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Abstract. Verification algorithms for networks of nonlinear hybrid au-
tomata (HA) can aid understanding and controling of biological processes
such as cardiac arrhythmia, formation of memory, and genetic regulation.
We present an algorithm for over-approximating reach sets of networks
of nonlinear HA which can be used for sound and relatively complete
invariant checking. First, it uses automatically computed input-to-state
discrepancy functions for the individual automata modules in the net-
workA for constructing a low-dimensional modelM. Simulations of both
A and M are then used to compute the reach tubes for A. These tech-
niques enable us to handle a challenging verification problem involving
a network of cardiac cells, where each cell has four continuous variables
and 29 locations. Our prototype tool can check bounded-time invariants
for networks with 5 cells (20 continuous variables, 295 locations) typi-
cally in less than 15 minutes for up to reasonable time horizons. From
the computed reach tubes we can infer biologically relevant properties of
the network from a set of initial states.
Keywords. biological networks; hybrid systems; invariants; verification.

1 Introduction

Central to understanding and controlling behavior of complex biological net-
works are invariant properties. For example, synchronization of the action po-
tentials of cardiac cells and neurons is responsible for normal functioning of
the heart and for formation of memory [7, 17], and maintenance of synchrony
is an invariant property. Real-time prediction of loss of synchrony can enable
automatic deployment of counter-measures. For instance, embedded defibrilla-
tor devices are being designed to preempt possible cardiac arrest that arises
from loss of synchrony. Offline invariant checks can aid in debugging pacemak-
ers and brain-machine interfaces. Checking invariant properties for networks of
dynamical systems is challenging. Analytical results exist only for modules with
relatively simple dynamics and on special types of topologies such as scale-free



and random graphs [8, 10, 41, 43, 46]. These approaches cannot be applied to
modules with nonlinear and hybrid dynamics such as the models of cardiac
cells in [12, 21]. Aside from the nonlinearities in the modules, the complete net-
work model involves shared continuous variables between modules (ion-channels)
which have limited support in analytical and verification approaches. In the ab-
sence of analytical approaches, one performs simulation experiments which are
computationally inexpensive but fall short of providing guarantees and are of
limited utility in studying invariants for sets of initial states or parameter val-
ues. For example, if we wanted to know if the voltage of an action potential stays
within some range from a set of initial states, then a finite number of simulations
cannot give us a provably correct answer.

In this paper, we present an algorithm for verifying bounded-time invariant
properties of networks of deterministic nonlinear hybrid automata. The under-
lying principle is simulation-based verification which combines numerical simu-
lations with formal analysis [5,15,16]. First, a simulation ψ is computed from a
single initial state v. This ψ is then bloated by some factor to over-approximate
all executions from a neighborhood Bv of v of non-zero measure. By repeat-
ing this process for different v’s, all behaviors from a set of initial states can
be over-approximated and robust invariants can be checked. In [16], we used
user-provided model annotations (discrepancy functions) to statically compute
the bloating factor in a way that can make the over-approximations arbitrar-
ily precise. The resulting algorithm enjoys scalability and relative completeness:
if the system satisfies the invariant robustly, then the algorithm is guaranteed
to terminate. The burden of finding discrepancy functions for large models is
partly alleviated in [27] for nonlinear differential equations. That paper proposes
input-to-state (IS) discrepancy functions for each module Ai of a larger system
A = A1‖ . . . ‖AN . These user-provided, albeit modular, annotations are used to
construct a lower-dimensional nonlinear time-varying system whose trajectories
give the necessary bloating factor for the trajectories of the system A.

These previous results do not extend to hybrid systems with guards and
resets, and their applicability is still limited by the annotation required from
the user. One challenge is that individual simulations capture a particular se-
quence of locations. However, the states reached in a bloated version of the sim-
ulation may intersect with many other guards and visit a completely different
sequence of locations. Our contributions address this and other technical hur-
dles, demonstrating a promising approach for invariant verification of nonlinear
hybrid networks. (a) We present a new simulation-based verification algorithm
for nonlinear hybrid networks that uses modular input-to-state (IS) discrepancy
functions. Modular annotations and the simulation-based approach make it scal-
able. The algorithm is sound; it systematically discovers possible transitions and
then generates new simulations for different location sequences. We identify gen-
eral robustness conditions that yield relative-completeness. (b) We develop a set
of techniques for automatically computing input-to-state discrepancy functions
for a general class of nonlinear hybrid models. (c) The performance of our proto-
type implementation in checking bounded-time invariants of complex Simulink



models of cardiac cell networks illustrate the promise of the approach [26]. For
networks with 5 cells, each with 4 dimensions and 29 locations, and multi-affine
dynamics (total of 20 continuous variables, 295 locations), invariants for up to
reasonable time horizons are established typically in less than 15 minutes. In two
minutes, it finds counter-examples of networks with 8 cells. All of this enables
us to check biologically relevant properties for cardiac cells networks.

Section 2 provides background for hybrid automata, whereas Section 3 in-
troduces IS discrepancy and techniques for computing them. Section 4 describes
the main algorithm and Section 5 presents its applications in checking cardiac
networks. Finally, Section 6 discusses related works and concludes the paper.

2 Hybrid Automata Modules and Networks

Hybrid Input/Output Automata (HA) is a framework for specifying interacting
modules that evolve discretely and continuously and share information over con-
tinuous variables and discrete transitions [32,37,38]. Please see Appendix A for
related definitions and notations.

For a variable v, its type, denoted by type(v), is the set of values that it can
take. For a set of variables V, a valuation v maps each v ∈ V to a point in type(v).
Given a valuation v for V, the valuation of a particular variable v′ ∈ V, denoted
by v.v′, is the restriction of v to v′; for a set V ⊆ V, v.V is the restriction of v to
V . Val(V) is the set of all valuations for V. A trajectory for V models continuous
evolution of the values of the variables over a closed interval [0, T ] called the
domain. A trajectory ξ is a map ξ : [0, T ]→ Val(V). Restriction of ξ to a subset
of variables X ⊆ V is denoted by ξ ↓ X . For a trajectory ξ of V ∪U with domain
[0, T ], we define ξ. fstate as (ξ ↓ V)(0) and ξ. lstate as (ξ ↓ V)(T ). A variable is
continuous if all its trajectories are piece-wise continuous and it is discrete if its
trajectories are piece-wise constant. A HA has a set of continuous variables X
that evolve along trajectories (defined by differential equations with inputs U)
and can be reset, and a set of discrete variables L that change with transitions.

Definition 1. A Hybrid I/O Automaton (HA) A is a tuple (L,X ,U , Θ,D, T )
where (a) L is a set of discrete variables. Val(L) is the set of locations. (b) X is
a set of real-valued continuous variables. V := X ∪L is the set of state variables;
Val(V) is the state space. (c) U is a set of real-valued input variables; Val(U) is
the input space. (d) Θ ⊆ Val(V) is a set of start states; (e) D ⊆ Val(V)×Val(V)
is a set of discrete transitions. (f) T is the set of trajectories for V ∪ U that is
closed under prefix, suffix, and concatenation [32]. Over any trajectory ξ ∈ T , L
remains constant. For any state v and piece-wise continuous input trajectory η,
there exists a state trajectory ξ such that ξ. fstate = v and either (i) ξ ↓ U = η,
or (ii) ξ ↓ U matches a prefix of η with a transition enabled at ξ. lstate.

A transition (v,v′) ∈ D, for any two states v, v′, is written as v→A v′ or as
v→ v′ when A is clear from the context. The transitions of A are specified for
pairs of locations in the guard-reset style. For each pair (`, `′) of locations the
guard G`,`′ ⊆ Val(X ) is the set of states from which a transition from location `
to `′ is enabled and the reset map is a continuous function Val(X )→ Val(X ).



For location ` ∈ Val(L), the trajectories of A are defined by a trajectory
invariant I` ⊆ Val(X ) and a set of ordinary differential equations (ODEs) in-
volving the variables in X and U . The ODE is specified by a Lipschitz continuous
function called dynamic mapping f` : Val(X ) × Val(U) → Val(X ). Given a in-
put trajectory η of U and a state v ∈ Val(V), a state trajectory from v with
η is a function ξv,η : [0, T ] → Val(V) satisfying: (a) ξv,η(0) = v, (b) for any
t ∈ [0, T ], the time derivative of ξ ↓ X at t satisfies the differential equation
d(ξ↓X )(t)

dt = f`((ξ ↓ X )(t), η(t)), and (c) (ξ ↓ X )(t) ∈ I` and (ξ ↓ L)(t) = `. As
in the last two statements, we will drop the subscripts of a trajectory when the
dependence on the initial state and the input is clear. Because of the invariant
I`, in some location ` ∈ Val(L) all the trajectories might be of finite duration.
Conditions (i) and (ii) in Definition 1 make the HA input enabled, that is, from
any state A is able to consume any input η completely (i) or up to some time
at which it reacts with a transition (ii).

A HA without inputs (U = ∅) is closed; otherwise, it is open. A HA with
a single location and no transitions is called a dynamical system. We denote
the components of HA A by LA,XA,UA, ΘA,DA,→A and TA, and for Ai its
components are denoted by Li,Xi,Ui, Θi,Di,→i and Ti.
Semantics. We assume that the discrete transitions are urgent and deterministic.
That is, for any state v = (x, `) at most one of following two cases are possible:
(a) a transition to unique other state (x′, `′) is enabled, or (b) there is a trajectory
ξv of non-zero duration. A bounded execution of A records the evolution of the
variables along a particular run. A bounded execution fragment is a finite sequence
of trajectories ξ(0), ξ(1), . . ., such that, for each i, ξ(i) ∈ T and ξ(i). lstate →
ξ(i+1). fstate. A bounded execution is an execution fragment with ξ(0). fstate in
Θ. A state v is reachable if it is the last state of some execution. We denote the
set of reachable states of A by ReachA. The reachable states up to a bounded
time horizon T > 0 are denoted by ReachA(T ). The reachable states from a
subset of initial states Θ′ ⊆ Θ up to T are denoted by ReachA(Θ′, T ). A set
Inv ⊆ Val(V) is an invariant of a closed HA A if ReachA ⊆ Inv . Checking
invariants corresponds to verifying safety properties. Computing ReachA exactly
is undecidable but for the simplest classes of hybrid automata [1, 24,33,47].

For relative completeness, we define robustness of HA. A HA A′ is a c-
perturbation of A if A′ is obtained by perturbing the initial set and dynamical
mappings of A by at most c. That is, A and A′ are identical everywhere except
that (i) d(ΘA, ΘA′) ≤ c where d(·, ·) is the Hausdorff distance and (ii) for every
location ` and any continuous state x ∈ Val(X ), the dynamical mappings of the
two HA satisfy |f`,A(x)− f`,A′(x)| ≤ c. The c-perturbed reach set of A, denoted
by c-ReachA, is the set of states reachable by some c-perturbation of A. For
a time bound T > 0, Inv is a robust invariant up to time T if there exists a
positive constant c > 0 such that c-ReachA(T ) ⊆ Inv . In this paper we will
present semi-decision procedures for bounded-time robust invariant checking of
networks of deterministic nonlinear HA.

Composition. Large and complex models can be created by composing smaller
automata. The composition operation identifies (“plugs-in”) the input variables



of one automaton Ai with the state variables of another automaton3. A pair of
HAs A1 and A2 are compatible if their state variables are disjoint V1 ∩ V2 = ∅.

Definition 2. Given a pair of compatible HAs A1 and A2 the composed au-
tomaton A = A1‖A2 is 〈L,X ,U , Θ,D, T 〉, where (a) L := L1 ∪ L2, (b) X :=
X1 ∪X2, (c) Θ = Θ1 ×Θ2, (d) U = U1 ∪U2 \ (V1 ∪V2), (e) D: v→ v′ iff either
v.V1 →1 v′.V1 and v.V2 = v′.V2, or v.V2 →2 v′.V2 and v.V1 = v′.V1, and (f) A
trajectory ξ of V ∪ U is in T iff ξ ↓ (Vi ∪ Ui) ∈ Ti for each i ∈ {1, 2}.

Note that the composition of two or more HA will define a network.A satisfies the
requirements for Definition 1 and can be constructed by syntactically combining
the guards, resets, and ODEs of its components.

Example 1. In the 2-dimensional FitzHugh-Nagumo (FHN) cardiac cell net-
work, the ith cell automaton Ai has a single location, two continuous variables
X = {xi1, xi2} corresponding to fast and slow currents, and inputs (ui1, ui2), cor-
responding to diffusion from neighboring cells, and ui3, a stimulus. The evolution
is given by the ODEs (dynamic mapping): ẋi1 = (a−xi1)(xi1−1)xi1−xi2 +ui3 +
D
h2 (ui1 + ui2 − 2xi1), ẋi2 = ε(βxi1 − γxi2 − δ), where a, β, δ, γ, ε are parameters

of the cell, the ui3 term models direct stimulus input, and the D
h2 (.) term mod-

els the effect of the diffusion coupling with neighboring cells. In Figure 1, three
FHN cells A1,A2 and A3 are interconnected in a ring and with a pulse genera-
tor. In each cycle, the pulse is activated for Son time and stays off for Soff time.
The composed system is defined by identifying input variables of one automaton
with the state variables of another. For example, u11 = x21, u12 = x31 defines
the part of the ring where A1 gets diffused current inputs from its neighbors and
and u13 = st connects the output of the pulse generator to A1.

st = 1
ẏ = 1

st = 0
ẏ = 1

ẋ11 = f1(x11, x12, u11, u12, ui3)
ẋ12 = f2(x11, x12)

ẋ21 = f1(x21, x22, u21, u22, 0)
ẋ22 = f2(x21, x22)

ẋ31 = f1(x31, x32, u31, u32, 0)
ẋ32 = f2(x31, x32)

u
21 =

x
11

u
11 =

x
21

u22 = x31

u31 = x21

u12
=
x31

u32
=
x11

u13 = st

y ≥ Son

y ≥ Soff

Fig. 1: Ring of 3 FHN-modules with a simple pulse generator. Reach set from a
set of initial states projected on x11 and x12.

3 We do not allow HA to interact via transition synchronization as in [32,38].



3 Annotations for Modules in a Network

We proposed simulation-based robust invariant verification of dynamical and
switched systems in [16]. The approach requires the designers to provide special
annotations called discrepancy functions for each location of the automaton. The
algorithm first computes a validated numerical simulation from an initial state,
say v, and then bloats the simulation using the discrepancy function to compute
arbitrarily precise over-approximations of ReachA(Bδ(v), T ). Repeating this over
a set of initial states v and with varying precision δ, one obtains a decision
procedure for robust invariant checking. Towards our goal of verifying hybrid
networks, in this section we present new techniques for computing discrepancy
functions for such models.

3.1 IS Discrepancy and Approximations

First of all, we will use the definition of Input-to-State (IS) discrepancy func-
tion [27], which enables us to use annotations for individual modules in a dynam-
ical system to then check invariants of the composed system. The IS discrepancy
function for a location ` of A (or for a dynamical system) bounds the distance
between two trajectories in location ` from different initial states, as a function
of time and the inputs they receive.

Definition 3. For a HA A = (L,X ,U , Θ,D, T ), a continuous function V :
Val(X )2 → R≥0 is an input-to-state discrepancy function for a location ` if

(a) ∃ class-K functions (see [27]) α, α, s.t., ∀ x,x′ ∈ Val(X ), α(|x − x′|) ≤
V (x,x′) ≤ α(|x− x′|), and

(b) ∃β : R≥0×R≥0 → R≥0 and γ ∈ K such that for any x,x′, any pair of input
trajectories u, u′: U , and any t ∈ R≥0,

V (ξx,`,u(t), ξx′,`,u′(t)) ≤ β(|x− x′|, t) +
∫ t

0
γ(|u(s)− u′(s)|)ds.

In addition, β(·, ·) is of class-K in the first argument and β(·, 0) = α(·).

Here ξx,`,u denotes the trajectory of the continuous variables X in location
` from state x and with the input trajectory u. The tuple (α, α, β, γ) is called
the witness of the discrepancy function V . The first condition merely bounds V
in terms of the norm of its arguments. The more important second condition
ensures that the distance between the trajectories is bounded as a function
of β and γ, and can be reduced arbitrarily by making x → x′ and u → u′.
IS discrepancy is related to integral input-to-state stability [2–4, 45]. However,
for our verification algorithms, we do not require neighboring trajectories to
converge over time. Using the IS discrepancy functions along with their witnesses,
we construct a reduced order model M which can be employed to compute
precise over-approximations of ReachA(T ). Given a dynamical system (HA with
one location) A = A1‖A2 connected in a ring and IS discrepancy with witnesses
for each of the modules, the IS approximation of A is a (2+1)-dimensional closed
deterministic dynamical system M defined as follows.



Definition 4. For a pair of nonnegative constants (δ1, δ2), the (δ1, δ2)-IS ap-
proximation of A is a closed dynamical system with three variables X = {m1,m2, clk}
initialized to {β1(δ1, 0), β2(δ2, 0), 0}, and dynamics ẋ = fM (x), where

fM (x) =


β̇1(δ1,x(clk)) + γ1 ◦ α−1

2 (x(m2))

β̇2(δ2,x(clk)) + γ2 ◦ α−1
1 (x(m1))

1

 . (1)

The variable clk tracks the real time, and both the initial state and the
dynamics of M depend on the choice of the parameters δ1 and δ2. It can be shown
that the valuations of mi along µ (the trajectory of M) give an upperbound on
the distance between any trajectories of Ai that start from initial states and
are at most δi apart. The following theorem establishes that the reach set of A
from a set of states can be precisely over-approximated by bloating an individual
execution ξ of A by a factor that is entirely determined by (a) a pair V = (V1, V2)
of IS discrepancy functions of A1 and A2 along with their witnesses, and (b) the
trajectory µ.

Theorem 1 (Theorems 5.4 and 5.7 from [27]). Let ξv be a trajectory of
A. For any nonnegative pair δ = (δ1, δ2), and any time T ≥ 0, suppose µ is
the trajectory of the (δ1, δ2)-IS approximation M . Then ReachA(Bδ(v), T ) ⊆⋃
t∈[0,T ]B

V
µ(t)(ξv(t)). Further, for any ε > 0 and T > 0, ∃ δ1, δ2 > 0 such that, for

the (δ1, δ2)-IS approximation M ,
⋃
t∈[0,T ]B

V
µ(t)(ξv(t)) ⊆ ε-ReachA(Bδ(v), T )).

The precision of the over-approximation can be improved by reducing the
parameters δ1 and δ2, and thus creating a finer covering of the initial set ΘA. The
result is generalized to dynamical systems with N modules connected in general
network topologies [27], where the IS approximation is (N + 1)-dimensional.

For a hybrid system A = A1‖A2, instead of providing annotations for the
total of |Val(L1)| × |Val(L2)| locations of A, the user has to provide IS discrep-
ancy functions for location of A1 and A2. Then we can automatically construct
|Val(L1)|× |Val(L2)| IS approximations corresponding to each possible location-
pair. For cardiac cell networks, where all the automata modules are identical,
this means working with |Val(L1)| IS discrepancy functions. Next we present
a new technique for computing such annotations in Proposition 1. The proof
appears in Appendix B.

Proposition 1. For a dynamical system with linear input ẋ = f(x)+Bu, where
B is a matrix, V (x1,x2) = |x1 − x2| is an IS discrepancy function with

V (ξ1(t), ξ2(t)) ≤ eλmaxt|x1 − x2|+
∫ t

0

M |B||(υ1(τ)− υ2(τ))|dτ,

where λmax is the largest eigenvalue of the Jacobian matrix J = 1
2 (∂

T

∂x f(x) +
∂
∂xf(x)+I), M = sups∈[0,t] e

λmaxs is the supremum of an exponential function of
λmax, and ξi is the state trajectory from xi with input trajectory υi. Specifically,
for a linear time invariant system ẋ = Ax +Bu, λmax is the largest eigenvalue
of the matrix A, and M = sups∈[0,t] |eAs|.



For linear dynamical systems, we use the special case to obtain tight IS dis-
crepancy functions by solving Linear Matrix Inequalities. The more general case
establishes IS discrepancy functions for a larger class of non-linear systems for
which the Jacobian matrix has bounded eigenvalues. For the nonlinear dynamic
maps in this paper, computing the maximum eigenvalue of the Jacobian is solved
using the MATLAB optimization toolbox or by a sum of squares solver [44].

4 Checking Bounded Invariants of HA Networks

First we define simulations for hybrid automata, and then we describe the veri-
fication algorithm that uses simulations and IS-discrepancy functions.

4.1 Simulations of Dynamical Systems

For a closed dynamical systemA with an initial state v, validated ODE solvers [11,
13, 40] can compute a sequence of sets R0, . . . , Rl ⊆ Val(X ) such that the tra-
jectory ξv of A is contained in Rk over the interval [(k− 1)τ, kτ ], where τ is the
simulation time-step. We formalize this as follows:

Definition 5. Consider a deterministic closed HA A, an initial state v, an
error bound ε > 0, and time step τ > 0. Let the location of v.L be ` and
ξv be the execution of A starting from v. A (v, ε, τ)-simulation fragment is a
finite sequence ρ = (R0, t0), . . . , (Rl, tl) where, for each k ∈ {0, . . . , l}, (a) 0 <
tk− tk−1 ≤ τ , (b) Rk is contained in the invariant I` except possibly the last Rl,
(c) dia(Rk) ≤ ε, and (d) for any time t ∈ [tk−1, tk], ξv(t).X ∈ Rk.

For relative completeness of verification, we will require that for a desired error
bound ε > 0 the diameter of Rk can be made smaller than ε by reducing the
step size τ . A simulation for a HA is a sequence of simulation fragments (for
different locations) that captures all the transitions of at least one execution.

Definition 6. Consider a HA A, an initial state v, an error bound ε > 0, a
time bound T > 0, a transition bound l, and a time step τ > 0. Let ξv be the
execution from v with ξv.dur ≤ T , where ξv.dur is the time duration of the
trajectory ξv, and with l transitions at times σ1, . . . , σl ∈ R≥0; let σ0 = 0. A
(v, ε, τ, T, l)-simulation is a finite sequence ψ = ρ0, . . . , ρl where (a) each ρk =
(Rk(1), tk(1)), . . . , (Rk(mk), tk(mk)) is a (ξ(σk), ε, τ)-simulation fragment with mk

samples, (b) t0 = 0, tl(ml)−1 = T , and for each k > 0, tk(mk) ≥ t(k+1)(1), and
(c) σk ∈ [t(k+1)(1), tk(mk)].

A (v, ε, τ, T, l)-simulation ψ is a sequence of l simulation fragments where each
fragment ρk has mk elements with indices k(1), . . . , k(mk). The kth transition on
the actual execution ξv has to occur between the last sample period of ρk−1 and
the first sample interval of ρk (condition (c)). In addition, ρk is a (ξv(σk), ε, τ)-
simulation fragment, that is, it contains the trajectory of A starting from the
post state ξv(σk) of the kth transition. In Algorithm 2, the subroutine Simulate
computes a simulation of HA of the above type. The simulation ψ represents



other executions that start near v. Formally, we say an execution fragment ξ
is captured by ψ if duration of ξ is at most T , ξ experiences exactly the same
sequence of locations as recorded in some prefix of ψ, and its k(th) transition
occurs in the intervals [tk(mk), t(k+1)(1)].

4.2 Verification Algorithm

We sketch the key ideas that enable the checking of bounded-time invariants of
closed networks of hybrid automata. The main inputs of InvVerify (Algorithm
1) are the specification of the composed automaton A = A1‖ . . . ‖AN , the open
unsafe set U, and the collection of discrepancy functions and witnesses ISD for
every location of each subsystem. The variable C (line 2) is initialized to a

Algorithm 1: InvVerify(A, ISD,U, T, ε0, δ0, n0): Verifies invariants of hybrid networks.

1 R← ∅; δ ← δ0; ε← ε0; τ ← τ0;n← n0;
2 C ← {(v, δ, ε, τ) | {v} is a δ-Cover(Θ)};
3 while C 6= ∅ for each (v, δ, ε, τ) ∈ C do
4 (flag, S)← ReachFromCover(A,v, δ, ε, τ, T, ISD , n);
5 switch flag do
6 case SAFE: C ← C\{(v, δ, ε, τ)}; R← R∪ S ;
7 case UNSAFE: return (UNSAFE,R) ;
8 case REFINE:
9 C ← C\{(v, δ, ε, τ)}; δ ← δ/2; ε← ε/2; τ ← τ/2;n← 2n;

10 C ← C ∪ {(v, δ, ε, τ) | {v} is a δ−Cover(Θ ∩Bδ(v))};
11 end

12 end

13 end
14 return (SAFE,R);

collection of tuples {(vk, δ, ε, τ)}k∈|C|, such that {vk} is a δ-cover of Θ, that is,
Θ ⊆ ∪k∈|C|Bδ(vk), and (δ, ε, τ) are parameters. For each (v, δ, ε, τ) in C, the
subroutine ReachFromCover (Algorithm 2) computes flag and a set S. The flag
is set to SAFE if all executions from Bδ(v) are disjoint from U up to time T
and in that case v is removed from C. The flag is set to UNSAFE if at least one
execution reaches U, and in that case InvVerify returns UNSAFE andR. Finally,
if the flag is set to REFINE then v is replaced by a finer cover of Θ ∩ Bδ(v).
In addition to having δ/2-radius balls covering Bδ(v), the parameters ε and τ
are also halved to compute more precise over-approximations. The sets S and R
compute over-approximations of ReachA(Bδ(v), T ) and ReachA(T ), respectively.

ReachFromCover checks safety with respect to U of the states reachable
from Bδ(v) up to time T and with at most n > 0 transitions. First, it computes
an over-approximation (R) of ReachA(Bδ(v), T ) with certain precision (deter-
mined by the parameters δ, ε, and τ). If this over-approximation is sufficient



Algorithm 2: ReachFromCover(A, ISD,U,v, δ, ε, τ, T, n): Over-approx ReachA(Bδ(v)).

1 R← ∅; C ← {(v, 0)}; count← 0;
2 while C 6= ∅ for each (v, t0) ∈ C do
3 r ← δ; ψ ← Simulate(A,v, T − t0, ε, τ); count← count+ 1;
4 for k = 0 : l, where ψ = ρ0, ρ1, . . . , ρl do
5 (Sk, r)← BloatWithISD(ρk, ISD , r, ε, τ,A);
6 end
7 if a transition (`, `′) is enabled from Sj but is not captured by ψ then
8 C ← C ∪ {(v, t0) | {v} is the δ-Cover(R`,`′(Sk ∩G`,`′)),
9 t0 is the first time(`, `′) is enabled};

10 if a transition is captured by ψ but is not enabled for a subset S′
k ⊆ Sk then

11 C ← C ∪ {(v, t0) | {v} is the δ-Cover(S′
k),

12 t0 is the first time the transition is captured};
13 end
14 if (∪jsj ∩ U = ∅) ∧ (count < n) then R← R∪ (∪jsj); C ← C\{(Θ, t0)} ;
15 else if (∃ Rj ⊆ U) ∧ (count = 1) then return (UNSAFE,R) ;
16 else return (REFINE,R) ;

17 end
18 return (SAFE,R);

to prove/disprove safety with respect to U then it sets the flag to SAFE or
UNSAFE, and otherwise it returns REFINE. If it detects that more than n
transitions are possible within time T , then also it returns REFINE.

In computing R in ReachFromCover , the set C stores a set of state-time pairs
that are yet to be processed. If (v, t0) ∈ C then ReachA(Bδ(v), T − t0) is yet to
be evaluated and added to R. For each (v, t0) in the cover C, a (v, ε, τ, T, l)-
simulation ψ = ρ0, . . . ρl is computed. The variable count tracks the number
of new simulation branches initiated in a run of the algorithm. Let ξ be the
actual execution starting from v and G`,`′ be the guard from location ` to `′.
By Definition 6, each ρk of ψ is a simulation fragment. By Definition 4, the
IS-approximation is a (small) dynamical system, whose trajectory gives an up-
per bound of the distance between continuous trajectories of A. The subroutine
BloatWithISD(ρk, ISD , r, ε, τ,A) (i) creates an IS-Approximation M of A us-
ing the discrepancy functions in ISD that correspond to the location of ρk,
(ii) generates a (r, ε, τ, T, 0)-simulation of M , say µ, (iii) bloats each set Rj in
ρk with the valuation of µ(tj) to obtain a set sj , (iv) returns the sequence of
sets Sk = (sk(1), tk(1)), . . . , (sk(m), tk(m)), and finally (v) applies the transition
between ρk and ρk+1 on the set sk(m) and returns r as the radius of image of the
reset function. From Theorem 1, Sk contains all continuous trajectories of A that
start from Br(Rk(1)). It can be checked that ∪jsj precisely over-approximates
all the executions from Br(v) that are captured by ψ (Proposition 2-3).

To over-approximate the states reached via executions from Bδ(v) that are
not captured by ψ, the algorithm generates new simulations (line 7-13) and adds
up count. The algorithm transverses Sk and generates and checks two possible



cases as described in line 7 and 10. Then the algorithm decides whether the
computed over-approximation R is safe, unsafe, or needs further refinement.

4.3 Soundness and Relative Completeness

We will sketch the interesting parts of the correctness argument and the details
of the proofs are given in the technical report [26]. In what follows, all the pro-
gram variables refer to their valuations at the pth iteration of the while loop of
ReachFromCover , unless otherwise stated. That is, (v, t0) is the time-state pair
being explored in the pth iteration. Propositions 2 and 3 follow from straightfor-
ward inductive application of Theorem 1, the fact that ψ is a simulation from
v with the properties stated in Definition 6, and the continuity of the reset
functions for all location pairs.

Proposition 2. Let ψ be a simulation from v(p). For any execution fragment ξ
starting from a state in Bδ(v

(p)), if the transition sequence of ξ is captured by ψ

then, for any t ∈ [0, T − t(p)0 ], ξ(t) ∈ ∪l(ml)j=1 sj. Recall that l(ml) denotes the last
index of ρl and thus the total number of elements in ψ.

Proposition 3. For the execution ξv from v, and any r > 0, there exists suffi-

ciently small δ, ε, τ , such that ∪l(ml)j=1 sj ⊆ ∪t∈[0,T−t0]Br(ξv(t)).

Lemma 1. If ReachFromCover returns (SAFE,R), then R ⊇ ReachA(Bδ(v), T ).

The proofs of Lemma 2 can be found in Appendix B. In the poof, we show that
every execution can be decomposed into execution segments such that each of
such segments is captured by some simulation generated during the while loop of
ReachFromCover . Thus, by combining the above observation with Proposition 2,
we establish Lemma 2.

Lemma 2. If Algorithm 2 returns (SAFE,R), then all executions fragment ξ
starts from Bδ(v) with duration ξ. dur ≤ T are safe, moreover ∪t∈[0,ξ. dur]ξ(t) ⊆
R.

Theorem 2. InvVerify is sound.

Proof. Suppose InvVerify returns SAFE. Then, for any cover (v, δ, ε, τ) ∈ C,
ReachFromCover terminates and returns SAFE. This can happen only if all
initial state-time pairs (v, t0) are removed from C. It follows from line 14 of
Algorithm 2 thatR∩U = ∅. From Lemma 2, we have ReachA(T,Bδ(v))∩U = ∅.

Now suppose the InvVerify returns UNSAFE. Then, for a cover (v, δ, ε, τ) ∈
C, ReachFromCover terminates and returns UNSAFE. From line 15, ReachFromCover
returns UNSAFE only if, in the simulation ψ computed in the first loop, there ex-
ists some Rj such that Rj ⊆ U. Then, for the execution ξv, and for t ∈ [tj−1, tj ],
we have ξ(t) ∈ Rj ⊆ U, and therefore A is unsafe.

In this paper, we present a termination argument for InvVerify under the
following robustness assumption.



Assumption 1. (i) A has an average dwell time [25]. That is, there exists
N ′ ≥ 0 and τ ′ > 0 such that, for any execution fragment ξ of A, the number
of transitions occurring in ξ is upperbounded by N ′ + ξ. dur

τ ′ . (ii) Either of the
following two conditions holds: (a) Ū is a robust invariant up to time T . (b) There
exists c > 0 such that all c-perturbations of A are unsafe.

Assumption 1(i) is standard for well-designed systems and can be automat-
ically checked for certain model classes [39]. Part (ii) is a robustness condition
with respect to the invariant Ū (complement of U) such that the satisfaction of
the invariant remains unchanged under sufficiently small perturbations on the
models.

Theorem 3. InvVerify terminates and outputs the correct answer.

Proof. Under Assumption 1(iia), we will show that, after sufficiently many re-
finements, for any cover (v, δ, ε) in the set C, ReachFromCover returns SAFE.
From Assumption 1(i), there exist finitely many different sequences of transi-
tions for all the execution segments with duration no longer than T . Thus, line 9
and 12 in ReachFromCover can be executed for finitely many times such that the
counter count is bounded. Therefore, for sufficiently large n, count < n holds.
For sufficiently small ε, δ, τ > 0, the overapproximated reach set of an execution
ξv can be computed arbitrarily precise (Proposition 3). From Assumption 1(iia),
if ξv is safe, for sufficiently small perturbation c the c-perturbations are also safe.
Thus, lines 14-16 are executed for every v after sufficiently many refinements.
After all covers (v, δ, ε) in the set C are explored by InvVerify , it returns SAFE.

Otherwise, suppose Assumption 1(iib) holds. First of all, as R always con-
tains the unsafe execution, denoted ξv, SAFE is never returned. From Assump-
tion 1(iib), there exists c > 0 such that all c-perturbations of A are unsafe. It
follows that all the executions from Bc(v) are unsafe since otherwise we can
construct a c-perturbation A′ that satisfies the invariant by setting ΘA′ = ΘA−
Bc(v). After sufficiently many refinements, a state v′ ∈ Bc(v′) will be explored
by ReachFromCover with high enough precision. Then, on the (v′, δ, ε, τ, T, l)-
simulation ψ computed in the first while loop in ReachFromCover , a set Rj will
be contained in the unsafe set. Then ReachFromCover returns UNSAFE, and
therefore InvVerify returns UNSAFE.

5 Checking Invariants for Cardiac Cell Networks

We present a challenging case study modeling a cardiac cell that involves nonlin-
ear HA networks. The purpose of the case study is to demonstrate the feasibility
of the algorithms developed in the previous section. Note that we do not fo-
cus on the biological relevance of the model, and instead present experimental
results showing the computation of the reach sets as well as the verification
time. Our case study is the minimal ventricular (MV) model of Bueno-Orovio
et al. [12] that generates action ptential (APs) on cardiac rings [18]. Unlike the
FHN model, the MV model can reproduce realistic and important AP phenom-
ena, e.g. alternans [23], and yet is computationally more efficient than some of



the other models in the literature. Using the techniques from Grosu et al. [20], we
abstract the MV model into a network of multi-affine hybrid (MAH ) automata
(see Figure 2). On the resulting network we check a key invariant property.

5.1 The MAH cardiac cell network model

The MV model describes the flow of currents through a cell. The model is defined
by four nonlinear PDEs representing the transmembrane potential x1(d, t), the
fast channel gate x2(d, t), and two slow channel gates, x3(d, t) and x4(d, t). All
of the four variables are time and position d := (dx, dy, dz) ∈ R3 dependent. For
one dimensional tissue, i.e., d := dx, the evolution of transmembrane potential
is given by:

∂x1(dx, t)

∂t
= D

∂2x1(dx, t)

∂d2
x

+ e(x1, t)− (Jfi + Jso + Jsi), (2)

where D ∈ R is the diffusion coefficient, e(d, t) is the external stimulus applied to
the cell, Jfi is the fast inward current, Jsi is the slow inward current and Jso is the
slow outward current. The currents Jfi, Jso and Jsi are described by Heaviside
function. For more details see Appendix C. To define the propagation of the
action potential on a cardiac ring of length L, we set the boundary conditions
to: xi(0, t) = xi(L, t) for all i ∈ {0, . . . , 4} and t ∈ R.

MAH approximation. One alternative to solving these highly nonlinear PDEs is
to discretize space and hybridize the dynamics. The result is the MAH model.
Following the approach of [20] we first hybridize the dynamics and obtain a HA
with 29 locations. The basic idea is to approximate the Heaviside function from
Jfi, Jso and Jsi with a sequence of ramp functions. Each location of the resulting
HA contains a multi-affine ODE such as:

ẋ1 = −0.935x1 + 12.70x2 − 8.0193x1x2 + 0.529x3x4 + 0.87 + st

ẋ2 = −0.689x2; ẋ3 = −0.0025x3; ẋ4 = 0.0293x1 − 0.0625x4 + 0.0142,

where st is the time-varying stimulus input. Urgent transitions from each location
`i to the next (and predecessor) location `i+1, i ∈ [29], are enabled by the guards
of the form x1 ≥ θ′i and x1 < θi, where θi, θ

′
i are the constants arising from ramp

approximations of the Heaviside functions.

Next, we discretize the 2nd order derivative D ∂2x1(dx,t)
∂d2x

from Eq. 2 with a

discretization step of ∆ using 2nd order central difference method and obtain

D x1(dx+∆,t)−2x1(dx,t)+x1(dx−∆,t)
∆2 . Informally, ∆ represents the spatial discretiza-

tion and corresponds to the length of the cell in the ring. This 2nd order central
difference term is added to the right hand side of the dynamic mapping for x1 (in
each location) to obtain the final MAH model of a single cardiac cell. Note that
by using the central difference method the approximation error for the original
MV model is of the order O(∆2). To check invariants of a cardiac ring of length
L, we connect all of the b L∆c HA into a network such that the input variables of



Fig. 2: Top left: top-level Simulink/Stateflow model for a ring of five MAH cells;
the Pacemaker block stimulates one cell. Center: Stateflow model of a single
MAH cell. Top right: dynamics and guards in 3 locations of a single cell. Bottom:
reach set projected on x11 (AP) for stimulation period of 1000 msec (left) and
600 msec (right) with x-axis for time and y-axis for voltage.

every HA Ai, i ∈
[
b L∆c

]
, are identified with the variable x(i+1)1 of the successor

Ai+1 and the state variable x(i−1)1 of Ai−1 in the ring. We consider scenarios
where one HA in the ring gets a sequence of stimuli from a pulse generator and
for the remaining HA st(t) := 0.

5.2 Experimental Results

For understanding the effect of stimuli on cardiac tissue (cell networks) the
key invariant properties of interest are of the form x1 ≤ θmax, where θmax is
a threshold voltage value. Other properties about timing of action potentials
can be constructed using these building block invariants and additional timers.
We implemented the algorithms of Section 4 in MATLAB programs that take as
input Simulink/Stateflow models of FHM and MAH networks (see Figure 2). For
all the locations the IS-discrepancy functions are computed using the techniques
of Section 3. The cells being identical, essentially Val(L) IS discrepancy functions
are sufficient. The results presented here are based on experiments performed
on a Intel Xeon V2 desktop computer using Simulink’s ode45 simulation engine.
Table 1(a) shows typical running times of our prototype on MAH networks of
size 3, 5, and 8 cells with different invariant properties (defined by x1 ≤ θmax).
These are for a time horizon (T) of 1200 ms with a stimulus of 5 ms exciting
one of the cells every 600 ms. The uncertainty in the initial set is ±0.0001 mV



N θmax Sims Refs RT(s) xi1 ≤ θmax
3 2 16 0 104.8 X

3 1.65 16 0 103.8 X

3 1.55 17 1 110.6 X

3 1.5 NA NA 9.0 ×
5 2 3 0 208.0 X

5 1.65 5 1 281.6 X

5 1.65 170 125 945.0 X

5 1.5 NA NA 63.4 ×
8 2 3 0 240.1 X

8 1.65 73 9 2376.5 X

8 1.5 NA NA 119.7 ×

(a)

N θmax Sims Refs RT xi1 ≤ θmax
3 1.5 1 0 1.5 X

3 1.0 16 1 20.4 X

5 1.5 8 2 9.2 X

5 1.0 NA NA 1.1 ×
8 1.5 1 0 1.8 X

8 1.0 24 3 33.5 X

(b)

T S-taliro Our tool

100 24.2 3.1

1000 27.4 9.3

10000 55.5 62.9

(c)
Table 1: (a) Scaling with network size. N : number of cells in the ring network,
θmax: threshold voltage defining invariant, Sims: number of simulations, Refs:
max. number of refinements, RT: running time in seconds. (b) Verification of
FHM networks with time horizon T=1200 ms, initial set uncertainty ±0.01 mV.
(c) Comparison of running time with S-taliro over 3 cell MAH networks for cases
where both tools find counter-examples.

for each of the cells in the network (for comparison, the invariant ranges for the
first few locations are 0.003 mV), except for the 2nd network with 5 cells, where
the initial set has higher uncertainty of ±0.0001 mV. With this larger initial set,
even with the same threshold, the algorithm requires many more refinements
and simulations to prove the invariant. Analogous results for 3, 5, and 8 cell
FHN networks are shown in Table 1(b), with the longer time horizon T = 10000
ms and greater uncertainty in the initial set of ±0.01 mV. The two orders of
magnitude faster running time (even for the same number of simulations) can
be explained by the lower dimension (2) of FHN cells, and the absence of any
transitions which spawn new branches in the execution of MAH -simulations. A
comparable tool that can check for counter-examples in this class of HA models
models is S-taliro [5]. We were able to find counter-examples using S-taliro for
the 3 cell MAH networks with similar initial states (running times shown in
Table 1(c)). On average, for smaller time horizons (T ) S-taliro found counter-
examples faster, but for longer T (and appropriate initial sets) the running times
were comparable to our prototype.

It is known that electrical alternans initiate and destabilize reentrant waves
which my induce cardiac arrhythmia such as ventricular fibrillation [28]. The
electrical alternans involve long-short beat-to-beat alternation of AP duration
at fast pacing rates. In Figure 2 (bottom left) we plot the reach set from a set of
initial states with pacing rate of 1000 msec and observe that the AP durations
do not change, whereas at a pacing rate of 600 msec (bottom right) the AP
durations alternate. The reach set approximations computed by our tool enable



us to prove absence of alternans over bounded-time horizons and also to find
initial states from which they may arise.

6 Related Work, Discussion and Conclusions

Networks of timed automata to model the propagation of APs in human heart
are employed in the Virtual Heart Model [29–31, 42] and hybrid automata are
used in [9,48]. In [19,34], the authors develop a model of the cardiac conduction
system that addresses the stochastic behavior of the heart, validated via simula-
tion. However, the hybrid behavior of the heart is not considered. Grosu et al. [22]
carry out automated formal analysis of a realistic cardiac cell model. In [20] a
method to learn and to detect the emergent behavior (i.e. the spiral formation)
is proposed. Simulation-based analysis of general nonlinear HA has been inves-
tigated in [5], where a search for counter-examples is carried out using sampling
and stochastic optimization. Our approach is designed to prove bounded-time
invariants. Other promising tools include Breach [15] and Flow∗ [14]; their ap-
plication to cardiac cell networks will be an interesting direction to explore once
support for these types of Simulink/Stateflow models is established.

In this paper, we present an algorithm to check robust bounded-time invari-
ants for networks of nonlinear hybrid automata. We used automatically com-
puted input-to-state discrepancy functions for individual locations of individual
automata modules to over-approximate reachable states of the network. All of
the developed techniques and the symmetry in the network of cells enabled us
to check key invariants of networks of nonlinear cardiac cells, where each cell
has four continuous variables and 29 locations. We will extend our algorithms to
support richer classes of properties specified in metric or signal temporal logic.
These results also suggest new strategies for pacemaker control algorithms, for
example, for avoiding alternans and other undesirable behavior.

Acknowledgements. This work is supported by the ERC AdG VERIWARE, ERC
PoC VERIPACE and the Institute for the Future of Computing, Oxford Martin
School.
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A Definitions and Notations

Points, sets, vectors. For a vector or a point s ∈ Rn and a non-negative constant
δ ≥ 0, Bδ(s) is the δ-ball around s with respect to the `2 norm. That is, Bδ(s) =
{y | |s− y| ≤ δ}. The definition is lifted to sets in Rn in the natural way. For a
bounded set S ⊆ Rn, its diameter dia(S) is defined as maxx,y∈S |x− y|.

For an positive integer n, [n] denotes the set {0, . . . , n}.

Functions and trajectories. A continuous function f : Rn × R→ R is smooth if
all its higher derivatives and partial derivatives exist and are also continuous.
It has a Lipschitz constant K ≥ 0 if for every x1, x2 ∈ Rn, |f(x1) − f(x2)| ≤
K|x1−x2|. Such functions are called Lipschitz continuous. The function x2 over
R is Lipschitz continuous but the exponential function ex is not. A non-negative
function g : Rn → R is a class K function if g(x) ≥ 0 for x 6= 0, g(0) = 0 and
g(x) → 0 as x → 0. A class K function g is called K∞ if g(x) → ∞ as x → ∞.
For example, the function f(y1, y2) = y2

1 belongs to class K but not to K∞. A
function g : Rn×R→ R is called a KL function, if and only if (1) for each t ∈ R,

gt(x)
∆
= g(x, t) is a K function and (2) for each x ∈ Rn, gx(t)

∆
= g(x, t) → 0 as

t→∞ (see Appendix of [35] for these standard definitions).
For any function f : A → B and a set S ⊆ A, f d S is the restriction of f

to S. That is, (f d S)(s) = f(s) for each s ∈ S. So, for a variable v ∈ V and a
valuation v ∈ Val(V ), v d v is the function mapping {v} to the value v(v). In
this paper, we write v d v as v.v. For any function f : C → [A → B] and a set
S ⊆ A, f ↓ S is the restriction of f(c) to S. That is, (f ↓ S)(c) = f(c).S for each
c ∈ C.

A trajectory for V with domain [0, T ] is a function ξ : [0, T ] → Val(V). Its
domain is denoted by ξ.dom. So, for a variable v ∈ V and a trajectory τ of V ,
τ ↓ v is the trajectory of v defined by τ . The valuation of the state variables
(V = X ∪L, not including the inputs U) at the first and the last points in ξ are
denoted by ξ. fstate and ξ. lstate. That is, for a trajectory ξ : [0, T ]→ Val(V ∪U),
ξ. fstate = (ξ ↓ V)(0) and ξ. fstate = (ξ ↓ V)(T ).

Hybrid automata. For an automatonA, its components are denoted by VA, XA, ΘA,DA, TA,
etc. For an automatonAi, ı ∈ {1, 2}, its components are denoted by Vi, Xi, Θi,Di, Ti,
etc. For a given execution α of A, α(t) is a shorthand for the lstate of the maxi-
mal prefix of α of duration t. The set of reachable states of automaton A from
a arbitrary set of states S ⊆ Val(V ) is denoted by ReachA(S). The set of reach-
able states from the initial set ΘA is denoted by ReachA. Similarly, the set of
reachable states of from an arbitrary set S and the set of initial states Θ, within
time bound T ≥ 0 is denoted by ReachA(T, S) and ReachA(T ). The type of the
single argument will be used to disambiguate bounded time reach set from Θ
(ReachA(T )) from ReachA(S).



Operations with discrepancy functions. For a given function V : Val(X ) ×
Val(X ) → R≥0, a constant δ > 0 and a point x ∈ Val(X ), the set BVδ (x) =
{x′ ∈ Val(X ) | V (v,v′) ≤ δ}. The operation BVδ (·) is lifted to subsets of Val(X )
in the usual way.

B Proofs of Propositions and Lemmas

Proof of Proposition 1:

Proof. As shown in Slotine’s paper [36], considering the general deterministic
systems:

ẋ = f(x) +Bu(t). (3)

The plant equation (3) can be thought of as an n-dimensional fluid flow, where ẋ
is the n-dimensional ”velocity” vector at the n-dimensional position x and time
t. We can get that

δẋ =
∂f

∂x
(x)δx+Bδu,

where δx is a virtual displacement at fixed time. Formally, δx defines a linear
tangent differential form, and δxT δx the associated quadratic tangent form [6],
and they are both differentiable.

In our case, the squared distance between two neighboring trajectories |ξx1
−

ξx2 |2 can be defined as δxT δx [36], which lead to the rate of change:

d

dt
(δxT δx) = δxT

∂T f

∂x
δx+ δxT

∂f

∂x
δx+ (Bδu)T δx+ δxT (Bδu)

≤ δxT (
∂T f

∂x
+
∂f

∂x
)δx+ (δxT δx) + ((Bδu)T (Bδu))

= δxT (
∂T f

∂x
+
∂f

∂x
+ I)δx+ ((Bδu)T (Bδu))

≤ 2λmax(x)δxT δx+ ((Bδu)T (Bδu)),

where λmax(x)is the largest eigenvalue of the symmetric part of the Jacobian

matrix, i.e., 1
2 (∂f∂x + ∂fT

∂x + I), then we have

δxT δx ≤ e
∫ t
0

2λmax(x)dt(δxT0 δx0 +

∫ t

0

((Bδu(τ))T (Bδu(τ)))dτ)

= e2λmaxt(δxT0 δx0 +

∫ t

0

((Bδu(τ))T (Bδu(τ)))dτ),

|δx|2 ≤ e2λmaxt(|δx0|2 +

∫ t

0

|Bδu(τ)|2dτ).



Use the inequality of norm,

|δx| ≤ eλmaxt|δx0|+ eλmaxt
∫ t

0

|Bδu(τ)|dτ

≤ eλmaxt|δx0|+ sup
s∈[0,t]

eλmaxs
∫ t

0

|Bδu(τ)|dτ

After getting the format of discrepancy function, the next goal is to find the
smallest λ such that J ≤ λI. Thus computation of discrepancy function is to
solve such an optimization problem:

{
min λ

such that(J − λI) ≤ 0.
(2)

Here the minimum λ should be the largest eigenvalue of J .

For the linear dynamics case, it is easy to get that ẋ1 − ẋ2 = A(x1 − x2) +
B(v1−v2), then we can get that V (x1, x2) = |ξ(x1, t)−ξ(x2, t)| = eAt|x1−x2|+∫ t

0
eA(t−τ)B(v1(τ)− v2(τ))dτ .

Proof of Lemma 2.

Proof. Assume that ReachFromCover returns SAFE and fix an execution ξ′v
starting from v′ ∈ Bδ(v) with ξ. dur ≤ T . From Proposition 2, it suffices to
show that ξ′v can be decomposed into a sequence of execution fragments ξ =
ξ0, ξ1, . . . , ξl, such that for each fragment ξk, there is a round p(k) in which ξk
gets captured by the simulation ψ of that iteration.

The proof is by induction on the number of fragments. The first continu-
ous trajectory of ξ′v is captured by ψ(1) computed in the first iteration. Let ξ0
be the longest prefix of ξ that can be captured by ψ(1). From Proposition 2,

ξ0. lstate ∈ ∪l(ml)j=1 s
(1)
j . Let ξ′′ be the suffix of ξv such that ξv = ξ0, ξ

′′. Then, ei-
ther (a) a transition occurs between ξ0 and ξ′′ (ξ0. lstate→ ξ′′. fstate) or (b) they
concatenate in the middle of a continuous evolution (ξ0. lstate = ξ′′. fstate). Case
(a) will be detected by line 7 and case (b) will be detected by line 10. It follows by
line 9 and 12 that, in either case, new initial time-state pairs (v, t0) will be added
to the set C and there exists a pair (v′′, t′′0) such that ξ′′. fstate ∈ Bδ(v′′). Since
the algorithm returns SAFE, the pair (v′′, t′′0) eventually gets explored from C
in some iteration. Then, a prefix of ξ′′ is captured by the simulation; let ξ1 be
the longest prefix that is captured. So, we can continue with the construction
by defining ξv = ξ0, ξ1, ξ

′′′ where the first two execution fragments are cap-
tured. Since ReachFromCover terminates and returns SAFE, the decomposition
process terminates.



C On minimal ventricular model and MAH model of
cardic cells

The MV model [12] is defined by four nonlinear ODEs:

∂x1(d, t)

∂t
= e(d, t)−(Jfi+Jso+Jsi), (3)

∂x2(d, t)

∂t
=

(1−H(x1(d, t)−θu))·(v∞−x2(d, t))

τ−v
−H(x1(d, t)−θv) ·

x2(d, t)

τ+
v

,

∂x3(d, t)

∂t
=

(1−H(x1(d, t)−θw))·(w∞−x3(d, t))

τ−w
−H(x1(d, t)−θw)·x3(d, t)

τ+
w

,

∂x4(d, t)

∂t
=

1+ tanh(ks · (x1(d, t)−us))
2 · τs

−x4

τs
,

where H(x) =
∫ x
−∞ δ(τ)dτ is the Heaviside function and δ is Dirac delta function.

The myocytes transmembrane potential x1(d, t) depends on the location d ∈ R3

in the muscle tissue and time t. The dynamics of x1(d, t) is determined by an
external stimulus e(d, t) and by a sum of three currents: fast inward Jfi, slow
inward Jso and slow outward Jsi, where the three currents are given by the
following equations:

Jfi =
−x2(d, t) ·H(x1(d, t)− θv) · (x1(d, t)− θv) · (uu − x1(d, t))

τfi
, (4)

Jso = (x1(d, t)− uo) ·
(1−H(x1(d, t)− θw))

τo
+
H(x1(d, t)− θw)

τso
,

Jsi =
−H(x1(d, t)− θw) · x3(d, t) · x4(d, t)

τsi
.

The flow of the currents is controlled by the fast channel gate x2(d, t) and two
slow gates x3(d, t) and x4(d, t). The value for the rest of the parameters of Eq.3
and Eq.4 are given in Table 1 [12].

In Fig. 3 we depict the value of x1(d, t), x2(d, t), x3(d, t) and x4(d, t) over
time triggered by an external stimulus e(d, t). Note that the dynamics of the
myocyte from Eq.3 does not depend on its location d in the muscle tissue. The
location d will become crucial when we will extend the MV model to a (3D)
tissue. The transmembrane potential x1(d, t) has four phases: stimulated, rapid
upstroke, early repolarisation (plateau) and final repolarisation (resting). The
stimulated phase starts when the myocyte is stimulated by an external stimulus
or by neighbourhood myocytes. If the stimulus current does not reach the cell’s
stimulation threshold, then the cell cannot get stimulated, and consequently it
goes to the resting phase. If the received current is high enough, the upstroke
phase indicates the depolarisation of the cell. The early repolarisation phase
indicates that the cell receives an influx of calcium. The final repolarisation is
the last phase which features faster repolarisation that brings the transmembrane
potential back to the resting phase.



Fig. 3: The dynamics of the MV model over time.

As stated earlier, the behavior of the MV model from Eq.3 does not depend
on the location d. The MV model describes only the dynamics of a single cell.
To incorporate the dependence on the location we extend the equation for the

transmembrane potential x1(d, t) as follows ∂u(d,t)
∂t = ∇(D∇u(d, t)) + e(d, t)−

(Jfi +Jso +Jsi), where d := (dx, dy, dz), ∇x1(d, t) :=
(
∂x1(d,t)
∂dx

, ∂x1(d,t)
∂dy

, ∂x1(d,t)
∂dz

)
is the gradient of function x1(d, t) and D ∈ R3×3 is the diffusion matrix. As
we are interested only in myocytes connected in a ring we have that d := dx.
Therefore, the above equation results in

∂x1(dx, t)

∂t
= D

∂2x1(dx, t)

∂d2
x

+ e(x1, t)− (Jfi + Jso + Jsi), (5)

where D ∈ R is a diffusion coefficient.
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