
Counting and generating permutations using
timed languages? ??

Nicolas Basset

Department of computer science, University of Oxford, United Kingdom
basset@cs.ox.ac.uk

Abstract. The signature of a permutation σ is a word sg(σ) ⊆ {a,d}∗
whose ith letter is d when σ has a descent (i.e. σ(i) > σ(i + 1)) and is
a when σ has an ascent (i.e. σ(i) < σ(i + 1)). Combinatorics of permu-
tations with a prescribed signature is quite well explored. Here we state
and address the two problems of counting and randomly generating in
the set sg−1(L) of permutations with signature in a given regular lan-
guage L ⊆ {a,d}∗. First we give an algorithm that computes a closed
form formula for the exponential generating function of sg−1(L). Then
we give an algorithm that generates randomly the n-length permutations
of sg−1(L) in a uniform manner, that is all the permutations of a given
length with signature in L are equally probable to be returned. Both
contributions are based on a geometric interpretation of a subclass of
regular timed languages.

Generating all the permutations with a prescribed signature (described in
the abstract) or simply counting them are two classical combinatorial topics
(see [17] and reference therein). The random generation of permutations with a
prescribed signature has been addressed very recently by Philippe Marchal [13].

A very well studied example of permutations given by their signatures are
the so-called alternating (or zig-zag, or down-up) permutations (see [16] for a
survey). Their signatures belong to the language expressed by the regular ex-
pression (da)∗(d + ε) (in other words they satisfy σ1 > σ2 < σ3 > σ4...).

To a language L ⊆ {a,d}∗, we associate the class sg−1(L) of permutations
whose signature is in L. Many classes of permutations can be expressed in that
way (e.g. alternating permutations, those with an even number of descents).

We state and address the two problems of counting and randomly generating
in sg−1(L) when the language of signatures L is regular. We propose Algorithm 1
that returns a closed form formula for the exponential generating function (EGF)
of sg−1(L). That is a formal power series

∑
an

zn

n! where the nth coefficient an
counts the permutations of length n with signature in L. With such an EGF, it is
easy to recover the number an and some estimation of the growth rate of an (see
[9] for an overview of analytic combinatorics). The random generation is done by

? This research is supported in part by ERC Advanced Grant VERIWARE and was
also supported by the ANR project EQINOCS (ANR-11-BS02-004).

?? Omitted proofs and detailed examples can be found in Chapter 8 of [4].

an algorithm described in Theorem 3. The regular language L together with n
the size of permutation to generate are the inputs while the outputs are n-length
random permutations with signatures in L equally probable to be returned.

Timed automata were introduced in [1] to model and verify properties of
real-time systems. Our theory is based on a geometric interpretation of timed
languages recognized by timed automata initiated in [3]. In that paper the au-
thors introduced the concept of volume and entropy of timed languages. With
these authors we defined and characterized volume generating function of timed
language in [2]. In this latter paper a link between enumerative combinatorics
and timed languages was foreseen. Here we establish such a link. The passage
from a class of permutations to a timed language is in two steps. First we as-
sociate order and chain polytopes to signatures which are particular cases of
Stanley’s poset polytopes [15]. Then we interpret the chain polytopes of a signa-
ture w as the set of delays which together with w forms a timed word of a well
chosen timed language.
Related works. Particular regular languages of signatures are considered in [7]
under the name of consecutive descent pattern avoidance. Numerous other works
treat more general cases of (consecutive) pattern avoidance (see [8], [12]) and are
quite incomparable to our work. Indeed, certain classes of permutations avoiding
a finite set of patterns cannot be described as a language of signatures while some
classes of permutations involving regular languages cannot be described by finite
pattern avoidance (e.g. the permutations with an even number of descents).

The random sampler of timed words (Algorithm 2) is an adaptation to the
timed case of the so-called recursive method of [14] developed by [10]. It has been
improved for the particular case of generation of words in regular languages [5].

Further connections to related works are considered at the end of section 4.

1 Two problem statements

All along the paper we use the two letter alphabet {a,d} whose elements must
be read as “ascent” and “descent”. Words of {a,d}∗ are called signatures. For
n ∈ N, [n] denotes {1, . . . , n} and Sn the set of permutations of [n]. We use the
one line notation, for instance σ = 231 means that σ(1) = 2, σ(2) = 3, σ(3) = 1.

Let n be a positive integer. The signature of a permutation σ = σ1 · · ·σn is
the word u = u1 · · ·un−1 ∈ {a,d}n−1 denoted by sg(σ) such that for i ∈ [n],
σi < σi+1 iff ui = a (we speak of an “ascent”) and σi > σi+1 iff ui = d (we
speak of a “descent”), for instance sg(21354) = sg(32451) = daad.

This notion appears in the literature under several different names and forms
such as descent word, descent set, ribbon diagram, etc. We are interested in
sg−1(L) = {σ | sg(σ) ∈ L}: the class of permutations with signature in L ⊆
{a,d}∗. Given a language L we denote by Ln the sub-language of L restricted
to its n-length words. The exponential generating function of sg−1(L) is

FL(z) =def

∑
σ∈sg−1(L)

z|σ|

|σ|!
=
∑
n≥1

|sg−1(Ln−1)|z
n

n!
.

1 2

4 3

a

a

d

d

1 2

4 3

a

a

d

d
1, 3 2, 4

T

S

Fig. 1. From left to right: automata for Lex, Lex
′

and std(Lex
′
)

Example 1. Consider as a running example the class of ”up-up-down-down“ per-
mutations with signature in the language1 Lex = (aadd)∗(aa + ε) recognized
by the automaton depicted in the left of Figure 1. The theory developed in the
paper permits to find the exponential generating function of sg−1(Lex):

FLex(z) =
sinh(z)− sin(z) + sin(z) cosh(z) + sinh(z) cos(z)

1 + cos(z) cosh(z)
.

Its Taylor expansion is

z +
z3

3!
+ 6

z5

5!
+ 71

z7

7!
+ 1456

z9

9!
+ 45541

z11

11!
+ 2020656

z13

13!
+

For instance, there are 1456 up-up-down-down permutations of length 9.

Now we state the two problems solved in this paper.

Problem 1. Design an algorithm which takes as input a regular language L ⊆
{a,d}∗ and returns a closed form formula for FL(z).

Problem 2. Design an algorithm which takes as input a regular language L ⊆
{a,d}∗ and n ≥ 1 and returns a random permutation σ uniformly in sg−1(Ln−1),
that is the probability for each σ ∈ sg−1(Ln−1) to be returned is 1/|sg−1(Ln−1)|.

2 A timed and geometric approach

In section 2.1 we recall definition of order and chain polytopes associated to
signatures. We introduce a sequence of sets On(L) ⊆ [0, 1]n and see how the
two problems posed can be reformulated as computing the volume generating
function of this sequence and generating points uniformly in On(L). Then we
define a timed language L′ associated to L as well as its volume sequence (section
2.2) and describe a volume preserving transformation between On(L) and L′n.

2.1 Order and chain polytopes of signatures.

We say that a collection of polytopes (S1, · · · , Sn) is an almost disjoint partition
of a set A if it is the union of Si and they have pairwise a null volume intersection.
In this case we write S =

⊔n
i=1 Si.

1 We identify regular expressions with the regular languages they express.

The set {(ν1, . . . , νn) ∈ [0, 1]n | 0 ≤ νσ−1
1
≤ . . . ≤ νσ−1

n
≤ 1} is called the

order simplex 2 of σ and denoted by O(σ). For instance ν = (0.3, 0.2, 0.4, 0.5, 0.1)
belongs to O(32451) since ν5 ≤ ν2 ≤ ν1 ≤ ν3 ≤ ν4 and (32451)−1 = 52134. The
set O(σ) for σ ∈ Sn forms an almost disjoint partition of [0, 1]n. By symmetry
all the order simplices of permutations have the same volume which is 1/n!.

If ν is uniformly sampled in [0, 1]n then it falls in any O(σ) with probability
1/n!. To retrieve σ from ν it suffices to use a sorting algorithm. We denote by
Π(ν) the permutation σ returned by the sorting algorithm on ν, that is such
that 0 ≤ νσ−1

1
≤ . . . ≤ νσ−1

n
≤ 1. Moreover with probability 1, ν has pairwise dis-

tinct3. coordinates and one can define its signature sg(ν) = u1 . . . un−1 by ui = a
if νi < νi+1 and ui = d if νi > νi+1. For instance sg(0.3, 0.2, 0.4, 0.5, 0.1) =
daad.

The order polytope O(u) [15] of a signature u ∈ {a,d}n−1 is the set of vectors
ν such that for all i ≤ n − 1, if ui = a then νi ≤ νi+1 and νi ≥ νi+1 otherwise.
That is the topological closure of {ν ∈ [0, 1]n | sg(ν) = u}. It is clear that the
collection of order simplices O(σ) with all σ having the same signature u form an
almost disjoint partition of the order polytope O(u): O(u) =

⊔
σ∈sg−1(u)O(σ),

for instance O(daa) = O(2134)tO(3124)tO(4123). Passing to volume we get:

Vol(O(u)) =
∑

σ∈sg−1(u)

Vol(O(σ)) =
|sg−1(u)|

n!
. (1)

Let L be a language of signatures and n ≥ 1, then the family (O(u))u∈Ln−1

forms an almost disjoint partition of a subset of [0, 1]n called the nth order set
of L and denoted by On(L):

On(L) =
⊔

u∈Ln−1

O(u) =
⊔

σ∈sg−1(Ln−1)

O(σ) = {ν ∈ [0, 1]n | sg(ν) ∈ Ln−1}. (2)

For volumes we get:

Vol(On(L)) =
∑

u∈Ln−1

Vol(O(u)) =
∑

σ∈sg−1(Ln−1)

Vol(O(σ)) =
|sg−1(Ln−1)|

n!
(3)

The chain polytope [15] of a signature u is the set C(u) of vectors t ∈ [0, 1]n such
that for all i < j ≤ n and l ∈ {a,d}, wi · · ·wj−1 = lj−i ⇒ ti + . . .+ tj ≤ 1.

Example 2. A vector (t1, t2, t3, t4, t5) ∈ [0, 1]5 belongs to C(daad) iff t1 + t2 ≤
1, t2 + t3 + t4 ≤ 1, t4 + t5 ≤ 1 iff 1 − t1 ≥ t2 ≤ t2 + t3 ≤ 1 − t4 ≥ t5 iff
(1− t1, t2, t2 + t3, 1− t4, t5) ∈ O(daad).

More generally, for w = ul with u ∈ {a,d}∗, l ∈ {a,d} and n = |w|, there is
a volume preserving transformation (t1, · · · , tn) 7→ (ν1, · · · , νn) from the chain
polytope C(u) to the order polytope O(u) defined as follows.

2 Order simplices, order and chain polytopes of signatures defined here are particular
cases of Stanley’s order and chain polytopes of posets [15].

3 Alternatively sg(ν) =def sg(Π(ν)) (defined also when some coordinates are equal).

Let j ∈ [n] and i be the index such that wi · · ·wj−1 is a maximal ascending
or descending block, that is i is minimal such that wi · · ·wj−1 = lj−i with

l ∈ {a,d}∗. If wj = d we define νj = 1−
∑j
k=i tk and νj =

∑j
k=i tk otherwise.

Proposition 1 (simple case of Theorem 2.1 of [11]). The mapping φul :
(t1, · · · , tn) 7→ (ν1, · · · , νn) is a volume preserving transformation from C(u) to
O(u). It can be computed in linear time using the following recursive definition:∣∣∣∣ν1 = t1 if w1 = a
ν1 = 1− t1 if w1 = d

and for i ≥ 2:

∣∣∣∣∣∣∣∣
νi = νi−1 + ti if wi−1wi = aa;
νi = ti if wi−1wi = da;
νi = 1− ti if wi−1wi = ad;
νi = νi−1 − ti if wi−1wi = dd.

As a corollary of (3) and Propostion 1 the first problem can be reformulated
in geometric terms as follows.

Corollary 1. For every L ∈ {a,d}∗ the following equalities hold:

FL(z) =
∑
n≥1

Vol(On(L))zn =
∑
u∈L

Vol(O(u))z|u|−1 =
∑
u∈L

Vol(C(u))z|u|−1.

For the second problem, it suffices to generate uniformly a vector ν ∈ On(L)
and then sort it to get a permutation σ = Π(ν). As the simplices O(σ) for
σ ∈ sg−1(Ln) form an almost disjoint partition of On(L) and all these simplices
have the same volume 1/n!, they are equally probable to receive the random
vector ν. Hence all σ ∈ sg−1(Ln) have the same probability to be chosen.

In fact, it is not clear how to fit the sequence of order sets (when n varies) with
the dynamics of the language L. We prefer to use a timed language for which we
can write recursive equations on volumes (inspired by [3,2]). The reduction from
the sequence of order sets to the timed language is mainly given by Proposition 1
since this latter language is a formal union of chain polytopes (Proposition 2).

2.2 Timed semantics of a language of signatures:
(
L′
n

)
n∈N

This section is inspired by timed automata theory and designed for non experts.
We adopt a non standard4 and self-contained approach based on the notion of
clock languages introduced by [6] and used in our previous work [2].

Timed languages, their volumes and their generating functions An
alphabet of timed events is the product R+×Σ where Σ is a finite alphabet. The
meaning of a timed event (ti, wi) is that ti is the time delay before the event wi.
A timed word is just a word of timed events and a timed language a set of timed
words. Adopting a geometric point of view, a timed word is a vector of delays
t = (t1, . . . , tn) ∈ Rn together with a word of events w = w1 · · ·wn ∈ Σn. That is
why we sometimes write such a timed word (t, w) instead of (t1, w1) · · · (tn, wn).
With this convention, given a timed language L′ ⊆ (R+ × Σ)∗, its restriction

4 We refer the reader to [1] for a standard approach of timed automata theory.

to n-length words L′n can be seen as a formal union of sets
⊎
w∈Σn L′w × {w}

where L′w = {t ∈ Rn | (t, w) ∈ L′} is the set of delay vectors that together with
w form a timed word of L′. In the sequel we will only consider languages L′ for
which every L′w is volume measurable. To such L′n one can associate a sequence
of volumes and a volume generating function as follows:

Vol(L′n) =
∑
w∈Σn

Vol(L′w); V GF (L′)(z) =
∑
w∈Σ∗

Vol(L′w)z|w| =
∑
n∈N

Vol(L′n)zn

The clock semantics of a signature. A clock is a non-negative real variable.
Here we only consider two clocks bounded by 1 and denoted by xa and xd. A clock
word is a tuple whose component are a starting clock vector (xa0 , x

d
0) ∈ [0, 1]2,

a timed word (t1, a1) · · · (tn, an) ∈ ([0, 1] × {a,d})∗ and an ending clock vector

(xan, x
d
n) ∈ [0, 1]2. It is denoted by (xa0 , x

d
0)

(t1,a1)···(tn,an)−−−−−−−−−−→ (xan, x
d
n). Two clock

words x0
w−→ x1 and x2

w′−−→ x3 are said to be compatible if x2 = x1, in this

case their product is (x0
w−→ x1) · (x2

w′−−→ x3) = x0
ww′−−−→ x3. A clock language

is a set of clock words. The product of two clock languages L and L′ is

L · L′ = {c · c′ | c ∈ L, c′ ∈ L′, c and c′ compatible}. (4)

The clock language5 L(a) (resp. L(d)) of an ascent (resp. a descent) is the

set of clock words of the form (xa, xd)
(t,a)−−−→ (xa + t, 0) (resp. (xa, xd)

(t,d)−−−→
(0, xd + t)) and such that xa + t ∈ [0, 1] and xd + t ∈ [0, 1] (and by definition of
clocks and delays xa ≥ 0, xd ≥ 0, t ≥ 0). These definitions extend inductively
to all signatures: L(u1 · · ·un) = L(u1) · · · L(un) (with product (4)).

Example 3. (0, 0)
(0.7,d)(0.2,a)(0.2,a)(0.5,d)−−−−−−−−−−−−−−−−−→ (0, 0.5) ∈ L(daad) since

(0, 0)
(0.7,d)−−−−→ (0, 0.7) ∈ L(d); (0, 0.7)

(0.2,a)−−−−→ (0.2, 0) ∈ L(a);

(0.2, 0)
(0.2,a)−−−−→ (0.4, 0) ∈ L(a); (0.4, 0)

(0.5,a)−−−−→ (0, 0.5) ∈ L(d).

The timed semantics of a language of signatures. The timed polytope
associated to a signature w ∈ {a,d}∗ is

Pw =def {t | (0, 0)
(t,w)−−−→ y ∈ L(w) for some y ∈ [0, 1]2}.

For instance (0.7, 0.2, 0.2, 0.5, 0.1) ∈ Pdaada. The timed semantics of a language
of signatures L′ is

L′ = {(t, w) | t ∈ Pw and w ∈ L′} = ∪w∈L′Pw × {w}.

This language restricted to words of length n is L′n = ∪w∈L′nPw×{w}, its volume
is Vol(L′n) =

∑
w∈L′ Vol(Pw).

5 A reader acquainted with timed automata would have noticed that the clock lan-
guage L(a) (resp. L(d)) corresponds to a transition of a timed automaton where the
guards xa ≤ 1 and xd ≤ 1 are satisfied and where xd (resp. xa) is reset.

The link with order and chain polytopes of signatures. We first state
the link between timed polytopes and chain polytopes.

Proposition 2. Given a word u ∈ {a,d}∗ and l ∈ {a,d}, the timed polytope of
ul is the chain polytope of u: Pul = C(u).

Hence Proposition 1 links the timed polytope Pul = C(u) of a signature of
length n + 1 and the order polytopes O(u) of a signature of length n. We cor-
rect the mismatch of length using prolongation of languages. A language L′ is
called a prolongation of a language L whenever the truncation of the last let-
ter w1 . . . wn 7→ w1 . . . wn−1 is a bijection between L′ and L. Every language L
has prolongations, for instance L′ = Ll for l ∈ {a,d}. A prolongation of Lex is
Lex

′
= (aadd)∗(aad + a) recognized by the automaton depicted in the middle

of Figure 1. Proposition 1 can be extended to language of signatures as follows.

Corollary 2. Let L ⊆ {a,d}∗ and L′ be the timed semantics of a prolongation of
L then for all n ∈ N, the following function is a volume preserving transformation
between L′n and On(L). Moreover it is computable in linear time.

φ : L′n → On(L)
(t, w) 7→ φw(t)

(5)

As a consequence, the two problems can be solved if we know how to compute
the VGF of a timed language L′ and how to generate timed vector uniformly in
L′n. A characterization of the VGF of a timed language as a solution of a system
of differential equations is done in [2]. Nevertheless the equations of this article
are quite uneasy to handle and don’t give a closed form formula for the VGF. To
get simpler equations than in [2] we work with a novel class of timed languages
involving two kinds of transitions S and T.

2.3 The S-T (timed) language encoding.

The S-T-encoding We consider the finite alphabet {S, T} whose elements must
be respectively read as straight and turn. The S-T-encoding of type l ∈ {a,d}
of a word w ∈ {a,d}∗ is a word w′ ∈ {S, T}∗ denoted by stl(w) and defined
recursively as follows: for every i ∈ [n], w′i = S if wi = wi−1 and w′i = T other-
wise, with the convention that w0 = l. The mapping stl is invertible and can
also be defined recursively. Indeed w = st−1l (w′) iff for every i ∈ [n], wi = wi−1
if w′i = S and wi 6= wi−1 otherwise, with convention that w0 = l. Notion of
S-T-encoding can be extended naturally to languages. For the running exam-
ple: std(Lex

′
) = (TS)∗T. We call an S-T-automaton, a deterministic finite state

automaton with transition alphabet {S, T} (see Figure 1 for an S-T-automaton
recognizing std(Lex

′
)).

Timed semantics and S-T-encoding In the following we define clock and
timed languages similarly to what we have done in section 2.2. Here we need only
one clock x that remains bounded by 1. We define the clock language associated

to S by L(S) = {x (t,S)−−−→ x + t | x ∈ [0, 1], t ∈ [0, 1 − x]} and the clock language

associated to T by L(T) = {x (t,T)−−−→ t | x ∈ [0, 1], t ∈ [0, 1− x]}. Let L′′ ⊆ {S, T}∗
we denote by L′′(x) the timed language starting from x: L′′(x) = {(t, w) | ∃y ∈
[0, 1], x

(t,w)−−−→ y ∈ L(w), w ∈ L′′}. The timed semantics of L′′ ⊆ {S, T}∗ is L′′(0).
The S-T-encodings yields a natural volume preserving transformation be-

tween timed languages:

Proposition 3. Let L′ ⊆ {a,d}∗, l ∈ {a,d}, L′ be the timed semantics of L′

and L′′ be the timed semantics of stl(L
′) then the function (t, w) 7→ (t, st−1l (w))

is a volume preserving transformation from L′′n to L′n.

Using notation and results of Corollary 2 and Proposition 3 we get a volume
preserving transformation from L′′n to On(L).

Theorem 1. The function (t, w) 7→ φst−1
l (w)(t) is a volume preserving trans-

formation from L′′n to On(L) computable in linear time. In particular

Vol(L′′n) =
|sg−1(Ln−1)|

n!
for n ≥ 1 and V GF (L′′)(z) = FL(z).

Thus to solve Problem 1 it suffices to characterize the VGF of an S-T-automaton.

3 Solving the two problems

3.1 Characterization of the VGF of an S-T-automaton.

In this section we characterize precisely the VGF of the timed language recog-
nized by an S-T-automaton. This solves Problem 1.

We have defined just above timed language L′′(x) parametrized by an initial
clock x. Given an S-T-automaton, we can also consider the intial state p as a
parameter and write Kleene like systems of equations on parametric language
Lp(x) (similarly to [2]). More precisely, let A = ({S, T}, Q, q0, F, δ) be an S-T-
automaton with states Q, initial state q0 ∈ Q, final states F ⊆ Q and transition
function δ : Q × {S, T} → Q. To every state p ∈ Q we denote by Lp ⊆ {S, T}∗
the language starting from p that is recognized by Ap =def {{S, T}, Q, p, F, δ}.
Then for every p ∈ Q, we have a parametric language equation:

Lp(x) =
[
∪t≤1−x(t, S)Lδ(p,S)(x+ t)

]
∪
[
∪t≤1−x(t, T)Lδ(p,T)(t)

]
∪(ε if p ∈ F). (6)

We denote by fp(x, z) and Vp(z) the volume generating function of Lp(x) and
Lp respectively and are interested in Vq0(z). As in [2], we pass from equation on
languages (6) to equation on generating functions:

fp(x, z) = z

∫ 1

x

fδ(p,S)(s, z)ds+ z

∫ 1−x

0

fδ(p,T)(t, z)dt+ (1 if p ∈ F) (7)

In matrix notation:

f(x, z) = zMS

∫ 1

x

f(s, z)ds+ zMT

∫ 1−x

0

f(t, z)dt+ F (8)

where f(x, z),
∫ 1

x
f(s, z)ds and

∫ 1−x
0

f(t, z)dt are the column vectors whose coor-

dinates are respectively the fp(x, z),
∫ 1

x
fp(s, z)ds and

∫ 1−x
0

fp(t, z)dt for p ∈ Q.

The pth coordinate of the column vector F is 1 if p ∈ F and 0 otherwise. The
Q×Q-matrices MS and MT are the adjacency matrices corresponding to letter
S and T that is for l ∈ {S, T}, Ml(p, q) = 1 if δ(p, l) = q and 0 otherwise.

The equation (8) is equivalent to the differential equation:

∂

∂x
f(x, z) = −zMSf(x, z)− zMTf(1− x, z) (9)

with boundary condition
f(1, z) = F . (10)

The equation (9) is equivalent to the following linear homogeneous system of
ordinary differential equations with constant coefficients:

∂

∂x

(
f(x, z)

f(1− x, z)

)
= z

(
−MS −MT

MT MS

)(
f(x, z)

f(1− x, z)

)
(11)

whose solution is of the form(
f(x, z)

f(1− x, z)

)
= exp

[
xz

(
−MS −MT

MT MS

)](
f(0, z)
f(1, z)

)
. (12)

Taking x = 1 in (12) and using the boundary condition (10) we obtain:(
F
V (z)

)
= exp

[
z

(
−MS −MT

MT MS

)](
V (z)
F

)
(13)

where V (z) is the vector whose coordinates are Vq(z) for q ∈ Q. Hence,

F = A1(z)V (z) +A2(z)F ; V (z) = A3(z)V (z) +A4(z)F (14)

where

(
A1(z) A2(z)
A3(z) A4(z)

)
= exp

[
z

(
−MS −MT

MT MS

)]
. In particular when z = 0,

A1(0) = I−A3(0) = I and thus the two continuous functions z 7→ detA1(z) and
z 7→ det(I − A3(z)) are positive in a neighbourhood of 0. We deduce that the
inverses of the matrices A1(z) and I−A3(z) are well defined in a neighbourhood
of 0 and thus both equations of (14) permit to express V (z) wrt. F :

V (z) = [A1(z)]−1[I −A2(z)]F ; V (z) = [I −A3(z)]−1A4(z)F (15)

To sum up, we address Problem 1 with the following theorem.

Theorem 2. Given a regular language L ⊆ {a,d}∗, one can compute the expo-
nential generating function FL(z) using Algorithm 1.

Some comments about the algorithm. In line 1, several choices are left to
the user: the prolongation L′ of the language L, the type of the S-T-encoding and
the automaton that realizes the S-T-encoding. These choices should be made such
that the output automaton has a minimal number of states or more generally
such that the matrices MT and MS are the simplest possible. Exponentiation of
matrices is implemented in most of computer algebra systems.

Algorithm 1 Computation of the generating function

1: Compute an S-T-automatonA for an extension of L and its corresponding adjacency
matrices MT and MS;

2: Compute

(
A1(z) A2(z)
A3(z) A4(z)

)
=def exp

[
z

(
−MS −MT

MT MS

)]
;

3: Compute V (z) = [A1(z)]−1[I −A2(z)]F (or V (z) = [I −A3(z)]−1A4(z)F);
4: return Vq0(z) the component of V (z) corresponding to the initial state of A.

3.2 An algorithm for Problem 2

Now we can solve Problem 2 using a uniform sampler of timed words (Algorithm
2), the volume preserving transformation of Theorem 1 and a sorting algorithm.

Theorem 3. Let L ⊆ {a,d}∗ and L′′ be the timed semantics of a S-T-encoding
of type l (for some l ∈ {a,d}) of a prolongation of L. The following algorithm
permits to achieve a uniform sampling of permutation in sg−1(Ln−1).

1. Choose uniformly an n-length timed word (t, w) ∈ L′′n using Algorithm 2;

2. Return Π(φst−1
l (w)(t)).

Uniform sampling of timed words. Recursive formulae (16) and (17) below
are freely inspired by those of [3] and of our previous work [2]. They are the key
tools to design a uniform sampler of timed word. This algorithm is a lifting from
the discrete case of the so-called recursive method (see [5,10]). For all q ∈ Q,
n ∈ N and x ∈ [0, 1] we denote by Lq,n(x) the language Lq(x) restricted to n-
length timed words. The languages Lq,n(x) can be recursively defined as follows:
Lq,0(x) = ε if q ∈ F and Lq,0 = ∅ otherwise;

Lq,n+1(x) =
[
∪t≤1−x(t, S)Lδ(q,S),n(x+ t)

]
∪
[
∪t≤1−x(t, T)Lδ(q,T),n(t)

]
. (16)

For q ∈ Q and n ≥ 0, we denote by vq,n the function x 7→ Vol[Lq,n(x)] from
[0, 1] to R+. Each vq,n is a polynomial of a degree less or equal to n that can be
computed recursively using the recurrent formula: vq,0(x) = 1q∈F and

vq,n+1(x) =

∫ 1

x

vδ(q,S),n(y)dy +

∫ 1−x

0

vδ(q,T),n(y)dy. (17)

The polynomials vq,n(x) play a key role for the uniform sampler. They permit
also to retrieve directly the terms of the wanted VGF: Vol(L′′n) = vq0,n(0) where
q0 is the initial state of the S-T automaton.

Theorem 4. Algorithm 2 is a uniform sampler of timed words of L′′n, that is for
every volume measurable subset A ⊆ L′′n, the probability that the returned timed
word belongs to A is Vol(A)/Vol(L′′n).

Algorithm 2 Recursive uniform sampler of timed words

1: x0 ← 0; q0 ← initial state;
2: for k = 1 to n do
3: Compute mk = vqk−1,n−(k−1)(xk−1) and pS =

∫ 1

xk−1
vδ(qk−1,S),n−k(y)dy/mk;

4: b← BERNOULLI(pS); (return 1 with probability pS and 0 otherwise)
5: if b = 1 then
6: wk ← S; qk ← δ(qk−1, S);
7: r ← RAND([0, 1]); (return a number uniformly sampled in [0, 1])
8: tk ← the unique solution in [0, 1−xk−1] of 1

mkpS

∫ xk−1+tk
xk−1

vqk,n−k(y)dy−r = 0;

9: xk ← xk−1 + tk;
10: else
11: wk ← T; qk ← δ(qk−1, T);
12: r ← RAND([0, 1]); (return a number uniformly sampled in [0, 1])
13: tk ← the unique solution in [0, 1−xk−1] of 1

mk(1−pS)

∫ tk
0
vqk,n−k(y)dy− r = 0;

14: xk ← tk;
15: end if
16: end for
17: return (t1, w1)(t2, w2) . . . (tn, wn)

Some comments about the algorithm. Algorithm 2 requires a precom-
putation of all functions vq,k for q ∈ Q and k ≤ n. They can be computed
in polynomial time by a dynamic programming method using (17). The ex-
pressions in lines 8 and 13 are polynomial functions increasing on [x, 1] (the
derivative is the integrand which is positive on (x, 1)). Finding the root of such
a polynomial can be done numerically and efficiently with a controlled error
using a numerical scheme such as the Newton’s method. A toy implementa-
tion of Algorithm 2 as well as that sketched in Theorem 3 is available on-line
http://www.liafa.univ-paris-diderot.fr/~nbasset/sage/sage.htm.

4 Discussion, perspectives and related works

We have stated and solved the problems of counting and uniform sampling of
permutations with signature in a given regular language of signatures. The timed
semantics of such a language is a particular case of regular timed languages
(i.e. recognized by timed automata [1]). However, with the approach used, timed
languages can be defined from any kind of languages of signatures. A challenging
task for us is to treat the case of context free languages. For this we should use
as in [2] volume of languages parametrized both by starting and ending states.

Our work can also benefit timed automata research. Indeed, we have proposed
a uniform sampler for a particular class of timed languages. An ongoing work is
to adapt this algorithm to all deterministic timed automata with bounded clocks
using recursive equations of [3].

There is no mention of the parameter x in Algorithm 1. It could be interesting
to find a direct explanation of this algorithm (without using parameters). In any
case, the parametric approach was crucial in the solution of the second problem.

http://www.liafa.univ-paris-diderot.fr/~nbasset/sage/sage.htm

Parametric approaches similar to ours are used in [7,13,17]. In particular
recursive equations involving integrals are also described there. Technically, these
approaches are based on order polytopes and yield integral operators of the form∫ x
0

and
∫ 1

x
while ours is based on chain polytopes and yields integral operators∫ 1−x

0
and

∫ 1

x
. The fact that these two operators are both null in x = 1 was

very useful here. The main novelty is our use of Kleene like equations for regular
timed languages and their volume functions (inspired by [2,3]) that allowed us
to address the two problems for all regular languages of signatures.

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

2. E. Asarin, N. Basset, A. Degorre, and D. Perrin. Generating functions of timed
languages. In B. Rovan, V. Sassone, and P. Widmayer, editors, MFCS, volume
7464 of Lecture Notes in Computer Science, pages 124–135. Springer, 2012.

3. E. Asarin and A. Degorre. Volume and entropy of regular timed languages: Analytic
approach. In J. Ouaknine and F. W. Vaandrager, editors, FORMATS, volume 5813
of Lecture Notes in Computer Science, pages 13–27. Springer, 2009.

4. N. Basset. Volumetry of timed languages and applications. PhD thesis, Université
Paris-Est, 2013.

5. O. Bernardi and O. Giménez. A linear algorithm for the random sampling from
regular languages. Algorithmica, 62(1-2):130–145, 2012.

6. P. Bouyer and A. Petit. A Kleene/Büchi-like theorem for clock languages. Journal
of Automata, Languages and Combinatorics, 7(2):167–186, 2002.

7. R. Ehrenborg and J. Jung. Descent pattern avoidance. Advances in Applied Math-
ematics, 2012.

8. S. Elizalde and M. Noy. Consecutive patterns in permutations. Advances in Applied
Mathematics, 30(1):110–125, 2003.

9. P. Flajolet and R. Sedgewick. Analytic combinatorics. Camb. Univ. press, 2009.
10. P. Flajolet, P. Zimmerman, and B. Van Cutsem. A calculus for the random genera-

tion of labelled combinatorial structures. Theoretical Computer Science, 132(1):1–
35, 1994.

11. T. Hibi and N. Li. Unimodular equivalence of order and chain polytopes. arXiv
preprint arXiv:1208.4029, 2012.

12. S. Kitaev. Patterns in permutations and words. Springer, 2011.
13. P. Marchal. Generating random permutations with a prescribed descent set. Pre-

sentation at Permutation Patterns 2013.
14. A. Nijenhuis and H. S. Wilf. Combinatorial algorithms for computers and calcu-

lators. Computer Science and Applied Mathematics, New York: Academic Press,
1978, 2nd ed., 1, 1978.

15. R. P. Stanley. Two poset polytopes. Discrete & Computational Geometry, 1(1):9–
23, 1986.

16. R. P. Stanley. A survey of alternating permutations. In Combinatorics and graphs,
volume 531 of Contemp. Math., pages 165–196. Amer. Math. Soc., Providence, RI,
2010.

17. G. G. Szpiro. The number of permutations with a given signature, and the expec-
tations of their elements. Discrete Mathematics, 226(1):423–430, 2001.

Appendix

We first give extra proof details in the appendix A. We describe the preprocessing
of Algorithm 2 and its complexity in the appendix B. Last but not least we details
the running example and two others in the appendix C.

A Some proof details

Proof of Proposition 2

Let w = ul i.e. for all i ∈ [n − 1] wi = ui and wn = l. Pul ⊆ C(u)) Let
(t1, . . . , tn) ∈ Pw i.e. there exist value of clocks xak (a ∈ {a,d}, k ∈ [n]) such

that xa0 = xd0 = 0 and (xak−1, x
d
k−1)

(tk,wk)−−−−−→ (xak, x
d
k) ∈ L(wk). Let i < j ≤ n and

a ∈ {a,d} such that wi · · ·wj−1 = aj−i, then for k ∈ {i, . . . , j−1}, xak = xak−1+tk
by definition of L(a). Then xaj−1 = xai−1 + ti+ . . .+ tj−1. Moreover xaj−1 + tj ≤ 1
by definition of L(wj) and thus ti + . . .+ tj−1 + tj ≤ xai−1 + tj ≤ 1 which is the
wanted inequality.

C(u) ⊆ Pul) Let (t1, . . . , tn) ∈ C(u). We show inductively that for every a ∈
{a,d}, the condition xaj−1 + tj ≤ 1 is satisfied and thus that xaj can be defined
(xaj = xaj−1 + tj if wj = a and xaj = 0 otherwise). For this we suppose that
clock values xa0 , . . . , x

a
j−1 are well defined. Let lr(xa, j) be the maximal index

before transition j such that wlr(xa,j) 6= a. Necessarily wlr(xa,j)+1 . . . wj = aj−i

and thus tlr(xj)+1 + . . . + tj ≤ 1 by definition of C(u). This latter sum is equal
to xaj−1 + tj ≤ 1 and thus the condition on xa imposed by L(uj) is satisfied. ut

Proof of Proposition 1

The function φul is a volume preserving transformation since it is a linear func-
tion given by a unimodular (i.e. an integer matrix having determinant +1 or
−1) matrix. Indeed φul(t) = ν iff ν> = Mult

>+ b with for all j ∈ [n]: if wj = a
(resp. wj = d) then the jth row of the matrix Mul has only 1s (resp. −1s) be-
tween coordinates i and j included and the jth row of b is 0 (resp. −1). One can
see that Mul is upper triangular and has only 1 and −1 on its diagonal and thus
is unimodular. Now it remains to prove that ν (= φul(t)) belongs to O(u) for
t ∈ C(u). For this we show that the two conditions (C-1) and (C-2) below are
equivalent; the former is the definition of (t1, · · · , tn) ∈ C(u) while the latter is
equivalent to ν1, . . . , νn ∈ O(u):

(C-1) for all i < j ≤ n and l ∈ {a,d}, ui · · ·uj−1 = lj−i ⇒ ti + . . .+ tj ≤ 1;

(C-2) for all i < j ≤ n, ui · · ·uj−1 = aj−i ⇒ νi ≤ . . . ≤ νj ≤ 1 and ui · · ·uj−1 =
dj−i ⇒ νj ≤ . . . ≤ νi ≤ 1.

Let i < j ≤ n and ui · · ·uj−1 = aj−i then the following chain of inequalities
[0 ≤ νi = ti ≤ . . . ≤ νj−1 = ti + . . .+ tj−1 ≤ νj = (1− tj or ti + . . .+ tj) ≤ 1] is
equivalent to ti + . . . + tj ≤ 1. The case of descents can be proved in a similar
way by applying x 7→ 1− x to the preceding inequalities. ut

Proof. For all σ ∈ sg−1n (L), the probability p(σ) that the output is σ is the proba-
bility to choose a timed word (t, w) such that Π[φst−1(w)(t)] = σ. Since the timed
words are uniformly sampled this probability is equal to Vol({(t, w) | Π[φw(t)] =
σ})/Vol(L′′n) which is equal to Vol({ν | Π(ν) = σ})/Vol(L′′n) since the mapping
(t, w) 7→ φst−1(w)(t) is a volume preserving transformation. The numerator is
the volume of the order simplex associated to σ which is Vol(O(σ)) = 1/n!; the
denominator Vol(L′′n) is |sg−1(Ln−1)|/n! by virtue of Theorem 1. We get the
expected result p(σ) = (1/n!)/(|sg−1(Ln−1)|/n!) = 1/|sg−1(Ln−1)|. ut

Sketch of proof of Theorem 4.

One can first check that for all k ∈ [n], (qk−1, xk−1)
(tk,wk)−−−−−→ (qk, xk) ∈ L(wk)

and that w1 · · ·wn ∈ L′′.
We denote by p[(t1, w1) · · · (tn, wn)] the density of probability of the timed

word (t1, w1) · · · (tn, wn) ∈ L′′ to be returned. The algorithm is a uniform sam-
pler if it assign the same density of probability to every timed word of L′′
i.e. p[(t1, w1) · · · (tn, wn)] = 1/Vol(L′′).

During the kth loop, wk and tk are chosen, knowing the preceding general
state (qk−1, xk−1) and the index k, according to a density of probability (im-
plicitly defined by the algorithm) denoted by pk[(tk, wk) | (qk−1, xk−1)]. The
new general state (qk, xk) is (deterministically) defined using (qk−1, xk−1) and
(tk, wk). The following chain rule is satisfied

p[(t1, w1) · · · (tn, wn)] =

n∏
k=1

pk[(tk, wk) | (qk−1, xk−1)] (18)

No it suffices to plug (19) proven in Lemma 1 just below in (18) to get the
expected result:

p[(t1, w1) · · · (tn, wn)] =

∏n
k=1mk+1∏n
k=1mk

=
mn+1

m1
=
vqn,0(xn)

vq0,n(0)
=

1

Vol(L′′n)
.

ut

Lemma 1. In Algorithm 2 during the kth loop for the timed transition (tk, wk)
is chosen knowing the current state (qk−1, xk−1) according to the following prob-
ability distribution function (variables of the following equation such as mk are
defined in the algorithm):

pk[(tk, wk) | (qk−1, xk−1)] =
mk+1

mk
=

vqk,n−k(xk)

vqk−1,n−(k−1)(xk−1)
. (19)

Proof. The choice of (tk, wk) is done in two steps: first wk is chosen (and thus
qk = δ(qk−1, wk)) and then tk. We write this

pk[(tk, wk) | (qk−1, xk−1)] = pk[wk | (qk−1, xk−1)]pk[tk | qk and xk−1] (20)

Remark that b = 1 iff wk = S and thus pk[S | (qk−1, xk−1)] = pS (the probability
that 1 is returned in line 4) and pk[T | (qk−1, xk−1)] = 1− pS otherwise.

In both cases (b = 0 or 1) the delay tk is sampled using the so-called in-
verse transform sampling. This method states that to sample a random vari-
able according to a probability density function (PDF) p(t) (here p(t) = pk[t |
qk and xk−1]) it suffices to uniformly sample a random number in [0, 1] and de-

fine t such that
∫ t
0
p(t′)dt′ = r. The latter integral is known as the cumulative

density function6 (CDF) associated to p.

– When b = 1 (and thus wk = S), the CDF used in the algorithm is

t 7→ 1

mkpS

∫ t

0

vqk,n−k(xk−1 + t′)dt′.

Its corresponding PDF is

pk[tk | qk and xk−1] =
1

mkpS
vqk,n−k(xk−1 + tk) =

mk+1

mkpS
.

Plugging this in (20) we get the expected result (19).
– When b = 0 (and thus wk = T), a similar reasoning permits to prove (19)

which is then true in both cases.

B Preprocessing of Algorithm 2.

Algorithm 3 Preprocessing for Algorithm 2

1: for p ∈ Q do
2: define vp,0(x) = 1p∈F .
3: for k = 1 to n do
4: compute vp,k(x) using (17).
5: end for
6: end for

Proposition 4. Algorithm 3 has space and time complexity O(|Q|n2). Its bit
space complexity is O(|Q|n3).

Proof (Sketch). The polynomial vq,m is of degree m, it has O(m) coefficients.
Therefore the time and space complexity are O(

∑n
m=1 |Q|m) = O(|Q|n2).

Magnitudes of coefficients of vq,m behave like 2mH where H is the entropy of
the timed language (see [3]) and thus one needs O(m) bits to store them. This
explains why an extra factor n appears when dealing with bit space complexity.

6 Its inverse (t function of r) is known as the quantile function.

C Examples

In section C.1 we show how Algorithm 1 applies to the classical example of
alternating permutations. In section C.2 we apply this algorithm to the running
example of up-up-down-down permutations. In section C.3 we treat the example
of permutations without two consecutive descents.

C.1 The alternating permutations

p q

d

a

T

Fig. 2. An automaton for (da)∗(ε+ d) and its S-T encoding of type d

The class of alternating permutation is7 Alt = S0 ∪ sg−1[(da)∗(ε + d)]. It
is well known since the 19th century and the work of Désiré André that

EGF (Alt)(z) = tan(z) + sec(z) (where sec(z) = 1/ cos(z)).

Several different proofs of this results can be found in [16]. Here we give a novel
proof based on the application of Algorithm 1 on (da)∗(ε+ d).

A prolongation of (da)∗(ε+ d) is (da)∗(d + da). We add ε to the language
to add 1 to its VGF, indeed

EGF (Alt)(z) = 1 + V GF [(da)∗(d + da)](z) = V GF [(da)∗(ε+ d)](z)

The S-T encoding of type a of (da)∗(ε+d) is just S∗ which is recognized by the
one loop automaton depicted in the right of Figure 2. Thus MS = (1), MT = (0)

and we must compute exp(zM) =
∑
n∈N z

nMn/n! with M =

(
0 1
−1 0

)
.

Computation of exp(zM) is easy since M is unipotent and thus its sequence
of power Mk is periodic: M0 = I2, M1 = M , M2 = −I2, M3 = −M , M3 = I2,
M4 = M , . . .

Then for all k ≥ 0:

M2k =

(
(−1)k 0

0 (−1)k

)
; M2k+1 =

(
0 (−1)2k

(−1)2k+1 0

)

Hence exp(zM) =
∑
n∈N z

nMn/n! =

(
cos(z) − sin(z)
sin(z) cos(z)

)
.

7 The unique permutation on the empty set has no signature and thus S0 6⊆ sg−1(L)
for any language L of signature.

By definition A1(z) = cos(z), A2(z) = − sin(z). We can conclude:

EGF (Alt)(z) = A1(z)−1(1−A2(z)) =
1

cos(z)
+ tan(z).

C.2 The up-up-down-down permutations

Here we compute the exponential generating function of the class of up-up-
down-down permutations given as running example of the article. Recall that
the corresponding regular language is Lex = (aadd)∗(aa + ε), one of its ex-
tension is Lex

′
= (aadd)∗(aad + a) and the S-T-encoding of type d of this

latter language is std(L′) = (TS)∗T. These languages are recognized by au-
tomata depicted in Figure 1. The adjacency matrices of the third automaton are

MS =

(
0 0
1 0

)
, MT =

(
0 1
0 0

)
and the row vector of final state is F =

(
0
1

)
.

Let M =

(
−MS −MT

MT MS

)
. Again the computation of exp(zM) is easy since M is

unipotent8:

M =

0 0 0 −1
−1 0 0 0
0 1 0 0
0 0 1 0

 ;M2 =

0 0 −1 0
0 0 0 1
−1 0 0 0
0 1 0 0

 ;M3 =

0 −1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0

 ;M4 = I4.

Thus if we denote by fi(z) =
∑+∞
n=0 z

4n+i/(4n+ i)! for i ∈ {0, 1, 2, 3} we have:

exp zM = f0(z)I + f1(z)M + f2(z)M2 + f3(z)M3 and

A1(z) =

(
f0(z) −f3(z)
−f1(z) f0(z)

)
;A2(z) =

(
f2(z) −f1(z)
f3(z) f2(z)

)
.

The function fi can be expressed with trigonometric and hyperbolic functions:

f0(z) = [cosh(z) + cos(z)]/2; f1(z) = [sinh(z) + sin(z)]/2;
f2(z) = [cosh(z)− cos(z)]/2; f3(z) = [sinh(z)− sin(z)]/2.

We have

[I2 −A2(z)]F =

(
f1(z)

1− f2(z)

)
and thus (

fp(z)
fq(z)

)
=

(
f0(z) −f3(z)
−f1(z) f0(z)

)−1(
f1(z)

1− f2(z)

)
.

Using Cramer formula we get fp(z) = [f1(z)f0(z) + f3(z)(1 − f2(z))]/[f20 (z) +
f1(z)f3(z)]. After straightforward simplifications we obtain the wanted result:

f(z) = fp(z) =
sinh(z)− sin(z) + sin(z) cosh(z) + sinh(z) cos(z)

1 + cos(z) cosh(z)
.

p q

d

a

a

p q

d

a

a

p q

T

S

T

Fig. 3. From left to right automata for Lex3 , Lex
′
3 = {ε} ∪ Lex3 .{a} and sta(Lex

′
3)

C.3 Permutations without two consecutive descents

Consider the class Cex3 of permutations without two consecutive descents. This
class has already been studied and its EGF computed. References and many
details can be found in the On-Line Encyclopedia of Integer Sequences (OEIS),
sequence A049774. In particular the following EGF is given:

EGF (Cex3)(z) =

√
3ez/2

√
3 cos

(√
3
2 z
)
− sin

(√
3
2 z
) .

We give an alternative proof of this result based on the method developed in
this article. The class Cex3 can be described in terms of regular languages:

Cex3 = S0 ∪ sg−1[(a + da)∗(ε+ d)].

A prolongation of (a+da)∗(ε+d) is (a+da)∗a. As for alternating permutations
we add the word ε to this language to add 1 to the final generating function,
thus we get the language (a+da)∗ recognized by the automaton depicted in the
middle of Figure 3. Its S-T encoding of type a is (S + TT)∗ which is recognized
by the automaton depicted in the right of Figure 3. Its adjacency matrices are

MS =

(
1 0
0 0

)
, MT =

(
0 1
1 0

)
and the row vector of final state is F =

(
1
0

)
. Let

M =

(
−MS −MT

MT MS

)
. We will solve directly the differential equation (9) with

boundary condition (10), i.e. the system

∂fp
∂x

(x, z) = −zfp(x, z)dy − zfq(1− x, z)dy; (21)

∂fq
∂x

(x, z) = −zfp(1− x, z). (22)

with boundary conditions fp(1, z) = 1; fq(1, z) = 0 Equation (21) taken at x = 1

ensures that
∂fp
∂x (1, z) = −zfp(0, z) − zfq(1, z) = −zfp(0, z). Thus we have the

boundary conditions

fp(1, z) = 1; (23)

∂fp
∂x

(1, z) = −zfp(0, z). (24)

8 This is in fact the case for all cyclic automata.

http://oeis.org
http://oeis.org/A049774

Differentiating (21) and replacing
∂fq
∂x (1− x, z) using (22) we get:

∂2fp
∂x2

(x, z) = −z ∂fp
∂x
− z2fp(x, z); (25)

Solutions are of the form: fp(x, z) = e−zx/2
[
a(z) cos

(√
3
2 zx

)
+ b(z) sin

(√
3
2 zx

)]
with a(z) and b(z) to be determined using boundary conditions (23) and (24)
i.e. a(z) and b(z) should satisfy:

cos
(√

3
2 z
)
a(z)+ sin

(√
3
2 z
)
b(z) = ez/2;

a(z)+
√

3 b(z) = 0.

Solving this system we obtained the expected EGF:

EGF (Cex3)(z) = fp(0, z) = a(z) =

√
3ez/2

√
3 cos

(√
3
2 z
)
− sin

(√
3
2 z
) .

	Counting and generating permutations using timed languages

