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Abstract. We introduce a theory of timed symbolic dynamics unifying
results from timed automata theory and symbolic dynamics. The timed
sofic shift spaces we define are a way of seeing timed regular languages as
shift spaces on general alphabets (in classical symbolic dynamics, sofic
shift spaces correspond to regular languages). We show that morphisms
of shift spaces on general alphabets can be approximated by sliding block
codes resulting in a generalised version of the so-called Curtis-Hedlund-
Lyndon Theorem. We provide a new measure for timed languages by
characterising the Gromov-Lindenstrauss-Weiss metric mean dimension
for timed shift spaces and illustrate it on several examples. We revisit
recent results on volumetry of timed languages in terms of timed symbolic
dynamics. In particular we explain the discretisation of timed shift spaces
and their entropy.

1 Introduction

Timed automata were introduced in the early 1990’s to model continuous time
behaviours in a verification context [1]. Since then they have been thoroughly
studied from a theoretical standpoint, a common challenge being the lifting of
results from the well established automata theory.

The theory of symbolic dynamics was developed since the beginning of the
20th century as a method to study, in a symbolic fashion, general dynamical
systems like ordinary differential equations. The method consists in associating
an (infinite) sequence of symbols to every (infinite) trajectory of the dynamical
system. The symbols represents regions of a finite partition of the state space
that are visited along trajectories at discrete time steps. Departing from its
topological origins, symbolic dynamics has a lot of applications in channel-coding
theory and data storage, number theory, and linear algebra (see [19] and reference
therein). It is also used in the context of analysis of algorithm (see e.g. [26]).

Thus, as automata theory, symbolic dynamics is a broad research field that
can provide a source of interesting results to lift to the timed world. Indeed, this
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theory has three interesting characteristics. (i) It is really close to automata the-
ory and dealing with object very similar to regular languages (namely the set of
allowed block of sofic shifts) and having similar results such as determinisation,
minimisation, pumping lemma, etc. (ii) Symbolic dynamics provides a quantita-
tive analysis of regular languages with the notion of entropy. Entropy measures
the growth rate of the languages with respect to the size of words considered.
(iii) Symbolic dynamics considers regular languages as dynamical systems called
shift spaces and provides a topological point of view. For instance the entropy
of a shift space is a particular case of the so-called topological entropy defined
for general dynamical systems (see e.g. [15]). Thus this theory is nicely placed
within broad mathematical theories developed by the pioneers Markov, Shannon,
Kolmogorov.

Volumes and volumetric entropy were recently introduced [6,4] to quantify
the size of timed languages and the information content of their elements. These
exploratory works were inspired by the symbolic dynamics’ notion of entropy
but left open several questions. What is the notion of shift space for timed
automata? How is the topological entropy of such an hypothetical shift space
linked to the volumetric entropy? What are the others quantitative results that
can be borrowed from symbolic dynamics?

Contributions. Here, we propose a theory of timed symbolic dynamics that sheds
a new light on the underlying dynamics of timed regular languages (the languages
recognised by timed automata). The main difficulty here is that the natural shift
space for a timed language has an infinite, and even uncountable, alphabet. Such
shift spaces are quite different from those usually studied in symbolic dynam-
ics. Thus we first define and characterise shift spaces on general alphabets that
are compact, metric and measurable spaces. Then we associate general alpha-
bet shift spaces to timed languages and study their properties; we call timed
sofic shift such shift spaces. As for size/complexity measures for timed sofic
shift, the standard approach based on topological entropy cannot work: this en-
tropy is infinite, and we study more relevant characteristics. The first one is
the Gromov-Lindenstrauss-Weiss metric mean dimension [20] that we charac-
terise for timed sofic shift. The second one is obtained by “renormalisation” of
topological entropy, and turns out to coincide with volumetric entropy of timed
languages (thus we justify in terms of symbolic dynamics the somewhat ad hoc
definitions from [6,4]). We also investigate morphisms for general alphabet shift
spaces, namely, we state a generalisation of the Curtis-Hedlund-Lyndon theorem
after proving that the classical statement cannot hold for general alphabet shift
spaces.

Related work and possible applications. This article is designed for readers with
a basic knowledge of automata theory or of symbolic dynamics. No specific
knowledge of these fields is required to read the paper. We refer the reader
to [19] for an extensive introduction to symbolic dynamics and to [13] for an
exposition of this theory in the context of automata theory. The seminal paper
on timed automata is [1].
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In [27], deterministic continuous dynamical systems are abstracted by timed
automata. Hence the state space is discretised as in symbolic dynamics while
the timing behaviours are made non-deterministic because of the abstraction. It
would be very interesting to use symbolic dynamics methods in this context.

We introduced the basis of a timed theory of channel coding in [2]. Algorithms
and result of this latter paper were inspired by the theory of symbolic dynamics
and coding. We think that the formal exposition of timed symbolic dynamics in
the present paper will probably lead to new developments of the timed theory
of channel coding.

Metric mean dimension can be interpreted in terms of robustness analysis as
follows: it tells us how often arbitrary precision is required to encode delays along
timed words. For instance a timed automaton with metric mean dimension 1/3
means that 2/3 of the delays must be chosen with arbitrary precision. A more
detailed discussion with related work is given in the conclusion (Section 5).

Article structure. After giving preliminaries in Section 2, we characterise prop-
erties of general alphabet shift spaces in Section 3. In particular, we explain
why several key results of symbolic dynamics do not hold in this more general
settings (Fact 1 and 2) and what are the suitable generalisations of these results
(definition of the volumetric entropy and Theorem 3). In Section 4, we associate
general alphabet shift spaces to timed automata and study there quantitative
properties (entropy, metric mean dimension). In Section 5 we discuss the results
obtained in this paper and the perspectives.

2 Preliminaries

In this section we give topological definitions of shift spaces from symbolic dy-
namics (see [19,15]) except that we generalise definitions from finite to compact
metric alphabets in Section 2.3. We use classical topology concepts whose defi-
nitions and properties can be found in books such as [21].

2.1 Dynamical systems

Let (X, d) be a compact metric space. A subset Y ⊆ X is an ε-net of X if
every element of X is at most ε far apart from an element of Y (∀x ∈ X, ∃y ∈
Y such that d(x, y) ≤ ε). In a compact set, for all ε > 0, there exists a finite
ε-net of it. We denote by Nε(X, d) the minimal cardinality of ε-net of X. A
subset Y ⊆ X is ε-separated if all two different elements of Y are at least ε
far apart from each other (∀x, y ∈ Y, x 6= y ⇒ d(x, y) > ε). In a compact set,
all ε-separated set are of finite cardinality. We denote by Sε(X, d) the maximal
cardinality of ε-separated sets of X.

Lemma 1 ([18], see also [15] for an English version). Given a compact
metric space X the followings inequalities hold S2ε(X, d) ≤ Nε(X, d) ≤ Sε(X, d).
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A discrete time dynamical system (just called dynamical system thereafter)
is a couple ((X, d), f) where (X, d) is a compact metric space and f is a homeo-
morphism of X i.e. a continuous bijection from X to X. Informally, we can see X
as the state space of the system. The function f is the evolution law of the sys-
tem, it gives the dynamics: given a starting state x0, the states f(x0), f2(x0), ...
are the successors of x, fn(x0) is the state at the “moment” n. The function
f−1 permits one to go back in the past. A continuous function φ from a dynami-
cal system ((X, d), f) to another ((X ′, d′), f ′) that commutes with the dynamics
(i.e. f ′ ◦ φ = φ ◦ f) is called a morphism.

2.2 ε-entropies and topological entropy

The topological entropy permits one to measure the complexity of a system.
Intuitively a system is complex when it is sensitive to initial conditions. There
are several equivalent ways to define topological entropy, here we give a definition
due to Bowen [14]. Let ((X, d), f) be a dynamical system. For all positive integer
n we define the distance between the n first iterations of f on x, y ∈ X by:

dn(x, y) = max
0≤k≤n−1

d(fk(x), fk(y)).

The idea is that two points x and y are ε far apart for dn if when iterating f
at most n times, we can distinguish them with a precision ε. An ε-net1 for dn is
thus an approximation of the system during n iterations and with precision ε.
The N -ε entropy hNε (X) measures the growth rate of these sets wrt. n:

hNε (X) = lim sup
n→∞

1

n
log2(Nε(X, dn)).

Similarly the S-ε-entropy is:

hSε (X) = lim sup
n→∞

1

n
log2(Sε(X, dn)).

The topological entropy is:

htop(X)
def
= lim

ε→0
hNε (X) = lim

ε→0
hSε (X). (1)

The second equality is due to Lemma 1. A real ε is called a discretisation step
if it is the inverse of a positive integer. In the following we consider wlog. only
reals ε that are discretisation steps (they provide sequences that tend to 0).

2.3 Shift spaces on general alphabet

In the broad field of research of symbolic dynamics (see [19]), the shift spaces
considered are on finite alphabets (we give an example in Section 2.4 below).

1 (X, dn) is a metric compact space when (X, d) is; so, one can consider ε-net of it.
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Fig. 1. A labelled graph (left) and its unlabelled version (right)

Here, we present shift spaces in a version extended to general alphabets being
compact metric spaces. The main instantiation in the following is the timed
alphabet [0,M ]×Σ where M ∈ N and Σ is finite, with metric d((t, a), (t′, a′)) =
|t− t′|+ 1a 6=a′ . In the rest of the article (C, d) is a compact metric alphabet. We
denote by CZ the set of bi-infinite words over C (i.e. words of the form x = (xi)i∈Z

with xi ∈ C). One can define a metric d on CZ by d(x, x′) = supi∈Z
d(xi,x

′
i)

2|i|
. The

shift map σ is defined by y = σ(x) when for all i ∈ Z, yi = xi+1.
It can easily be shown that ((CZ, d), σ) is a dynamical system, we call it the

full shift space on C and just denote it by CZ when d and σ are clear from the
context. A subspace X of CZ is called a sub-shift space of CZ whenever it is
topologically closed and shift invariant: σ(X) = X. We often just call shifts (or
shift spaces) the sub-shift spaces of full shift spaces.

Given a bi-infinite word x ∈ CZ and two indices i, j ∈ Z with i ≤ j, the finite
word xixi+1 · · ·xj is called a factor of x and is denoted by x[i..j]. For a shift
space X, the set of factors of length n of bi-infinite words of X is denoted by

Xn
def
= {x[i+1..i+n] | x ∈ X, i ∈ Z}.

2.4 Edge and sofic shifts from classical symbolic dynamics

Here, we recall the definitions of edge and sofic shift central in symbolic dynam-
ics. These definitions will be lifted to the timed setting in Section 4.

Let G = (Q,∆) be a finite graph with possibly multiple edges between two
vertices. Any edge δ ∈ ∆ has an origin δ− ∈ Q and a destination δ+ ∈ Q. Let
Σ be a finite alphabet and Lab : ∆→ Σ a labelling function on edges. The pair
(G, Lab) is called a labelled graph.

A finite (resp bi-infinite) path of G is a finite (resp bi-infinite) sequence of
consecutive edges δi such that for all i ∈ {1, . . . , n−1} (resp i ∈ Z) δi

+ = δi+1
−.

The set of bi-infinite paths of a graph G is a sub-shift of ∆Z called the
edge shift of G. The sofic shift of a labelled graph A = (G, Lab) is the set of

bi-infinite words that label bi-infinite paths of A: [A]
def
= {(Lab(δi))i∈Z | ∀i ∈

Z, δi+ = δi+1
−}. It is a sub-shift of ΣZ. A labelled graph is called right-resolving

whenever for every vertex q, all edges starting from q have distinct labels.

Example 1. Consider the graph G on the right of figure 1 and Lab the labelling
function defined by Lab(δ) = 1 and Lab(δ′) = Lab(δ′′) = 0. The labelled graph
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(G, Lab) is depicted on the left of figure 1, it is right-resolving and its sofic shift
is composed by the bi-infinite words such that the number of 0 between every
two consecutive 1 is even.

Note that vertices without incoming edges or without outgoing edges cannot be
visited by a bi-infinite words and can hence be deleted without loss of generality.
The resulted graph is called pruned.

2.5 Comparison with finite state automata

A non-deterministic finite state automaton (NFA) B = (Q,∆, Lab, I, F ) is a
labelled graph (with vertices called states) augmented with sets of initial and
final states I and F . The set of words that label paths leading from initial
states to final states is the language of B (such language is called regular). One
can see that sets of allowed factors ∪n∈N[A]n of sofic shifts A correspond to
regular languages L that are factorial (every factor of a word of L is a word
of L), left- and right-extensible (if w ∈ L then there exists a, b ∈ Σ such that
aw ∈ L and wb ∈ L). Being factorial and extensible are suitable properties in
the classical context of constrained-channel coding (for which symbolic dynamics
offer a meaningful framework). We already motivated these properties for timed
languages in [2] where we built the basis of a timed theory of channel coding.

There exists a variation of the theory of symbolic dynamics based on mono-
infinite words rather than bi-infinite words, that is, indexed by N rather than
Z (see §13.8 of [19]). The “one-sided” shift spaces of this theory are exactly the
omega-regular languages recognised by Büchi automata with all states initial
and final.

3 Factor based characterisations

In the previous section, we gave topological definitions of shift spaces, their
entropies and morphisms. Simpler characterisations of these objects based on
factors are available in symbolic dynamics (i.e. when the alphabet is finite).
In this section we generalise these characterisations to general alphabet shift
spaces. We carefully replace properties that implicitly use finite cardinality of
sets in symbolic dynamics by similar properties involving compactness or finite
measure of corresponding sets in our more general setting.

3.1 Factor based characterisation of general alphabet shift spaces

We recall that the alphabet C considered in the following is a compact metric
space.

Definition 1. Given a family O = (On)n∈N\{0} where all On are open sets of
Cn, we denote by F(O) the set of bi-infinite words not having factors in O :
F(O) = {x ∈ CZ | ∀i ∈ Z,∀n ∈ N \ {0}, x[i..i+n−1] 6∈ On}.
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We have also the dual definition

Definition 2. Given a family F = (Fn)n∈N\{0} where all Fn are closed sets of
Cn, we denote by B(F ) the set of bi-infinite words whose allowed factors are
those of F : B(F ) = {x ∈ CZ | ∀i ∈ Z,∀n ∈ N \ {0}, x[i..i+n−1] ∈ Fn}

Theorem 1. A subset of CZ is a shift space iff it can be defined as a F(O) iff
it can be defined as a B(F ).

Note that, in symbolic dynamics (for which C is finite), there is no need of
specifying which sets are open or closed as all finite sets satisfy both properties.

Example 2. We introduce five running examples (indexed with roman number).

Let CI def
= [0, 1] × {a} and the set of forbidden factors be given by OI

2
def
=

{(t, a)(t′, a) | t + t′ > 1}. The shift space XI def
= F(OI) is the set {(ti, a)i∈Z |

ti + ti+1 ≤ 1}.
Let CII def

= [0, 1] × {a} and OII
1

def
= {(t, a) | t < 1}. The only element of the

shift space XII def
= F(OII) is (1, a)Z.

Let CIII def
= [0, 1] × {a, b} and2 OIII

2
def
= {(t, a)(t′, b) | t < 1, t′ ∈ [0, 1]} ∪

{(t, l)(t′, l) | l ∈ {a, b}, t, t′ ∈ [0, 1]}. The shift space XIII def
= F(OIII) is the set of

bi-infinite words of the form [(ti, ai)(ti+1, bi+1)]i∈2Z or [(ti, ai)(ti+1, bi+1)]i∈2Z+1

with ti = 1 and ti+1 ∈ [0, 1].

Let CIV def
= [0, 1] × {b} and OIV

n
def
= {(t1, b) · · · (tn, b) | t1 + . . . + tn > 1}. The

shift space XIV def
= F(OIV) is the set of bi-infinite words (ti, b)i∈Z satisfying the

(bi-infinite) Zeno condition
∑
i∈Z ti ≤ 1.

Let CV def
= [0, 1]×{a, b} and OV

1
def
= {(t, a) | t < 1} and OV

n
def
= {(t1, b) · · · (tn, b) |

t1 + . . . + tn > 1}. Every bi-infinite words of XV def
= F(OV) has its delays corre-

sponding to events a equal to 1 (as for XII) and the sum of delays of blocks of
consecutive b bounded by 1 (as for XIV).

3.2 Entropies for general alphabet shift spaces

Topological entropy is very useful to compare dynamical systems. Unfortunately
it is infinite for shift spaces on infinite alphabet as remarked in [20].

Fact 1 Let C be an infinite compact metric space then htop(CZ) = +∞.

A first approach to circumvent this issue is to generalise the following char-
acterisation of the entropy that holds for finite alphabet shift space X (see [19]),

htop(X) = lim
n→+∞

1

n
log2 |Xn|. (2)

Asarin and Degorre replaced cardinality measures by volume measures (ex-
plained below) to define an ad hoc notion of entropy for timed automata in

2 We recall that a set A is open in [0, 1] if it is of the form A = B ∩ [0, 1] with B an
open set of R (i.e. a union of open intervals). In particular [0, 1] is open in [0, 1].
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[5] called volumetric in later papers [2,3,4]. Here, we describe both entropies
(classical and volumetric) in a unified and more general framework.

The compact metric spaces C considered in this paper are endowed with
a “natural” measure µ and hence the set Cn has the product measure µn. For
example the measure on Σn, for finite Σ, is the counting measure; the measure on
[0,M ]n is the n-dimensional volume (aka. Lebesgue measure); and the measure
on ([0,M ] × Σ)n ∼= [0,M ]n × Σn also called volume is the product of the two
preceding measures. More precisely, a subset E of ([0,M ] × Σ)n can be seen
as a formal sum of subsets E|w ⊆ [0,M ]n associated with w ∈ Σn as follows
E|w = {(t1, . . . , tn) | (t1, w1) . . . (tn, wn) ∈ E}. The volume of E is just the sum
of the volumes of E|w: Vol(E) =

∑
w∈Σn Vol(E|w).

We now give our general definition of entropy for general alphabet shift
spaces:

Definition 3. Given a compact metric space C and a measure µ on it, the en-
tropy of a subshift X ⊆ CZ is

H(X) = lim
n→+∞

1

n
log2 µ

n(Xn) (with Xn
def
= {x[i+1..i+n] | x ∈ X, i ∈ Z}). (3)

Applying Fekete’s lemma ([16]) on sub-additive sequence to (log2 µ
n(Xn))n∈N

ensures that the limit exists in R ∪ {−∞,+∞}.
Another way of circumventing the problem of the infinite topological entropy

is to consider an asymptotic expansion of the ε-entropy instead of its limit when
ε tends to 0 in Equation (1). This has been done fruitfully for volumetric entropy
of timed automata in [12] (recalled in Theorem 7 below).

3.3 Sliding block codes for general alphabet shift spaces

In this section C and C′ denote two compact metric spaces, X and Y denote sub-
shifts of CZ and C′Z respectively. Given a function ψ from X to C′ we denote by
ψ∞ : X → C′Z the function defined by (ψ∞(x))i = ψ(σi(x)). Such functions are
those that commute with the shifts (i.e. σ ◦ φ = φ ◦ σ) and are thus morphisms
if and only if continuous.

We say that ψ is a (2m+ 1)-block function when for every x, ψ(x) depends
only on the (2m + 1)-central factor x[−m..m], i.e. there exists a function f :
C2m+1 → C′ such that for every x, ψ(x) = f(x[−m..m]). One can remark that
ψ is continuous iff so is f . A function φ that is equal to some ψ∞ with ψ a
(continuous) block function is called a (continuous) sliding block code.

The following famous theorem gives a characterization of the morphisms of
finite-alphabet shift spaces as sliding block codes.

Theorem 2 (Curtis-Hedlund-Lyndon). Let X and Y be two finite alphabet
shift spaces. A function ϕ : X → Y is a morphism if and only if it is a sliding
block code.

This Theorem cannot be extended to the case of general alphabets shift
spaces as highlighted by the following fact:
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Fact 2 There are endomorphisms of [0, 1]Z which are not sliding block codes.

Proof (Sketch). Let ψ : [0, 1]Z → [0, 1] be defined by ψ(x) = 1
3

∑
i∈Z

xi

2|i|
. One

can show that ψ∞ is an endomorphism of [0, 1]Z which is not a sliding block
code.

An adapted version of Theorem 2 can however be stated as follows.

Theorem 3. Every morphism φ from a shift space X to a full shift CZ is the
uniform limit of a sequence of continuous sliding block codes (φm)m∈N from X
to CZ, that is supx∈X d(φ(x), φm(x))→m→+∞ 0 where d is the metric on CZ.

Proof (Sketch). We first characterise every morphism as a function of the form
ψ∞ with ψ a continuous function from X to C. We then show that every contin-
uous function from X to C is a uniform limit of continuous block functions from
X to C. Theorem 3 can then be proved by combining these two last results.

4 Timed shift spaces and their measures

In this section we define and study timed sofic shifts which are a way to see
regular timed languages [1] as (general alphabet) shift spaces.

4.1 Timed shift spaces

Timed graphs. Informally, a timed graph is to a timed automaton what a
graph is to an automaton: an automaton without initial, final states as well as
labels on transitions. Formally, a timed graph (TG) is a tuple G = (C,Q,∆) such
that

– C is a finite set of bounded clocks which are variables ranging over [0,M ]
with M ∈ N;

– Q is a finite set of locations;
– ∆ is a finite set of transitions. Any transition δ ∈ ∆ has an origin δ− ∈ Q;

a destination δ+ ∈ Q; a closed guard gδ, that is a conjunction of inequalities
of the form x ∼ c or x ∼ y + c, where x and y are clocks, ∼∈ {≤,=,≥}
and c ∈ {0, . . . ,M}; and a reset function rδ determined by a subset of clocks
B ⊆ C: it resets to 0 all the clocks in B and does not modify the value of
the other clocks.

States, timed transitions and successor actions. We denote by S the set

of states which are couples of a location and a clock vector S def
= Q × [0,M ]C .

A timed transition is an element (t, δ) of A def
= [0,M ] × ∆. The time delay t

represents the time before firing the transition δ.
Given a state s = (q,x) ∈ S and a timed transition α = (t, δ) ∈ A the

successor of s by α is denoted by s . α and defined as follows. If δ− = q and
x + t satisfies the guard gδ then s . α = (δ+, rδ(x + t)) else s . α = ⊥. Here and
in the rest of the paper ⊥ represents undefined states.
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Runs and their shifts. A bi-infinite run of a timed graph G is a bi-infinite
word (si, αi)i∈Z ∈ (S× A)Z such that si+1 = si . αi 6= ⊥ for all i ∈ Z. Consider
the timed graph GI depicted on Figure 2 (left) and a bi-infinte words whose ith
letter is αi = (ti, δi) with δi = δ if i is even and δi = δ′ otherwise and such
that ti + ti+1 ∈ [0, 1] for every i ∈ Z; define for even i, si = (p, (ti−1, 0)) and
si+1 = (q, (0, ti)) then (si, αi)i∈Z is a run of GI.

Proposition 1. The set of bi-infinite runs of G is a sub-shift of (S× A)Z.

Timed edge shift and timed sofic shift. We are now ready to define the
timed generalisation of edge shift and sofic shift.

Proposition-definition 1 (Timed edge shift) The following set is a sub-shift
of AZ called the timed edge shift of G and denoted by [G]:

[G] = {(αi)i∈Z | ∃(si)i∈Z ∈ SZ, ∀i ∈ Z, si+1 = si . αi}

When adding to a TG G a labelling function Lab : ∆ → Σ from the set of
transition ∆ to a finite alphabet of event Σ we obtain a labelled timed graph
(LTG) A = (G, Lab). Abusing the notation we extend the labelling function to
timed transitions and runs as follows: Lab(α) = (t, Lab(δ)) when α = (t, δ) and
Lab ((si, αi)i∈Z) = (si, Lab(αi))i∈Z. Thus we use two kinds of timed alphabet :
alphabet of timed transitions A = [0,M ] × ∆ and alphabets of timed letters
Lab(A) = [0,M ]× Lab(∆).

Proposition-definition 2 (Timed sofic shift) Let A = (G, Lab) be a labelled
closed timed graph then the set [A] = {Lab ((αi)i∈Z) | (αi)i∈Z ∈ [G]} is a sub-shift
of (Lab(A))Z called the timed sofic shift of A.

An LTG is called right resolving if every two different transitions labelled by
the same letter and starting from the same location have pairwise incompatible
guards. As for classical symbolic dynamics, being right-resolving is the same
thing as being deterministic less the property of having a unique initial state
(see [1] for the usual definition of determinism in timed automata context). The
LTGs of Figure 2 are right-resolving, they recognise the shift spaces of Example 2.

4.2 Discretisation of shift spaces and their entropy

Several definitions of ε-entropy for compact metric alphabet shift spaces were
recalled in Section 2.2. Here, we give a simpler definition of ε-entropy for timed
shift spaces which is asymptotically linked to the other ε-entropies in Proposition
3. This new definition of ε-entropy is based on discretisation of the timed shift
space we explore now.

We call ε-discrete the different objects involving delays and clocks multiple of
ε (i.e vector of delays of Rn, timed words, bi-infinite timed words, runs, etc.). The
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δ′, x ≤ 1, x := 0
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Fig. 2. From left to right LTGs Ai = (Gi, Lab) for i = I..V with Lab(δ) = Lab(δ′′) = a
and Lab(δ′) = b. They recognise timed sofic shift of Example 2.

ε-discretisation of a set B denoted by Bε is the set of its ε-discrete elements. For
instance, for A = [0,M ]×∆, Aε = {0, ε, . . . ,M}×∆; for X ⊆ AZ, Xε = X ∩AZ

ε .

The following proposition states a discretisation of timed shift spaces, the
resulting shift space being a finite alphabet shift space.

Proposition 2. If X is a sub-shift of BZ where B is a timed alphabet, then Xε

is a sub-shift of BZ
ε .

We define the ε-entropy of a shift X ⊆ BZ as the entropy of the shift Xε ⊆ BZ
ε :

hε(X)
def
= htop(Xε) = lim

n→∞

1

n
log2 |Xε,n|.

Proposition 3. For every two discretisation steps ε′ ≥ ε, for every timed sofic
shift X, it holds that h2ε′(X) ≤ hS2ε(X) ≤ hNε (X) ≤ hε(X).

Let A = (G, Lab) be a right-resolving LTG. The discretisation of the timed
sofic shift [A] is the sofic shift of a right-resolving finite labelled graph Aε ob-
tained from A by a discretisation of its timed transitions and states as follows:
Aε = ((Qε, ∆

′), Lab′) with Qε = S ∩ (Q× {0, ε, . . . ,M}d), Lab′ : ∆′ → Lab(Aε)
and there is a transition δs,α,s′ ∈ ∆′ going from δs,α,s′

− def
= s to δs,α,s′

+ def
= s′ and

labelled by Lab′(δs,α,s′)
def
= Lab(α) iff s . α = s′.

Proposition 4. Let A be a right-resolving LTG, then [Aε] = [A]ε.

As a corollary the computation of the ε-entropy of a timed sofic shift reduces
to the computation of the entropy of a (finite alphabet) sofic shift.

Corollary 1. Let A = (G, Lab) be a right-resolving LTG, its ε-entropy is the
topological entropy of the sofic shift of Aε: hε([A]) = htop([Aε]). In particular,
hε([A]) can be computed as the logarithm of the spectral radius of the adjacency
matrix of Aε (This matrix has order O(|Q|/ε|C|) where C is the set of clocks).
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In [6], a similar approach was used to over- and under-approximate the quantity
H(A) + log2(1/ε) for a timed automaton A without guarantee of convergence.
The asymptotic equality of this quantity with the ε-entropy was later proved in
[12] (Theorem 7 below).

The following theorem justifies that one can focus on TGs rather than right-
resolving LTGs without loss of generality for the entropies.

Theorem 4. Let A = (G, Lab) be a right-resolving LTG, then H([A]) = H([G])
and hε([A]) = hε([G]).

Proof (Sketch). We use the following chain of equalities hε([A]) = htop([Aε]) =
htop([Gε]) = hε([G]) where the first and third equalities are given by Corollary
1 and the second equality follows from a classical correspondence of entropy
between finite alphabet sofic shift and their underlying edge shift (see [19]).

To prove that H([A]) ≤ H([G]), we use the fact that for every word w ∈ Σ∗,
[A]
|w
n = ∪π∈Lab−1(w)[G]

|π
n , pass to volumes: Vol([A]

|w
n ) ≤

∑
π∈Lab−1(w) Vol([G]

|π
n )

and apply operator limn→∞
1
n log2

∑
w∈Σn( ). The converse inequality H([A]) ≥

H([G]) is more involved since the sets [G]
|π
n for π ∈ Lab−1(w) can overlap. How-

ever, using the fact that A = (G, Lab) is right-resolving, one can show that the
volume of the overlap does not contribute to the entropy as it decreases too fast
when n→∞ and hence H([A]) ≥ H([G]) also holds. ut

4.3 Metric mean dimension of timed sofic shifts

Given a timed graph G, a path π and n = |π|, it is well known that the set

of delay vectors [G]
|π
n

def
= {(t1, . . . , tn) | (t1, π1) . . . (tn, πn) ∈ [G]n} is a polytope.

One can define the dimension dim(π) of a path, as the affine dimension of its
polytope, that is, the maximal number of affinely independent points in the
polytope minus 1 (see also [8]). A TG G is fleshy whenever all its path are full
dimensional, that is dim(π) = |π| for every paths π of G. It can happen that
when the length of paths considered tends to infinity the delays are more and
more constrained resulting in a null average choice. This kind of phenomena is
measured by metric mean dimension defined and illustrated on several examples
below.

The metric mean dimension [20] of a dynamical system ((X, d), f) is:

mdim(X) = lim inf
ε→0

log2 h
S
ε (X)

log2(1/ε)
= lim inf

ε→0

log2 h
N
ε (X)

log2(1/ε)

The second equality is due to Lemma 1. As a corollary of Proposition 3, we can
characterise the metric mean dimension of timed sofic shift explicitly in terms
of their ε-entropy as follows:

Corollary 2. The metric mean dimension of a timed sofic shift X is:

mdim(X) = lim inf
ε→0

log2 hε(X)

log2(1/ε)
(4)

12



Note that if X ⊆ Y then mdim(X) ≤ mdim(Y ) and that mdim(BZ) = 1 for
every timed alphabet B. Thus mdim(X) ≤ 1 for every sub-shift X of BZ.

Example 3 (Example 2 and Figure 2 continued). The shift space XI has metric
mean dimension 1 since all the delays can be chosen independently in the interval
[0, 1/2]. The shift space XII contains only one element and has thus metric mean
dimension 0. The metric mean dimension of XIII is 1/2. This corresponds to the
intuition that a full choice can be made half of the time, since delays before edges
δ are always in the 0-dimensional singleton {1} while delays before edges δ′ are to
be chosen in the 1-dimensional interval [0, 1]. The number of ε-discrete points in

the polytope [GIV]|πn for the only path π of length n is
(
n+1/ε
n

)
(Lemma 2 below)

and thus the metric mean dimension of XIV is null. Intuitively, there are less
and less choices as n increases. Every path of GV containing a δ yields a volume
0, the only path of length n that yields a non-null volume is δ′

n
. This volume

is Vol(XV
n) = 1/n! and hence the entropy is H(XV) = −∞. The metric mean

dimension of XV is 1. Indeed, for every positive integer m, the paths in (δm−1δ′)∗

yield a metric mean dimension equal to (m− 1)/m and thus mdim ≥ 1− 1/m
for every m > 0.

Lemma 2 (Few points in a simplex). The number of ε-discrete points in a
simplex described by inequalities 0 ≤ u1 ≤ · · · ≤ un ≤ M (resp. by inequalities∑n
i=1 ui ≤M and ui ≥ 0) is

(
n+M/ε

n

)
and (1/n) log2

[(
n+M/ε

n

)]
→n→+∞ 0.

One can generalise GIII by defining a cycle with k transition b and l−k tran-
sition a for every naturals 1 ≤ k ≤ l. The resulting timed sofic shift has metric
mean dimension k/l. More surprisingly arbitrary rational metric mean dimen-
sions lower than 1 can be obtained from timed graph that have full dimensional
sets of factors Xn for every length n.

Theorem 5. For every rational r ∈ Q∩ [0, 1], there exists a timed sofic shift X
recognised by a right-resolving fleshy LTG such that mdim(X) = r.

Proof (sketch). Examples of fleshy timed graph with metric mean dimension
0 or 1 have already been treated (GI and GII). For every a, b ∈ N such that
0 < a < b, we describe a cyclic timed graph with 2b edges and metric mean

dimension a/b ∈ Q ∩ (0, 1). The edges are qi
x∈[i,i+1]−−−−−−→ qi+1 for i = 0..2a − 1;

qi
y≥2a+1,x∈[2a,2a+1]−−−−−−−−−−−−−→ qi+1 for i = 2a..2b−3; q2b−2

y≥2a+1,x∈[2a,2a+1],y:=0−−−−−−−−−−−−−−−−−→ q2b−1;

q2b−1
x∈[2a,2a+1],x:=0−−−−−−−−−−−→ q0. One can see that each edge of the first form yields

a full dimension (i = 0..2a − 1). The other edges impose stringent constraints
on clocks and delays like in a simplex. This yields a null mean dimension for
these edges (Lemma 2). At the end for each cycle of length 2b there are 2a full
dimensional edges and thus mdim = 2a/2b = a/b.

The thick timed sofic shifts. In [12], we characterised precisely a dichotomy
between thin and thick timed automata based on entropy, the former having

13



infinite entropy (H = −∞) while the latter having a finite one (H > −∞).
Beyond its entropy based definition we argued that this dichotomy is between
bad behaving and well behaving TA. The former are in some weak sense Zeno,
are non robust against clock perturbations, cannot be discretised well, etc. while
the latter enjoy better properties such as a good discretisation, a quantitative
pumping lemma and the existence of so-called forgetful cycles.

The metric mean dimension measurement gives a novel characterisation of
thickness in terms of maximal metric mean dimension:

Theorem 6. For timed sofic shifts X recognised by fleshy LTGs, thickness is
equivalent to maximal metric mean dimension: H(X) > −∞ iff mdim(X) = 1.

Note that XV satisfies both H(XV) = −∞ and mdim(XV) = 1. This means
that fleshiness is necessary in Theorem 6. Remark that regarding thickness,
fleshiness is assumed wlog. since pruning the transitions involving punctual
guards (e.g. x = 1) does not change the volume nor the entropy.

Beyond the pure dichotomy between thin and thick timed languages [12],
Theorem 5 and 6 provide a deeper insight of convergence phenomena among thin
timed languages. There is a whole continuum of thin timed languages between
the extremely narrow ones of metric mean dimension 0 where all delays of timed
words are constrained in a very stringent way, and the ones of dimension almost
1 for which full freedom in the delay is available at almost each transition.

For the sake of completness we recall one of the main theorems of our previous
work [12] in terms of timed symbolic dynamics. This theorem ensures that the
approximation of the entropy by discretisation initiated in [6] converges.

Theorem 7 (A symbolic dynamics version of Theorem 4 of [12]). Let
A be a right-resolving fleshy thick LTG then its volumetric entropy can be ap-
proximated by its ε-entropy as follows: hε([A]) = log2(1/ε) +H([A]) + o(1).

One can interpret as in [6,2] H([A]) as the average information per event and
log2(1/ε) as the information necessary to represents with precision ε the time
between two events.

5 Conclusion and perspectives

In this paper, we introduced a theory of timed symbolic dynamics. We revisited
previous works on volumetry of timed languages [5,6,12] within this new theory.
We adapted to timed sofic shifts the metric mean dimension of Lindenstrauss,
Weiss and Gromov [20]. We also stated a generalisation of the Curtis-Hedlund-
Lyndon theorem for shift spaces on alphabets that are compact metric spaces.

Fundamental objects of classical symbolic dynamics are so-called shifts of
finite types (SFT): the shift spaces that can be defined with a finite set of for-
bidden factors. In fact, such shifts are conjugated to edge shifts. That is why
we are able to lift results from classical symbolic dynamics to the timed case
without referring to SFTs (but referring to graphs and edge shifts). The entropy
of probability measures on shift spaces is well studied in symbolic dynamics.
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The entropy of a probability measure on an edge shift (or equivalently SFT) is
always bounded from above by the entropy of its underlying graph. An impor-
tant result obtained by Parry [23] is that for every edge shift associated to a
strongly connected graph, there is a unique probability measure whose entropy
is equal to that of the edge shift. This probability measure is given by a Markov
chain on the graph of the edge shift (originally described by Shannon [25]). We
already generalised such a Shannon-Parry Markov chain to the timed settings
motivated by verification purposes [9,11]. However, we left open the question of
uniqueness. Symbolic dynamics techniques (as those of Parry) could hence be
useful to address this problem.

In [7], Asarin and Degorre introduced a mean dimension (that we call syn-
tactic) for timed automata and proposed an algebraic characterisation of it.
However this dimension only measures the proportion of non-punctual transi-
tions along runs but not the Zeno behaviours. For instance, every fleshy timed
graph has syntactic mean dimension 1 including GIV. It seems easy to show that
the syntactic mean dimension is upper bounded by the metric mean dimension.
The case of equality is more involved and still needs to be investigated.

Metric mean dimension and controllability. In robust control [24,22], the goal is
to design a controller that chooses step by step an infinite timed word satisfying
a Büchi condition even if every delay is slightly perturbed. As every transition
can be perturbed, the part that is robustly controllable does not contain punc-
tual guards (fleshiness). Robust controllability is equivalent to the reachability
(through fleshy transitions) of a forgetful cycle satisfying the Büchi condition
[24,22]. It would be interesting to relax the condition that every transition must
be robustly controllable and consider a framework where in some steps delays
with arbitrary precision are chosen. In such a framework we would like to prove
that timed automata with metric mean dimension α are the timed automata
that can be robustly controlled with a frequency of α and that require arbitrary
precision with frequency 1− α.

Acknowledgment. We gratefully acknowledge Eugène Asarin, Aldric Degorre
and Dominique Perrin for motivating discussions.
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A Appendix

A.1 Proof of Theorem 1

Poof that X is a shift space ⇔ it can be defined as a B(F )
⇒) Let X be a shift space. Let F = (Xn)n∈N∗ . By definition X ⊆ B(F ). To

show the converse inclusion, we take an x ∈ B(F ) and prove that it belongs to X.
As x[−n..n] ∈ X2n+1, there exists a bi-infinite word xn ∈ X such that xn[−n..n] =

x[−n..n]. The sequence (xn)n∈N converges to x. As this sequence takes its values
in the closed set X, its limit x is also in X. It remains to prove that for all n ∈ N∗,
Xn is closed. It suffices to show that for every convergent sequence (wm)m∈N of
Xn, its limit w belongs to Xn. For each n, there exists an xm ∈ X such that
xm[0..n−1] = wm. The sequence xm of the compact CZ admits a subsequence which
converges toward an x ∈ X. We have x[0..n−1] = limn x

m
[0..n−1] = limn w

m = w
and thus w belongs to Xn as a factor of x ∈ X. ut
⇐) Let X = B(F ). X is shift invariant. It remains to show that X is closed.

It suffices to show that for every convergent sequence (xm)m∈N of X, its limit x
belongs to X. For all n ∈ N∗, m ∈ N and i ∈ Z, xm[i..i+n−1] ∈ Fn. As Fn is closed,
x[i..i+n−1] = limxm[i..i+n−1] belongs to Fn. Every factor of x belongs to F thus

x ∈ B(F ) = X. Hence X is closed. ut
Poof that X is a shift space ⇔ it can be defined as a F(O)
⇒) We take F = (Xn)n∈N∗ as above. We define O = (Cn \Xn)n∈N∗ . For each

n, On is relatively open in Cn since Xn is closed. By definition of O, B(F ) = F(0)
which is equal to X. ut
⇐) Let X = F(O). X is shift invariant. Let us show that X is closed. It

suffices to show that for every convergent sequence (xm)m∈N of X, its limit x
belongs to X. For all n ∈ N and i ∈ Z, we have x[i..i+n−1] = limxm[i..i+n−1] 6∈ O

n

since On is open. Thus x ∈ F(O). ut

A.2 Characterising N-ε-entropy and S-ε-entropy using sets of
factors of a shift spaces.

The following proposition is needed in the proof of Proposition 3 but can be
interesting by itself.

The distance dn used in the definition of N -ε-entropy and S-ε-entropy are
quite uneasy to deal with. We give here definitions of ε-entropies based on the
product distances dn defined on n-length words by dn(x1 · · ·xn, y1 · · · yn) =
supi=1..n d(xi, yi). For this distance ε-balls are just hypercubes of side ε.

Proposition 5. Let X be a compact metric alphabet shift space. The N -ε-
entropy (resp S-ε-entropy) defined on bi-infinite words is equal to the following
ε-entropy of X defined using finite factors:

hNε (X) = lim sup
n→∞

1

n
log2(Nε(Xn, d

n));

hSε (X) = lim sup
n→∞

1

n
log2(Sε(Xn, d

n)).
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This proposition is a consequence of the four following lemmas. In these

Lemma we denote by diam(C) the diameter of C, that is, diam(C) def
= maxx,x′∈C d(x, x′).

This diameter exists and is finite due to the compactness of C.

Lemma 3. For all ε > 0 : Nε(Xn, d
n) ≤ Nε(X, dn).

Proof. Let R be an ε-net of X for dn. We define R′ = {x[0..n−1]| x ∈ R}. We
will show that R′ is an ε-net of Xn. For all y ∈ Xn, there exists y′ ∈ X such
that y′[0..n−1] = y. There exists x ∈ R such that dn(x, y′) ≤ ε. In particular,

for all i ∈ {0, .., n − 1}, d(σi(x), σi(y)) ≤ ε thus maxi∈{0,..,n−1} d(xi, yi) < ε i.e
dn(x, y) ≤ ε. ut

Lemma 4. For all ε > 0, there exists l such that Nε(Xn+2l, d
n+2l) ≥ Nε(X, dn).

Proof. Let l ∈ N such that max|i|>l
diam(C)

2|i|
≤ ε. Let Rn+2l be an ε-net of Xn+2l.

For all x ∈ Rn+2l, we choose x̂ ∈ X such that x̂[−l..n+l−1] = x and we define

R̂ = {x̂ | x ∈ R}. We will show that R̂ is an ε-net of X for dn. Let y ∈ X,
there exists x ∈ Rn+2l such that dn+2l(y[−l..n+l−1], x) ≤ ε. Therefore, for all

k ∈ {0..n− 1} : maxi∈{−l...l}
d(xi+k,yi+k)

2|i|
≤ ε and thus supi∈Z

d(xi+k,yi+k)

2|i|
≤ ε i.e

dn(x, y) ≤ ε ut

Lemma 5. For all ε > 0 : Sε(Xn, d
n) ≤ Sε(X, dn).

Proof. Let S be an ε-net of Xn for dn. For all x ∈ S, we choose x̂ ∈ X such that
x̂[0..n−1] = x and we define Ŝ = {x̂ | x ∈ S}. We have, for all x̂, ŷ ∈ Ŝ dn(x̂, ŷ) =

maxk∈{0...n−1} supi∈Z
d(x̂i+k,ŷi+k)

2|i|
≥ maxk∈{0..n−1} d(xk, yk) = dn(x, y) > ε. Thus

Ŝ is ε-separated. ut

Lemma 6. For all ε > 0, there exists l such that Sε(Xn+2l, d
n+2l) ≥ Sε(X, dn).

Proof. Let l ∈ N such that max|i|>l
diam(C)

2|i|
≤ ε. Let S a ε-net of X for dn.

We define S′ = {x[−l..l+n−1] | x ∈ S}. We have, for all x, y ∈ S, dn(x, y) =

maxk∈{0...n−1} supi∈Z
d(xi+k,yi+k)

2|i|
> ε. The terms of indices less than −l and

greater than n+ l−1 are not taken into account as by definition of l they cannot
be greater than ε. Therefore dn+2l(x[−l..l+n−1], y[−l..l+n−1]) ≥ dn(x, y) > ε and
S′ is ε-separated. ut

A.3 Proof of Fact 2.

Before proving Fact 2 we characterise morphisms from X to C′Z where X and
C′ are defined as in Section 3.3.

We denote by F(X, C′) the function from X to C′ and by SC(X, C′Z) the

function from X to C′Z that commutes with the shift.

Lemma 7. The mapping ψ 7→ ψ∞ is a bijection from F(X, C′) to SC(X, C′Z)
whose inverse is φ 7→ (x 7→ φ(x)0). Moreover ψ is continuous iff so is ψ∞.
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Proof. By definition of ψ∞ it holds that ψ∞(x)0 = ψ(x) and thus the two
mappings defined above are mutually inverse. If ψ is continuous then for every
sequence (xn)n∈N of elements of X, the convergence xn 7→n→+∞ x ∈ X implies
that for every i ∈ Z, ψ∞(xn)i = ψ∞(σi(xn)) 7→n→+∞ ψ∞(σi(x)) = ψ∞(x)i.
This means that ψ∞ is continuous when so is ψ. The converse is straightforward.

ut

Corollary 3. Every morphism from X to C′Z is of the form ψ∞ with ψ a con-
tinuous function from X to C′.

End of proof of Fact 2. Let ψ : [0, 1]Z → [0, 1] be defined by ψ(x) =
1
3

∑
i∈Z

xi

2|i|
. We show that ψ∞ is an endomorphism of [0, 1]Z which is not a

sliding block code. We show that ψ maps converging sequences to converg-
ing sequences and is thus continuous. Let (xk)k∈N be a sequence of bi-infinite
words of [0, 1]Z that converges toward a bi-infinite word x ∈ [0, 1]Z, that is∑
i∈Z

xk
i

2|i|
→k→+∞

∑
i∈Z

xi

2|i|
. To this purpose we apply the dominate conver-

gence theorem since
xk
i

2|i|
≤ 1

2|i|
for every i ∈ N, k ∈ N. Thus ψ is continuous and

by virtue of Corollary 3 ψ∞ is an endomorphism of [0, 1]Z. ut

A.4 proof of Theorem 3

We first state a similar result for functions from CZ to C′.

Lemma 8. Every continuous function from X to C′ is a uniform limit of con-
tinuous block functions from X to C′.

Proof. Let ψ ∈ F(X, C′) be a continuous function. The mth truncation fm :
x 7→ x[−m..m] is a continuous function from X to C2m+1. For m ∈ N, let
gm : X2m+1 → X be a function such that for each w, gm(w) is an element of X
with central factor w i.e. gm(w)[−m..m] = w. The function ψm is a (2m + 1)-
block continuous function. It remains to prove that (ψm)m∈N converges to-
ward ψ. As ψ is continuous between two compacts, it is also uniformly con-
tinuous, that is, for every arbitrary ε, there exists δ such that d(x, x′) ≤ δ
implies d′(ψ(x), ψ(x′)) ≤ ε where d and d′ denote the metric on C and C′
respectively. We take m ≥ log2(diam(C)/δ) − 1 so that for every x ∈ CZ,
d(gm ◦ fm(x), x) ≤ diam(C)2−(m+1) ≤ δ and thus dC′(ψm(x), ψ(x)) ≤ ε. We
are done the sequence (ψm)m∈N of continuous block functions uniformly con-
verges toward ψ. ut

Now we can prove Theorem 3.

Proof. By Corollary 3, every morphism is of the form ψ∞ with ψ a continuous
function from X to C′. By Lemma 8 just above there exists a sequence (ψm)m∈N
of continuous block functions that uniformly converges toward ψ. For every x
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and i, the ith coordinates of ψ∞(x) and ψ∞n (x) are ψ(σi(x)) and ψn(σi(x))
respectively. Thus, for every x:

sup
x∈CZ

d′ (ψ∞(x), ψ∞m (x)) = sup
x∈CZ

sup
i∈Z

1

2|i|
d′
(
ψ(σi(x)), ψn(σi(x))

)
≤ sup
y∈CZ

d′ (ψ(y), ψm(y)) .

We can conclude: the sequence of continuous sliding block codes (ψ∞m )m∈N con-
verges toward the morphism ψ∞. ut

A.5 Proof of Proposition 1

We denote by RunG the set of bi-infinite runs of G: RunG
def
= {(si, αi)i∈Z | si+1 =

si .αi}. This set is shift invariant. We show that it is closed. The set {(s, α, s′) |
s′ = s . α} is a closed subset of S×A× S. Indeed, it suffices to remark that for
every transition δ the set of tuples (x, t,x′) such that (δ−,x) . (t, δ) = (δ+,x′)
is a polytope defined by constraints involving equality and non-strict inequality
only (they have the following form x′ = x + t, x′ = 0, A ≤ x + t ≤ B). For a
fixed j ∈ Z the projection (si, αi)i∈Z 7→ (sj , αj , sj+1) is continuous and hence
the set of runs (si, αi)i∈Z such that sj+1 = sj . αj is closed. The set RunG is the
intersection for j ∈ Z of the closed sets described just above, it is thus closed. ut

A.6 Proof of Proposition-definition 1

This set is obtained by projecting the set of bi-infinite runs RunG on the timed
transition components. It is clearly shift-invariant as RunG . By continuity of the
projection, the projected set is compact. ut

A.7 Proof of Proposition 3

This proof relies on characterisation of entropies using factors stated in Propo-
sition 5 given in Appendix A.2 above.

The points of Xε′,n are 2ε-separated which proves the first inequality. The
second inequality is a straightforward corollary of Lemma 1. To prove the third
inequality it suffices to prove that for all n ∈ N, Xε,n is an ε-net of Xn. We will
adapt a method used in a paper of Henzinger, Manna and Pnueli[17].

The setting of this latter paper considers increasing sequences of dates when
events occur instead of delays between events. There is a one-to-one correspon-
dence φ between n-uplets of delays and n-uplets of dates defined by φ(t1, ..., tn) =
(t1, t1 + t2, ..., t1 + t2 + ... + tn) and with φ−1 defined by φ−1(T1, ..., Tn) =
(T1, T2 − T1, ..., Tn − Tn−1). One can remark that ε-discrete points are also in
one to one correspondence by φ. The guards along a path give the following in-
equations on dates Tk − Tj ∈ [A,B] (this corresponds to a constraint x ∈ [A,B]
checked at the kth transition and with the last reset of x done in the jth transi-
tion).
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For all real T we denote by [T ] the closest multiple of ε to T (|[T ]−T | ≤ ε
2 ):

[T ] =

{
εbT/εc if T ≤ εbT/εc+ ε

2

ε(bT/εc+ 1) otherwise

One can remark that Tk − Tj ∈ [A,B] implies [Tk]− [Tj ] ∈ [A,B].

Let (t1, δ1), ..., (tn, δn) ∈ Xn. We denote by (T1, ..., Tn) = φ(t1, ..., tn) and
thus ([T1], ..., [Tn]) satisfy the constraints [Tk] − [Tj ] ∈ [A,B]. We denote by
(u1, ..., un) = φ−1([T1], ..., [Tn]) then (u1, δ1), ..., (un, δn) ∈ Xε,n. Since |u1−t1| =
|[T1] − T1| ≤ ε

2 then for all i ∈ {2, .., n} we have |ui − ti| = |([Ti+1] − [Ti]) −
(Ti+1 − Ti)| ≤ |[Ti+1] − Ti+1| + |[Ti] − Ti| ≤ ε. Finally every timed word of Xn

is at most ε far apart from a timed word of Xε,n. Xε,n is thus an ε net for Xn

which concludes the proof. ut

pq r
a, x ∈ [0, 1] a, x ∈ [2, 3]

Fig. 3. A right resolving LTG to illustrate the proof of Theorem 4

A.8 Proof of Proposition 4

It is straightforward that [Aε] ⊆ [A]ε. To prove the converse inclusion we take
(Lab(αi))i∈Z ∈ [A]ε and show that (Lab(αi))i∈Z ∈ [Aε]. By definition of [A]ε,
each αi is ε-discrete i.e. of the form αi = (kiε, δi) with ki ∈ {0, . . . ,M/ε} and
(αi)i∈Z is obtained by projecting states of an infinite run of A, say (si, αi)i∈Z.
We denote by xi the value of the clock x at the index i of this run. Our objective
is to transform the value of xi for all clocks x and indexes i in such a way that
the new values are multiple of ε and the guards are still satisfied. For every clock
x, we denote by fr(x) the index of first reset of x (possibly equal to −∞ if the
clock is reset infinitely often in the past or +∞ if the clock is never reset).

Since all the delays are multiple of ε then so is xi for i ≥ fr(x). Remark that
for all i < fr(x) we have xi = xfr(x) −

∑
i≤l<fr(x) klε. As all xj ∈ εN for j ∈ Z,

it holds that kl = 0 for every l lower than a position fp(x) where it is positive
for the first time (here also fp(x) can take values −∞, +∞). We have thus the
three possible cases for xi:

– xi = xfp(x) if i ≤ fp(x);

– xi = xfp(x) +
∑i−1
l=fp(x) klε if fp(x) < i ≤ fr(x);

– xi is multiple of ε if i > fr(x).

It remains to choose a new value for xfp(x) that is multiple of ε. The guards on
the path (δi)i∈Z give inequalities of the form Ai ≤ xi ≤ Bi. The lower bound
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for ε−1xfp(x) is

sup( sup
i≤fp(x)

ε−1Ai, sup
fp(x)<i≤fr(x)

ε−1Ai −
i−1∑

l=fp(x)

ki).

This lower bound is an integer since it is a supremum over a set of integers.
A symmetric reasoning can be used for the upper bound. An arbitrary choice
between the lower and upper bounds gives a new value for ε−1xfp(x) which is an
integer. This choice does not affect the delays nor the values of the other clocks,
it permits to have a new run satisfying the same constraints. One can repeat
this operation until all the clocks are ε-discrete in all positions and then we are
done. ut

A.9 Proof of Theorem 4

We begin by proving the equality of ε-entropies. Remark that G can be seen as
a right-resolving LTG with the labelling function being the identity on ∆. Thus
[Gε] and [Aε] are two right-resolving LTG with the same underlying graph. A
classical result on symbolics dynamics states that the entropy of a sofic shift of a
right-resolving labelled graph is the same as the entropy of the edge shift of the
underlying (unlabelled) graph (see [19]). Thus h(XGε) = h(XAε

). We conclude
using Corollary 1: hε([A]) = h([Aε]) = h([Gε]) = hε([G]).

Now we prove the equality H([A]) = H([G]). For each w of length n we have

[A]|wn = ∪π∈Lab−1(w)[G]|πn (5)

where we recall that [G]
|π
n

def
= {(t1, . . . , tn) | (t1, π1) . . . (tn, πn) ∈ [G]n} and

[A]
|w
n

def
= {(t1, . . . , tn) | (t1, w1) . . . (tn, wn) ∈ [A]n}. Then for every n ∈ N:

Vol([A]n) =
∑
w∈Σn

Vol([A]|wn ) ≤
∑
w∈Σn

∑
π∈Lab−1(w)

Vol([G]|πn ) = Vol([G]n).

This implies H([A]) ≤ H([G]).
For the converse inequality, everything would be very simple if the union in

(5) were disjoint. This is not the case due to freedom on the initial state. Indeed,
let us consider for instance the right resolving LTG depicted in Figure 3. The
timed transition (0.5, a) taken from (p, 0.2) leads to (q, 0.7) while taken from
(p, 1.8) leads to (r, 2.3). However the polytopes Pπ(2)

(s), Pπ′
(2)

(s) of delays that

can be read along two distinct paths π(2) 6= π′(2) starting from a state s are
disjoint due to right-resolvness. Then, if all clocks are reset during a path π(1)
of length l (for l > 0), for every two distinct paths π(2), π

′
(2) of length n− l (for

n > l) we have [G]
|π(1)π(2)
n ∩ [G]

|π(1)π
′
(2)

n = ∅. We divide into two groups the set of
paths of a given length l (l is a parameter that we will tune later):

– the set R(l) of paths which reset all its clocks;
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– the set of other paths. For paths in this latter set, it holds that Vol([G]
|π
n ) ≤

Mn

l! .

It holds that

Vol([G]n) =
∑
π∈∆n

Vol([G]|πn )

=
∑

π(1)∈R(l)

∑
π(2)∈∆n−l

Vol([G]
|π(1)π(2)
n ) +

∑
π(1) 6∈R(l)

∑
π(2)∈∆n−l

Vol([G]
|π(1)π(2)
n ).

We will denote by S1 and S2 the two sums above. S2 is upper bounded by
(|∆|M)n

l! . For each w ∈ Σn we have

[A]|wn =
⋃

π(1)∈R(l)

⊎
π(2)∈∆n−l

π(1)π(2)∈Lab−1(w)

[G]
|π(1)π(2)
n

and then

Vol([A]|wn ) ≥ max
π(1)∈R(l)

∑
π(2)∈∆n−l

π(1)π(2)∈Lab−1(w)

Vol([G]
|π(1)π(2)
n )

≥ 1

|∆|l
∑

π(1)∈R(l)

∑
π(2)∈∆n−l

π(1)π(2)∈Lab−1(w)

Vol([G]
|π(1)π(2)
n ).

We sum over all w and deduce that Vol([A]n) ≥ S1/|∆|l. Remark that H([A]) ≥
H([G])− log2(|∆|) since

Vol([A]n) =
∑
w∈Σn

Vol([A]|wn ) ≥ max
π∈∆∗

Vol([G]|πn ) ≥ Vol([G]n)

|∆|n
.

Hence H([A]) = −∞ iff H([G]) = −∞. We suppose now that H([A]) > −∞. In
particular Vol([A]n) behaves like an exponent in the following sense: for every
a < 2H([A]) < b it holds that bn >> Vol([A]n) >> an.

Recap that Vol([G]n) = S1 + S2, S2 ≤ |∆|
n

l! and S1 ≤ Vol([A]n)|∆|l, hence

Vol([G]n) ≤ Vol([A]n)

(
|∆|l +

|∆|n

Vol([A]n)l!

)
. (6)

We choose l such that l << n << log2(l!), for instance l such that n =

bl log2(log2(l))c. With such an l the quantity 1
n log2

(
|∆|l + (|∆|M)n

Vol([A]n)l!

)
tends

to 0 and then taking limn→∞
1
n log2(.) in (6) yields the expected inequality:

H([G]) ≤ H([A]). ut
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A.10 Proof of Lemma 2

There is
(
n+M/ε

n

)
possibilities to choose n indices i1 < . . . < in among {1, . . . , n+

M/ε}. For j = 1..n define uj = (ij − j)ε and get 0 ≤ u1 ≤ · · · ≤ un ≤ M . It
remains to remark that the mapping (i1, . . . , in) 7→ (t1, . . . , tn) is a bijection
(one can check that the following function is an inverse for it: uj 7→ uj/ε+ j for
j = 1..n). ut

A.11 Proof of Theorem 5

Examples with metric mean dimension 0 or 1 have already been treated (XI and
XII). For every k, l ∈ N such that 0 < k < l, we describe a cyclic fleshy LTG with
2l transitions and metric mean dimension k/l ∈ Q ∩ (0, 1). The transitions are

qi
a,x∈[i,i+1]−−−−−−−→ qi+1 for i = 0..2k−1; qi

b,y≥2k+1,x∈[2k,2k+1]−−−−−−−−−−−−−−→ qi+1 for i = 2k..2l−3
(there is no transition labelled by b if 2l−3 < 2k that is if and only if l = k+ 1);

q2l−2
c,y≥2k+1,x∈[2k,2k+1],y:=0−−−−−−−−−−−−−−−−−−→ q2l−1 and q2l−1

d,x∈[2k,2k+1],x:=0−−−−−−−−−−−−→ q0 (remark that
2l − 2 ≥ 2k so that the index are well defined).

We consider wlog. only runs such that the location in index 0 is q0 (in-
deed shifting runs does not change mean properties such as the metric mean
dimension). Let (sn, αn)n∈Z be such a run with the following notation sn =
(qn, (xn, yn)) and αn = (tn, δn).

Both clocks are not reset between locations q0 and q2k+1 then y2k+1 − y0 =
x2k+1 − x0 = x2k+1 and thus y0 = y2k+1 − x2k+1 ≥ 2k + 1 − x2k+1 using the
guard on the transition from q2k to q2k+1 labelled by b.

Since x is not reset between indices 2k + 1 and 2l − 1 it holds that 2k + 1−
x2l−1 ≤ 2k + 1− x2l−2 ≤ . . . ≤ 2k + 1− x2k+1.

Remark that y2l = t2l−1 (the clock y is null in q2l−1) and x2l−1+t2l−1 ≤ 2k+1
(by the guard of transition labelled by d), hence y2l ≤ 2k + 1− x2l−1.

As the timed graph is cyclic the discussion above holds as well when the
indices are shifted by a multiple of its length 2l.

We denote by z2lm
def
= y2lm = t2lm−1 and by z2lm+i

def
= 2k+ 1− x2lm+i for all

m ∈ N and i = 2k + 1..2l − 1. Remark that x2lm+i =
∑2lm+i−1
i=2lm ti since the last

reset of x before 2lm+ i is just before entering q2lm. Remark that the change of
coordinate from tj to zj+1 for j 6= 0..2k−1 (mod 2l) and that leave the other tj
unchanged is bijective between ε-discrete points. The coordinates zj lie in the fol-
lowing bi-infinite simplex: 0 ≤ . . . z2lm ≤ z2lm+2k+1 ≤ . . . ≤ z2l(m+1) ≤ . . . ≤ 1:
the tj for j = 0..2k−1 (mod 2l) can be chosen independently and hence there
is 1/ε choices per such delays. Using Lemma 2 we have that the number of point

in the polytope corresponding to m cycles starting from q0 is
(
2lm+1/ε

2lm

)
(1/ε)2km.

Then we compute (1/2lm) log2[
(
nm+1/ε
nm

)
(1/ε)km] = (1/2lm) log2[

(
2lm+1/ε

2lm

)
] +

(2k/2l) log2(1/ε). Now we let m→ +∞ and the first vanishes. Dividing the re-
maining term by log2(1/ε) (and letting ε→ 0) yields the expected metric mean
dimension k/l. ut
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