) =
∑

t #∈S# T #

k (s
#,a, t#) × sat(t#,ψ ).

Intuitively, prob(s#,ψ ) is the one-step reachability probability of those states satisfying ψ
from a given state s#. Recall that in the expression T #

k (s
#,a, t#), the action a is determined by

state s#.
• sat(s#,B

▷◁q
A ψ ) if (

∑
obs#A(t

#)=obs#A(s
#) sat(t

#,ψ ) × be#,∗A (t#)) ▷◁ q

• sat(s#,DT
▷◁q
A,Bψ ) if (

∑
obs#A(t

#)=obs#A(s
#) be

#,∗
A (t#) ×

⊗
u#∈π iB (t

#)
(T #,∗
k,A(t

#,u#) × sat(u#,ψ )) ▷◁ q

where ⊗ ≡ inf if ▷◁∈ {≥, >}, ⊗ ≡ sup if ▷◁∈ {≤, <}, and the set π iB (t
#) contains states

u# such that

– LM(t
#)−→

B .i,x
C LM(u

#) for some x ∈ IntB such that u# ∈ eval#(x , clk(t#)),

– Lj (u#) = Lj (t#) for all 0 ≤ j ≤ k ,
– Lk+1(t#) = ... = Ld(ϕ)−1(t#) = Lk+2(u#) = ... = Ld(ϕ)−1(u#) = ⊥, and

– Lk+1(u#) = obs(LM(u
#)).

• the case of sat(s#,CT
▷◁q
A,Bψ ) can be done similarly as that of sat(s#,DT

▷◁q
A,Bψ ).

• sat(s#,GAψ ) with clk(s#) = k ≤ d(ϕ) if sat(t#,ψ ) for all t# such that

– LM(s
#)−→

B .д .x
C LM(t

#) for some x ⊆ GoalB such that t# ∈ eval#(x , clk(s#)),

– Lj (t#) = Lj (s#) for all 0 ≤ j ≤ k ,
– Lk+1(s#) = ... = Ld(ϕ)−1(s#) = Lk+2(t#) = ... = Ld(ϕ)−1(t#) = ⊥, and

– Lk+1(t#) = obs(LM(t
#)).

• sat(s#, IAψ ) with clk(s#) = k ≤ d(ϕ) follows the similar pattern as that of sat(s#,GAψ ).
• sat(s#,CAψ ) with clk(s#) = k ≤ d(ϕ) if sat(t#,ψ ) for all t# such that

– LM(s
#)−→B .i .x

C LM(t
#) such that x ∈ IntA,

– Lj (t#) = Lj (s#) for all 0 ≤ j ≤ k ,
– Lk+1(s#) = ... = Ld(ϕ)−1(s#) = Lk+2(t#) = ... = Ld(ϕ)−1(t#) = ⊥, and

– Lk+1(t#) = obs(LM(t
#)).

It is noted that the above labelling procedure is done locally for all the belief and trust formulas.

We have the following theorem to reduce model checking problem to the above labelling algorithm.

Theorem B.4. ℳ |= ϕ if and only if sat(s#,ϕ) for all s# such that µ0(s#) > 0.

B.1.4 Analysis of Complexity. For the measurement of the complexity, we use the number of

states |S | as the size of the system ℳ, and the depth d(ϕ) as the size of the specification formula ϕ.
Moreover, we assume that the sets GoalA and IntA, for all A ∈ Aдs , are polynomial with respect to

the size ofℳ, and the size of the formulas in the guarding mechanism, measured with the number

of operators, are also polynomial with respect to the size ofℳ. As usual, the set of agents Aдs is
fixed. Also, because the observation function obs is defined on states, the size of O1 × ... ×On is no

more than the size of S .
For the complexity of the fragment, we notice that the size of the expanded system ℳ#

is

polynomial with respect to the size ofℳ but exponential with respect to the size of the specification

formula ϕ.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:51

• For the pro-attitude synthesis, for every x ∈
⋃

A∈Aдs 𝒫(GoalA) ∪ IntA, the determination of

whether s# ∈ eval#(x , d(ϕ)) can be done in EXPTIME.

• The update of preference functions {pA}A∈Aдs and the modelℳ#
can be done in EXPTIME.

• For the model checking of the specification formula, the labelling procedure can be done in

EXPTIME.

Putting them together, we have that the computational complexity of the bounded fragment of

the problem is in EXPTIME. It is noted that, the exponential is with respect to the size of the

specification formula. If the formula is fixed, it is in PTIME.

B.2 Hardness Problem
The lower bound can be obtained by a reduction from the satisfiability problem of the quantified

Boolean formula (QBF), which is to determine if a QBF formula is satisfiable. A canonical form of a

QBF is

ϕ = Q1x1...Qnxn : (l11 ∨ l12 ∨ l13) ∧ ... ∧ (lm1 ∨ lm2 ∨ lm3)

whereQi = ∃ if i is an odd number andQi = ∀ otherwise, and lk j ∈ {x1, ...,xn ,¬x1, ...,¬xn} for all
1 ≤ k ≤ m and 1 ≤ j ≤ 3. Without loss of generality, we assume that n is an even number. Every

QBF formula can be transformed into this format by inserting dummy variables. For a literal lk j , we
write var(lk j ) for its variable and sign(lk j ) for its sign. For example, if lk j = ¬x1 then var(lk j ) = x1
and sign(lk j ) = neg, and if lk j = xn then var(lk j ) = xn and sign(lk j ) = pos.
The problem can be simulated by a game between two agents ∀ and ∃. The game consists of

two phases: in the first phase, agents decide the values of variables {x1, ...,xn}, and in the second

phase, agents evaluate the boolean formula (l11 ∨ l12 ∨ l13) ∧ ... ∧ (lm1 ∨ lm2 ∨ lm3). We write odd(k)
(even(k)) to denote that the number k is odd (even). Figure 5 gives a diagram for the construction.

The system has a state space S = {xkb ,x
ha
kb | 1 ≤ h ≤ n, 1 ≤ k ≤ n + 1,a,b ∈ {0, 1}} ∪ {ck , c

ha
k | 1 ≤

k ≤ m, 1 ≤ h ≤ n,a ∈ {0, 1}}∪{lk j , l
ha
k j | 1 ≤ k ≤ m, j ∈ {1, 2, 3}, 1 ≤ h ≤ n,a ∈ {0, 1}}∪{vha | 1 ≤

h ≤ n,a ∈ {0, 1}}.
Before proceeding to the reduction, we recall notations is∃(s) and is∀(s)which return the intention

at state s for agents ∃ and ∀, respectively. Assuming that agents’ intentions are encoded in the

states make it easier to understand the reduction. Similar for the notations дs∃(s) and дs∀(s).
In the first phase, the agents ∃ and ∀ make their decisions by changing their intentions. The

states involved in the first phase are {xkb ,x
ha
kb | 1 ≤ h ≤ n, 1 ≤ k ≤ n + 1,a,b ∈ {0, 1}}. Intuitively,

the state xkb represents that the value of variable xk was set to b, and the superscript ha in the

state xhakb represents that the state “remembers” the value a of variable xh . We let Int∃ = {0, 1, 2, 3},

where only 0 and 1 will be used in the first phase, and let Int∀ = {0, 1}. On a state xkb or xhakb , we

define is∃(xkb ) = is∃(xhakb ) = b for the case of odd(k), and is∀(xkb ) = is∀(xhakb ) = b for the case of

even(k). We do not define is∃(xkb ) and is∃(xhakb ) for the cases of even(k) and is∀(xkb ) and is∀(x
ha
kb )

for the case of odd(k), since they will not be used in this proof. Intuitively, the intentional attitude

reflects agent’s choice. Because the value of variable xk for odd(k) will be decided by agent ∃,
we define Int∃(xkb ) = Int∃(xhakb ) = {0, 1}, so that agent ∃ can choose the value by changing its

intention. Similar for Int∀(xkb ) = Int∀(xhakb ) = {0, 1} when even(k).
Since we will test the beliefs of agent ∃ in the specification formula, only agent ∃’s observations

are relevant. We let obs∃(xkb ) = obs∃(xhakb ) = b for any 1 ≤ k ≤ n + 1, i.e., it can see both agents’

intentions. However, it is not able to distinguish observations between xkb and xhakb .
The idea of the first phase is that the states of the form xkb contribute to the main computation

in which agents use their intentions to decide the values of the variables under their controls.

Every time a decision is made, the execution moves to both the next variable x(k+1)b and a helper

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:52 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

x11x11

x31x31

c1c1

c2c2

cmcm

x11
21x11
21

x11
40x11
40

x10
20x10
20

x10
40x10
40

l11l11l12l12l13l13 c11
1c
11
1

c11
2c
11
2

c11
mc
11
m

v11v11

l1123l1123 l1122l1122 l1121l1121

c10
1c
10
1

c10
2c
10
2

c10
mc
10
m

v10v10

l1023l1023
l1022l1022 l1021l1021

x11
(n+1)1x11
(n+1)1

x41x41 x40x40

x10
30x10
30 x11

31x11
31x11

31x11
31x11

30x11
30

x21
(n+1)1x21
(n+1)1

x21x21 x20x20

x11
(n+1)0x11
(n+1)0

x21
(n+1)0x21
(n+1)0 xn1

(n+1)1xn1
(n+1)1 xn0

(n+1)0xn0
(n+1)0

x10
(n+1)0x10
(n+1)0 x10

(n+1)1x10
(n+1)1

x10x10

x30x30

x11
20x11
20

x11
41x11
41

x11
21x11
21

x11
41x11
41

x21
31x21
31

x21
41x21
41x21

40x21
40

x21
30x21
30

{x1, pos}{x1, pos} {x1, neg}{x1, neg}

{x1, pos}{x1, pos}

1/m

1/m

1/m
1/m

1/m

1/m

1/m

1/m
1/m

0.5
0.5

0.5 0.5

0.50.5

0.5 0.5

0.5
0.5

0.5
0.5

l21l21l22l22l23l23

{l}{l}{l}{l}{l}{l}

{l}{l} {l}{l} {l}{l} {l}{l} {l}{l} {l}{l} {l}{l} {l}{l} {l}{l}… …

…

… …

… … … … …

…
…

…

…

x11
n0x11
n0 x11

n1x11
n1 x21

n0x21
n0 x21

n1x21
n1

xn1xn1 xn0xn0 x10
n0x10
n0 x10

n1x10
n1

Fig. 5. Diagram for the reduction from QBF problem

computation in which all states are labelled with the fact about the last decision. E.g., in Figure 5,

for the first variable x1, the agent ∃ can choose between two states x11 and x10, at which the variable

x1 will take different values 1 and 0, respectively. Without loss of generality, if agent ∃ chooses

x11, then the execution will move into both x21 and x
11

21
, where the state x11

21
remembers that the

value of variable x1 is 1. Therefore, from now on, the execution will be possible on both the main

computation from x21 and the helper computation from x11
21
. But the agent ∃ can not distinguish

these two executions by its observations. Generalising the above, from variable x1 to xn , we will
need to explore the main computation and the other n helper computations, such that one helper

computation is added for each variable.

The execution of the first phase can move into those states xha
(n+1)b , where the main computation

moves into xn1
(n+1)1 or x

n0
(n+1)0. By the existence of executions on these states, the system remembers

the choices made by the two agents. Then in the second phase, the agent ∃ needs to justify that its

choices make the formula (l11 ∨ l12 ∨ l13) ∧ ... ∧ (lm1 ∨ lm2 ∨ lm3) true whenever the QBF formula is

satisfiable. To do this, we let the executions of the first phase move into those states ck and chak
with a uniform distribution. Each of these states represents intuitively a clause of the QBF formula.

Then the agent ∃ will need to pick a literal to see if it can make the clause satisfiable.

Similar to the first phase, the choice of literals is done by agent ∃ changing its intention. For the

cognitive mechanism, we have that is∃(ck ) = is∃(chak ) = 0 and Int∃(ck ) = Int∃(chak ) = {0, 1, 2, 3}.
That is, agent ∃ chooses the literal lkx if its intention is changed into x . Note that, we assume that

agent ∃ can distinguish the clauses, i.e., obs∃(ck ) = obs∃(chak ) = ck . And it is able to know which

clause the current literal belongs to, i.e., obs∃(lk j ) = obs∃(lhak j ) = ck .

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:53

After a literal lk j is chosen, the execution will need to move to obtain its value. This is done by a

transition into one of the states in the first phase. Let sign(lk j ) be the sign of the literal and var(lk j )
be the value of the literal. Without loss of generality, we let var(lk j ) = xh and sign(lk j ) = a, then

the transition from state lk j will move into xha
(h+1)a , at which the atomic propositions {xh ,a} are

labelled. For the state lhak j , it can only move into the state vha , at which the atomic propositions

{xh ,a} are labelled.
Formally, let AP = {xi | i ∈ {1, ...,n}} ∪ {l, pos, neg} be a set of atomic propositions, we have

ℳ(ϕ) = (Aдs, S, Sinit, {ActA}A∈Aдs ,T ,L, {OA}A∈Aдs , {obsA}A∈Aдs , {ΩA}A∈Aдs , {πA}A∈Aдs , {pA}A∈Aдs )

such that

• Aдs = {∃,∀},
• S = {xkb ,x

ha
kb | 1 ≤ h ≤ n, 1 ≤ k ≤ n + 1,a,b ∈ {0, 1}} ∪ {ck , c

ha
k | 1 ≤ k ≤ m, 1 ≤ h ≤ n,a ∈

{0, 1}} ∪ {lk j , l
ha
k j | 1 ≤ k ≤ m, j ∈ {1, 2, 3}, 1 ≤ h ≤ n,a ∈ {0, 1}} ∪ {vha | 1 ≤ h ≤ n,a ∈

{0, 1}},
• Sinit = {x11} with µ0(x11) = 1,

• ActA = {ϵ} for A ∈ {∃,∀},
• the transition function is as follows.

– T (xkb ,x(k+1)b ) = T (xkb ,x
kb
(k+1)b ) = 0.5 for 1 ≤ k ≤ n − 1, T (xnb ,x(n+1)b ) = 1,

– T (xhakb ,x
ha
(k+1)b ) = 1, for 1 ≤ k ≤ n,

– T (xha
(n+1)b , c

ha
k ) = T (x(n+1)b , ck ) = 1/m,

– T (lk j ,x
h1
(h+1)1) = 1 for sign(lk j ) = pos and var(lk j ) = vh ,

– T (lk j ,x
h0
(h+1)0) = 1 for sign(lk j ) = neg and var(lk j ) = vh ,

– T (lhak j ,vha) = 1

• the labelling function is as follows.

– L(xh1k j ) = {xh ,pos}, L(x
h0
k j ) = {xh ,neд},

– L(vh1) = {xh ,pos}, L(vh0) = {xh ,neд},
– L(lk j ) = l

• the set of possible observations is as follows.

– O∃ = {0, 1} ∪ {ck | 1 ≤ k ≤ m} ∪ {∅} for player ∃, and
– we ignore the definition for player ∀ as it is not used in the reduction.

• the partial observation functions are defined as follows for the player ∃.
– obs∃(xkb ) = obs∃(xhakb ) = b for 1 ≤ k ≤ n + 1 and b ∈ {0, 1},

– obs∃(ck ) = obs∃(chak ) = ck for 1 ≤ k ≤ m,

– obs∃(lk j ) = obs∃(lhak j ) = ck for 1 ≤ k ≤ m and j ∈ {1, 2, 3}, and

– obs∃(vha) = ∅.

• the set of intentions is as follows.

– Int∃ = {0, 1, 2, 3} and Int∀ = {0, 1}, and
– we ignore the definition for Goal∃ and Goal∀ as they are not used in the reduction.

• the guarding mechanism is trivial.

• the preference functions are defined as follows.

– ip∃,∃(xkb )(0) = ip∃,∃(xkb )(1) = 0.5 for odd(k),
– ip∃,∀(xkb )(0) = ip∃,∀(xkb )(1) = 0.5 for even(k),
– ip∃,∃t(ck )(0) = ip∃,∃(ck )(1) = ip∃,∃(ck )(2) = ip∃,∃(ck )(3) = 0.25 for 1 ≤ k ≤ m.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:54 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

In such a system, we have that ϕ is satisfiable if and only if

ℳ(ϕ) |= I∃AX I∀AX ...I∀AX I∃(l ∧
n∧
i=1

((B≥1
∃ AX (xi ⇒ pos)) ∨ (B≥1

∃ AX (xi ⇒ neд)))).

Note that in above formula and below, we useAX instead of ∀⃝ to avoid confusion with the agents

∀ and ∃. Intuitively, the prefixes I∃AX and I∀AX represent the choosing of variables’ values by

the agents ∃ and ∀, respectively. After the last AX , the execution moves to the states ck and chak .

Then, the last I∃ is for the agent ∃ to choose a specific literal, and then justify that it is satisfiable.

The former is represented by the presence of a literal l in the formula. The latter is guaranteed

by

∧n
i=1((B

≥1
∃ (xi ⇒ pos)) ∨ (B≥1

∃ (xi ⇒ neд))). Without loss of generality, we let lha be the chosen

literal and assume var(lha) = xi . If sign(xi ) = neg then the main computation will reach the state

xh0
(h+1)0 which is labelled with xh and neg. By construction, we know that if the variable xi is assigned

the value neg by one of the agents then the helper computation with superscript i0 is explored, and
the helper computation will lead to the state vi0 at which the propositions xi and neg are labelled.

On the other hand, the helper computation with superscript i1 will not be explored, which means

that the state vi1 labelled with xi and pos is not considered possible by the agent ∃. Therefore,
we have that B≥1

∃ (xi ⇒ neд). Similar argument can be taken to show that B≥1
∃ (xi ⇒ pos) when

sign(xi ) = pos.

C A DECIDABLE FRAGMENTWITH 𝒰 AND □ TEMPORAL OPERATORS
We present a fragment of the problem that is PSPACE-complete. Unlike the bounded fragment in

Section B, this fragment works with the 𝒰 and □ temporal operators in specification formula ϕ.
With 𝒰 and □ operators, the specification formula can express long-term properties about agent’s

mental attitudes in the system, and therefore this fragment complements the bounded fragment.

However, the fragment is subject to other restrictions, including the following:

• The guarding mechanism is trivial. That is, the algorithm works with model checking without

conducting pro-attitude synthesis first.

• The specification formula ϕ has the restrictions that

– it works with a single agent’s beliefs and trusts,

– there is no nested beliefs or trusts,

– beliefs and trusts cannot be in the scope of a probabilistic operator P, and
– there is a constant number of belief or trust operators.

We make a remark on these constraints. For the first constraint, that we choose to work with

a single agent’s beliefs and trusts is because in Section A we have shown that the single-agent

fragment is undecidable. The second constraint is imposed to keep the algorithm simple. We

conjecture that it can be relaxed. The third and fourth constraints are to keep the complexity

in PSPACE. For the probabilistic operator, it requires to compute a set of paths concurrently.

We conjecture that the complexity can be in EXPTIME instead of in PSPACE if relaxing this

constraint. To complement this, in Section D, we study a fragment in which the probabilistic

operator works with qualitative beliefs and trusts. The constraint on the number of belief or

trust operators is to keep the expanded system, to be given below, in the size of a polynomial

with respect to the formula.

• There is a restriction on the system about agent A’s beliefs along the transitions. The restric-

tion, whose details will be given later, is that along any path of an expanded system, the

evaluations of belief or trust subformulas are the same on any two expanded states if the

support of a probabilistic distribution over the set of states is the same.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:55

Without loss of generality, we assume that it is the agent A’s beliefs that the specification formula

ϕ is to describe. Note that the fragment has the full expressiveness of LTL.

C.1 Upper Bound
Because the guarding mechanism is trivial, we need only handle the third step of the verification

procedure.

Preprocessing Sub-Formulas in the Scope of Belief Operators. The first step of the algorithm is to pre-

process subformulas in the scope of belief or trust operators. Because there is no nested beliefs, these

subformulas do not contain any belief or trust operator. Therefore, they can be handled by the usual

probabilistic temporal model checking techniques, with some slight adaptations for the formulas

GAψ , IAψ and CAψ . For every such subformulaψ , we introduce a new atomic proposition pψ , which
intuitively represents the probability of ψ being satisfied. Let AP ′ = AP

⋃
AP1 such that AP1 is

the set of new atomic propositions. We upgrade the labelling function L into L′ : S × AP ′ → [0, 1],
which allows us to extract the probability value ”stored“ in pψ .

• If p ∈ AP then L′(s,p) = 1, if p ∈ L(s), and L′(s,p) = 0, otherwise.

• If pψ ∈ AP1 then L′(s,pψ ) = Prob(ℳ, s,ψ ), where Prob(ℳ, s,ψ ) is the probability of sat-

isfying formula ψ among all the temporal paths starting from s . We note that, because of

Assumption 2, there exists a unique value for Prob(ℳ, s,ψ ).

We assume that L′ is computed from L as part of the algorithm and therefore no change to our

previous definitions (such as Definition 4.1) is necessary. Note that, after this pre-processing, all

belief or trust formulas are of the form B
▷◁q
A p or DT

▷◁q
A,Bp such that p ∈ AP is an atomic proposition.

This pre-processing can also be applied to subformulas containing no belief or trust formulas.

Therefore, in the following, we assume that in ϕ, all subformulas contain at least one belief or trust

formulas.

We consider the negated specification formula ¬ϕ, and verify the existence of a counterexample.

We assume that the formula ¬ϕ is in negation normal form, i.e., negation operators only appear in

front of atomic propositions.

Construction of Expanded System. Let ϕ be the specification formula and bϕ = {ψ1, ...,ψk } be the

set of belief or trust subformulas of the form B
▷◁q
A p or DT

▷◁q
A,Bp such that p1, ...,pk ∈ AP are their

atomic propositions. We need some notations. Given a set Q ⊆ S of states, a probability space on Q
is a triple αQ = (S,𝒫(𝒫(S)), PrQ ) such that PrQ ({s}) > 0 if and only if s ∈ Q . Given a probability

space αQ , we can evaluate belief and trust formulas as follows.

• PrQ (B
▷◁q
A p) =

∑
s ∈Q PrQ (s) × L′(s,p).

• PrQ (DT
▷◁q
A,Bp) =

∑
s ∈Q PrQ (s) ×

⊗
x ∈IntB (s) ∃s ′ : L′(s ′,p) × (s−→B .i .x

C s ′), where ⊗ ≡ inf if

▷◁∈ {≥, >}, ⊗ ≡ sup if ▷◁∈ {≤, <}.
• the case of CT

▷◁q
A,Bp is analogous to DT

▷◁q
A,Bp.

as the probability of those states satisfying formula ψ . In the following, we use the probability

measure PrQ to represent the probability space αQ . Given a probability distribution PrP and a set

of states Q , we define (for a set of states P ):

PrP,Act,Q (t) =

∑
s ∈P (PrP (s) ×T (s,a, t))∑

t ∈Q
∑

s ∈P (PrP (s) ×T (s,a, t))
,

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:56 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

as the probability measure over Q , by a temporal transition from P in one step. Moreover, on the

pro-attitude dimensions, we define:

PrP,GoalB (s),Q (t) =

∑
s ∈P

∑
x ∈GoalB (s)(s)(PrP (s) × дpA,B (s,x) × (s−→

B .д .x
C t))∑

t ∈Q
∑

s ∈P
∑

x ∈GoalB (s)(s)(PrP (s) × дpA,B (s,x) × (s−→
B .д .x
C t))

and

PrP, IntB,Q (t) =

∑
s ∈P

∑
x ∈IntB (s)(PrP (s) × ipA,B (s,x) × (s−→B .i .x

C t))∑
t ∈Q

∑
s ∈P

∑
x ∈IntB (s)(PrP (s) × ipA,B (s,x) × (s−→B .i .x

C t))

forB ∈ Aдs . Intuitively, they are the probabilitymeasures overQ by a goal or intentional transition of

agent B from the states in P . Moreover, the transition is parameterised over the agentA’s preference
functions. Now we define the initial belief for agent A. Given a state s such that µ0(s) > 0, we

define obsA(µ0, s) = {t | obsA(t) = obsA(s), µ0(t) > 0} to be the set of possible initial states whose

observation is the same as s . Then, we have

ProbsA(µ0,s)(t) =
µ0(t)∑

t ∈obsA(µ0,s) µ0(t)

as the initial belief.

Based on the above notations, we can construct an expanded systemwhichmaintains a probability

value for each subformula in bϕ . The system is ℳi (ϕ) = (Aдs, S†, S†
init
, {ActA}A∈Aдs ,T

†,L†) such
that

• S† = S ×𝒟(S) × R × ... × R, where R is the domain of real numbers. Note that, although R is

infinite, we need only a finite number of real numbers. We assume that all numbers are of

fixed precision and can be encoded with complexity O(1).

• S†
init
= {(s, ProbsA(µ0,s), ProbsA(µ0,s)(p1), ..., ProbsA(µ0,s)(pk )) | µ0(s) > 0,AP1 = {p1, ...,pk }},

• the transition relation is defined as follows.

– T †((s, PrQ ,v1, ...,vk ), (t , PrQ,Act,Q ′, PrQ,Act,Q ′(ψ1), ..., PrQ,Act,Q ′(ψk ))) = T (s,a, t) if

tp(s, t) = Act and Q ′ = {t ′ | PrQ (s
′) > 0, s ′−→a′

T t
′,obsA(t

′) = obsA(t)}.

– T †((s, PrQ ,v1, ...,vk ), (t , PrQ,ωд
B (s),Q

′, PrQ,ωд
B (s),Q

′(ψ1), ..., PrQ,ωд
B (s),Q

′(ψk ))) =

дpA,B (s, t) if and only if tp(s, t) = B.д and Q ′ = {t ′ | s ′ ∈ Q, y ∈ ω
д
B (s)(s), s

′−→
B .д .y
C t ′,

obsA(t
′) = obsA(t)}.

– T †((s, PrQ ,v1, ...,vk ), (t , PrQ,ω i
B,Q

′, PrQ,ω i
B,Q

′(ψ1), ..., PrQ,ω i
B,Q

′(ψk ))) = ipA,B (s, t) if and only

if tp(s, t) = B.i and Q ′ = {t ′ | s ′ ∈ Q, y ∈ ωi
B (s), s

′−→
B .i .y
C t ′,obsA(t

′) = obsA(t)}.

• L†((s, PrQ ,v1, ...,vk )) = L(s).

Constraints on the Expanded System. The constraints include,
• there do not exist two states (s, PrQ ,v1, ...,vk ) and (s, PrQ ′,v ′

1
, ...,v ′

k ) in the expanded system

ℳ†
such that they are reachable from one to the other, supp(PrQ ) = supp(PrQ ′), and vj , v

′
j

for some 1 ≤ j ≤ k , and
• for any two reachable states (s, PrQ ,v1, ...,vk ) and (s, PrQ ′,v ′

1
, ...,v ′

k ) such that supp(PrQ ) =

supp(PrQ ′), only one of them needs to be explored with T †
.

With the above constraints, we can see that the size of the expanded system is O(2 |ℳ |). However,

we do not need to explicitly construct it. The algorithm explores it on-the-fly.

Model Checking Algorithm. For the algorithm, we use function sat(s, PrQ ,v1, ...,vk ,ϕ) to denote

the satisfiability of the formula ϕ on the state (s, PrQ ,v1, ...,vk ). For the base cases of non-temporal

operators, we have the following inductive rules:

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:57

Algorithm 1. Given a state (s, PrQ ,v1, ...,vk ) ∈ S† and a formula ϕ, we define the satisfiability
relation sat(s, PrQ ,v1, ...,vk ,ϕ) as follows:

• sat(s, PrQ ,v1, ...,vk ,p) for p ∈ AP if p ∈ L(s);
• sat(s, PrQ ,v1, ...,vk ,¬ϕ) if not sat(s, PrQ ,v1, ...,vk ,ϕ);
• sat(s, PrQ ,v1, ...,vk ,ϕ1 ∨ ϕ2) if sat(s, PrQ ,v1, ...,vk ,ϕ1) or sat(s, PrQ ,v1, ...,vk ,ϕ2);
• sat(s, PrQ ,v1, ...,vk ,Gjϕ) if sat(t , PrQ ′,v ′

1
, ...,v ′

k ,ϕ) for all states (t , PrQ ′,v ′
1
, ...,v ′

k ) such that

T †((s, PrQ ,v1, ...,vk ), (t , PrQ ′,v ′
1
, ...,v ′

k )) > 0 and tp(s, t) = B.д.
• sat(s, PrQ ,v1, ...,vk , Ijϕ) if sat(t , PrQ ′,v ′

1
, ...,v ′

k ,ϕ) for all states (t , PrQ ′,v ′
1
, ...,v ′

k ) such that

T †((s, PrQ ,v1, ...,vk ), (t , PrQ ′,v ′
1
, ...,v ′

k )) > 0 and tp(s, t) = B.i .
• sat(s, PrQ ,v1, ...,vk ,Cjϕ) if sat(t , PrQ ′,v ′

1
, ...,v ′

k ,ϕ) for all states (t , PrQ ′, 0, ..., 0) such that

s−→B .i .x
C t for some x ∈ ωi

B (s), and PrQ ′ is any distribution such that Q ′ = {t ′ | s ′ ∈

Q, s ′−→B .i .x
C t ′,x ∈ ωi

B (s),obsA(t
′) = obsA(t)}. Note that, as we stated earlier, no belief

formula will appear in the scope of a legal intention operator. So the probability values are

not useful.

• For the computation of sat(s, PrQ ,v1, ...,vk , P
▷◁q ⃝ϕ) and sat(s, PrQ ,v1, ...,vk , P

▷◁qϕ𝒰ϕ), we
note that, because the constraint that no belief formula can be in the scope of a probability

operator, the components PrQ and v1, ...,vk in the state are irrelevant. Therefore, we can

compute sat(s, P▷◁q ⃝ ϕ) and sat(s, P▷◁qϕ𝒰ϕ) as the usual PCTL model checking.

• sat(s, PrQ ,v1, ...,vk ,B
▷◁q
A p) if vj ▷◁ q, for B

▷◁q
A p being the jth formula in the set bϕ .

• sat(s, PrQ ,v1, ...,vk ,DT
▷◁q
A,Bp) if vu ▷◁ q, for DT

▷◁q
A,Bp being the uth formula in the set bϕ .

Note that the above cases have the same results for those distributions PrQ whose supports

are the same. Now we discuss the case of ∃ψ . With the above Algorithm 1, we note that other

formulas can be interpreted directly on the states. Therefore, we can introduce atomic propositions

pψ for those ψ , and update the labelling function into pψ ∈ L†((s, PrQ ,v1, ...,vk )) if and only if

sat(s, PrQ ,v1, ...,vk ,ψ ). With this processing, the formula ψ is turned into an LTL formula ψ ′
.

Then as the usual LTL model checking, we turn the formula ψ into a Buchi automaton 𝒜ψ . Let

𝒜ψ = (Q,𝒫(AP),δ ,B, F ) be the automaton such that Q is a set of states, δ : Q × 𝒫(AP) → 𝒫(Q) is
a transition relation, B ⊆ Q is a set of initial states, and F ⊆ Q is a set of sets of acceptance states.

Then we construct their product system ℳ† ×𝒜ψ ′ = (S‡, S‡
init
,T ‡,L‡) as follows.

• S‡ = S ×𝒟(S) × R × ... × R ×Q

• (s, PrQ ,v1, ...,vk ,q) ∈ S‡
init

if (s, PrQ ,v1, ...,vk ) ∈ S†
init

and (q0,L
†((s, PrQ ,v1, ...,vk )),q) ∈ δ

such that q0 ∈ B.
• ((s, PrQ ,v1, ...,vk ,q), (t , PrQ ′,v ′

1
, ...,v ′

k ,q
′)) ∈ T ‡

if we have that

T †((s, PrQ ,v1, ...,vk ), (t , PrQ ′,v ′
1
, ...,v ′

k )) > 0, tp(s, t) = Act , and

(q,L†((t , PrQ ′,v ′
1
, ...,v ′

k )),q
′) ∈ δ .

• L‡(s, PrQ ,v1, ...,vk ,q) = L†((s, PrQ ,v1, ...,vk )).

Algorithm 2. For the case where the formula is ∃ψ , we have that
• sat(s, PrQ ,v1, ...,vk ,∃ψ ) if ℳ†[{s, PrQ ,v1, ...,vk }/S

†

init
] ×𝒜ψ is empty;

whereℳ†[{s, PrQ ,v1, ...,vk }/S
†

init
] is the system ofℳ†

by substituting the initial distribution S†
init

into S†
init

({s, PrQ ,v1, ...,vk }) = 1.

Then for a formula with nested branching time operators, we can use the approach of CTL
∗

model checking. Finally, we have the following theorem to state the correctness of the above

algorithm.

Theorem C.1. ℳ |= ϕ iff, in ℳ†, sat(s, PrQ ,v1, ...,vk ,ϕ) holds for all (s, PrQ ,v1, ...,vk ) ∈ S†
init

.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:58 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

Analysis of Complexity. For the complexity, we need to remember the tuple (s, PrQ ,v1, ...,vk )
for Algorithm 1 or the tuple (s, PrQ ,v1, ...,vk ,q) for Algorithm 2. For Algorithm 1, we may need a

polynomial number of alternations to handle the negation operators or the pro-attitudes. Therefore,

by Theorem 4.2 of [9], it is in NPSPACE=PSPACE, the same complexity as that of LTL model

checking. On the other hand, unlike the LTL model checking, the program complexity, i.e., the

complexity measured with respect to the size of the system by assuming that the formula is fixed,

is also in PSPACE.

C.2 Hardness Problem
The PSPACE-hardness of the problem can be obtained by a reduction from the problem of deciding

if, for a given nondeterministic finite state automaton A over an alphabet Σ, the language ℒ(A)
is equivalent to the universal language Σ∗

. Let A = (Q,q0,δ , F ) be an NFA such that Q is a set of

states, q0 ∈ Q is an initial state, δ : Q × Σ → 𝒫(Q) is a transition function, and F ⊆ Q is a set of

final states.

We construct a systemℳ(A) whose states, except for the initial state s0, can be classified into

two subsystemsℳ1(A) andℳ2(A). Intuitively, the subsystemℳ2(A) simulates the execution of

A and upon reading each input symbol, probabilistically checks whether the current state of the

automaton is a final state, while the subsystem ℳ1(A) simulates the universal language Σ∗
, at the

same time synchronising with ℳ2(A) on words which produce a valid run of A.
In particular, each state of ℳ2(A) is a pair of a symbol of the alphabet and an annotated

automaton state, where the latter can be of the form q, qu , qn , qt , or qt f for q ∈ Q . The state (l ,q) is
a regular state corresponding to those of automaton A, representing that the state q is reached from

another state by reading a symbol l . However, from a state (l1,q1) to another state (lx ,qx ) such that

qx ∈ δ (q1, lx ), we need to go through two levels of intermediate states. In the first level, the state

(lx ,q
u
x ) represents a decision point from which the execution may or may not conduct a test on the

current state. The purpose of the test is to see if the state qx is a final state. With a chance of 0.5,

the path will proceed to (lx ,q
n
x ) which denotes that no test will be conducted. With another chance

of 0.5, the path will conduct the test. If qx is not a final state (e.g., the state q2 of Figure 6), then
the execution proceeds to the state (lx ,q

t
x ), at which the atomic proposition test is labelled. If qx

is a final state (e.g., the state q3 of Figure 6), then the execution proceeds with 0.25 chance to the

state (lx ,q
t
x ) and another 0.25 chance to the state (lx ,q

t f
x ), at which both the propositions test and

finished are labelled. From both the states (lx ,q
t
x ) and (lx ,q

t f
x ), the execution can only move to a

self-loop.

The subsystem ℳ1(A) consists of states which are pairs of a symbol of the alphabet and one

of the elements in {1,u,n, t}, and its structure mirrors that ofℳ2(A), with the exception of final

states (since ℳ1(A) does not know anything about states of automaton A). The purpose of ℳ1(A)
is to make sure that words which do not produce a valid run of A have a corresponding path in

ℳ(A). The intuition of the construction can be seen from the diagram in Figure 6 The agent A
is given distinct observations t on those states (l ,qt ) and (l ,qt f ), that is, agent A can distinguish

whether a test occurs at a moment. Formally, let AP = {test, finished} be a set of atomic proposi-

tions, the system is ℳ(A) = (Aдs, S, Sinit, {ActA}A∈Aдs ,T ,L, {OA}A∈Aдs , {obsA}A∈Aдs , {ΩA}A∈Aдs ,
{πA}A∈Aдs , {pA}A∈Aдs ) such that

• Aдs = {B}, i.e., there is only a single agent B,
• S = {s0} ∪ (Σ × (Q ∪ Qt ∪ Qt f ∪ Qu ∪ Qn ∪ {1,u,n, t})), where Qt = {qt | q ∈ Q}, Qt f =

{qt f | q ∈ Q}, Qu = {qu | q ∈ Q} and Qn = {qn | q ∈ Q},

• Sinit = {s0} with µ0(s0) = 1,

• ActB = {aϵ }, i.e., agent B only has a trivial action aϵ

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:59

(l1, q1)(l1, q1)

(l2, q
u
2 )(l2, q
u
2 ) (l3, q

u
3 )(l3, q
u
3 )

(l2, q
n
2 )(l2, q
n
2 ) (l2, q

t
2)(l2, q
t
2) (l3, q

n
3 )(l3, q
n
3 ) (l3, q

t
3)(l3, q
t
3) (l3, q

tf
3 )(l3, q
tf
3 )

(l2, q2)(l2, q2) (l3, q3)(l3, q3)

0.50.5 0.50.5 0.50.5 0.250.25
0.250.25

1
k(q1)

1
k(q1)

1
k(q1)

1
k(q1)

…

…

1.01.0 1.01.0
1.01.0 1.01.0

1.01.0

(l0, q0)(l0, q0) s0s0

(l0, 1)(l0, 1)

0.50.5

0.50.5

…

(l4, u)(l4, u)

(l4, n)(l4, n)

1
|⌃|
1

|⌃|

1
|⌃|
1

|⌃|

(l4, 1)(l4, 1)

0.50.5

1.01.0
1

|⌃|
1

|⌃|
…

1
|⌃|
1

|⌃|

(l4, t)(l4, t)

1.01.0

0.50.5M2(A)M2(A)

M1(A)M1(A)

Fig. 6. Diagram for the reduction from universality problem of NFA

• the transition function is defined as follows.

– T (s0,aϵ , (l0,q0)) = T (s0,aϵ , (l0, 1)) = 0.5 for some l0 ∈ Σ,
– T ((l ,q),aϵ , (l2,q

u
2
)) = 1/k(q) if q2 ∈ δ (q, l2), where k(q) = |{(l2,q2) | q2 ∈ δ (q, l2)}|,

– T ((l ,qu ),aϵ , (l ,q
n)) = 0.5,

– T ((l ,qu ),aϵ , (l ,q
t )) = 0.5, if q < F ,

– T ((l ,qu ),aϵ , (l ,q
t )) = T ((l ,qu ),aϵ , (l ,q

t f )) = 0.25, if q ∈ F ,
– T ((l ,qn),aϵ , (l ,q)) = T ((l ,q

t ),aϵ , (l ,q
t )) = T ((l ,qt f ),aϵ , (l ,q

t f )) = 1,

– T ((l , 1),aϵ , (l2,u)) = 1/|Σ|,
– T ((l ,u),aϵ , (l ,n)) = T ((l ,u),aϵ , (l , t)) = 0.5, and
– T ((l ,n),aϵ , (l , 1)) = T ((l , t),aϵ , (l , t)) = 1.

• test ∈ L((l ,qt )), test ∈ L((l ,qt f )), finished ∈ L((l ,qt f )), test ∈ L((l , t)).
• The observation of the agent B is defined as follows.

– obsB ((l ,q)) = obsB ((l ,q
u )) = obsB ((l ,q

n)) = obsB ((l , 1)) = obsB ((l ,u)) = obsB ((l ,n)) = l ,
and

– obsB ((l ,q
t )) = obsB ((l ,q

t f )) = obsB ((l , t)) = l ∧ t .
• other components are omitted as they are not used in this reduction.

In such a system, we have that ℒ(A) = Σ∗
if and only if

ℳ(A) |= testℛ(¬test ∨ B<1A (¬finished))

whereℛ is the release operator of LTL. To see this, we show that the language ℒ(A) is not universal
if and only if there exists an initialised infinite path ρ ∈ IPath

ℳ(A)(s0)
T such that ℳ(A), ρ |=

(¬test)𝒰(test ∧ B≤0
B (finished)).

(=⇒) If the language is not universal, then there exists a word w = l1...lk such that no ex-

ecution of A on w finishes in a final state. From l1...lk , we can construct a finite path ρ1 =
s0(l0, 1)(l1,u)(l1,n)(l1, 1)...(lk−1,u)(lk−1,n)(lk−1, 1)(lk ,u)(lk , t) in ℳ(A), but not able to find a path

ρ2 = (l ,q0)(l1,q
u
1
)(l1,q

n
1
)(l1,q1)...(lk−1,q

u
k−1)(lk−1,q

n
k−1)(lk−1,qk−1)(lk ,q

u
k )(lk ,q

t f
k ). To see this, we

note that each block (lx ,q
u
x )(lx ,q

n
x )(lx ,qx ) for 1 ≤ x ≤ k − 1 represents a piece of execution that

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:60 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

moves from a state (lx−1,qx−1) to another state (lx ,qx ), such that qx ∈ δ (qx−1, lx ), without conduct-
ing a test. At the state (lk ,q

u
k ), a decision is made to conduct a test. However, because the wordw

is not a word of A, the test will not move into the state (lk ,q
t f
k ). Otherwise, it contradicts with the

construction of ℳ(A) that only a final state can move into a state of the form (l ,qt f ).
Because there does not exist such a path ρ2, we have thatℳ(A), ρ1 |= B

≤0
B finished. Moreover,

for all the states s before (lk ,q
t
k ) on the paths ρ1, we have thatℳ(A), s |= ¬test, and for the state

(lk ,q
t
k ), we have thatℳ, (lk ,qtk ) |= test. Further, because agent B can observe the test action, the

check of its beliefs will only concern those paths ρ ′
1
on which the test action is only taken in

the last state. Therefore, the probability, under the condition of agent B’s observations, will not
leak into those states of the form (l ,qf ), and we have ℳ(A), ρ1 |= ¬test𝒰(test ∧ B≤0

B finished).
Because the until operator assumes the finiteness of the path, the latter means thatℳ(A), ρ1δ |=

¬test𝒰(test ∧ B≤0
B finished) for any infinite paths δ that is consistent with the path ρ1.

(⇐=) Ifℳ(A), ρ |= (¬test)𝒰(test∧B≤0
B (finished)) for some infinite path ρ, then there must exist

a finite path ρ1 such that ℳ(A), ρ1 |= B≤0
B (finished) and there is a first test occurs on the state

last(ρ1). Now we define functionw(ρ) as thatw(ρ1ρ2) = w(ρ1)w(ρ2) andw((l ,q)) = l . Intuitively,
it abstracts the alphabets from the paths. Therefore, we have thatw(ρ1) is a word of A that cannot

reach a final state.

Finally, we also need to show that the system ℳ(A) satisfies the constraints. Note that, the
expanded system has two kinds of SCCs. The first kind of SCCs include transitions on which no

test action is conducted, and the second kind of SCCs include a self loop on those states with a test

action. For both the kinds of SCCs, agent B’s belief about the atomic proposition finished is kept

the same: for the first kind of SCCs, it is always the case that B≤0
B (finished) while for the second

kind of SCCs, it can be B≤0
B (finished) or B>0B (finished), depending on whether the current path can

be abstracted into a word of A, and the belief values will not change.

Not that, because the formula testℛ(¬test∨B<1B (¬finished)) is constant with respect to different

instances of automata A, the PSPACE lower bound is also a lower bound of program complexity.

Moreover, the formula complexity, which measures the complexity of problem by the size of the

formula by assuming that the system is constant, is also PSPACE-complete: the lower bound comes

from the LTL model checking and its upper bound can be derived directly from the combined

complexity. Putting the above together, the problem is PSPACE-complete for combined complexity,

program complexity, and formula complexity.

D A POLYNOMIAL TIME FRAGMENT
A stochastic automaton is a tuple SA = (Q,A,α , PI )whereQ is a set of states,A is a set of symbols,α :

Q×A×Q → [0, 1] is a transition function such that for everyq ∈ Q we have

∑
a∈A

∑
q′∈Q α(q,a,q

′) =

1, and PI : Q → [0, 1] is an initial distribution over Q such that

∑
q∈Q PI (q) = 1. Note that, the

stochastic automata defined here are different with the probabilistic automata in Section A: a

probabilistic automaton requires that for every q ∈ Q and a ∈ A we have

∑
q′∈Q ℳa(q,q

′) = 1.

Given a sequence ρ of symbols, the acceptance probability of ρ in a stochastic automaton SA is∑
q∈Q

(PI (q) ×
∑
q′∈Q

α(q, ρ,q′))

where α(q, ρ,q′) is defined as follows: α(q, ρa,q′) =
∑
q′′∈Q α(q, ρ,q

′′)×α(q′′,a,q′) and α(q, ϵ,q) =
1 for ϵ an empty sequence of symbols. Two stochastic automata are equivalent if for each string

ρ ∈ A∗
, they accept ρ with equal probability [49].

Given a stochastic automaton SA = (Q,A,α , PI ), a pair D = (QD ,αD ) is a component of SA if

QD ⊆ Q and for all q,q′ ∈ QD and a ∈ A, we have αD (q,a,q
′) = α(q,a,q′). We say that D is a

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:61

strongly connected component (SCC) if for all q,q′ ∈ QD , there exists a sequence ρ of symbols

such that αD (q, ρ,q
′) > 0, where the computation of αD (q, ρ,q

′) can be done recursively as follows:

αD (q, ρa,q
′) =

∑
q′′∈QD

αD (q, ρ,q
′′) × αD (q

′′,a,q′) and αD (q, ϵ,q) = 1 for ϵ an empty sequence of

symbols. An SCC is closed if for all q ∈ QD we have

∑
a∈A

∑
q∈QD

αD (q,a,q
′) = 1.

Constraints. Assume that we are given a system ℳ and a formula □(ψ ⇒ P▷◁q^B≥1
A ψ ) or

□(ψ ⇒ P▷◁q^DT≥1A,Bψ ) such that

• ψ does not contain any belief or trust formulas,

• ψ is of CTL-style, i.e., there is no direct nesting of temporal operators, and

• the systemℳ satisfies thatℳ |= □(ψ ⇒ □ψ ), i.e., once formulaψ holds, it will hold since

then.

We consider their negated specification formulas ^(ψ ∧P▷̂◁1−d□B>0A ¬ψ ) or ^(ψ ∧P▷̂◁1−d□DT>0A,B¬ψ ),
and the algorithm, to be given below, is to determine the existence of a witness for them. We make

a remark here that, the polynomial time complexity of this fragment relies on the Assumption 2

that the transition function T of the system ℳ is deterministic, i.e., for every state s ∈ S there is a

unique a ∈ Act such that

∑
s ′∈S T (s,a, s

′) = 1. If this restriction is relaxed by allowing the possibility

of more than one actions a ∈ Act with
∑

s ′∈S T (s,a, s
′) = 1, it is expected that the complexity could

be higher.

Algorithm. Fist of all, we need to compute Prℳ,s (¬ψ ) or infx ∈ω i
B (s)

Prℳ,B .i(s,x )(¬ψ ) for every

state s and formula ¬ψ , depending on which operator, B>0A orDT>0A,B , the formula ¬ψ is in the scope

of. Recall that Prℳ,s (ψ ) is the probability of satisfying ψ among all the temporal paths starting

from state s . Because of the restrictions on ψ , these can be computed in polynomial time, using

a standard PCTL model checking procedure on DTMCs. We can define Prℳ,ρ (ψ ) for ρ a path as

Prℳ,last (ρ)(ψ ), and have the following proposition.

Proposition D.1. For a formulaψ without any belief or trust operator, we have that Prℳ,ρ (ψ ) =

Prℳ,ρ′(ψ ) and infx ∈ω i
B (last (ρ))

Prℳ,ρ (ψ ) = infx ∈ω i
B (last (ρ

′)) Prℳ,ρ′(ψ ) whenever last(ρ) = last(ρ
′).

Because belief formulas and trust formulas can be handled in a similar way, in the following we

only work with belief formulas. The technique can be adapted to work with trust formulas. From

the systemℳ, we can construct a system ℳ# = (S × S,T #, S#
init
,L#) such that

• S#
init
= {(s1, s2) | s1, s2 ∈ Sinit,obsA(s1) = obsA(s2)},

• T #((s1, s2), (a1,a2), (s
′
1
, s ′

2
)) = (T (s1,a1, s

′
1
),T (s2,a2, s

′
2
)) if obsA(s

′
1
) = obsA(s

′
2
), Prℳ,s ′

2

(ψ ) = 0,

T (s1,a1, s
′
1
) > 0, and T (s2,a2, s

′
2
) > 0, and

• L#((s1, s2)) = (L(s1),L(s2)).

Intuitively, ℳ#
is the production of two copies of the system ℳ such that the two copies preserve

the same observations along the transitions (by letting obsA(s1) = obsA(s2) in S#
init

and obsA(s
′
1
) =

obsA(s
′
2
) in T #

) and the second copy always selects those states which do not satisfy the formulaψ
(by letting Prℳ,s ′

2

(ψ ) = 0). On such a system ℳ#
, we define operator Lk for k ∈ {1, 2} such that

Lk (ℳ#) = (S × S,T #

k , S
#

init,k ,L
#

k ) where

• sk ∈ S#
init,k if (s1, s2) ∈ S#

init
and k ∈ {1, 2}.

• T #

k ((s1, s2), (a1,a2), (s
′
1
, s ′

2
)) is the kth component of T #((s1, s2), (a1,a2), (s

′
1
, s ′

2
)), and

• L#k ((s1, s2)) is the kth component of L#((s1, s2)).

Intuitively, in Lk (ℳ#), we only consider those initial and transition probabilities of the kth copy of

the systemℳ.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:62 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

LetQ#

D ⊆ S × S be a set of states. A component ofℳ#
is a pair D# = (Q#

D ,T
#

D ). We defineT #

k,D as

the kth component of T #

D for k ∈ {1, 2}.

Definition D.2. We say that the component D#
is an SCC if either (Q#

D ,T
#

1,D ) or (Q
#

D ,T
#

2,D ) is an

SCC, and is a double-closed SCC if both (Q#

D ,T
#

1,D ) and (Q#

D ,T
#

2,D ) are closed SCCs.

By the construction of ℳ#
, we have

Proposition D.3. (Q#

D ,T
#

1,D ) is an SCC if and only if (Q#

D ,T
#

2,D ) is an SCC.

Moreover, given (Q#

D ,T
#

k,D ), we can compute a stationary distribution for each of (Q#

D ,T
#

1,D ) and

(Q#

D ,T
#

2,D ). Such a stationary distribution always exists and uniquely exists for a finite (Q#

D ,T
#

k,D ),

which is a DTMC. Let µ#k,D be the stationary distribution of (Q#

D ,T
#

k,D ). Then, from a component

D# = (Q#

D ,T
#

D ), we can construct two stochastic automata SA1(D
#) = (Q#

D ,A,T
#

1,D , µ
#

1,D ) and

SA2(D
#) = (Q#

D ,A,T
#

2,D , µ
#

2,D ) where µ
#

1,D and µ#
2,D are their initial distributions.

Definition D.4. We say that D#
is internal equivalent when two automata SA1(D

#) and SA2(D
#)

are equivalent. A component D# = (Q#

D ,T
#

D ) is formula-specific with respect to the formula ψ if

Prℳ,s (ψ ) > 0 for some (s, t) ∈ Q#

D and t ∈ Q .

Recall that, two stochastic automata are equivalent if they have the same acceptance probability

for all strings. Note that, in the construction ofℳ#
, we require that the second copy always selects

those states which do not satisfy the formulaψ . Therefore, a formula-specific component suggests

that the component contains inconsistency between two copies of the systemℳ with respect to

the formulaψ .
Let Path(D#) be the set of paths in D#

, and IPath(D#) and FPath(D#) be the set of infinite and

finite paths in D#
, respectively. We also extend the transition relations T #

1,D and T #

2,D to work with

paths in Path(D#), similar as that of α and αD in stochastic automata. We do not define obs#A because

the two copies of the system have the same observations.

Let ρ be a finite path such that last(ρ) is in an SCC D#
. Given a path ρ1 in the SCC D#

, we let

obsA(ρ1) = {ρ ∈ Path(D#) | obsA(ρ) = obsA(ρ1)} be the set of paths that agent A cannot distinguish.

Then we write

д(ρ,D#,k, ϵ) ≡ T #

1,D ({ρ1 ∈ FPath(D#) |
T #

2,D (obsA(ρρ1))

T #

1,D (obsA(ρρ1))
> ϵ, |ρ1 | = k})

for the probability of infinite continuations of ρ whose probability ratio between the two copies of

the system is maintained (i.e., greater than ϵ). Moreover, we let д(ρ,D#) = 1, if for all number k ∈ N,
there exists ϵ > 0 such that д(ρ,D#,k1, ϵ) = 1, and д(ρ,D#) = 0, otherwise. We have the following

propositions.

Proposition D.5. If D# is not internal equivalent then д(ρ,D#) = 0 for all finite paths ρ whose
last state is on D#.

Proof. Let ρ1 be the shortest path on which the two copies of the system have different accep-

tance probabilities. By the construction of ℳ#
, some transitions are removed due to the restriction

of Prℳ,s2
(ψ ) = 0. Therefore, the probability of the second copy is less than the one of the first

copy, and we have

T #

2,D (obsA(ρρ1))

T #

1,D (obsA(ρρ1))
< 1. Then we can construct a path ρ2 which contains a large

number of pieces of observations that are equivalent to ρ1. With this path, we have that, for all

ϵ > 0,

T #

2,D (obsA(ρρ2))

T #

1,D (obsA(ρρ2))
< ϵ . Therefore, we have that д(ρ,D#) = 0. □

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reasoning about Cognitive Trust 1:63

Proposition D.6. д(ρ,D#) = 1 if and only if D# is double-closed and internal equivalent.

Proof. (⇐) Assume thatD#
is double-closed and internal equivalent. By the definition of internal

equivalence, for all finite paths ρ1 ∈ FPath(D#), we have that T #

2,D ({ρ2 ∈ FPath(D#) | obsA(ρ2) =

obsA(ρ1)}) = T #

1,D ({ρ2 ∈ FPath(D#) | obsA(ρ2) = obsA(ρ1)}), which means that T #

2,D (obsA(ρρ1)) =

T #

1,D (obsA(ρρ1)) > 0. Because D#
is double-closed, we have that д(ρ,D#) = 1.

(⇒) Assume that д(ρ,D#) = 1. We show that both conditions are indispensable. If D#
is not

double-closed and it is the first copy that is not closed, then the probability of T #

1,D will flow out of

the SCC. Therefore, д(ρ,D#,k, ϵ) = 0 for a sufficiently large number k . If D#
is not double-closed

and it is the second copy that is not closed, then

T #

2,D (obsA(ρρ1))

T #

1,D (obsA(ρρ1))
= 0 for a sufficiently large |ρ1 |,

which means that д(ρ,D#) = 0. Moreover, the case in which D#
is double-closed but not internal

equivalent is guaranteed by Proposition D.5. □

Proposition D.7. Let ρ be a finite path such that last(ρ) is on an SCC D#, and D# is double-closed,
internal equivalent, and formula-specific with respect to ψ . Then д(ρ,D#) = 1 if and only if for all
ρ1 ∈ Path(D#), (

∑
obsA(ρ′)=obsA(ρρ1) beA(ρ

′) × Prℳ,ρ′(¬ψ )) > 0.

Proof. This is equivalent to proving that∑
obsA(ρ′)=obsA(ρρ1)

beA(ρ
′) × Prℳ,ρ′(¬ψ ) > 0 iff

T #

2,D (obsA(ρρ1))

T #

1,D (obsA(ρρ1))
> 0,

for ρ1 ∈ Path(D#).

Now, by the construction ofℳ#
(in which the second copy satisfies Prℳ,s2

(ψ ) = 0) and the three

conditions of D#
, we have that∑
obsA(ρ′)=obsA(ρρ1)

beA(ρ
′) × (Prℳ,ρ′(¬ψ ) > 0) =

T #

2,D (obsA(ρρ1))

T #

1,D (obsA(ρρ1)
.

The equivalence of ∑
obsA(ρ′)=obsA(ρρ1)

beA(ρ
′) × (Prℳ,ρ′(¬ψ ) > 0) > 0

and ∑
obsA(ρ′)=obsA(ρρ1)

beA(ρ
′) × Prℳ,ρ′(¬ψ ) > 0

can be seen by their structures. □

With these propositions, we have the following algorithm.

Algorithm 3. After the computation of Prℳ,s (¬ψ ) or infx ∈ω i
B (s)

Prℳ,B .i(s,x )(¬ψ ) for every state

s and formula ¬ψ , the algorithm proceeds by the following sequential steps:

(1) compute the set of SCCs ofℳ#
such that D#

is formula-specific with respect toψ , double-
closed, and internal equivalent,

(2) for every state s satisfyingψ , we do the following:

(a) compute the reachability probability to those SCCs from the first step; let the probability

value be p, and
(b) check whether p▷̂◁1 − q.
If there exists a state s that can satisfy the above computation, then the specification formula

does not hold, otherwise holds.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:64 Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

Analysis of Complexity. The complexity of the algorithm is in polynomial time. First of all, the

computation of Prℳ,s (¬ψ ) or in fx ∈ω i
B (s)

Prℳ,B .i(s,x )(¬ψ ) can be done in polynomial time because

ψ is of CTL-style and contains no belief or trust formula. Second, for the first step of the algorithm,

the computation of all SCCs of ℳ#
, whose size is quadratic with respect to ℳ, can be done in

polynomial time by Tarjan’s algorithm, and the checking of the three conditions (i.e., formula-

specific with respect toψ , double-closed, and internal equivalent) can be done in polynomial time. In

particular, the checking of internal-equivalent of an SCC can be done in polynomial time is a result

of the existence of a polynomial time algorithm for the equivalence of stochastic automata [49].

Third, for the second step of the algorithm, the computation of reachability probability on ℳ#
can

be done in polynomial time, and the comparison of values can be done in constant time.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.


	Abstract
	1 Introduction
	2 Related Work
	3 Cognitive Theory of Social Trust
	4 Stochastic Multiagent Systems and Temporal Reasoning
	4.1 Stochastic Multiplayer Games
	4.2 Temporal Reasoning about SMGs

	5 Stochastic Multiagent Systems with the Cognitive Dimension 
	5.1 Cognitive Reasoning
	5.2 Cognitive Reasoning

	6 Preference Functions and Probability Spaces
	7 Reasoning with Probabilistic Beliefs
	7.1 Belief Function
	7.2 Belief ASMAS

	8 Reasoning about Beliefs and Trust
	8.1 Probabilistic Rational Temporal Logic
	8.2 Restricting to Deterministic Behaviour Assumption
	8.3 A Single-Agent Special Case
	8.4 Other Trust Notions
	8.5 Trust for Systems with Sure Beliefs

	9 Pro-attitude Synthesis
	10 Model Checking Complexity
	11 Decidable Fragments
	11.1 A Bounded Fragment
	11.2 A Fragment with U and  operators
	11.3 A Polynomial Time Fragment

	12 Conclusions
	Acknowledgments
	References
	A Undecidability of the General Problem
	B A Decidable Fragment of Bounded Length
	B.1 Upper Bound
	B.2 Hardness Problem

	C A Decidable Fragment with U and  temporal operators
	C.1 Upper Bound
	C.2 Hardness Problem

	D A Polynomial Time Fragment

