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ABSTRACT
The joint consideration of randomness and continuous time
is important for the formal verification of many real systems.
Considering both facets is especially important for wireless
sensor networks, distributed control applications, and many
other systems of growing importance. Apart from proving the
quantitative safety of such systems, it is important to analyse
properties related to resource consumption (energy, memory,
bandwidth, etc.) and properties that lie more on the eco-
nomical side (monetary gain, the expected time or cost until
termination, etc.). This paper provides a framework to decide
such reward properties effectively for a generic class of models
which have a discrete-continuous behaviour and involve both
probabilistic as well as nondeterministic decisions. Experi-
mental evidence is provided demonstrating the applicability
of our approach.
Categories and Subject Descriptors: I.6.4 [Computing
Methodologies]: Simulation and Modelling - Model Valida-
tion and Analysis; G.3 [Mathematics of Computing]: Proba-
bility and Statistics.
General Terms: Performance; Reliability; Verification.
Keywords: probabilistic hybrid automaton; abstraction; mo-
del checking; expected rewards; probabilistic automaton; per-
formance evaluation; performability; continuous time; nonde-
terminism; simulation relation.

1. INTRODUCTION
The inclusion of stochastic phenomena in the hybrid sys-

tems framework is crucial for a spectrum of application do-
mains, ranging from wireless communication and control to
air traffic management and to electric power grid operation
[13, 23]. As a consequence, many different stochastic hybrid
system models have been proposed [2, 35, 11, 12, 1, 28], to-
gether with a vast body of mathematical tools and techniques.

Recently, model checkers for stochastic hybrid systems have
emerged [36, 40, 17]. In this context, the model of proba-
bilistic hybrid automata [35] is of particular interest, since it
pairs expressiveness and modelling convenience in a way that
model checking is indeed possible. In particular, it enables to
piggyback [40, 17] the solution of quantitative probabilistic
model checking problems on qualitative model checking ap-
proaches for hybrid systems. Solvers such as HSolver [31],
PHAVer [19], or SpaceEx [20] can be employed for the lat-
ter. Thus far, the prime focus in this context has been put
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on approximating or bounding reach probabilities in proba-
bilistic hybrid automata. This is appropriate for quantifying
system safety and reliability, but not for availability, surviv-
ability, throughput and resource consumption questions.

In this paper, we aim to overcome this restriction in a
framework that is as general as possible, while retaining the
idea of piggybacking on existing hybrid system solvers. Tak-
ing up initial ideas [22], we decorate probabilistic hybrid au-
tomata with rewards, which can be considered as costs or
bonuses. We discuss a method for handling properties that
quantify expected rewards. The properties we consider are
either the minimal or maximal expected total accumulated re-
ward over all executions of a model or the minimal or max-
imal expected time-average reward over all executions of the
model. We will need to postpone the precise formalisation of
these notions (cf. Definition 15), until we have defined the
semantics of our models. Using appropriate reward struc-
tures and property types, this approach allows us to reason
about the cost accumulated until termination, the long-run
cost of system operation, system availability [16] and surviv-
ability [14], time or cost until stabilisation, and many other
properties of interest. Proofs backing up the results presented
in this paper can be found in [21].
Related Work. Reward properties for classical (i.e. nonstochas-
tic) timed automata have been considered by Bouyer et al.
[10, 9]. Rutkowski et al. [32] considered a controller synthesis
problem for average-reward properties in classical hybrid au-
tomata. Discrete-time stochastic hybrid automata have been
considered for the analysis of reward properties [37, 36, 18],
and have been studied with importance sampling techniques
recently [41]. Methods which approximate continuous-time
stochastic hybrid automata by Markov chains [29, 24] also al-
low for an extension to reward-based properties. To the best
of our knowledge, the present paper is the first to address
reward-based properties of probabilistic hybrid automata in-
volving nondeterminism, stochastic behaviour as well as con-
tinuous time in full generality, harvesting well-understood
and effective methods originally developed for the verifica-
tion of classical hybrid automata.

2. PROBABILISTIC HYBRID AUTOMATA
This section introduces the notion of probabilistic hybrid

automata we are going to use, and describes how rewards are
integrated into the model. To get started, we first define a
generic multi-dimensional post operator, which will be used
to describe the continuous behaviour of our model. In this
operator, we reserve the first two dimensions for the accu-
mulation of reward, respectively the advance of time. In the
context of hybrid systems [3, 4], post operators are often de-
scribed by differential (in)equations. However, our notion is
independent of the formalism used.
Definition 1. A k-dimensional post operator with k ∈ N

and k ≥ 2 is a function

Post : Rk → 2Rk

.
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Figure 1: Post operator.

Post(r, t, v) will be used to describe the possible values of the
continuous variables after a timed transition. This implies an
update of the reward and the time dimension. If there is a
constant c ∈ R≥0 satisfying that for any r, t ∈ R, v ∈ Rk−2,

Post(r, t, v) ⊆ {(r + ct, t+ t) | t ∈ R≥0} × Rk−2,

we call the post operator reward affine. Models which use
only reward affine post operators will turn out to allow for
abstractions which are particularly precise.

Example 1. Consider PostCheck : R3 → 2R3

with

PostCheck(r, t, T )
def
= {(r, t+ t, T exp(−0.5t)) | t ∈ R≥0 ∧ t + t ≤ 1}.

For (r, t, T ) = (0, 0, 5), the behaviour is depicted in Figure 1.
The graph denotes the set of points which can be reached by
a timed transition. The axis labelled with t denotes both the
values of the time passed as well as the continuous variable t
(and here also the value of variable r). The axis T displays
the third dimension. After time 0.25, it has a value of ≈ 4.41.
Post operators will appear in the definition of the probabilis-
tic hybrid automaton model we consider. As a preparation,
we first define classical hybrid automata.
Definition 2. A classical hybrid automaton (HA) is a tuple

H = (M,k,m, 〈Postm〉m∈M ,Cmds,Rew), where

• M is a finite set of modes,

• k ∈ N with k ≥ 2 is the dimension,

• m ∈M is the initial mode,

• Postm is a k-dimensional post operator for each m,

• Cmds is a finite set of guarded commands of the form

g → u, where

– g ⊆M × Rk is a guard,

– u : (M ×Rk)→ 2M×Rk

is an update function with
– u(s) ⊆M × {(0, 0)} × Rk−2,
– if s ∈ g then u(s) 6= ∅,

• for each s = (m, v) with Postm(v) = ∅, there is a com-
mand with guard g with s ∈ g, and

• Rew : ((M×Rk)×Cmds)→ R≥0 is a reward structure.

The continuous-time behaviour of an HA in a given mode m
is determined by the corresponding post operator. Whenever
the guard of a guarded command is satisfied, the command
can be executed in zero time. If executed, a nondeterministic
choice over successor updates and modes results. Multiple
guards of commands may be satisfied at the same time, im-
plying a nondeterministic selection over these commands.

Another obvious concept needed for the setting considered
is that of a probability distribution.
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Ṫ=−T/2
∧t≤1

Error

T≥9→T ′=T

T≤6→T ′=T

true→9≤T ′≤10

t≥2→T ′=T

cCh=(t≥0.5→

(T ′=T )7→0.95,

(T ′=T ) 7→0.05)

Figure 2: PHA modelling a thermostat.

Definition 3. A finite probability distribution over a set
Ω is a function µ : Ω → [0, 1], where there are only finitely
many a ∈ Ω with µ(a) > 0, and it is

∑
a∈Ω µ(a) = 1. In a

Dirac probability distribution µ, there is only a single a ∈ Ω
with µ(a) = 1. With Distr(Ω), we denote the set of all finite
probability distributions over Ω. Given n pairwise different
elements ai ∈ Ω and probabilities pi ≥ 0, 1 ≤ i ≤ n with∑n
i=1 pi = 1, we use [a1 7→p1, . . . , an 7→pn] to denote the prob-

ability distribution µ with µ(ai) = pi.
With this extension, we can now specify probabilistic hybrid
automata (similar to Sproston [35, Section 2]).
Definition 4. A probabilistic hybrid automaton (PHA) is

a tuple

H = (M,k,m, 〈Postm〉m∈M ,Cmds,Rew)

where all components of this tuple are as in Definition 2, and
satisfy the same constraints, except for

• Cmds, which is a finite set of probabilistic guarded
commands of the form

g → [u1 7→p1, . . . , un 7→pn], where

– g ⊆M × Rk is a guard,
– ui : (M × Rk)→ 2M×Rk

is an update function,
– ui(s) ⊆M × {(0, 0)} × Rk−2,
– if s ∈ g then ui(s) 6= ∅ for 1 ≤ i ≤ n.

H is reward affine if all its post operators are reward affine
and if Rew(·, c) is constant for all c ∈ Cmds. Under these
assumptions we can consider Rew as a function

Rew : Cmds → R≥0.

Probabilities are incorporated in this definition as part of the
commands that update mode and variables according to the
probabilities pi associated with the ith update option ui.

A HA can now be viewed as a PHA where each guarded
command has only a single update option, to be chosen by a
Dirac distribution, or a (possibly uncountable) nondetermin-
istic choice over Dirac distributions.
Example 2. Figure 2 depicts a PHA model of a simple un-

reliable thermostat, where ṙ = 0 and ṫ = 1 in each mode. The
model can switch between modes Heat and Cool to adjust the
temperature of its environment. At certain occasions the sys-
tem may enter a Check mode. The post operator of Check
has been described in Example 1, the other ones are similar.
On execution of the command cCh, the system moves to mode
Heat with probability 0.95, and to mode Error with probability
0.05. We thus have

cCh = (g → [uChH 7→0.95, uChE 7→0.05]), where

• g = {Check} × R× [0.5,∞)× R,

• uChH(m, r, t, T ) = {(Heat, 0, 0, T )}, and

• uChE(m, r, t, T ) = {(Error, 0, 0, T )}.

The formalisation of the other commands is similar, but does
not include nontrivial probabilities.
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Figure 3: Probabilistic automaton.

In the post operators, we have already integrated means
to refer to reward and time. Indeed, the first two dimen-
sions of a PHA are used to record reward accumulation, and
time advances as the system lifetime time progresses. We
will “collect” the reward and times whenever a command is
executed, and therefore reset these dimensions whenever ex-
ecuting commands. The component Rew associates rewards
to discrete transitions of a PHA.

As time and reward are present as explicit dimensions in
our construction, guards and invariants can relate to them.
This is in contrast to e.g. priced timed automata [10], where
this is forbidden, so as to avoid crossing the undecidability
boundary. In the setting considered here, this makes no dif-
ference because we build on machinery (for HAs) that is de-
veloped for undecidable theories, in the form of heuristics.

Example 3. Consider the thermostat of Figure 2. Here it is
not possible to leave the Error mode once entered. We define a
reward structure Rewacc with Rewacc(c)

def
= 0 if c ∈ {cE, cIH}

and Rewacc(c)
def
= 1 else. The system thus earns a reward

for executing any command, except for the one of Error, and
the one to initialise the system. With this reward structure,
the minimal sum of reward values accumulated, expresses the
minimal expected number of commands executed until an er-
ror happens.

Now, assume we have extended mode Error so that the sys-
tem can recover after a certain time (e.g. by adding a re-
set transition back to the initial state). In such a system, it
makes sense to consider the long-run behaviours. We can for
instance look at a reward structure Rew lra assigning constant
0 to each command. If in addition we modify the post oper-
ator in such a way that r is increased by 1 per time unit in
mode Error, we can use this to reason about the percentage of
time the system is not operational on the long run.

3. PHA SEMANTICS
In this section, we describe the semantics of PHAs. The

semantics maps on variations of infinite-state Markov decision
processes [30], known as probabilistic automata [33].
Definition 5. A probabilistic automaton (PA) is a tuple

M = (S, s,Act , T ), where

• S is a set of states,

• s ∈ S is the initial state,

• Act is a set of actions, and the

• transition matrix T : (S ×Act)→ 2Distr(S) assigns sets
of probability distributions to state-action pairs.

For each s ∈ S, we require {a ∈ Act | T (s, a) 6= ∅} 6= ∅.
PAs contain a (possibly uncountable) set of states, whereof
one is initial. In each s ∈ S, there is a nondeterministic
choice of actions a ∈ Act and distributions µ ∈ T (s, a) over
successor states.

Example 4. In Figure 3, we depict a finite example PA
M def

= (S, s,Act , T ). Here, we have S
def
= {s0, s1, s2}, s def

= s0,
Act = {a, b}, and

T (s0, a)
def
= ∅, T (s0, b)

def
= {[s0 7→0.25, s1 7→0.75], [s1 7→1]},

T (s1, a)
def
= {[s1 7→1], [s2 7→1]}, T (s1, b)

def
= ∅,

T (s2, a)
def
= ∅, T (s2, b)

def
= {[s1 7→1], [s0 7→0.25, s1 7→0.75]}.

Definition 6. A finite path of a PA M = (S, s,Act , T ) is
a tuple

βfin = s0a0µ0 . . . sn−1an−1µn−1sn∈(S×Act×Distr(S))∗×S,

where s0 = s and for all i with 0 ≤ i < n it is µi ∈ T (si, ai).
An infinite path is a tuple

βinf = s0a0µ0 . . . ∈ (S ×Act ×Distr(S))ω,

where s0 = s and µi ∈ T (si, ai) holds for all i ≥ 0. By
Pathfin

M, we denote the set of all finite paths and by Path inf
M

we denote the set of all infinite paths of M.
We let βfin[i]

def
= βinf [i]

def
= si denote the (i+ 1)th state of a

finite or infinite path (for the i-s defined). By last(βfin)
def
= sn

we denote the last state of a finite path. For β, β′ ∈ Pathfin
M ]

Path inf
M we write β ≤ β′ in case either β = β′ or if β is a

finite prefix of β′.
By trace(βfin) = a0a1 . . . an−1 we denote the trace of a

finite path, and accordingly for infinite paths. The sets of all
finite and infinite traces are defined as Trace∗M

def
= Act∗ and

TraceωM
def
= Actω. Given γ = a0a1 . . . ∈ Trace∗M ] TraceωM,

we define γ[i]
def
= ai as the (i+ 1)th action on the trace.

Consider a subset Act fair ⊆ Act of the actions of M. We
consider a path β ∈ Path inf

M as Act fair-fair if there are in-
finitely many i ≥ 0 with trace(β)[i] ∈ Act fair. By Path

Actfair
M

we denote the set of all Act fair-fair paths of M.
Example 5. A finite path in the PA of Figure 3 is

βfin
def
= s0b[s0 7→0.25, s1 7→0.75]s0,

and with Act fair
def
= {b}, an Act fair-fair infinite path is

βinf
def
= s0(b[s0 7→0.25, s1 7→0.75]s0)ω.

We have

trace(βfin) = b, trace(βinf) = bω,

last(βfin) = s0, βfin[0] = s0, βinf [15] = s0.

Path sets are by themselves not sufficient to describe the
properties of PAs. This is because nondeterministic behaviour
is intertwined with probabilistic behaviour. This asks for
instances to resolve the nondeterminism. These instances,
called schedulers, induce a purely probabilistic behaviour,
which can be subjected to stochastic analyses.
Definition 7. A scheduler for PA M = (S, s,Act , T ) is

a function ρ : Pathfin
M → Distr(Act × Distr(S)). For β ∈

Pathfin
M, we require ρ(β)(a, µ) > 0 implies µ ∈ T (last(β), a).

With SchedM we denote the set of schedulers of M.
A scheduler ρ is called simple if it only maps to Dirac dis-

tributions and if for all β, β′ ∈ Pathfin
M with last(β) = last(β′)

we have ρ(β) = ρ(β′). We can interpret it as being of the
form ρ : S → (Act ×Distr(S)).
In this paper, we develop results valid for general schedulers,
thus not restricted to simple schedulers. But since simple
schedulers are simpler to describe and understand, they ap-
pear in illustrating examples. We are now in the position to
define probability measures on paths.
Definition 8. We define PrM,ρ : Pathfin

M → [0, 1] for PA
M = (S, s,Act , T ) and scheduler ρ : Pathfin

M → Distr(Act ×



Distr(S)): Given β = s0a0µ0s1a1µ1 . . . sn ∈ Pathfin
M, let

PrM,ρ(β)
def
=

ρ(s0)(a0, µ0)µ0(s1)ρ(s0a0µ0s1)(a1, µ1)µ1(s2) · · ·µn−1(sn).

We define the cylinder of β ∈ Pathfin
M

Cyl(β)
def
= {β′ ∈ Path inf

M | β ≤ β′}

as the set of infinite paths which start with β. Then, we use
the generated σ-algebra

ΣM
def
= σ({Cyl(β) | β ∈ Pathfin

M}),

to obtain the measurable space (Path inf
M ,ΣM).

There is a unique extension [27] of PrM,ρ : Pathfin
M → [0, 1]

to PrM,ρ : ΣM → [0, 1] where for all β ∈ Pathfin
M it is

PrM,ρ(Cyl(β))
def
= PrM,ρ(β).

Using the definition of a fair path and the probability of
paths, we can define fair schedulers.
Definition 9. A scheduler ρ ∈ SchedM of a PA M =

(S, s,Act , T ) is called Act fair-fair for Act fair ⊆ Act if

PrM,ρ(Path
Actfair
M ) = 1.

Sched
Actfair
M denotes the set of Act fair-fair schedulers of M.

We define two stochastic processes associated to a PA.
Definition 10. Let M = (S, s,Act , T ) be a PA. We define

the state process and the action process of M as

XM : (Path inf
M × N)→ S with XM(β, n)

def
= β[n],

YM : (Path inf
M × N)→ Act with YM(β, n)

def
= trace(β)[n]

for β ∈ Path inf
M and n ∈ N.

We equip our PAs with reward structures. We remark that
rewnum and rewden of the same reward structure rew in the
following definition are not meant to denote lower or upper
bounds on the specification of rewards.
Definition 11. Given PA M = (S, s,Act , T ), a reward

structure is a pair (rewnum, rewden) of two functions

rewnum, rewden : (S ×Act)→ R≥0.

Given a reward structure (rewnum, rewden), we say that it is
affine, if for all a ∈ Act there are mula ∈ R≥0 and adda ∈
R≥0, where for all s ∈ S with T (s, a) 6= ∅ it is

rewnum(s, a) = mularewden(s, a) + adda.

We will use reward structures rew = (rewnum, rewden) to
specify two different reward-based properties of PAs. For
the definition of one of them, we will use both the functions
rewnum and rewden, for the other one we only need rewnum.
Example 6. In Figure 3 we depict a PA along with a reward

structure rew
def
= (rewnum, rewden). We have

rewnum(s0, b)
def
= 3,rewden(s0, b)

def
= 1,

rewnum(s1, a)
def
= 0,rewden(s1, a)

def
= 0,

rewnum(s2, b)
def
= 7,rewnum(s2, b)

def
= 3.

The reward structure is affine, and for action b we have the
factors mulb = 2 and addb = 1.

We define properties based on these reward structures.
Definition 12. Given a PA M = (S, s,Act , T ) together

with a reward structure rew = (rewnum, rewden) and ρ ∈
SchedM, the accumulated reward is the expectation

valρM,rew,acc
def
= EM,ρ

[
lim
n→∞

n∑
i=0

rewnum(XMi , YMi )

]

under the probability measure PrM,ρ. The fractional long-run
average reward is defined as

valρM,rew,lra
def
= EM,ρ

[
lim
n→∞

∑n
i=0 rewnum(XMi , YMi )∑n
i=0 rewden(XMi , YMi )

]
,

in case we have PrM,ρ(A) = 1, where A is the set of paths
on which the property is well-defined. In the above, we let
0
0

def
= 0 and x

0

def
= ∞ for x 6= 0. For Act fair ⊆ Act, we define

the Act fair-fair maximal value

val
+,Actfair
M,rew,lra = sup

ρ∈SchedActfair
M

valρM,rew,lra,

and accordingly for accumulated rewards and minimal values.
For val

+,Actfair
M,rew,lra (val

−,Actfair
M,rew,lra) we only take the supremum (in-

fimum) over the schedulers ρ for which PrM,ρ(A) = 1.
There are more complicated notions of fractional long-run
averages which are well-defined on all paths [38]. They agree
with the definition above if it exists, which we use for clarity.
We will later on use reward-extended PAs as the semantics
of PHAs. When considering accumulated reward properties,
we add up all rewards we come across along a certain path.
The value we consider then is the expected value over all
paths. Properties of this kind can for instance be used to
reason about the expected time until system termination or
the number of steps until an error is reached. Fractional
long-run average values specify a value that is reached in the
long-run operation of a system. The numerator will later on
describe the value of which we want to obtain the average.
The denominator will describe the time which has passed in
a PHA. It is necessary to use a variable denominator here
rather than to assume that each step takes one unit of time,
because in the semantics of such models, not all steps take
the same duration of time to be performed.

Later on, the timed transitions will correspond to the non-
fair actions. If a scheduler would be allowed to choose an
infinite number of timed actions, it could let the time flow
stop at a moment in which a very high or very low value has
been reached. In this case, this value would then form the
long-run average value, which we consider as being unrealis-
tic. Fairness can prevent this problem.
Example 7. Reconsider the PA of Figure 3. In this model,

the accumulated reward would be infinite, so that we only con-
sider the fractional long-run average reward. We derive for
Act fair

def
= {b} that

val
+,Actfair
M,rew,lra =

12

5
= 2.4, val

−,Actfair
M,rew,lra =

7

3
≈ 2.333,

which is for instance obtained by the simple schedulers ρ+ and
ρ− with

ρ+(s0)
def
= (b, [s0 7→0.25, s1 7→0.75]), ρ+(s1)

def
= (a, [s2 7→1]),

ρ+(s2)
def
= (b, [s0 7→0.25, s1 7→0.75]),

ρ−(s0)
def
= (b, [s1 7→1]), ρ−(s1)

def
= (a, [s2 7→1]),

ρ−(s2)
def
= (a, [s1 7→1]).

We now define the semantics of PHAs as PAs formally.
Definition 13. For PHA H = (M,k,m, 〈Postm〉m∈M ,

Cmds,Rew), the semantics is a PA

JHK def
= (S, s,Act , T ), where

• S def
= M × Rk,

• s def
= (m, 0, . . . , 0),

• Act
def
= Cmds ] {τ},

• for s = (m, v) ∈ S we have that



– for c = (g → [u1 7→p1, . . . , un 7→pn]) ∈ Cmds it is

T (s, c)
def
= ∅ if s /∈ g and else:

T (s, c)
def
={µ∈Distr(S)| ∃s′1∈u1(s), . . . , s′n∈un(s).

∀s′ ∈ S. µ(s′) =
∑
s′i=s

′

pi},

– it is T (s, τ)
def
= {[(m, v ′) 7→1] | v ′ ∈ Postm(v)}.

The semantics is similar to usual notions of HAs, which are
usually given in terms of labelled transition systems [26]. The
difference is in the probabilistic guarded commands, where
we can have a probabilistic choice over successor states in
addition to nondeterminism.
Example 8. Consider the PHA H of Figure 2. Then

JHK = (S, s,Act , T ), with

• S = M × R3,

• s = (Init, 0, 0, 0),

• Act = {cIH, cHCo, cHCh, cCoH, cE, cCh, τ},
• T : (S ×Act)→ 2Distr(S).

For s = (Check, r, t, T ) ∈ {Check} × R3, we have

T (s, cIH) = T (s, cHCo) = T (s, cHCh)

= T (s, cCoH) = T (s, cE) = ∅,

it is T (s, cCh) = ∅ if t < 0.5 and we have T (s, cCh) =
{[(Heat, 0, 0, T ) 7→0.95, (Error, 0, 0, T ) 7→0.05]} else. Further,

T (s, τ) = {[(Check, r, t+ t, T exp(−0.5t))7→1]

| t ∈ R≥0 ∧ t + t ≤ 1}.

With these preparations, we can define the semantics of
reward structures of PHAs.
Definition 14. Given PHA H = (M,k,m, 〈Postm〉m∈M ,

Cmds,Rew) with semantics JHK = (S, s,Act , T ), the reward

semantics is the reward structure rew(H)
def
= (rewnum, rewden)

associated to JHK. For s = (m, r, t, v) ∈ S and c ∈ Cmds, let

rewnum(s, c)
def
= Rew(s, c) + r, rewden(s, c)

def
= t,

and rewnum(s, τ)
def
= rewden(s, τ)

def
= 0.

In this definition, whenever a command is executed, the re-
ward of this command is obtained. Additionally, the timed
rewards and the time accumulated until the execution of this
command become effective here. As in our model only paths
of infinitely many commands are relevant, this is equivalent to
a reward semantics in which rewards and passage of time are
attached directly to timed transitions. By postponing the
collection of timed rewards to the execution of subsequent
commands, we will be able to simplify the computation of
abstractions of PHAs.

We are now in the position to define the values of reward
properties, the technical core of our approach, using the se-
mantics of PHAs and their reward structures.
Definition 15. Given PHA H = (M,k,m, 〈Postm〉m∈M ,

Cmds,Rew), we define the maximal and minimal time-average
reward as

val+H,lra
def
= val+,Cmds

JHK,rew(H),lra and val−H,lra
def
= val−,Cmds

JHK,rew(H),lra

and define the accumulated rewards accordingly as

val+H,acc
def
= val+,Cmds

JHK,rew(H),acc and val−H,acc
def
= val−,Cmds

JHK,rew(H),acc.

We only optimise over fair schedulers, because otherwise, we
could assign a relevant probability mass to paths which are
time convergent [8, Chapter 9], that is their trace will end in

a sequence τττ . . . corresponding to time durations t0t1t2, . . .
with

∑∞
i=0 ti < ∞. This way, time effectively stops, which

means that only the reward up to this point of time will be
taken into account, which is unrealistic. Now assume that
infinitely many commands are executed, and that the au-
tomaton is structurally (strongly) nonzeno [6][5, Definition
6], that is the guards are defined so that they cannot be ex-
ecuted without a minimal fixed delay. Then this ensures the
time divergence of the path.

One point is worth noting. One might be interested in
models in which it is a legal behaviour to eventually reside in
a mode m of the model without further executing any com-
mands. However, the definition above requires that infinitely
many commands are executed on each legal path. Because of
this, such models have to be adapted accordingly. This can
be done, e.g. by adding a new auxiliary command cm which
can be executed infinitely often after a given delay whenever
residing in m.

3.1 Expressing Properties
Table 1 provides an overview of common properties that are

expressible using the mechanisms described. Here, F denotes
the set of failed states of the PHA, and T describes states
in which operation has terminated. The availability [16] of a
system can then be expressed as a time-average reward value,
by specifying the reward of the PHA under consideration so
that in each mode in which the system is available the reward
increases with rate 1 per time unit and zero else. Survivability
[14] is the ability of a system to recover a certain quality of
service level in a timely manner after a disaster. Here, we
consider the maximal expected time needed to recover from
an error condition. This can be expressed using expected
total rewards, by maximising over all states of the system
(or, an abstraction of the system) in which it is not available.

4. ABSTRACTION
In this section, we develop the necessary tools for the ab-

straction for PHAs and their reward structures. For the the-
oretical justification of our abstraction method in its entirety
we use simulation relations. The relations are actually never
constructed during the verification process, just like the full
semantics of PHAs, which is our reference semantics, but its
construction is prohibitive.

To prove the validity of abstractions of PHAs for reward-
based properties, we extend the definition of simulation re-
lations [34, 33] to take into account reward structures. A
simulation relation requires that every successor distribution
of a state of a simulated PA M is related to a successor dis-
tribution of its corresponding state of a simulating PAMsim

using a weight function [25, Definition 4.3].
Definition 16. Let µ ∈ Distr(S) and µsim ∈ Distr(Ssim)

be two distributions. For a relation R ⊆ S × Ssim, a weight
function for (µ, µsim) with respect to R is a function w : (S×
Ssim)→ [0, 1] with

1. w(s, ssim) > 0 implies (s, ssim) ∈ R,
2. µ(s) =

∑
ssim∈Ssim

w(s, ssim) for s ∈ S, and

3. µsim(ssim) =
∑
s∈S w(s, ssim) for ssim ∈ Ssim.

We write µ vR µsim if and only if there exists a weight func-
tion for (µ, µsim) with respect to R.
Using weight functions, we define simulations.
Definition 17. Given the two PAs M = (S, s,Act , T ) and
Msim = (Ssim, ssim,Act , Tsim), we say that Msim simulates
M, denoted by M � Msim, if and only if there exists a re-
lation R ⊆ S × Ssim, which we will call simulation relation
from now on, where



property Rew ṙ type remark

(a) time until failure 0

{
0 s ∈ F
1 else

minimum accumulated reward F absorbing [7]

(b) cost until termination

{
0 s ∈ F
any else

{
0 s ∈ T
any else

maximum accumulated reward T absorbing [7]

(c) long-run cost of operation any any maximum long-run average reward - [7]

(d) system availability 0

{
0 s ∈ F
1 else

minimum long-run average reward - [16]

(e) survivability 0

{
1 s ∈ F
0 else

maximum accumulated reward maximum over s ∈ F [14]

Table 1: Overview of expressible reward properties.
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Figure 4: (a) PA simulating the one of Figure 3.
(b) PA affinely simulating the one of Figure 3.

1. it is (s, ssim) ∈ R,

2. for each (s, ssim) ∈ R, a ∈ Act, and µ ∈ T (s, a),
there is a distribution µsim ∈ Distr(Ssim) with µsim ∈
Tsim(ssim, a) and µ vR µsim.

For our purposes, we must consider rewards of PAs.
Definition 18. Consider two PAs M = (S, s,Act , T ) and
Msim = (Ssim, ssim,Act , Tsim) with reward structures rew =
(rewnum, rewden), rew sim = (rew sim,num, rew sim,den), and a
simulation relation R between the PAs. We say that R is
upper-bound compatible, if in case we have (s, ssim) ∈ R
then for all a ∈ Act it is

rewnum(s, a) ≤ rew sim,num(ssim, a),

rewden(s, a) ≥ rew sim,den(ssim, a).

If there exists such a relation R, we write

(M, rew)
up

� (Msim, rew sim).

We define lower-bound compatible simulations R accordingly
by swapping ≤ and ≥ above and write

(M, rew)
lo� (Msim, rew sim).

With simulations, we can establish upper and lower bounds
on the reward properties of simulated models by considering
the corresponding property in the simulating model.
Lemma 1. For PAs M and Msim with reward structures

rew and rew sim, if (M, rew)
up

� (Msim, rew sim) then

val
+,Actfair
M,rew,lra ≤ val

+,Actfair
Msim,rewsim,lra

,

accordingly for the accumulated rewards. In case (M, rew)
lo�

(Msim, rew sim), we obtain lower bounds for minimal values.
We can thus bound the maximal (minimal) reward values
from above (below). The principle idea of this simulation is,
that the simulating automaton can mimic the behaviour of
the simulated one, while overapproximating or underapprox-
imating respectively rewnum and rewden.
Example 9. In Figure 4 (a) we give a PA with correspond-

ing reward structures which simulates the one of Figure 3 by

an upper-bound compatible simulation relation. The maxi-
mal fractional long-run average reward of the latter is indeed
much higher than the former, namely, 7 rather than 12

5
= 2.4.

To obtain a lower-bound compatible simulation relation, we
would replace the rewards (7, 1) by (3, 3), thus to obtain a re-
ward of 1 which is considerably lower than the minimal reward
7
3
≈ 2.333 of the original model.
In the case of affine reward structures, we can define a

different simulation relation to obtain more precise results.
Definition 19. Consider two PAs M = (S, s,Act , T ) and
Msim = (Ssim, ssim,Act , Tsim) between which there is a simu-
lation relation R. Consider affine reward structures

rew = (rewnum, rewden),

rew sim,up = (rew sim,up,num, rew sim,up,den),

rew sim,lo = (rew sim,lo,num, rew sim,lo,den).

We require that rew, rew sim,up and rew sim,lo are affine with
the same factors mula, adda (cf. Definition 11) for each ac-
tion a, that is for s ∈ S and z ∈ A it is

rewnum(s, a) = mularewden(s, a) + adda,

rew sim,up,num(z, a) = mularew sim,up,den(z, a) + adda,

rew sim,lo,num(z, a) = mularew sim,lo,den(z, a) + adda.

Then, we define R as affine compatible if for all (s, ssim) ∈ R
and a ∈ Act it is

rew sim,lo,num(ssim, a)≤rewnum(s, a)≤rew sim,up,num(ssim, a),

rew sim,lo,den(ssim, a)≤rewden(s, a) ≤rew sim,up,den(ssim, a).

If there exists such a relation, we write

(M, rew)
aff� (Msim, rew sim,up, rew sim,lo).

As before, affine simulations maintain reward properties.
Lemma 2. Consider the PAs M = (S, s,Act , T ) with the

reward structure rew and Msim = (Ssim, ssim,Act , Tsim) with

reward structures rew sim,up and rew sim,lo with (M, rew)
aff�

(Msim, rew sim,up, rew sim,lo). We define

Maff
def
= (Ssim, ssim,Act × {up, lo}, Taff),

rewaff
def
= (rewaff,num, rewaff,den), where

• for s ∈ Ssim and a ∈ Act it is Taff(s, (a,up))
def
= Taff(s,

(a, lo))
def
= Tsim(s, a),

• for s ∈ Ssim and a ∈ Act it is rewaff,num(s, (a,up))
def
=

rew sim,up,num(s, a), accordingly for rewaff,num(s, (a, lo)),
rewaff,den(s, (a, lo)) and rewaff,den(s, (a, lo)).

Then we have

val
+,Actfair
M,rew,lra ≤ val

+,Actfair
Maff ,rewaff ,lra

,



and accordingly for the accumulated rewards and the minimis-
ing cases.
Similar to upper-bound and lower-bound compatible simula-
tions, the affinely simulating automatonMsim can mimic the
behaviours of the simulated one. InMaff then, it also mimics
the behaviours of the original model, but can use randomised
choices over (a,up) and (a, lo) to obtain exactly the same re-
ward as when choosing a in the original model. The reason
that we will obtain results which are more precise is, intu-
itively, that for nonaffine reward structures we had to bound
rewnum and rewden from opposite directions.
Example 10. In Figure 4 (b) we give a PA which affinely

simulates the one of Figure 3. Maximal and minimal long-
run averages are 3 and 7

3
≈ 2.333, which is more precise than

the values obtained from Figure 4 (a) in Example 9.
We describe abstract state spaces to subsume uncountably

many states of the infinite semantics of PHAs.
Definition 20. An abstract state space of dimension k for

a set of modes M is a finite set A = {z1, . . . , zn} where

zi = (mi, ζi) ∈ M × 2Rk

and it is
⋃

(m,ζ)∈A ζ = Rk for all

m ∈M . We identify (m, ζ) with the set {m}×ζ which allows
us to apply the usual set operations on abstract states, and we
will for instance write s ∈ (m, ζ).
We do not require A to be a partitioning of M × Rk, that is
we do allow overlapping states. This way, one concrete state
may be contained in several abstract states. We need to allow
this, because in several hybrid system solvers from which we
obtain these abstractions, these cases indeed happen. For
instance, in the tool HSolver [31] we may have overlapping
borders, whereas for PHAVer [19] we may also have common
interiors of abstract states.

An abstraction of a PHA is defined as follows. There, we
will need to transfer probability distributions over the states
of the PHA semantics to the states of abstractions.
Definition 21. Consider an arbitrary PHA H = (M,k,m,
〈Postm〉m∈M ,Cmds,Rew), and abstract state space A = {z1,
. . . , zn} of corresponding dimension and modes. We say that

M = (A, z,Cmds ] {τ}, T )

is an abstraction of H using A if

• (m, 0, . . . , 0) ∈ z,

• for all z ∈ A, s ∈ z, c = (g → [u1 7→p1, . . . , un 7→pn]) ∈
Cmds, if s ∈ z ∩ g, then for all

(s′1, . . . , s
′
n) ∈ u1(s)× · · · × un(s)

there are

(z′1, . . . , z
′
n) ∈ An with si ∈ zi, 1 ≤ i ≤ n

so that there is µ ∈ Distr(A) with µ(z′) =
∑

z′=z′i
pi

and µ ∈ T (z, c),

• for all z ∈ A, s = (m, v) ∈ z and all s′ = (m, v ′) ∈
{m} × Postm(v), we require that there is z′ ∈ A with
s′ ∈ z′ and [z′ 7→1] ∈ T (z, τ).

By Abs(H,A) we denote the set of all such abstractions.
Next, we equip PHA abstractions with rewards.

Definition 22. Let H be a PHA with rewards Rew and con-
siderM = (A, z,Cmds ]{τ}, T ) ∈ Abs(H,A). The abstract
upper-bound reward structure is defined as

absup(H,M)
def
= (rewnum, rewden), where

• for all z ∈ A it is rewnum(z, τ)
def
= rewden(z, τ)

def
= 0,

• for all z ∈ A and c = (g → [u1 7→p1, . . . , un 7→pn]) ∈

z0 Init

z3 Heat z4 Check

z1 Cool

z2 Error
cIH:(0, 0) cHCo:(0, 0)

cCoH:(0, 0.5)

cHCh:(0, 2)

cCh:(0, 0.25)

0.05
0.95

cECo:(0.5, 0.5)

Figure 5: PHA abstraction for rewards.

Cmds it is

rewnum(z, c)
def
= sup

s=(m,r,t,v)∈z
r + Rew(s, c),

rewden(z, c)
def
= inf

(m,r,t,v)∈z
t.

The abstract lower-bound reward structure abslo is defined
accordingly by swapping sup and inf.

We can use these reward structures to safely bound the
reward values of PHAs semantics.
Theorem 1. Consider a PHA H with reward structure Rew

and M = (A, z,Cmds ] {τ}, T ) ∈ Abs(H,A) with rewup
def
=

absup(H,M). Then

val+H,lra ≤ val+,Cmds
M,rewup,lra

,

and accordingly for accumulated rewards and minimal values.
The theorem follows by Lemma 1, because abstractions sim-
ulate the semantics of PHAs.
Example 11. In Figure 5 we sketch an abstraction of Fig-

ure 2 with an abstract upper-bound reward structure for the
PHA reward structure Rew lra of Example 3. Thus, we have
a reward of 1 per time in Error and 0 else. In the abstract
states, we left out constraints to restrict to states which are
actually reachable. Consider the abstract state z4. As the
mode of this state is Check, we obtain a reward of 0 when ex-
ecuting cCh. According to the guard of this command (which
we slightly modify when using this reward structure), we have
to wait at least until t ≥ 0.25 to execute it. Now consider z2.
We can leave this state at point t = 0.25, and we thus obtain
a reward and time of 0.25.

In case we are given reward affine PHAs, we can use more
precise reward structures in the abstraction.
Definition 23. Consider a reward affine PHA H with com-

mands Cmds and the reward structure Rew and M = (A, z,
Cmds ] {τ}, T ) ∈ Abs(H,A). We define the affine abstrac-
tion

Maff
def
= (A, z,Actaff , Taff),

where Actaff
def
= {(τ, up), (τ, lo)} ] {(c, up) | c ∈ Cmds} ]

{(c, lo) | c ∈ Cmds}, and define Taff as Taff(z, (a,up))
def
=

Taff(z, (a, lo))
def
= T (z, a). Then, the abstract affine reward

structure is defined as rewaff = (rewnum, rewden) where

• for all z ∈ A, let

rewnum(z, (τ, up))
def
= rewnum(z, (τ, lo))

def
= rewden(z, (τ,up))

def
= rewden(z, (τ, lo))

def
= 0,

• for all z ∈ A with mode m and c = (g → [u1 7→p1,
. . . , un 7→pn]) ∈ Cmds, let

rewnum(z, (c,up))
def
= cvsup + Rew(c),

rewden(z, (c,up))
def
= vsup,



rewnum(z, (c, lo))
def
= cvinf + Rew(c),

rewden(z, (c, lo))
def
= vinf ,

with the factor c of Definition 1 and

vsup
def
= sup{t | (m, r, t, v) ∈ z},

vinf
def
= inf{t | (m, r, t, v) ∈ z}.

We then define absaff(H,M)
def
= (Maff , rewaff).

Theorem 2. Consider a reward affine PHA H with reward
structure Rew and abstraction M = (A, z,Cmds ] {τ}, T ) ∈
Abs(H,A), with absaff(H,M) = (Maff , rewaff). Then

val+H,lra ≤ val+,Cmds
Maff ,rewaff ,lra

,

accordingly for accumulated rewards and minimal values.
The theorem follows by Lemma 2.
Example 12. If using an affine abstraction, we replace the

actions of Figure 5 by

(cIH, up):(0, 0), (cIH, lo):(0, 0),

(cCoH, up):(0, 2), (cCoH, lo):(0, 0.5),

(cECo, up):(0.5, 0.5), (cECo, lo):(0.5, 0.5),

(cHCo, up):(0, 3), (cHCo, lo):(0, 0),

(cCh, up):(0, 0.5), (cCh, lo):(0, 0.25).

4.1 Computing Abstractions
A practical recipe to compute abstractions of PHAs has

been developed in earlier work [39], and is implemented in
the tool ProHVer. The abstraction process is piggybacked
on solvers for HAs (as in Definition 2). Concretely, the tool
applies PHAVer for this purpose. Thus far however there
was no need and no means to compute reward structures for
the abstraction at hand.

According to Definition 22 and Definition 23, we have to
find suprema and infima of the variables for rewards and time.
How this can be done depends on the hybrid systems solver
used. PHAVer uses polyhedra to represent abstract states,
which can be represented as sets of linear inequations. Be-
cause of this, we can use a linear programming tool to find the
minimal and maximal values of reward and time variables.

In some cases, this construction can be simplified. If we
do not have time-dependent rewards and only a constant re-
ward value for each command, and only want to consider the
expected accumulated reward, we do not need to compute
infima or suprema at all. For affine abstractions, we only
need a variable to remember the time since a mode change,
because we can compute the rewards from these values; in
Definition 23 the values r are not used.

In usual abstractions of HAs, the information about the
time which a continuous transition takes is lost. This is the
main reason why we encode reward and time into the first
two dimension of a PHA, rather than assigning them directly
to the timed transitions.

4.2 Algorithmic Considerations
After we have obtained a finite abstraction and have com-

puted the according reward structure using linear program-
ming, it remains to compute expected accumulated or long-
run average rewards in the abstraction. There are several
algorithms which we can apply for this purpose. For accumu-
lated rewards we can use algorithms based on policy iteration
or linear programming [30]. In case we want to compute time-
average average values, there are also algorithms using linear
programming [15] or policy iteration [38].

len. PHAVer S uptime commands
constr. ana. res. constr. ana. res.

− 0 7 0 0 0.00 0 0 42.00
1 1 102 0 0 45.33 0 0 42.00
0.05 151 24593 6 65 62.02 1 103 48.84
0.03 2566 93979 25 584 62.72 2 722 50.78

Table 2: Accumulated rewards in thermostat.

len. PHAVer S time in error time in error (lin)
constr. ana. result constr. ana. result

1 0 126 0 0 0.013 0 0 0.013
0.5 1 382 0 0 0.011 1 0 0.011
0.1 28 7072 4 9 0.009 6 14 0.009
0.05 185 29367 8 124 0.009 25 313 0.009

Table 3: Long-run average rewards in thermostat.

5. EXPERIMENTS
We implemented the analysis methods to compute expected

accumulated and time-average rewards in our tool ProHVer,
and have applied them on two case studies. Experiments were
run on an Intel(R) Core(TM)2 Duo CPU with 2.67 GHz and
4 GB RAM.

5.1 Thermostat
The first properties we consider for our running thermostat

example are the minimal expected time and the expected
number of commands (except from Init to Heat) it takes until
the error mode is reached, as in Example 3.

Results are given in Table 2. The constraint length (len.) is
a parameter which influences the precision with which PHA-
Ver builds the abstract state space. It splits the abstract
states along a given variable, in our case T . We also provide
the times in seconds which PHAVer needed to build the
abstraction (PHAVer), the number of states (S), the time
we needed to compute the reward structures (constr.) and
the computed value bound (result).

Initially, we performed these experiments splitting on t.
Doing so, we obtained much worse reward bounds, indeed al-
ways 42 for the expected number of commands until error.
Manual analysis showed that this refinement only excluded
the first direct transition from Heat to Check without a previ-
ous visit to Cool. The resulting lower bound on the expected
number of commands therefore is

Rew(cHCo) + Rew(cCoH) + (Rew(cHCh)+

Rew(cChH))
1

0.05
= 1 + 1 + (1 + 1)

1

0.05
= 42.

Table 2 shows that this is not the ultimate answer to the min-
imal expected number of executed commands. This implies
that at later points of time a direct transition from Heat to
Check without visiting Cool in between is not always possible.

The time needed to construct the reward structures for the
expected number of commands is much lower than the one
for the expected time, because in the first case the reward is
constant, and we thus can avoid solving a large number of
linear programming problems. The time for the analysis is
higher, though.

Next, we consider the maximal expected time fraction f
spent in the Error mode of the modified thermostat variant
in which this mode can be left. This allows us to obtain a
lower bound for the system long-run availability 1 − f . We
also provide results when using the more precise method tak-
ing advantage of the fact that the reward structure is affine,
by using a reward structure as in Example 12. Results are
given in Table 3. As seen, using affine reward structures



Init

Fill
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Figure 6: Water level control automaton.

len. PHAVer S uptime commands
constr. ana. result constr. ana. result

− 1 10 0 0 0.0 0 0 40
1 0 53 0 0 137.0 0 0 40
0.05 5 814 1 1 164.8 0 2 40
0.01 31 4294 1 42 166.1 0 46 40

Table 4: Accumulated rewards in water control.

does not improve the result: This was expected by compar-
ing Example 11 and Example 12. Some of the actions of
Example 12 have the same values as actions in Example 11
(e.g. (cCoH, lo) : (0, 0.5) corresponds to cCoH : (0, 0.5)), while
the remaining ones are suboptimal choices for a maximising
scheduler (e.g. (cCoH, , up) : (0, 2)). Thus, a scheduler in the
affine abstraction basically takes the same choices as in the
previous abstraction.

By the definition of affine simulation, it is necessary to
solve twice as many linear optimisation problems to obtain
an abstraction as when using an abstract upper-bound reward
structure, so the time needed by ProHVer is larger.

5.2 Water Level Control
We consider a model of a water level control system (ex-

tended from the one of Alur et al. [3]) which uses wireless
sensors. Values submitted are thus subject to probabilistic
delays, due to the unreliable transport medium. A sketch of
the model is given in Figure 6. The water level W of a tank
is controlled by a monitor. Its change is specified by an affine
function. Initially, the water level is W = 1. When no pump
is turned on (Fill), the tank is filled by a constant stream of

water (Ẇ ). When a water level of W = 10 is seen by a sensor
of the tank, the pump should be turned on. However, the
pump features a certain delay, which results from submitting
control data via a wireless network. With a probability of
0.95 this delay takes 2 time units (FillD2), but with a prob-
ability of 0.05 it takes 3 time units (FillD3). The delay is
modelled by the timer t. After the delay has passed, the wa-
ter is pumped out with a higher speed than it is filled into
the tank (Ẇ = −2 in Drain). There is another sensor to
check whether the water level is below 5. If this is the case,
the pump must turn off again. Again, we have a distribu-
tion over delays here (DrainD2 and DrainD3). Similar to the
thermostat case, we considered the minimal expected time
and number of command executions until the Error mode is
reached. As this model features only affine continuous dy-

len. PHAVer S avg. energy avg. energy (lin.)
constr. ana. result constr. ana. result

1 0 51 0 0 1.985 0 0 1.814
0.1 2 409 0 0 1.656 0 0 1.640
0.02 11 2149 0 0 1.630 1 0 1.627
0.01 24 4292 0 1 1.627 2 1 1.625

Table 5: Long-run average rewards in water control.

namics, we successfully obtained results using constraints on
t. Results are given in Table 4.

For the second property, we remove Error and assume that
the operational bounds of the system are safe. We are inter-
ested in the average energy consumption of the system. We
assume that no energy is spent in the modes where the pump
is switched off. While the pump is running, 2 units of en-
ergy are consumed per time unit, starting the pump takes 10
units of energy and switching it off again takes 6 units. The
reward structure thus features both rewards obtained from
timed transitions as well as those obtained from command
executions. Results are given in Table 5. As seen, using
affine reward structures improves the result more than in the
thermostat case. This happens because in a larger percentage
of the time a nonzero reward in the numerator is obtained.
In the thermostat case study, this was only possible in mode
Error. As the time spent in that mode in the thermostat
setting is small, the induced difference between the lower and
upper values with the two kinds of reward abstractions is also
rather small.

6. CONCLUSION
We have presented a framework to handle probabilistic hy-

brid automata decorated with costs or bonuses. The resulting
abstraction and verification approach considerably enriches
the spectrum of properties that are amenable to model check-
ing. It is now possible to check properties including cost
accumulated until termination, the long-run cost of system
operation, and other popular quantities. This includes long-
run availability, as mentioned in Section 5, and many other
quantities of interest. For instance, we are now in the position
to compute the long-run survivability [14] of a probabilistic
hybrid system. This quantity asks for a time bounded reach
analysis [40] nested inside a long-run cost analysis.

To arrive at this powerful framework, we have decorated
PHAs with reward structures associated to taking a transi-
tion, have discussed how these structures carry over to the
semantical model (PAs) and how properties of PHAs are de-
fined. These properties can reason about the expected total
or long-run average reward.

On the level of the semantical model, we have extended our
abstraction framework to work well with reward structures,
and this required some nontrivial considerations. Probabilis-
tic simulation relations serve as means to guarantee the cor-
rectness of the abstractions we build, and they needed to be
augmented to properly cover reward-based properties.

To allow for the automatic analysis of reward-based proper-
ties, we extended our framework accordingly. In case we have
rewards depending on the time, as for instance the average
time the system is operational, it has turned out necessary
to take a closer look at the form of the abstract states, to
find out about minimal or maximal reward values. The effec-
tivity of our approach has been demonstrated by using it to
compute reward-based values on two case studies.
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